|  | /******************************************************************************* | 
|  |  | 
|  | Intel PRO/1000 Linux driver | 
|  | Copyright(c) 1999 - 2006 Intel Corporation. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify it | 
|  | under the terms and conditions of the GNU General Public License, | 
|  | version 2, as published by the Free Software Foundation. | 
|  |  | 
|  | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along with | 
|  | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  |  | 
|  | The full GNU General Public License is included in this distribution in | 
|  | the file called "COPYING". | 
|  |  | 
|  | Contact Information: | 
|  | Linux NICS <linux.nics@intel.com> | 
|  | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  |  | 
|  | *******************************************************************************/ | 
|  |  | 
|  | /* ethtool support for e1000 */ | 
|  |  | 
|  | #include "e1000.h" | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | enum {NETDEV_STATS, E1000_STATS}; | 
|  |  | 
|  | struct e1000_stats { | 
|  | char stat_string[ETH_GSTRING_LEN]; | 
|  | int type; | 
|  | int sizeof_stat; | 
|  | int stat_offset; | 
|  | }; | 
|  |  | 
|  | #define E1000_STAT(m)		E1000_STATS, \ | 
|  | sizeof(((struct e1000_adapter *)0)->m), \ | 
|  | offsetof(struct e1000_adapter, m) | 
|  | #define E1000_NETDEV_STAT(m)	NETDEV_STATS, \ | 
|  | sizeof(((struct net_device *)0)->m), \ | 
|  | offsetof(struct net_device, m) | 
|  |  | 
|  | static const struct e1000_stats e1000_gstrings_stats[] = { | 
|  | { "rx_packets", E1000_STAT(stats.gprc) }, | 
|  | { "tx_packets", E1000_STAT(stats.gptc) }, | 
|  | { "rx_bytes", E1000_STAT(stats.gorcl) }, | 
|  | { "tx_bytes", E1000_STAT(stats.gotcl) }, | 
|  | { "rx_broadcast", E1000_STAT(stats.bprc) }, | 
|  | { "tx_broadcast", E1000_STAT(stats.bptc) }, | 
|  | { "rx_multicast", E1000_STAT(stats.mprc) }, | 
|  | { "tx_multicast", E1000_STAT(stats.mptc) }, | 
|  | { "rx_errors", E1000_STAT(stats.rxerrc) }, | 
|  | { "tx_errors", E1000_STAT(stats.txerrc) }, | 
|  | { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) }, | 
|  | { "multicast", E1000_STAT(stats.mprc) }, | 
|  | { "collisions", E1000_STAT(stats.colc) }, | 
|  | { "rx_length_errors", E1000_STAT(stats.rlerrc) }, | 
|  | { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) }, | 
|  | { "rx_crc_errors", E1000_STAT(stats.crcerrs) }, | 
|  | { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) }, | 
|  | { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, | 
|  | { "rx_missed_errors", E1000_STAT(stats.mpc) }, | 
|  | { "tx_aborted_errors", E1000_STAT(stats.ecol) }, | 
|  | { "tx_carrier_errors", E1000_STAT(stats.tncrs) }, | 
|  | { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) }, | 
|  | { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) }, | 
|  | { "tx_window_errors", E1000_STAT(stats.latecol) }, | 
|  | { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, | 
|  | { "tx_deferred_ok", E1000_STAT(stats.dc) }, | 
|  | { "tx_single_coll_ok", E1000_STAT(stats.scc) }, | 
|  | { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, | 
|  | { "tx_timeout_count", E1000_STAT(tx_timeout_count) }, | 
|  | { "tx_restart_queue", E1000_STAT(restart_queue) }, | 
|  | { "rx_long_length_errors", E1000_STAT(stats.roc) }, | 
|  | { "rx_short_length_errors", E1000_STAT(stats.ruc) }, | 
|  | { "rx_align_errors", E1000_STAT(stats.algnerrc) }, | 
|  | { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, | 
|  | { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, | 
|  | { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, | 
|  | { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, | 
|  | { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, | 
|  | { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, | 
|  | { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, | 
|  | { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, | 
|  | { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, | 
|  | { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) }, | 
|  | { "tx_smbus", E1000_STAT(stats.mgptc) }, | 
|  | { "rx_smbus", E1000_STAT(stats.mgprc) }, | 
|  | { "dropped_smbus", E1000_STAT(stats.mgpdc) }, | 
|  | }; | 
|  |  | 
|  | #define E1000_QUEUE_STATS_LEN 0 | 
|  | #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) | 
|  | #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN) | 
|  | static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { | 
|  | "Register test  (offline)", "Eeprom test    (offline)", | 
|  | "Interrupt test (offline)", "Loopback test  (offline)", | 
|  | "Link test   (on/offline)" | 
|  | }; | 
|  | #define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test) | 
|  |  | 
|  | static int e1000_get_settings(struct net_device *netdev, | 
|  | struct ethtool_cmd *ecmd) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if (hw->media_type == e1000_media_type_copper) { | 
|  |  | 
|  | ecmd->supported = (SUPPORTED_10baseT_Half | | 
|  | SUPPORTED_10baseT_Full | | 
|  | SUPPORTED_100baseT_Half | | 
|  | SUPPORTED_100baseT_Full | | 
|  | SUPPORTED_1000baseT_Full| | 
|  | SUPPORTED_Autoneg | | 
|  | SUPPORTED_TP); | 
|  | ecmd->advertising = ADVERTISED_TP; | 
|  |  | 
|  | if (hw->autoneg == 1) { | 
|  | ecmd->advertising |= ADVERTISED_Autoneg; | 
