| // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause |
| /* |
| * Copyright (c) 2014-2017 Oracle. All rights reserved. |
| * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the BSD-type |
| * license below: |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * |
| * Neither the name of the Network Appliance, Inc. nor the names of |
| * its contributors may be used to endorse or promote products |
| * derived from this software without specific prior written |
| * permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| /* |
| * verbs.c |
| * |
| * Encapsulates the major functions managing: |
| * o adapters |
| * o endpoints |
| * o connections |
| * o buffer memory |
| */ |
| |
| #include <linux/interrupt.h> |
| #include <linux/slab.h> |
| #include <linux/sunrpc/addr.h> |
| #include <linux/sunrpc/svc_rdma.h> |
| |
| #include <asm-generic/barrier.h> |
| #include <asm/bitops.h> |
| |
| #include <rdma/ib_cm.h> |
| |
| #include "xprt_rdma.h" |
| #include <trace/events/rpcrdma.h> |
| |
| /* |
| * Globals/Macros |
| */ |
| |
| #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) |
| # define RPCDBG_FACILITY RPCDBG_TRANS |
| #endif |
| |
| /* |
| * internal functions |
| */ |
| static void rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc); |
| static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt); |
| static void rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf); |
| static int rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt, bool temp); |
| static void rpcrdma_dma_unmap_regbuf(struct rpcrdma_regbuf *rb); |
| |
| struct workqueue_struct *rpcrdma_receive_wq __read_mostly; |
| |
| int |
| rpcrdma_alloc_wq(void) |
| { |
| struct workqueue_struct *recv_wq; |
| |
| recv_wq = alloc_workqueue("xprtrdma_receive", |
| WQ_MEM_RECLAIM | WQ_HIGHPRI, |
| 0); |
| if (!recv_wq) |
| return -ENOMEM; |
| |
| rpcrdma_receive_wq = recv_wq; |
| return 0; |
| } |
| |
| void |
| rpcrdma_destroy_wq(void) |
| { |
| struct workqueue_struct *wq; |
| |
| if (rpcrdma_receive_wq) { |
| wq = rpcrdma_receive_wq; |
| rpcrdma_receive_wq = NULL; |
| destroy_workqueue(wq); |
| } |
| } |
| |
| static void |
| rpcrdma_qp_async_error_upcall(struct ib_event *event, void *context) |
| { |
| struct rpcrdma_ep *ep = context; |
| struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt, |
| rx_ep); |
| |
| trace_xprtrdma_qp_error(r_xprt, event); |
| pr_err("rpcrdma: %s on device %s ep %p\n", |
| ib_event_msg(event->event), event->device->name, context); |
| |
| if (ep->rep_connected == 1) { |
| ep->rep_connected = -EIO; |
| rpcrdma_conn_func(ep); |
| wake_up_all(&ep->rep_connect_wait); |
| } |
| } |
| |
| /** |
| * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC |
| * @cq: completion queue (ignored) |
| * @wc: completed WR |
| * |
| */ |
| static void |
| rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc) |
| { |
| struct ib_cqe *cqe = wc->wr_cqe; |
| struct rpcrdma_sendctx *sc = |
| container_of(cqe, struct rpcrdma_sendctx, sc_cqe); |
| |
| /* WARNING: Only wr_cqe and status are reliable at this point */ |
| trace_xprtrdma_wc_send(sc, wc); |
| if (wc->status != IB_WC_SUCCESS && wc->status != IB_WC_WR_FLUSH_ERR) |
| pr_err("rpcrdma: Send: %s (%u/0x%x)\n", |
| ib_wc_status_msg(wc->status), |
| wc->status, wc->vendor_err); |
| |
| rpcrdma_sendctx_put_locked(sc); |
| } |
| |
| /** |
| * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC |
| * @cq: completion queue (ignored) |
| * @wc: completed WR |
| * |
| */ |
| static void |
| rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc) |
| { |
| struct ib_cqe *cqe = wc->wr_cqe; |
| struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep, |
| rr_cqe); |
| |
| /* WARNING: Only wr_id and status are reliable at this point */ |
| trace_xprtrdma_wc_receive(wc); |
| if (wc->status != IB_WC_SUCCESS) |
| goto out_fail; |
| |
| /* status == SUCCESS means all fields in wc are trustworthy */ |
| rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len); |
| rep->rr_wc_flags = wc->wc_flags; |
| rep->rr_inv_rkey = wc->ex.invalidate_rkey; |
| |
| ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf), |
| rdmab_addr(rep->rr_rdmabuf), |
| wc->byte_len, DMA_FROM_DEVICE); |
| |
| out_schedule: |
| rpcrdma_reply_handler(rep); |
| return; |
| |
| out_fail: |
| if (wc->status != IB_WC_WR_FLUSH_ERR) |
| pr_err("rpcrdma: Recv: %s (%u/0x%x)\n", |
| ib_wc_status_msg(wc->status), |
| wc->status, wc->vendor_err); |
| rpcrdma_set_xdrlen(&rep->rr_hdrbuf, 0); |
| goto out_schedule; |
| } |
| |
| static void |
| rpcrdma_update_connect_private(struct rpcrdma_xprt *r_xprt, |
| struct rdma_conn_param *param) |
| { |
| struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; |
| const struct rpcrdma_connect_private *pmsg = param->private_data; |
| unsigned int rsize, wsize; |
| |
| /* Default settings for RPC-over-RDMA Version One */ |
| r_xprt->rx_ia.ri_implicit_roundup = xprt_rdma_pad_optimize; |
| rsize = RPCRDMA_V1_DEF_INLINE_SIZE; |
| wsize = RPCRDMA_V1_DEF_INLINE_SIZE; |
| |
| if (pmsg && |
| pmsg->cp_magic == rpcrdma_cmp_magic && |
| pmsg->cp_version == RPCRDMA_CMP_VERSION) { |
| r_xprt->rx_ia.ri_implicit_roundup = true; |
| rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size); |
| wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size); |
| } |
| |
| if (rsize < cdata->inline_rsize) |
| cdata->inline_rsize = rsize; |
| if (wsize < cdata->inline_wsize) |
| cdata->inline_wsize = wsize; |
| dprintk("RPC: %s: max send %u, max recv %u\n", |
| __func__, cdata->inline_wsize, cdata->inline_rsize); |
| rpcrdma_set_max_header_sizes(r_xprt); |
| } |
| |
| static int |
| rpcrdma_conn_upcall(struct rdma_cm_id *id, struct rdma_cm_event *event) |
| { |
| struct rpcrdma_xprt *xprt = id->context; |
| struct rpcrdma_ia *ia = &xprt->rx_ia; |
| struct rpcrdma_ep *ep = &xprt->rx_ep; |
| int connstate = 0; |
| |
| trace_xprtrdma_conn_upcall(xprt, event); |
| switch (event->event) { |
| case RDMA_CM_EVENT_ADDR_RESOLVED: |
| case RDMA_CM_EVENT_ROUTE_RESOLVED: |
| ia->ri_async_rc = 0; |
| complete(&ia->ri_done); |
| break; |
| case RDMA_CM_EVENT_ADDR_ERROR: |
| ia->ri_async_rc = -EPROTO; |
| complete(&ia->ri_done); |
| break; |
| case RDMA_CM_EVENT_ROUTE_ERROR: |
| ia->ri_async_rc = -ENETUNREACH; |
| complete(&ia->ri_done); |
| break; |
| case RDMA_CM_EVENT_DEVICE_REMOVAL: |
| #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) |
| pr_info("rpcrdma: removing device %s for %s:%s\n", |
| ia->ri_device->name, |
| rpcrdma_addrstr(xprt), rpcrdma_portstr(xprt)); |
| #endif |
| init_completion(&ia->ri_remove_done); |
| set_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags); |
| ep->rep_connected = -ENODEV; |
| xprt_force_disconnect(&xprt->rx_xprt); |
| wait_for_completion(&ia->ri_remove_done); |
| |
| ia->ri_id = NULL; |
| ia->ri_device = NULL; |
| /* Return 1 to ensure the core destroys the id. */ |
| return 1; |
| case RDMA_CM_EVENT_ESTABLISHED: |
| ++xprt->rx_xprt.connect_cookie; |
| connstate = 1; |
| rpcrdma_update_connect_private(xprt, &event->param.conn); |
| goto connected; |
| case RDMA_CM_EVENT_CONNECT_ERROR: |
| connstate = -ENOTCONN; |
| goto connected; |
| case RDMA_CM_EVENT_UNREACHABLE: |
| connstate = -ENETUNREACH; |
| goto connected; |
| case RDMA_CM_EVENT_REJECTED: |
| dprintk("rpcrdma: connection to %s:%s rejected: %s\n", |
| rpcrdma_addrstr(xprt), rpcrdma_portstr(xprt), |
| rdma_reject_msg(id, event->status)); |
| connstate = -ECONNREFUSED; |
| if (event->status == IB_CM_REJ_STALE_CONN) |
| connstate = -EAGAIN; |
| goto connected; |
| case RDMA_CM_EVENT_DISCONNECTED: |
| ++xprt->rx_xprt.connect_cookie; |
| connstate = -ECONNABORTED; |
| connected: |
| ep->rep_connected = connstate; |
| rpcrdma_conn_func(ep); |
| wake_up_all(&ep->rep_connect_wait); |
| /*FALLTHROUGH*/ |
| default: |
| dprintk("RPC: %s: %s:%s on %s/%s (ep 0x%p): %s\n", |
| __func__, |
| rpcrdma_addrstr(xprt), rpcrdma_portstr(xprt), |
| ia->ri_device->name, ia->ri_ops->ro_displayname, |
| ep, rdma_event_msg(event->event)); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static struct rdma_cm_id * |
| rpcrdma_create_id(struct rpcrdma_xprt *xprt, struct rpcrdma_ia *ia) |
| { |
| unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1; |
| struct rdma_cm_id *id; |
| int rc; |
| |
| trace_xprtrdma_conn_start(xprt); |
| |
| init_completion(&ia->ri_done); |
| |
| id = rdma_create_id(xprt->rx_xprt.xprt_net, rpcrdma_conn_upcall, |
| xprt, RDMA_PS_TCP, IB_QPT_RC); |
| if (IS_ERR(id)) { |
| rc = PTR_ERR(id); |
| dprintk("RPC: %s: rdma_create_id() failed %i\n", |
| __func__, rc); |
| return id; |
| } |
| |
| ia->ri_async_rc = -ETIMEDOUT; |
| rc = rdma_resolve_addr(id, NULL, |
| (struct sockaddr *)&xprt->rx_xprt.addr, |
| RDMA_RESOLVE_TIMEOUT); |
| if (rc) { |
| dprintk("RPC: %s: rdma_resolve_addr() failed %i\n", |
| __func__, rc); |
| goto out; |
| } |
| rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout); |
| if (rc < 0) { |
| trace_xprtrdma_conn_tout(xprt); |
| goto out; |
| } |
| |
| rc = ia->ri_async_rc; |
| if (rc) |
| goto out; |
| |
| ia->ri_async_rc = -ETIMEDOUT; |
| rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); |
| if (rc) { |
| dprintk("RPC: %s: rdma_resolve_route() failed %i\n", |
| __func__, rc); |
| goto out; |
| } |
| rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout); |
| if (rc < 0) { |
| trace_xprtrdma_conn_tout(xprt); |
| goto out; |
| } |
| rc = ia->ri_async_rc; |
| if (rc) |
| goto out; |
| |
| return id; |
| |
| out: |
| rdma_destroy_id(id); |
| return ERR_PTR(rc); |
| } |
| |
| /* |
| * Exported functions. |
| */ |
| |
| /** |
| * rpcrdma_ia_open - Open and initialize an Interface Adapter. |
| * @xprt: transport with IA to (re)initialize |
| * |
| * Returns 0 on success, negative errno if an appropriate |
| * Interface Adapter could not be found and opened. |
| */ |
| int |
| rpcrdma_ia_open(struct rpcrdma_xprt *xprt) |
| { |
| struct rpcrdma_ia *ia = &xprt->rx_ia; |
| int rc; |
| |
| ia->ri_id = rpcrdma_create_id(xprt, ia); |
| if (IS_ERR(ia->ri_id)) { |
| rc = PTR_ERR(ia->ri_id); |
| goto out_err; |
| } |
| ia->ri_device = ia->ri_id->device; |
| |
| ia->ri_pd = ib_alloc_pd(ia->ri_device, 0); |
| if (IS_ERR(ia->ri_pd)) { |
| rc = PTR_ERR(ia->ri_pd); |
| pr_err("rpcrdma: ib_alloc_pd() returned %d\n", rc); |
| goto out_err; |
| } |
| |
| switch (xprt_rdma_memreg_strategy) { |
| case RPCRDMA_FRWR: |
| if (frwr_is_supported(ia)) { |
| ia->ri_ops = &rpcrdma_frwr_memreg_ops; |
| break; |
| } |
| /*FALLTHROUGH*/ |
| case RPCRDMA_MTHCAFMR: |