|  | /* the e1000 autoneg seems to match ethtool nicely */ | 
|  | ecmd->advertising |= hw->autoneg_advertised; | 
|  | } | 
|  |  | 
|  | ecmd->port = PORT_TP; | 
|  | ecmd->phy_address = hw->phy_addr; | 
|  |  | 
|  | if (hw->mac_type == e1000_82543) | 
|  | ecmd->transceiver = XCVR_EXTERNAL; | 
|  | else | 
|  | ecmd->transceiver = XCVR_INTERNAL; | 
|  |  | 
|  | } else { | 
|  | ecmd->supported   = (SUPPORTED_1000baseT_Full | | 
|  | SUPPORTED_FIBRE | | 
|  | SUPPORTED_Autoneg); | 
|  |  | 
|  | ecmd->advertising = (ADVERTISED_1000baseT_Full | | 
|  | ADVERTISED_FIBRE | | 
|  | ADVERTISED_Autoneg); | 
|  |  | 
|  | ecmd->port = PORT_FIBRE; | 
|  |  | 
|  | if (hw->mac_type >= e1000_82545) | 
|  | ecmd->transceiver = XCVR_INTERNAL; | 
|  | else | 
|  | ecmd->transceiver = XCVR_EXTERNAL; | 
|  | } | 
|  |  | 
|  | if (er32(STATUS) & E1000_STATUS_LU) { | 
|  |  | 
|  | e1000_get_speed_and_duplex(hw, &adapter->link_speed, | 
|  | &adapter->link_duplex); | 
|  | ecmd->speed = adapter->link_speed; | 
|  |  | 
|  | /* unfortunatly FULL_DUPLEX != DUPLEX_FULL | 
|  | *          and HALF_DUPLEX != DUPLEX_HALF */ | 
|  |  | 
|  | if (adapter->link_duplex == FULL_DUPLEX) | 
|  | ecmd->duplex = DUPLEX_FULL; | 
|  | else | 
|  | ecmd->duplex = DUPLEX_HALF; | 
|  | } else { | 
|  | ecmd->speed = -1; | 
|  | ecmd->duplex = -1; | 
|  | } | 
|  |  | 
|  | ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || | 
|  | hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000_set_settings(struct net_device *netdev, | 
|  | struct ethtool_cmd *ecmd) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | 
|  | msleep(1); | 
|  |  | 
|  | if (ecmd->autoneg == AUTONEG_ENABLE) { | 
|  | hw->autoneg = 1; | 
|  | if (hw->media_type == e1000_media_type_fiber) | 
|  | hw->autoneg_advertised = ADVERTISED_1000baseT_Full | | 
|  | ADVERTISED_FIBRE | | 
|  | ADVERTISED_Autoneg; | 
|  | else | 
|  | hw->autoneg_advertised = ecmd->advertising | | 
|  | ADVERTISED_TP | | 
|  | ADVERTISED_Autoneg; | 
|  | ecmd->advertising = hw->autoneg_advertised; | 
|  | } else | 
|  | if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) { | 
|  | clear_bit(__E1000_RESETTING, &adapter->flags); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* reset the link */ | 
|  |  | 
|  | if (netif_running(adapter->netdev)) { | 
|  | e1000_down(adapter); | 
|  | e1000_up(adapter); | 
|  | } else | 
|  | e1000_reset(adapter); | 
|  |  | 
|  | clear_bit(__E1000_RESETTING, &adapter->flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 e1000_get_link(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | /* | 
|  | * If the link is not reported up to netdev, interrupts are disabled, | 
|  | * and so the physical link state may have changed since we last | 
|  | * looked. Set get_link_status to make sure that the true link | 
|  | * state is interrogated, rather than pulling a cached and possibly | 
|  | * stale link state from the driver. | 
|  | */ | 
|  | if (!netif_carrier_ok(netdev)) | 
|  | adapter->hw.get_link_status = 1; | 
|  |  | 
|  | return e1000_has_link(adapter); | 
|  | } | 
|  |  | 
|  | static void e1000_get_pauseparam(struct net_device *netdev, | 
|  | struct ethtool_pauseparam *pause) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | pause->autoneg = | 
|  | (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); | 
|  |  | 
|  | if (hw->fc == E1000_FC_RX_PAUSE) | 
|  | pause->rx_pause = 1; | 
|  | else if (hw->fc == E1000_FC_TX_PAUSE) | 
|  | pause->tx_pause = 1; | 
|  | else if (hw->fc == E1000_FC_FULL) { | 
|  | pause->rx_pause = 1; | 
|  | pause->tx_pause = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int e1000_set_pauseparam(struct net_device *netdev, | 
|  | struct ethtool_pauseparam *pause) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int retval = 0; | 
|  |  | 
|  | adapter->fc_autoneg = pause->autoneg; | 
|  |  | 
|  | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | 
|  | msleep(1); | 
|  |  | 
|  | if (pause->rx_pause && pause->tx_pause) | 
|  | hw->fc = E1000_FC_FULL; | 
|  | else if (pause->rx_pause && !pause->tx_pause) | 
|  | hw->fc = E1000_FC_RX_PAUSE; | 
|  | else if (!pause->rx_pause && pause->tx_pause) | 
|  | hw->fc = E1000_FC_TX_PAUSE; | 
|  | else if (!pause->rx_pause && !pause->tx_pause) | 
|  | hw->fc = E1000_FC_NONE; | 
|  |  | 
|  | hw->original_fc = hw->fc; | 
|  |  | 
|  | if (adapter->fc_autoneg == AUTONEG_ENABLE) { | 
|  | if (netif_running(adapter->netdev)) { | 
|  | e1000_down(adapter); | 
|  | e1000_up(adapter); | 
|  | } else | 
|  | e1000_reset(adapter); | 
|  | } else | 
|  | retval = ((hw->media_type == e1000_media_type_fiber) ? | 
|  | e1000_setup_link(hw) : e1000_force_mac_fc(hw)); | 
|  |  | 
|  | clear_bit(__E1000_RESETTING, &adapter->flags); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static u32 e1000_get_rx_csum(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | return adapter->rx_csum; | 
|  | } | 
|  |  | 
|  | static int e1000_set_rx_csum(struct net_device *netdev, u32 data) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | adapter->rx_csum = data; | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e1000_reinit_locked(adapter); | 
|  | else | 
|  | e1000_reset(adapter); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 e1000_get_tx_csum(struct net_device *netdev) | 
|  | { | 
|  | return (netdev->features & NETIF_F_HW_CSUM) != 0; | 
|  | } | 
|  |  | 
|  | static int e1000_set_tx_csum(struct net_device *netdev, u32 data) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if (hw->mac_type < e1000_82543) { | 
|  | if (!data) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (data) | 
|  | netdev->features |= NETIF_F_HW_CSUM; | 
|  | else | 
|  | netdev->features &= ~NETIF_F_HW_CSUM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000_set_tso(struct net_device *netdev, u32 data) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if ((hw->mac_type < e1000_82544) || | 
|  | (hw->mac_type == e1000_82547)) | 
|  | return data ? -EINVAL : 0; | 
|  |  | 
|  | if (data) | 
|  | netdev->features |= NETIF_F_TSO; | 
|  | else | 
|  | netdev->features &= ~NETIF_F_TSO; | 
|  |  | 
|  | netdev->features &= ~NETIF_F_TSO6; | 
|  |  | 
|  | e_info(probe, "TSO is %s\n", data ? "Enabled" : "Disabled"); | 
|  | adapter->tso_force = true; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 e1000_get_msglevel(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | return adapter->msg_enable; | 
|  | } | 
|  |  | 
|  | static void e1000_set_msglevel(struct net_device *netdev, u32 data) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | adapter->msg_enable = data; | 
|  | } | 
|  |  | 
|  | static int e1000_get_regs_len(struct net_device *netdev) | 
|  | { | 
|  | #define E1000_REGS_LEN 32 | 
|  | return E1000_REGS_LEN * sizeof(u32); | 
|  | } | 
|  |  | 
|  | static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs, | 
|  | void *p) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 *regs_buff = p; | 
|  | u16 phy_data; | 
|  |  | 
|  | memset(p, 0, E1000_REGS_LEN * sizeof(u32)); | 
|  |  | 
|  | regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; | 
|  |  | 
|  | regs_buff[0]  = er32(CTRL); | 
|  | regs_buff[1]  = er32(STATUS); | 
|  |  | 
|  | regs_buff[2]  = er32(RCTL); | 
|  | regs_buff[3]  = er32(RDLEN); | 
|  | regs_buff[4]  = er32(RDH); | 
|  | regs_buff[5]  = er32(RDT); | 
|  | regs_buff[6]  = er32(RDTR); | 
|  |  | 
|  | regs_buff[7]  = er32(TCTL); | 
|  | regs_buff[8]  = er32(TDLEN); | 
|  | regs_buff[9]  = er32(TDH); | 
|  | regs_buff[10] = er32(TDT); | 
|  | regs_buff[11] = er32(TIDV); | 
|  |  | 
|  | regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */ | 
|  | if (hw->phy_type == e1000_phy_igp) { | 
|  | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|  | IGP01E1000_PHY_AGC_A); | 
|  | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & | 
|  | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | 
|  | regs_buff[13] = (u32)phy_data; /* cable length */ | 
|  | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|  | IGP01E1000_PHY_AGC_B); | 
|  | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & | 
|  | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | 
|  | regs_buff[14] = (u32)phy_data; /* cable length */ | 
|  | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|  | IGP01E1000_PHY_AGC_C); | 
|  | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & | 
|  | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | 
|  | regs_buff[15] = (u32)phy_data; /* cable length */ | 
|  | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|  | IGP01E1000_PHY_AGC_D); | 
|  | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & | 
|  | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | 
|  | regs_buff[16] = (u32)phy_data; /* cable length */ | 
|  | regs_buff[17] = 0; /* extended 10bt distance (not needed) */ | 
|  | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); | 
|  | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & | 
|  | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | 
|  | regs_buff[18] = (u32)phy_data; /* cable polarity */ | 
|  | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|  | IGP01E1000_PHY_PCS_INIT_REG); | 
|  | e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & | 
|  | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | 
|  | regs_buff[19] = (u32)phy_data; /* cable polarity */ | 
|  | regs_buff[20] = 0; /* polarity correction enabled (always) */ | 
|  | regs_buff[22] = 0; /* phy receive errors (unavailable) */ | 
|  | regs_buff[23] = regs_buff[18]; /* mdix mode */ | 
|  | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); | 
|  | } else { | 
|  | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | 
|  | regs_buff[13] = (u32)phy_data; /* cable length */ | 
|  | regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */ | 
|  | regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */ | 
|  | regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */ | 
|  | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ | 
|  | regs_buff[18] = regs_buff[13]; /* cable polarity */ | 
|  | regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */ | 
|  | regs_buff[20] = regs_buff[17]; /* polarity correction */ | 
|  | /* phy receive errors */ | 
|  | regs_buff[22] = adapter->phy_stats.receive_errors; | 
|  | regs_buff[23] = regs_buff[13]; /* mdix mode */ | 
|  | } | 
|  | regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */ | 
|  | e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | 
|  | regs_buff[24] = (u32)phy_data;  /* phy local receiver status */ | 
|  | regs_buff[25] = regs_buff[24];  /* phy remote receiver status */ | 