| if (fmr_is_supported(ia)) { |
| ia->ri_ops = &rpcrdma_fmr_memreg_ops; |
| break; |
| } |
| /*FALLTHROUGH*/ |
| default: |
| pr_err("rpcrdma: Device %s does not support memreg mode %d\n", |
| ia->ri_device->name, xprt_rdma_memreg_strategy); |
| rc = -EINVAL; |
| goto out_err; |
| } |
| |
| return 0; |
| |
| out_err: |
| rpcrdma_ia_close(ia); |
| return rc; |
| } |
| |
| /** |
| * rpcrdma_ia_remove - Handle device driver unload |
| * @ia: interface adapter being removed |
| * |
| * Divest transport H/W resources associated with this adapter, |
| * but allow it to be restored later. |
| */ |
| void |
| rpcrdma_ia_remove(struct rpcrdma_ia *ia) |
| { |
| struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt, |
| rx_ia); |
| struct rpcrdma_ep *ep = &r_xprt->rx_ep; |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| struct rpcrdma_req *req; |
| struct rpcrdma_rep *rep; |
| |
| cancel_delayed_work_sync(&buf->rb_refresh_worker); |
| |
| /* This is similar to rpcrdma_ep_destroy, but: |
| * - Don't cancel the connect worker. |
| * - Don't call rpcrdma_ep_disconnect, which waits |
| * for another conn upcall, which will deadlock. |
| * - rdma_disconnect is unneeded, the underlying |
| * connection is already gone. |
| */ |
| if (ia->ri_id->qp) { |
| ib_drain_qp(ia->ri_id->qp); |
| rdma_destroy_qp(ia->ri_id); |
| ia->ri_id->qp = NULL; |
| } |
| ib_free_cq(ep->rep_attr.recv_cq); |
| ep->rep_attr.recv_cq = NULL; |
| ib_free_cq(ep->rep_attr.send_cq); |
| ep->rep_attr.send_cq = NULL; |
| |
| /* The ULP is responsible for ensuring all DMA |
| * mappings and MRs are gone. |
| */ |
| list_for_each_entry(rep, &buf->rb_recv_bufs, rr_list) |
| rpcrdma_dma_unmap_regbuf(rep->rr_rdmabuf); |
| list_for_each_entry(req, &buf->rb_allreqs, rl_all) { |
| rpcrdma_dma_unmap_regbuf(req->rl_rdmabuf); |
| rpcrdma_dma_unmap_regbuf(req->rl_sendbuf); |
| rpcrdma_dma_unmap_regbuf(req->rl_recvbuf); |
| } |
| rpcrdma_mrs_destroy(buf); |
| ib_dealloc_pd(ia->ri_pd); |
| ia->ri_pd = NULL; |
| |
| /* Allow waiters to continue */ |
| complete(&ia->ri_remove_done); |
| |
| trace_xprtrdma_remove(r_xprt); |
| } |
| |
| /** |
| * rpcrdma_ia_close - Clean up/close an IA. |
| * @ia: interface adapter to close |
| * |
| */ |
| void |
| rpcrdma_ia_close(struct rpcrdma_ia *ia) |
| { |
| if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) { |
| if (ia->ri_id->qp) |
| rdma_destroy_qp(ia->ri_id); |
| rdma_destroy_id(ia->ri_id); |
| } |
| ia->ri_id = NULL; |
| ia->ri_device = NULL; |
| |
| /* If the pd is still busy, xprtrdma missed freeing a resource */ |
| if (ia->ri_pd && !IS_ERR(ia->ri_pd)) |
| ib_dealloc_pd(ia->ri_pd); |
| ia->ri_pd = NULL; |
| } |
| |
| /* |
| * Create unconnected endpoint. |
| */ |
| int |
| rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia, |
| struct rpcrdma_create_data_internal *cdata) |
| { |
| struct rpcrdma_connect_private *pmsg = &ep->rep_cm_private; |
| struct ib_cq *sendcq, *recvcq; |
| unsigned int max_sge; |
| int rc; |
| |
| max_sge = min_t(unsigned int, ia->ri_device->attrs.max_send_sge, |
| RPCRDMA_MAX_SEND_SGES); |
| if (max_sge < RPCRDMA_MIN_SEND_SGES) { |
| pr_warn("rpcrdma: HCA provides only %d send SGEs\n", max_sge); |
| return -ENOMEM; |
| } |
| ia->ri_max_send_sges = max_sge; |
| |
| rc = ia->ri_ops->ro_open(ia, ep, cdata); |
| if (rc) |
| return rc; |
| |
| ep->rep_attr.event_handler = rpcrdma_qp_async_error_upcall; |
| ep->rep_attr.qp_context = ep; |
| ep->rep_attr.srq = NULL; |
| ep->rep_attr.cap.max_send_sge = max_sge; |
| ep->rep_attr.cap.max_recv_sge = 1; |
| ep->rep_attr.cap.max_inline_data = 0; |
| ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR; |
| ep->rep_attr.qp_type = IB_QPT_RC; |
| ep->rep_attr.port_num = ~0; |
| |
| dprintk("RPC: %s: requested max: dtos: send %d recv %d; " |
| "iovs: send %d recv %d\n", |
| __func__, |
| ep->rep_attr.cap.max_send_wr, |
| ep->rep_attr.cap.max_recv_wr, |
| ep->rep_attr.cap.max_send_sge, |
| ep->rep_attr.cap.max_recv_sge); |
| |
| /* set trigger for requesting send completion */ |
| ep->rep_send_batch = min_t(unsigned int, RPCRDMA_MAX_SEND_BATCH, |
| cdata->max_requests >> 2); |
| ep->rep_send_count = ep->rep_send_batch; |
| init_waitqueue_head(&ep->rep_connect_wait); |
| INIT_DELAYED_WORK(&ep->rep_connect_worker, rpcrdma_connect_worker); |
| |
| sendcq = ib_alloc_cq(ia->ri_device, NULL, |
| ep->rep_attr.cap.max_send_wr + 1, |
| ia->ri_device->num_comp_vectors > 1 ? 1 : 0, |
| IB_POLL_WORKQUEUE); |
| if (IS_ERR(sendcq)) { |
| rc = PTR_ERR(sendcq); |
| dprintk("RPC: %s: failed to create send CQ: %i\n", |
| __func__, rc); |
| goto out1; |
| } |
| |
| recvcq = ib_alloc_cq(ia->ri_device, NULL, |
| ep->rep_attr.cap.max_recv_wr + 1, |
| 0, IB_POLL_WORKQUEUE); |
| if (IS_ERR(recvcq)) { |
| rc = PTR_ERR(recvcq); |
| dprintk("RPC: %s: failed to create recv CQ: %i\n", |
| __func__, rc); |
| goto out2; |
| } |
| |
| ep->rep_attr.send_cq = sendcq; |
| ep->rep_attr.recv_cq = recvcq; |
| |
| /* Initialize cma parameters */ |
| memset(&ep->rep_remote_cma, 0, sizeof(ep->rep_remote_cma)); |
| |
| /* Prepare RDMA-CM private message */ |
| pmsg->cp_magic = rpcrdma_cmp_magic; |
| pmsg->cp_version = RPCRDMA_CMP_VERSION; |
| pmsg->cp_flags |= ia->ri_ops->ro_send_w_inv_ok; |