|  | if (hw->mac_type >= e1000_82540 && | 
|  | hw->media_type == e1000_media_type_copper) { | 
|  | regs_buff[26] = er32(MANC); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int e1000_get_eeprom_len(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | return hw->eeprom.word_size * 2; | 
|  | } | 
|  |  | 
|  | static int e1000_get_eeprom(struct net_device *netdev, | 
|  | struct ethtool_eeprom *eeprom, u8 *bytes) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u16 *eeprom_buff; | 
|  | int first_word, last_word; | 
|  | int ret_val = 0; | 
|  | u16 i; | 
|  |  | 
|  | if (eeprom->len == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | eeprom->magic = hw->vendor_id | (hw->device_id << 16); | 
|  |  | 
|  | first_word = eeprom->offset >> 1; | 
|  | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | 
|  |  | 
|  | eeprom_buff = kmalloc(sizeof(u16) * | 
|  | (last_word - first_word + 1), GFP_KERNEL); | 
|  | if (!eeprom_buff) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (hw->eeprom.type == e1000_eeprom_spi) | 
|  | ret_val = e1000_read_eeprom(hw, first_word, | 
|  | last_word - first_word + 1, | 
|  | eeprom_buff); | 
|  | else { | 
|  | for (i = 0; i < last_word - first_word + 1; i++) { | 
|  | ret_val = e1000_read_eeprom(hw, first_word + i, 1, | 
|  | &eeprom_buff[i]); | 
|  | if (ret_val) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Device's eeprom is always little-endian, word addressable */ | 
|  | for (i = 0; i < last_word - first_word + 1; i++) | 
|  | le16_to_cpus(&eeprom_buff[i]); | 
|  |  | 
|  | memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), | 
|  | eeprom->len); | 
|  | kfree(eeprom_buff); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static int e1000_set_eeprom(struct net_device *netdev, | 
|  | struct ethtool_eeprom *eeprom, u8 *bytes) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u16 *eeprom_buff; | 
|  | void *ptr; | 
|  | int max_len, first_word, last_word, ret_val = 0; | 
|  | u16 i; | 
|  |  | 
|  | if (eeprom->len == 0) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) | 
|  | return -EFAULT; | 
|  |  | 
|  | max_len = hw->eeprom.word_size * 2; | 
|  |  | 
|  | first_word = eeprom->offset >> 1; | 
|  | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | 
|  | eeprom_buff = kmalloc(max_len, GFP_KERNEL); | 
|  | if (!eeprom_buff) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ptr = (void *)eeprom_buff; | 
|  |  | 
|  | if (eeprom->offset & 1) { | 
|  | /* need read/modify/write of first changed EEPROM word */ | 
|  | /* only the second byte of the word is being modified */ | 
|  | ret_val = e1000_read_eeprom(hw, first_word, 1, | 
|  | &eeprom_buff[0]); | 
|  | ptr++; | 
|  | } | 
|  | if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { | 
|  | /* need read/modify/write of last changed EEPROM word */ | 
|  | /* only the first byte of the word is being modified */ | 
|  | ret_val = e1000_read_eeprom(hw, last_word, 1, | 
|  | &eeprom_buff[last_word - first_word]); | 
|  | } | 
|  |  | 
|  | /* Device's eeprom is always little-endian, word addressable */ | 
|  | for (i = 0; i < last_word - first_word + 1; i++) | 
|  | le16_to_cpus(&eeprom_buff[i]); | 
|  |  | 
|  | memcpy(ptr, bytes, eeprom->len); | 
|  |  | 
|  | for (i = 0; i < last_word - first_word + 1; i++) | 
|  | eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); | 
|  |  | 
|  | ret_val = e1000_write_eeprom(hw, first_word, | 
|  | last_word - first_word + 1, eeprom_buff); | 
|  |  | 
|  | /* Update the checksum over the first part of the EEPROM if needed */ | 
|  | if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG)) | 
|  | e1000_update_eeprom_checksum(hw); | 
|  |  | 
|  | kfree(eeprom_buff); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static void e1000_get_drvinfo(struct net_device *netdev, | 
|  | struct ethtool_drvinfo *drvinfo) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | char firmware_version[32]; | 
|  |  | 
|  | strncpy(drvinfo->driver,  e1000_driver_name, 32); | 
|  | strncpy(drvinfo->version, e1000_driver_version, 32); | 
|  |  | 
|  | sprintf(firmware_version, "N/A"); | 
|  | strncpy(drvinfo->fw_version, firmware_version, 32); | 
|  | strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); | 
|  | drvinfo->regdump_len = e1000_get_regs_len(netdev); | 
|  | drvinfo->eedump_len = e1000_get_eeprom_len(netdev); | 
|  | } | 
|  |  | 
|  | static void e1000_get_ringparam(struct net_device *netdev, | 
|  | struct ethtool_ringparam *ring) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | e1000_mac_type mac_type = hw->mac_type; | 
|  | struct e1000_tx_ring *txdr = adapter->tx_ring; | 
|  | struct e1000_rx_ring *rxdr = adapter->rx_ring; | 
|  |  | 
|  | ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : | 
|  | E1000_MAX_82544_RXD; | 
|  | ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : | 
|  | E1000_MAX_82544_TXD; | 
|  | ring->rx_mini_max_pending = 0; | 
|  | ring->rx_jumbo_max_pending = 0; | 
|  | ring->rx_pending = rxdr->count; | 
|  | ring->tx_pending = txdr->count; | 
|  | ring->rx_mini_pending = 0; | 
|  | ring->rx_jumbo_pending = 0; | 
|  | } | 
|  |  | 
|  | static int e1000_set_ringparam(struct net_device *netdev, | 
|  | struct ethtool_ringparam *ring) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | e1000_mac_type mac_type = hw->mac_type; | 
|  | struct e1000_tx_ring *txdr, *tx_old; | 
|  | struct e1000_rx_ring *rxdr, *rx_old; | 
|  | int i, err; | 
|  |  | 
|  | if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) | 
|  | return -EINVAL; | 
|  |  | 
|  | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | 
|  | msleep(1); | 
|  |  | 
|  | if (netif_running(adapter->netdev)) | 
|  | e1000_down(adapter); | 
|  |  | 
|  | tx_old = adapter->tx_ring; | 
|  | rx_old = adapter->rx_ring; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL); | 
|  | if (!txdr) | 
|  | goto err_alloc_tx; | 
|  |  | 
|  | rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL); | 
|  | if (!rxdr) | 
|  | goto err_alloc_rx; | 
|  |  | 
|  | adapter->tx_ring = txdr; | 
|  | adapter->rx_ring = rxdr; | 
|  |  | 
|  | rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD); | 
|  | rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ? | 
|  | E1000_MAX_RXD : E1000_MAX_82544_RXD)); | 
|  | rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); | 
|  |  | 
|  | txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD); | 
|  | txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ? | 
|  | E1000_MAX_TXD : E1000_MAX_82544_TXD)); | 
|  | txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); | 
|  |  | 
|  | for (i = 0; i < adapter->num_tx_queues; i++) | 
|  | txdr[i].count = txdr->count; | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) | 
|  | rxdr[i].count = rxdr->count; | 
|  |  | 
|  | if (netif_running(adapter->netdev)) { | 
|  | /* Try to get new resources before deleting old */ | 
|  | err = e1000_setup_all_rx_resources(adapter); | 
|  | if (err) | 
|  | goto err_setup_rx; | 
|  | err = e1000_setup_all_tx_resources(adapter); | 
|  | if (err) | 
|  | goto err_setup_tx; | 
|  |  | 
|  | /* save the new, restore the old in order to free it, | 
|  | * then restore the new back again */ | 
|  |  | 
|  | adapter->rx_ring = rx_old; | 
|  | adapter->tx_ring = tx_old; | 
|  | e1000_free_all_rx_resources(adapter); | 
|  | e1000_free_all_tx_resources(adapter); | 
|  | kfree(tx_old); | 
|  | kfree(rx_old); | 
|  | adapter->rx_ring = rxdr; | 
|  | adapter->tx_ring = txdr; | 
|  | err = e1000_up(adapter); | 
|  | if (err) | 
|  | goto err_setup; | 
|  | } | 
|  |  | 
|  | clear_bit(__E1000_RESETTING, &adapter->flags); | 
|  | return 0; | 
|  | err_setup_tx: | 
|  | e1000_free_all_rx_resources(adapter); | 
|  | err_setup_rx: | 
|  | adapter->rx_ring = rx_old; | 
|  | adapter->tx_ring = tx_old; | 
|  | kfree(rxdr); | 
|  | err_alloc_rx: | 
|  | kfree(txdr); | 
|  | err_alloc_tx: | 
|  | e1000_up(adapter); | 
|  | err_setup: | 
|  | clear_bit(__E1000_RESETTING, &adapter->flags); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg, | 
|  | u32 mask, u32 write) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | static const u32 test[] = | 
|  | {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; | 
|  | u8 __iomem *address = hw->hw_addr + reg; | 
|  | u32 read; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(test); i++) { | 
|  | writel(write & test[i], address); | 
|  | read = readl(address); | 
|  | if (read != (write & test[i] & mask)) { | 
|  | e_err(drv, "pattern test reg %04X failed: " | 
|  | "got 0x%08X expected 0x%08X\n", | 
|  | reg, read, (write & test[i] & mask)); | 
|  | *data = reg; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg, | 
|  | u32 mask, u32 write) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u8 __iomem *address = hw->hw_addr + reg; | 
|  | u32 read; | 
|  |  | 
|  | writel(write & mask, address); | 
|  | read = readl(address); | 
|  | if ((read & mask) != (write & mask)) { | 
|  | e_err(drv, "set/check reg %04X test failed: " | 
|  | "got 0x%08X expected 0x%08X\n", | 
|  | reg, (read & mask), (write & mask)); | 
|  | *data = reg; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #define REG_PATTERN_TEST(reg, mask, write)			     \ | 
|  | do {							     \ | 
|  | if (reg_pattern_test(adapter, data,		     \ | 
|  | (hw->mac_type >= e1000_82543)   \ | 
|  | ? E1000_##reg : E1000_82542_##reg,	     \ | 
|  | mask, write))			     \ | 
|  | return 1;				     \ | 
|  | } while (0) | 
|  |  | 
|  | #define REG_SET_AND_CHECK(reg, mask, write)			     \ | 
|  | do {							     \ | 
|  | if (reg_set_and_check(adapter, data,		     \ | 
|  | (hw->mac_type >= e1000_82543)  \ | 
|  | ? E1000_##reg : E1000_82542_##reg,     \ | 
|  | mask, write))			     \ | 
|  | return 1;				     \ | 
|  | } while (0) | 
|  |  | 
|  | static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) | 
|  | { | 
|  | u32 value, before, after; | 
|  | u32 i, toggle; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | /* The status register is Read Only, so a write should fail. | 
|  | * Some bits that get toggled are ignored. | 
|  | */ | 
|  |  | 
|  | /* there are several bits on newer hardware that are r/w */ | 
|  | toggle = 0xFFFFF833; | 
|  |  | 
|  | before = er32(STATUS); | 
|  | value = (er32(STATUS) & toggle); | 
|  | ew32(STATUS, toggle); | 
|  | after = er32(STATUS) & toggle; | 
|  | if (value != after) { | 
|  | e_err(drv, "failed STATUS register test got: " | 
|  | "0x%08X expected: 0x%08X\n", after, value); | 
|  | *data = 1; | 
|  | return 1; | 
|  | } | 
|  | /* restore previous status */ | 
|  | ew32(STATUS, before); | 
|  |  | 