| pmsg->cp_send_size = rpcrdma_encode_buffer_size(cdata->inline_wsize); |
| pmsg->cp_recv_size = rpcrdma_encode_buffer_size(cdata->inline_rsize); |
| ep->rep_remote_cma.private_data = pmsg; |
| ep->rep_remote_cma.private_data_len = sizeof(*pmsg); |
| |
| /* Client offers RDMA Read but does not initiate */ |
| ep->rep_remote_cma.initiator_depth = 0; |
| ep->rep_remote_cma.responder_resources = |
| min_t(int, U8_MAX, ia->ri_device->attrs.max_qp_rd_atom); |
| |
| /* Limit transport retries so client can detect server |
| * GID changes quickly. RPC layer handles re-establishing |
| * transport connection and retransmission. |
| */ |
| ep->rep_remote_cma.retry_count = 6; |
| |
| /* RPC-over-RDMA handles its own flow control. In addition, |
| * make all RNR NAKs visible so we know that RPC-over-RDMA |
| * flow control is working correctly (no NAKs should be seen). |
| */ |
| ep->rep_remote_cma.flow_control = 0; |
| ep->rep_remote_cma.rnr_retry_count = 0; |
| |
| return 0; |
| |
| out2: |
| ib_free_cq(sendcq); |
| out1: |
| return rc; |
| } |
| |
| /* |
| * rpcrdma_ep_destroy |
| * |
| * Disconnect and destroy endpoint. After this, the only |
| * valid operations on the ep are to free it (if dynamically |
| * allocated) or re-create it. |
| */ |
| void |
| rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) |
| { |
| cancel_delayed_work_sync(&ep->rep_connect_worker); |
| |
| if (ia->ri_id && ia->ri_id->qp) { |
| rpcrdma_ep_disconnect(ep, ia); |
| rdma_destroy_qp(ia->ri_id); |
| ia->ri_id->qp = NULL; |
| } |
| |
| if (ep->rep_attr.recv_cq) |
| ib_free_cq(ep->rep_attr.recv_cq); |
| if (ep->rep_attr.send_cq) |
| ib_free_cq(ep->rep_attr.send_cq); |
| } |
| |
| /* Re-establish a connection after a device removal event. |
| * Unlike a normal reconnection, a fresh PD and a new set |
| * of MRs and buffers is needed. |
| */ |
| static int |
| rpcrdma_ep_recreate_xprt(struct rpcrdma_xprt *r_xprt, |
| struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) |
| { |
| int rc, err; |
| |
| trace_xprtrdma_reinsert(r_xprt); |
| |
| rc = -EHOSTUNREACH; |
| if (rpcrdma_ia_open(r_xprt)) |
| goto out1; |
| |
| rc = -ENOMEM; |
| err = rpcrdma_ep_create(ep, ia, &r_xprt->rx_data); |
| if (err) { |
| pr_err("rpcrdma: rpcrdma_ep_create returned %d\n", err); |
| goto out2; |
| } |
| |
| rc = -ENETUNREACH; |
| err = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); |
| if (err) { |
| pr_err("rpcrdma: rdma_create_qp returned %d\n", err); |
| goto out3; |
| } |
| |
| rpcrdma_mrs_create(r_xprt); |
| return 0; |
| |
| out3: |
| rpcrdma_ep_destroy(ep, ia); |
| out2: |
| rpcrdma_ia_close(ia); |
| out1: |
| return rc; |
| } |
| |
| static int |
| rpcrdma_ep_reconnect(struct rpcrdma_xprt *r_xprt, struct rpcrdma_ep *ep, |
| struct rpcrdma_ia *ia) |
| { |
| struct rdma_cm_id *id, *old; |
| int err, rc; |
| |
| trace_xprtrdma_reconnect(r_xprt); |
| |
| rpcrdma_ep_disconnect(ep, ia); |
| |
| rc = -EHOSTUNREACH; |
| id = rpcrdma_create_id(r_xprt, ia); |
| if (IS_ERR(id)) |
| goto out; |
| |
| /* As long as the new ID points to the same device as the |
| * old ID, we can reuse the transport's existing PD and all |
| * previously allocated MRs. Also, the same device means |
| * the transport's previous DMA mappings are still valid. |
| * |
| * This is a sanity check only. There should be no way these |
| * point to two different devices here. |
| */ |
| old = id; |
| rc = -ENETUNREACH; |
| if (ia->ri_device != id->device) { |
| pr_err("rpcrdma: can't reconnect on different device!\n"); |
| goto out_destroy; |
| } |
| |
| err = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr); |
| if (err) { |
| dprintk("RPC: %s: rdma_create_qp returned %d\n", |
| __func__, err); |
| goto out_destroy; |
| } |
| |
| /* Atomically replace the transport's ID and QP. */ |
| rc = 0; |
| old = ia->ri_id; |
| ia->ri_id = id; |
| rdma_destroy_qp(old); |
| |
| out_destroy: |
| rdma_destroy_id(old); |
| out: |
| return rc; |
| } |
| |
| /* |
| * Connect unconnected endpoint. |
| */ |
| int |
| rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) |
| { |
| struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt, |
| rx_ia); |
| int rc; |
| |
| retry: |
| switch (ep->rep_connected) { |
| case 0: |
| dprintk("RPC: %s: connecting...\n", __func__); |
| rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); |
| if (rc) { |
| dprintk("RPC: %s: rdma_create_qp failed %i\n", |
| __func__, rc); |
| rc = -ENETUNREACH; |
| goto out_noupdate; |
| } |
| break; |
| case -ENODEV: |
| rc = rpcrdma_ep_recreate_xprt(r_xprt, ep, ia); |
| if (rc) |
| goto out_noupdate; |
| break; |
| default: |
| rc = rpcrdma_ep_reconnect(r_xprt, ep, ia); |
| if (rc) |
| goto out; |
| } |
| |
| ep->rep_connected = 0; |
| rpcrdma_post_recvs(r_xprt, true); |
| |
| rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma); |
| if (rc) { |
| dprintk("RPC: %s: rdma_connect() failed with %i\n", |
| __func__, rc); |
| goto out; |
| } |
| |
| wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0); |
| if (ep->rep_connected <= 0) { |
| if (ep->rep_connected == -EAGAIN) |
| goto retry; |
| rc = ep->rep_connected; |
| goto out; |
| } |
| |
| dprintk("RPC: %s: connected\n", __func__); |
| |
| out: |
| if (rc) |
| ep->rep_connected = rc; |
| |
| out_noupdate: |
| return rc; |