|  | REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); | 
|  |  | 
|  | REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); | 
|  | REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); | 
|  | REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); | 
|  | REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); | 
|  | REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); | 
|  | REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); | 
|  | REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); | 
|  |  | 
|  | REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); | 
|  |  | 
|  | before = 0x06DFB3FE; | 
|  | REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB); | 
|  | REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); | 
|  |  | 
|  | if (hw->mac_type >= e1000_82543) { | 
|  |  | 
|  | REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); | 
|  | REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); | 
|  | value = E1000_RAR_ENTRIES; | 
|  | for (i = 0; i < value; i++) { | 
|  | REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, | 
|  | 0xFFFFFFFF); | 
|  | } | 
|  |  | 
|  | } else { | 
|  |  | 
|  | REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); | 
|  | REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); | 
|  | REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); | 
|  |  | 
|  | } | 
|  |  | 
|  | value = E1000_MC_TBL_SIZE; | 
|  | for (i = 0; i < value; i++) | 
|  | REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); | 
|  |  | 
|  | *data = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u16 temp; | 
|  | u16 checksum = 0; | 
|  | u16 i; | 
|  |  | 
|  | *data = 0; | 
|  | /* Read and add up the contents of the EEPROM */ | 
|  | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | 
|  | if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) { | 
|  | *data = 1; | 
|  | break; | 
|  | } | 
|  | checksum += temp; | 
|  | } | 
|  |  | 
|  | /* If Checksum is not Correct return error else test passed */ | 
|  | if ((checksum != (u16)EEPROM_SUM) && !(*data)) | 
|  | *data = 2; | 
|  |  | 
|  | return *data; | 
|  | } | 
|  |  | 
|  | static irqreturn_t e1000_test_intr(int irq, void *data) | 
|  | { | 
|  | struct net_device *netdev = (struct net_device *)data; | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | adapter->test_icr |= er32(ICR); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | u32 mask, i = 0; | 
|  | bool shared_int = true; | 
|  | u32 irq = adapter->pdev->irq; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | *data = 0; | 
|  |  | 
|  | /* NOTE: we don't test MSI interrupts here, yet */ | 
|  | /* Hook up test interrupt handler just for this test */ | 
|  | if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, | 
|  | netdev)) | 
|  | shared_int = false; | 
|  | else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, | 
|  | netdev->name, netdev)) { | 
|  | *data = 1; | 
|  | return -1; | 
|  | } | 
|  | e_info(hw, "testing %s interrupt\n", (shared_int ? | 
|  | "shared" : "unshared")); | 
|  |  | 
|  | /* Disable all the interrupts */ | 
|  | ew32(IMC, 0xFFFFFFFF); | 
|  | msleep(10); | 
|  |  | 
|  | /* Test each interrupt */ | 
|  | for (; i < 10; i++) { | 
|  |  | 
|  | /* Interrupt to test */ | 
|  | mask = 1 << i; | 
|  |  | 
|  | if (!shared_int) { | 
|  | /* Disable the interrupt to be reported in | 
|  | * the cause register and then force the same | 
|  | * interrupt and see if one gets posted.  If | 
|  | * an interrupt was posted to the bus, the | 
|  | * test failed. | 
|  | */ | 
|  | adapter->test_icr = 0; | 
|  | ew32(IMC, mask); | 
|  | ew32(ICS, mask); | 
|  | msleep(10); | 
|  |  | 
|  | if (adapter->test_icr & mask) { | 
|  | *data = 3; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Enable the interrupt to be reported in | 
|  | * the cause register and then force the same | 
|  | * interrupt and see if one gets posted.  If | 
|  | * an interrupt was not posted to the bus, the | 
|  | * test failed. | 
|  | */ | 
|  | adapter->test_icr = 0; | 
|  | ew32(IMS, mask); | 
|  | ew32(ICS, mask); | 
|  | msleep(10); | 
|  |  | 
|  | if (!(adapter->test_icr & mask)) { | 
|  | *data = 4; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!shared_int) { | 
|  | /* Disable the other interrupts to be reported in | 
|  | * the cause register and then force the other | 
|  | * interrupts and see if any get posted.  If | 
|  | * an interrupt was posted to the bus, the | 
|  | * test failed. | 
|  | */ | 
|  | adapter->test_icr = 0; | 
|  | ew32(IMC, ~mask & 0x00007FFF); | 
|  | ew32(ICS, ~mask & 0x00007FFF); | 
|  | msleep(10); | 
|  |  | 
|  | if (adapter->test_icr) { | 
|  | *data = 5; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Disable all the interrupts */ | 
|  | ew32(IMC, 0xFFFFFFFF); | 
|  | msleep(10); | 
|  |  | 
|  | /* Unhook test interrupt handler */ | 
|  | free_irq(irq, netdev); | 
|  |  | 
|  | return *data; | 
|  | } | 
|  |  | 
|  | static void e1000_free_desc_rings(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_tx_ring *txdr = &adapter->test_tx_ring; | 
|  | struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | int i; | 
|  |  | 
|  | if (txdr->desc && txdr->buffer_info) { | 
|  | for (i = 0; i < txdr->count; i++) { | 
|  | if (txdr->buffer_info[i].dma) | 