| } |
| |
| /* |
| * rpcrdma_ep_disconnect |
| * |
| * This is separate from destroy to facilitate the ability |
| * to reconnect without recreating the endpoint. |
| * |
| * This call is not reentrant, and must not be made in parallel |
| * on the same endpoint. |
| */ |
| void |
| rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) |
| { |
| int rc; |
| |
| rc = rdma_disconnect(ia->ri_id); |
| if (!rc) |
| /* returns without wait if not connected */ |
| wait_event_interruptible(ep->rep_connect_wait, |
| ep->rep_connected != 1); |
| else |
| ep->rep_connected = rc; |
| trace_xprtrdma_disconnect(container_of(ep, struct rpcrdma_xprt, |
| rx_ep), rc); |
| |
| ib_drain_qp(ia->ri_id->qp); |
| } |
| |
| /* Fixed-size circular FIFO queue. This implementation is wait-free and |
| * lock-free. |
| * |
| * Consumer is the code path that posts Sends. This path dequeues a |
| * sendctx for use by a Send operation. Multiple consumer threads |
| * are serialized by the RPC transport lock, which allows only one |
| * ->send_request call at a time. |
| * |
| * Producer is the code path that handles Send completions. This path |
| * enqueues a sendctx that has been completed. Multiple producer |
| * threads are serialized by the ib_poll_cq() function. |
| */ |
| |
| /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced |
| * queue activity, and ib_drain_qp has flushed all remaining Send |
| * requests. |
| */ |
| static void rpcrdma_sendctxs_destroy(struct rpcrdma_buffer *buf) |
| { |
| unsigned long i; |
| |
| for (i = 0; i <= buf->rb_sc_last; i++) |
| kfree(buf->rb_sc_ctxs[i]); |
| kfree(buf->rb_sc_ctxs); |
| } |
| |
| static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ia *ia) |
| { |
| struct rpcrdma_sendctx *sc; |
| |
| sc = kzalloc(sizeof(*sc) + |
| ia->ri_max_send_sges * sizeof(struct ib_sge), |
| GFP_KERNEL); |
| if (!sc) |
| return NULL; |
| |
| sc->sc_wr.wr_cqe = &sc->sc_cqe; |
| sc->sc_wr.sg_list = sc->sc_sges; |
| sc->sc_wr.opcode = IB_WR_SEND; |
| sc->sc_cqe.done = rpcrdma_wc_send; |
| return sc; |
| } |
| |
| static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| struct rpcrdma_sendctx *sc; |
| unsigned long i; |
| |
| /* Maximum number of concurrent outstanding Send WRs. Capping |
| * the circular queue size stops Send Queue overflow by causing |
| * the ->send_request call to fail temporarily before too many |
| * Sends are posted. |
| */ |
| i = buf->rb_max_requests + RPCRDMA_MAX_BC_REQUESTS; |
| dprintk("RPC: %s: allocating %lu send_ctxs\n", __func__, i); |
| buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL); |
| if (!buf->rb_sc_ctxs) |
| return -ENOMEM; |
| |
| buf->rb_sc_last = i - 1; |
| for (i = 0; i <= buf->rb_sc_last; i++) { |
| sc = rpcrdma_sendctx_create(&r_xprt->rx_ia); |
| if (!sc) |
| return -ENOMEM; |
| |
| sc->sc_xprt = r_xprt; |
| buf->rb_sc_ctxs[i] = sc; |
| } |
| buf->rb_flags = 0; |
| |
| return 0; |
| } |
| |
| /* The sendctx queue is not guaranteed to have a size that is a |
| * power of two, thus the helpers in circ_buf.h cannot be used. |
| * The other option is to use modulus (%), which can be expensive. |
| */ |
| static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf, |
| unsigned long item) |
| { |
| return likely(item < buf->rb_sc_last) ? item + 1 : 0; |
| } |
| |
| /** |
| * rpcrdma_sendctx_get_locked - Acquire a send context |
| * @buf: transport buffers from which to acquire an unused context |
| * |
| * Returns pointer to a free send completion context; or NULL if |
| * the queue is empty. |
| * |
| * Usage: Called to acquire an SGE array before preparing a Send WR. |
| * |
| * The caller serializes calls to this function (per rpcrdma_buffer), |
| * and provides an effective memory barrier that flushes the new value |
| * of rb_sc_head. |
| */ |
| struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_buffer *buf) |
| { |
| struct rpcrdma_xprt *r_xprt; |
| struct rpcrdma_sendctx *sc; |
| unsigned long next_head; |
| |
| next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head); |
| |
| if (next_head == READ_ONCE(buf->rb_sc_tail)) |
| goto out_emptyq; |
| |
| /* ORDER: item must be accessed _before_ head is updated */ |
| sc = buf->rb_sc_ctxs[next_head]; |
| |
| /* Releasing the lock in the caller acts as a memory |
| * barrier that flushes rb_sc_head. |
| */ |
| buf->rb_sc_head = next_head; |
| |
| return sc; |
| |
| out_emptyq: |
| /* The queue is "empty" if there have not been enough Send |
| * completions recently. This is a sign the Send Queue is |
| * backing up. Cause the caller to pause and try again. |
| */ |
| set_bit(RPCRDMA_BUF_F_EMPTY_SCQ, &buf->rb_flags); |
| r_xprt = container_of(buf, struct rpcrdma_xprt, rx_buf); |
| r_xprt->rx_stats.empty_sendctx_q++; |
| return NULL; |
| } |
| |
| /** |
| * rpcrdma_sendctx_put_locked - Release a send context |
| * @sc: send context to release |
| * |
| * Usage: Called from Send completion to return a sendctxt |
| * to the queue. |
| * |
| * The caller serializes calls to this function (per rpcrdma_buffer). |
| */ |
| static void |
| rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc) |
| { |
| struct rpcrdma_buffer *buf = &sc->sc_xprt->rx_buf; |
| unsigned long next_tail; |
| |
| /* Unmap SGEs of previously completed by unsignaled |
| * Sends by walking up the queue until @sc is found. |
| */ |
| next_tail = buf->rb_sc_tail; |
| do { |
| next_tail = rpcrdma_sendctx_next(buf, next_tail); |
| |
| /* ORDER: item must be accessed _before_ tail is updated */ |
| rpcrdma_unmap_sendctx(buf->rb_sc_ctxs[next_tail]); |
| |
| } while (buf->rb_sc_ctxs[next_tail] != sc); |
| |
| /* Paired with READ_ONCE */ |
| smp_store_release(&buf->rb_sc_tail, next_tail); |
| |
| if (test_and_clear_bit(RPCRDMA_BUF_F_EMPTY_SCQ, &buf->rb_flags)) { |
| smp_mb__after_atomic(); |
| xprt_write_space(&sc->sc_xprt->rx_xprt); |
| } |
| } |
| |
| static void |
| rpcrdma_mr_recovery_worker(struct work_struct *work) |
| { |
| struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer, |
| rb_recovery_worker.work); |
| struct rpcrdma_mr *mr; |
| |
| spin_lock(&buf->rb_recovery_lock); |
| while (!list_empty(&buf->rb_stale_mrs)) { |
| mr = rpcrdma_mr_pop(&buf->rb_stale_mrs); |
| spin_unlock(&buf->rb_recovery_lock); |
| |
| trace_xprtrdma_recover_mr(mr); |
| mr->mr_xprt->rx_ia.ri_ops->ro_recover_mr(mr); |
| |
| spin_lock(&buf->rb_recovery_lock); |
| } |
| spin_unlock(&buf->rb_recovery_lock); |
| } |
| |
| void |
| rpcrdma_mr_defer_recovery(struct rpcrdma_mr *mr) |
| { |
| struct rpcrdma_xprt *r_xprt = mr->mr_xprt; |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| |
| spin_lock(&buf->rb_recovery_lock); |
| rpcrdma_mr_push(mr, &buf->rb_stale_mrs); |
| spin_unlock(&buf->rb_recovery_lock); |
| |
| schedule_delayed_work(&buf->rb_recovery_worker, 0); |
| } |
| |
| static void |
| rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| struct rpcrdma_ia *ia = &r_xprt->rx_ia; |
| unsigned int count; |
| LIST_HEAD(free); |
| LIST_HEAD(all); |
| |
| for (count = 0; count < 3; count++) { |
| struct rpcrdma_mr *mr; |
| int rc; |
| |
| mr = kzalloc(sizeof(*mr), GFP_KERNEL); |
| if (!mr) |
| break; |
| |
| rc = ia->ri_ops->ro_init_mr(ia, mr); |
| if (rc) { |
| kfree(mr); |
| break; |
| } |
| |
| mr->mr_xprt = r_xprt; |
| |
| list_add(&mr->mr_list, &free); |
| list_add(&mr->mr_all, &all); |
| } |
| |
| spin_lock(&buf->rb_mrlock); |
| list_splice(&free, &buf->rb_mrs); |
| list_splice(&all, &buf->rb_all); |
| r_xprt->rx_stats.mrs_allocated += count; |
| spin_unlock(&buf->rb_mrlock); |
| trace_xprtrdma_createmrs(r_xprt, count); |
| |
| xprt_write_space(&r_xprt->rx_xprt); |
| } |
| |
| static void |
| rpcrdma_mr_refresh_worker(struct work_struct *work) |
| { |
| struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer, |
| rb_refresh_worker.work); |
| struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, |
| rx_buf); |
| |
| rpcrdma_mrs_create(r_xprt); |
| } |
| |
| struct rpcrdma_req * |
| rpcrdma_create_req(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_buffer *buffer = &r_xprt->rx_buf; |
| struct rpcrdma_regbuf *rb; |
| struct rpcrdma_req *req; |
| |
| req = kzalloc(sizeof(*req), GFP_KERNEL); |
| if (req == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| rb = rpcrdma_alloc_regbuf(RPCRDMA_HDRBUF_SIZE, |
| DMA_TO_DEVICE, GFP_KERNEL); |
| if (IS_ERR(rb)) { |
| kfree(req); |
| return ERR_PTR(-ENOMEM); |
| } |
| req->rl_rdmabuf = rb; |
| xdr_buf_init(&req->rl_hdrbuf, rb->rg_base, rdmab_length(rb)); |
| req->rl_buffer = buffer; |
| INIT_LIST_HEAD(&req->rl_registered); |
| |
| spin_lock(&buffer->rb_reqslock); |
| list_add(&req->rl_all, &buffer->rb_allreqs); |
| spin_unlock(&buffer->rb_reqslock); |
| return req; |
| } |
| |
| static int |
| rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt, bool temp) |
| { |
| struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| struct rpcrdma_rep *rep; |
| int rc; |
| |
| rc = -ENOMEM; |
| rep = kzalloc(sizeof(*rep), GFP_KERNEL); |
| if (rep == NULL) |
| goto out; |
| |
| rep->rr_rdmabuf = rpcrdma_alloc_regbuf(cdata->inline_rsize, |
| DMA_FROM_DEVICE, GFP_KERNEL); |
| if (IS_ERR(rep->rr_rdmabuf)) { |
| rc = PTR_ERR(rep->rr_rdmabuf); |
| goto out_free; |
| } |
| xdr_buf_init(&rep->rr_hdrbuf, rep->rr_rdmabuf->rg_base, |
| rdmab_length(rep->rr_rdmabuf)); |
| |
| rep->rr_cqe.done = rpcrdma_wc_receive; |
| rep->rr_rxprt = r_xprt; |
| INIT_WORK(&rep->rr_work, rpcrdma_deferred_completion); |
| rep->rr_recv_wr.next = NULL; |
| rep->rr_recv_wr.wr_cqe = &rep->rr_cqe; |
| rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov; |
| rep->rr_recv_wr.num_sge = 1; |
| rep->rr_temp = temp; |
| |
| spin_lock(&buf->rb_lock); |
| list_add(&rep->rr_list, &buf->rb_recv_bufs); |
| spin_unlock(&buf->rb_lock); |
| return 0; |
| |
| out_free: |
| kfree(rep); |
| out: |
| dprintk("RPC: %s: reply buffer %d alloc failed\n", |
| __func__, rc); |
| return rc; |
| } |
| |
| int |
| rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| int i, rc; |
| |
| buf->rb_max_requests = r_xprt->rx_data.max_requests; |
| buf->rb_bc_srv_max_requests = 0; |
| spin_lock_init(&buf->rb_mrlock); |
| spin_lock_init(&buf->rb_lock); |
| spin_lock_init(&buf->rb_recovery_lock); |
| INIT_LIST_HEAD(&buf->rb_mrs); |
| INIT_LIST_HEAD(&buf->rb_all); |
| INIT_LIST_HEAD(&buf->rb_stale_mrs); |
| INIT_DELAYED_WORK(&buf->rb_refresh_worker, |
| rpcrdma_mr_refresh_worker); |
| INIT_DELAYED_WORK(&buf->rb_recovery_worker, |
| rpcrdma_mr_recovery_worker); |
| |
| rpcrdma_mrs_create(r_xprt); |
| |