|  | dma_unmap_single(&pdev->dev, | 
|  | txdr->buffer_info[i].dma, | 
|  | txdr->buffer_info[i].length, | 
|  | DMA_TO_DEVICE); | 
|  | if (txdr->buffer_info[i].skb) | 
|  | dev_kfree_skb(txdr->buffer_info[i].skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rxdr->desc && rxdr->buffer_info) { | 
|  | for (i = 0; i < rxdr->count; i++) { | 
|  | if (rxdr->buffer_info[i].dma) | 
|  | dma_unmap_single(&pdev->dev, | 
|  | rxdr->buffer_info[i].dma, | 
|  | rxdr->buffer_info[i].length, | 
|  | DMA_FROM_DEVICE); | 
|  | if (rxdr->buffer_info[i].skb) | 
|  | dev_kfree_skb(rxdr->buffer_info[i].skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (txdr->desc) { | 
|  | dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, | 
|  | txdr->dma); | 
|  | txdr->desc = NULL; | 
|  | } | 
|  | if (rxdr->desc) { | 
|  | dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, | 
|  | rxdr->dma); | 
|  | rxdr->desc = NULL; | 
|  | } | 
|  |  | 
|  | kfree(txdr->buffer_info); | 
|  | txdr->buffer_info = NULL; | 
|  | kfree(rxdr->buffer_info); | 
|  | rxdr->buffer_info = NULL; | 
|  | } | 
|  |  | 
|  | static int e1000_setup_desc_rings(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_tx_ring *txdr = &adapter->test_tx_ring; | 
|  | struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | u32 rctl; | 
|  | int i, ret_val; | 
|  |  | 
|  | /* Setup Tx descriptor ring and Tx buffers */ | 
|  |  | 
|  | if (!txdr->count) | 
|  | txdr->count = E1000_DEFAULT_TXD; | 
|  |  | 
|  | txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer), | 
|  | GFP_KERNEL); | 
|  | if (!txdr->buffer_info) { | 
|  | ret_val = 1; | 
|  | goto err_nomem; | 
|  | } | 
|  |  | 
|  | txdr->size = txdr->count * sizeof(struct e1000_tx_desc); | 
|  | txdr->size = ALIGN(txdr->size, 4096); | 
|  | txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, | 
|  | GFP_KERNEL); | 
|  | if (!txdr->desc) { | 
|  | ret_val = 2; | 
|  | goto err_nomem; | 
|  | } | 
|  | memset(txdr->desc, 0, txdr->size); | 
|  | txdr->next_to_use = txdr->next_to_clean = 0; | 
|  |  | 
|  | ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF)); | 
|  | ew32(TDBAH, ((u64)txdr->dma >> 32)); | 
|  | ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc)); | 
|  | ew32(TDH, 0); | 
|  | ew32(TDT, 0); | 
|  | ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | | 
|  | E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | | 
|  | E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); | 
|  |  | 
|  | for (i = 0; i < txdr->count; i++) { | 
|  | struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); | 
|  | struct sk_buff *skb; | 
|  | unsigned int size = 1024; | 
|  |  | 
|  | skb = alloc_skb(size, GFP_KERNEL); | 
|  | if (!skb) { | 
|  | ret_val = 3; | 
|  | goto err_nomem; | 
|  | } | 
|  | skb_put(skb, size); | 
|  | txdr->buffer_info[i].skb = skb; | 
|  | txdr->buffer_info[i].length = skb->len; | 
|  | txdr->buffer_info[i].dma = | 
|  | dma_map_single(&pdev->dev, skb->data, skb->len, | 
|  | DMA_TO_DEVICE); | 
|  | tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); | 
|  | tx_desc->lower.data = cpu_to_le32(skb->len); | 
|  | tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | | 
|  | E1000_TXD_CMD_IFCS | | 
|  | E1000_TXD_CMD_RPS); | 
|  | tx_desc->upper.data = 0; | 
|  | } | 
|  |  | 
|  | /* Setup Rx descriptor ring and Rx buffers */ | 
|  |  | 
|  | if (!rxdr->count) | 
|  | rxdr->count = E1000_DEFAULT_RXD; | 
|  |  | 
|  | rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer), | 
|  | GFP_KERNEL); | 
|  | if (!rxdr->buffer_info) { | 
|  | ret_val = 4; | 
|  | goto err_nomem; | 
|  | } | 
|  |  | 
|  | rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); | 
|  | rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, | 
|  | GFP_KERNEL); | 
|  | if (!rxdr->desc) { | 
|  | ret_val = 5; | 
|  | goto err_nomem; | 
|  | } | 
|  | memset(rxdr->desc, 0, rxdr->size); | 
|  | rxdr->next_to_use = rxdr->next_to_clean = 0; | 
|  |  | 
|  | rctl = er32(RCTL); | 
|  | ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
|  | ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF)); | 
|  | ew32(RDBAH, ((u64)rxdr->dma >> 32)); | 
|  | ew32(RDLEN, rxdr->size); | 
|  | ew32(RDH, 0); | 
|  | ew32(RDT, 0); | 
|  | rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | | 
|  | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | 
|  | (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); | 
|  | ew32(RCTL, rctl); | 
|  |  | 
|  | for (i = 0; i < rxdr->count; i++) { | 
|  | struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL); | 
|  | if (!skb) { | 
|  | ret_val = 6; | 
|  | goto err_nomem; | 
|  | } | 
|  | skb_reserve(skb, NET_IP_ALIGN); | 
|  | rxdr->buffer_info[i].skb = skb; | 
|  | rxdr->buffer_info[i].length = E1000_RXBUFFER_2048; | 
|  | rxdr->buffer_info[i].dma = | 
|  | dma_map_single(&pdev->dev, skb->data, | 
|  | E1000_RXBUFFER_2048, DMA_FROM_DEVICE); | 
|  | rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); | 
|  | memset(skb->data, 0x00, skb->len); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_nomem: | 
|  | e1000_free_desc_rings(adapter); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | /* Write out to PHY registers 29 and 30 to disable the Receiver. */ | 
|  | e1000_write_phy_reg(hw, 29, 0x001F); | 
|  | e1000_write_phy_reg(hw, 30, 0x8FFC); | 