| INIT_LIST_HEAD(&buf->rb_send_bufs); |
| INIT_LIST_HEAD(&buf->rb_allreqs); |
| spin_lock_init(&buf->rb_reqslock); |
| for (i = 0; i < buf->rb_max_requests; i++) { |
| struct rpcrdma_req *req; |
| |
| req = rpcrdma_create_req(r_xprt); |
| if (IS_ERR(req)) { |
| dprintk("RPC: %s: request buffer %d alloc" |
| " failed\n", __func__, i); |
| rc = PTR_ERR(req); |
| goto out; |
| } |
| list_add(&req->rl_list, &buf->rb_send_bufs); |
| } |
| |
| buf->rb_credits = 1; |
| buf->rb_posted_receives = 0; |
| INIT_LIST_HEAD(&buf->rb_recv_bufs); |
| |
| rc = rpcrdma_sendctxs_create(r_xprt); |
| if (rc) |
| goto out; |
| |
| return 0; |
| out: |
| rpcrdma_buffer_destroy(buf); |
| return rc; |
| } |
| |
| static void |
| rpcrdma_destroy_rep(struct rpcrdma_rep *rep) |
| { |
| rpcrdma_free_regbuf(rep->rr_rdmabuf); |
| kfree(rep); |
| } |
| |
| void |
| rpcrdma_destroy_req(struct rpcrdma_req *req) |
| { |
| rpcrdma_free_regbuf(req->rl_recvbuf); |
| rpcrdma_free_regbuf(req->rl_sendbuf); |
| rpcrdma_free_regbuf(req->rl_rdmabuf); |
| kfree(req); |
| } |
| |
| static void |
| rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf) |
| { |
| struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, |
| rx_buf); |
| struct rpcrdma_ia *ia = rdmab_to_ia(buf); |
| struct rpcrdma_mr *mr; |
| unsigned int count; |
| |
| count = 0; |
| spin_lock(&buf->rb_mrlock); |
| while (!list_empty(&buf->rb_all)) { |
| mr = list_entry(buf->rb_all.next, struct rpcrdma_mr, mr_all); |
| list_del(&mr->mr_all); |
| |
| spin_unlock(&buf->rb_mrlock); |
| |
| /* Ensure MW is not on any rl_registered list */ |
| if (!list_empty(&mr->mr_list)) |
| list_del(&mr->mr_list); |
| |
| ia->ri_ops->ro_release_mr(mr); |
| count++; |
| spin_lock(&buf->rb_mrlock); |
| } |
| spin_unlock(&buf->rb_mrlock); |
| r_xprt->rx_stats.mrs_allocated = 0; |
| |
| dprintk("RPC: %s: released %u MRs\n", __func__, count); |
| } |
| |
| void |
| rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf) |
| { |
| cancel_delayed_work_sync(&buf->rb_recovery_worker); |
| cancel_delayed_work_sync(&buf->rb_refresh_worker); |
| |
| rpcrdma_sendctxs_destroy(buf); |
| |
| while (!list_empty(&buf->rb_recv_bufs)) { |
| struct rpcrdma_rep *rep; |
| |
| rep = list_first_entry(&buf->rb_recv_bufs, |
| struct rpcrdma_rep, rr_list); |
| list_del(&rep->rr_list); |
| rpcrdma_destroy_rep(rep); |
| } |
| |
| spin_lock(&buf->rb_reqslock); |
| while (!list_empty(&buf->rb_allreqs)) { |
| struct rpcrdma_req *req; |
| |
| req = list_first_entry(&buf->rb_allreqs, |
| struct rpcrdma_req, rl_all); |
| list_del(&req->rl_all); |
| |
| spin_unlock(&buf->rb_reqslock); |
| rpcrdma_destroy_req(req); |
| spin_lock(&buf->rb_reqslock); |
| } |
| spin_unlock(&buf->rb_reqslock); |
| |
| rpcrdma_mrs_destroy(buf); |
| } |
| |
| /** |
| * rpcrdma_mr_get - Allocate an rpcrdma_mr object |
| * @r_xprt: controlling transport |
| * |
| * Returns an initialized rpcrdma_mr or NULL if no free |
| * rpcrdma_mr objects are available. |
| */ |
| struct rpcrdma_mr * |
| rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| struct rpcrdma_mr *mr = NULL; |
| |
| spin_lock(&buf->rb_mrlock); |
| if (!list_empty(&buf->rb_mrs)) |
| mr = rpcrdma_mr_pop(&buf->rb_mrs); |
| spin_unlock(&buf->rb_mrlock); |
| |
| if (!mr) |
| goto out_nomrs; |
| return mr; |
| |
| out_nomrs: |
| trace_xprtrdma_nomrs(r_xprt); |
| if (r_xprt->rx_ep.rep_connected != -ENODEV) |
| schedule_delayed_work(&buf->rb_refresh_worker, 0); |
| |
| /* Allow the reply handler and refresh worker to run */ |
| cond_resched(); |
| |
| return NULL; |
| } |
| |
| static void |
| __rpcrdma_mr_put(struct rpcrdma_buffer *buf, struct rpcrdma_mr *mr) |
| { |
| spin_lock(&buf->rb_mrlock); |
| rpcrdma_mr_push(mr, &buf->rb_mrs); |
| spin_unlock(&buf->rb_mrlock); |
| } |
| |
| /** |
| * rpcrdma_mr_put - Release an rpcrdma_mr object |
| * @mr: object to release |
| * |
| */ |
| void |
| rpcrdma_mr_put(struct rpcrdma_mr *mr) |
| { |
| __rpcrdma_mr_put(&mr->mr_xprt->rx_buf, mr); |
| } |
| |
| /** |
| * rpcrdma_mr_unmap_and_put - DMA unmap an MR and release it |
| * @mr: object to release |
| * |
| */ |
| void |
| rpcrdma_mr_unmap_and_put(struct rpcrdma_mr *mr) |
| { |
| struct rpcrdma_xprt *r_xprt = mr->mr_xprt; |
| |
| trace_xprtrdma_dma_unmap(mr); |
| ib_dma_unmap_sg(r_xprt->rx_ia.ri_device, |
| mr->mr_sg, mr->mr_nents, mr->mr_dir); |
| __rpcrdma_mr_put(&r_xprt->rx_buf, mr); |
| } |
| |
| /** |
| * rpcrdma_buffer_get - Get a request buffer |
| * @buffers: Buffer pool from which to obtain a buffer |
| * |
| * Returns a fresh rpcrdma_req, or NULL if none are available. |
| */ |
| struct rpcrdma_req * |
| rpcrdma_buffer_get(struct rpcrdma_buffer *buffers) |
| { |
| struct rpcrdma_req *req; |
| |
| spin_lock(&buffers->rb_lock); |
| req = list_first_entry_or_null(&buffers->rb_send_bufs, |
| struct rpcrdma_req, rl_list); |
| if (req) |
| list_del_init(&req->rl_list); |
| spin_unlock(&buffers->rb_lock); |
| return req; |
| } |
| |
| /** |
| * rpcrdma_buffer_put - Put request/reply buffers back into pool |
| * @req: object to return |
| * |
| */ |
| void |
| rpcrdma_buffer_put(struct rpcrdma_req *req) |
| { |
| struct rpcrdma_buffer *buffers = req->rl_buffer; |
| struct rpcrdma_rep *rep = req->rl_reply; |
| |
| req->rl_reply = NULL; |
| |
| spin_lock(&buffers->rb_lock); |
| list_add(&req->rl_list, &buffers->rb_send_bufs); |
| if (rep) { |
| if (!rep->rr_temp) { |
| list_add(&rep->rr_list, &buffers->rb_recv_bufs); |
| rep = NULL; |
| } |
| } |
| spin_unlock(&buffers->rb_lock); |
| if (rep) |
| rpcrdma_destroy_rep(rep); |
| } |
| |
| /* |
| * Put reply buffers back into pool when not attached to |
| * request. This happens in error conditions. |
| */ |
| void |
| rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep) |
| { |
| struct rpcrdma_buffer *buffers = &rep->rr_rxprt->rx_buf; |
| |
| if (!rep->rr_temp) { |
| spin_lock(&buffers->rb_lock); |
| list_add(&rep->rr_list, &buffers->rb_recv_bufs); |
| spin_unlock(&buffers->rb_lock); |
| } else { |
| rpcrdma_destroy_rep(rep); |
| } |
| } |
| |
| /** |
| * rpcrdma_alloc_regbuf - allocate and DMA-map memory for SEND/RECV buffers |
| * @size: size of buffer to be allocated, in bytes |
| * @direction: direction of data movement |
| * @flags: GFP flags |
| * |
| * Returns an ERR_PTR, or a pointer to a regbuf, a buffer that |
| * can be persistently DMA-mapped for I/O. |
| * |
| * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for |
| * receiving the payload of RDMA RECV operations. During Long Calls |
| * or Replies they may be registered externally via ro_map. |
| */ |
| struct rpcrdma_regbuf * |
| rpcrdma_alloc_regbuf(size_t size, enum dma_data_direction direction, |
| gfp_t flags) |
| { |
| struct rpcrdma_regbuf *rb; |
| |
| rb = kmalloc(sizeof(*rb) + size, flags); |
| if (rb == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| rb->rg_device = NULL; |
| rb->rg_direction = direction; |
| rb->rg_iov.length = size; |
| |
| return rb; |
| } |
| |
| /** |
| * __rpcrdma_map_regbuf - DMA-map a regbuf |
| * @ia: controlling rpcrdma_ia |
| * @rb: regbuf to be mapped |
| */ |
| bool |
| __rpcrdma_dma_map_regbuf(struct rpcrdma_ia *ia, struct rpcrdma_regbuf *rb) |
| { |
| struct ib_device *device = ia->ri_device; |
| |
| if (rb->rg_direction == DMA_NONE) |
| return false; |
| |
| rb->rg_iov.addr = ib_dma_map_single(device, |
| (void *)rb->rg_base, |
| rdmab_length(rb), |
| rb->rg_direction); |
| if (ib_dma_mapping_error(device, rdmab_addr(rb))) |
| return false; |
| |
| rb->rg_device = device; |
| rb->rg_iov.lkey = ia->ri_pd->local_dma_lkey; |
| return true; |
| } |
| |
| static void |
| rpcrdma_dma_unmap_regbuf(struct rpcrdma_regbuf *rb) |
| { |
| if (!rb) |
| return; |
| |
| if (!rpcrdma_regbuf_is_mapped(rb)) |
| return; |
| |
| ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), |
| rdmab_length(rb), rb->rg_direction); |
| rb->rg_device = NULL; |
| } |
| |
| /** |
| * rpcrdma_free_regbuf - deregister and free registered buffer |
| * @rb: regbuf to be deregistered and freed |
| */ |
| void |
| rpcrdma_free_regbuf(struct rpcrdma_regbuf *rb) |
| { |
| rpcrdma_dma_unmap_regbuf(rb); |
| kfree(rb); |
| } |
| |
| /* |
| * Prepost any receive buffer, then post send. |
| * |
| * Receive buffer is donated to hardware, reclaimed upon recv completion. |
| */ |
| int |
| rpcrdma_ep_post(struct rpcrdma_ia *ia, |
| struct rpcrdma_ep *ep, |
| struct rpcrdma_req *req) |
| { |
| struct ib_send_wr *send_wr = &req->rl_sendctx->sc_wr; |
| int rc; |
| |
| if (!ep->rep_send_count || |
| test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) { |
| send_wr->send_flags |= IB_SEND_SIGNALED; |
| ep->rep_send_count = ep->rep_send_batch; |
| } else { |
| send_wr->send_flags &= ~IB_SEND_SIGNALED; |
| --ep->rep_send_count; |
| } |
| |
| rc = ia->ri_ops->ro_send(ia, req); |
| trace_xprtrdma_post_send(req, rc); |
| if (rc) |
| return -ENOTCONN; |
| return 0; |
| } |
| |
| /** |
| * rpcrdma_post_recvs - Maybe post some Receive buffers |
| * @r_xprt: controlling transport |
| * @temp: when true, allocate temp rpcrdma_rep objects |
| * |
| */ |
| void |
| rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| struct ib_recv_wr *wr, *bad_wr; |
| int needed, count, rc; |
| |
| needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1); |
| if (buf->rb_posted_receives > needed) |
| return; |
| needed -= buf->rb_posted_receives; |
| |
| count = 0; |
| wr = NULL; |
| while (needed) { |
| struct rpcrdma_regbuf *rb; |
| struct rpcrdma_rep *rep; |
| |
| spin_lock(&buf->rb_lock); |
| rep = list_first_entry_or_null(&buf->rb_recv_bufs, |
| struct rpcrdma_rep, rr_list); |
| if (likely(rep)) |
| list_del(&rep->rr_list); |
| spin_unlock(&buf->rb_lock); |
| if (!rep) { |
| if (rpcrdma_create_rep(r_xprt, temp)) |
| break; |
| continue; |
| } |
| |
| rb = rep->rr_rdmabuf; |
| if (!rpcrdma_regbuf_is_mapped(rb)) { |
| if (!__rpcrdma_dma_map_regbuf(&r_xprt->rx_ia, rb)) { |
| rpcrdma_recv_buffer_put(rep); |
| break; |
| } |
| } |
| |
| trace_xprtrdma_post_recv(rep->rr_recv_wr.wr_cqe); |
| rep->rr_recv_wr.next = wr; |
| wr = &rep->rr_recv_wr; |
| ++count; |
| --needed; |
| } |
| if (!count) |
| return; |
| |
| rc = ib_post_recv(r_xprt->rx_ia.ri_id->qp, wr, |
| (const struct ib_recv_wr **)&bad_wr); |
| if (rc) { |
| for (wr = bad_wr; wr;) { |
| struct rpcrdma_rep *rep; |
| |
| rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr); |
| wr = wr->next; |
| rpcrdma_recv_buffer_put(rep); |
| --count; |
| } |
| } |
| buf->rb_posted_receives += count; |
| trace_xprtrdma_post_recvs(r_xprt, count, rc); |
| } |