|  | e1000_write_phy_reg(hw, 29, 0x001A); | 
|  | e1000_write_phy_reg(hw, 30, 0x8FF0); | 
|  | } | 
|  |  | 
|  | static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u16 phy_reg; | 
|  |  | 
|  | /* Because we reset the PHY above, we need to re-force TX_CLK in the | 
|  | * Extended PHY Specific Control Register to 25MHz clock.  This | 
|  | * value defaults back to a 2.5MHz clock when the PHY is reset. | 
|  | */ | 
|  | e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); | 
|  | phy_reg |= M88E1000_EPSCR_TX_CLK_25; | 
|  | e1000_write_phy_reg(hw, | 
|  | M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); | 
|  |  | 
|  | /* In addition, because of the s/w reset above, we need to enable | 
|  | * CRS on TX.  This must be set for both full and half duplex | 
|  | * operation. | 
|  | */ | 
|  | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); | 
|  | phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 
|  | e1000_write_phy_reg(hw, | 
|  | M88E1000_PHY_SPEC_CTRL, phy_reg); | 
|  | } | 
|  |  | 
|  | static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ctrl_reg; | 
|  | u16 phy_reg; | 
|  |  | 
|  | /* Setup the Device Control Register for PHY loopback test. */ | 
|  |  | 
|  | ctrl_reg = er32(CTRL); | 
|  | ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */ | 
|  | E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */ | 
|  | E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */ | 
|  | E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */ | 
|  | E1000_CTRL_FD);		/* Force Duplex to FULL */ | 
|  |  | 
|  | ew32(CTRL, ctrl_reg); | 
|  |  | 
|  | /* Read the PHY Specific Control Register (0x10) */ | 
|  | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); | 
|  |  | 
|  | /* Clear Auto-Crossover bits in PHY Specific Control Register | 
|  | * (bits 6:5). | 
|  | */ | 
|  | phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; | 
|  | e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); | 
|  |  | 
|  | /* Perform software reset on the PHY */ | 
|  | e1000_phy_reset(hw); | 
|  |  | 
|  | /* Have to setup TX_CLK and TX_CRS after software reset */ | 
|  | e1000_phy_reset_clk_and_crs(adapter); | 
|  |  | 
|  | e1000_write_phy_reg(hw, PHY_CTRL, 0x8100); | 
|  |  | 
|  | /* Wait for reset to complete. */ | 
|  | udelay(500); | 
|  |  | 
|  | /* Have to setup TX_CLK and TX_CRS after software reset */ | 
|  | e1000_phy_reset_clk_and_crs(adapter); | 
|  |  | 
|  | /* Write out to PHY registers 29 and 30 to disable the Receiver. */ | 
|  | e1000_phy_disable_receiver(adapter); | 
|  |  | 
|  | /* Set the loopback bit in the PHY control register. */ | 
|  | e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); | 
|  | phy_reg |= MII_CR_LOOPBACK; | 
|  | e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); | 
|  |  | 
|  | /* Setup TX_CLK and TX_CRS one more time. */ | 
|  | e1000_phy_reset_clk_and_crs(adapter); | 
|  |  | 
|  | /* Check Phy Configuration */ | 
|  | e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); | 
|  | if (phy_reg != 0x4100) | 
|  | return 9; | 
|  |  | 
|  | e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); | 
|  | if (phy_reg != 0x0070) | 
|  | return 10; | 
|  |  | 
|  | e1000_read_phy_reg(hw, 29, &phy_reg); | 
|  | if (phy_reg != 0x001A) | 
|  | return 11; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ctrl_reg = 0; | 
|  | u32 stat_reg = 0; | 
|  |  | 
|  | hw->autoneg = false; | 
|  |  | 
|  | if (hw->phy_type == e1000_phy_m88) { | 
|  | /* Auto-MDI/MDIX Off */ | 
|  | e1000_write_phy_reg(hw, | 
|  | M88E1000_PHY_SPEC_CTRL, 0x0808); | 
|  | /* reset to update Auto-MDI/MDIX */ | 
|  | e1000_write_phy_reg(hw, PHY_CTRL, 0x9140); | 
|  | /* autoneg off */ | 
|  | e1000_write_phy_reg(hw, PHY_CTRL, 0x8140); | 
|  | } | 
|  |  | 
|  | ctrl_reg = er32(CTRL); | 
|  |  | 
|  | /* force 1000, set loopback */ | 
|  | e1000_write_phy_reg(hw, PHY_CTRL, 0x4140); | 
|  |  | 
|  | /* Now set up the MAC to the same speed/duplex as the PHY. */ | 
|  | ctrl_reg = er32(CTRL); | 
|  | ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ | 
|  | ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | 
|  | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | 
|  | E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ | 
|  | E1000_CTRL_FD);	 /* Force Duplex to FULL */ | 
|  |  | 
|  | if (hw->media_type == e1000_media_type_copper && | 
|  | hw->phy_type == e1000_phy_m88) | 
|  | ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ | 
|  | else { | 
|  | /* Set the ILOS bit on the fiber Nic is half | 
|  | * duplex link is detected. */ | 
|  | stat_reg = er32(STATUS); | 
|  | if ((stat_reg & E1000_STATUS_FD) == 0) | 
|  | ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); | 
|  | } | 
|  |  | 
|  | ew32(CTRL, ctrl_reg); | 
|  |  | 
|  | /* Disable the receiver on the PHY so when a cable is plugged in, the | 
|  | * PHY does not begin to autoneg when a cable is reconnected to the NIC. | 
|  | */ | 
|  | if (hw->phy_type == e1000_phy_m88) | 
|  | e1000_phy_disable_receiver(adapter); | 
|  |  | 
|  | udelay(500); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000_set_phy_loopback(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u16 phy_reg = 0; | 
|  | u16 count = 0; | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82543: | 
|  | if (hw->media_type == e1000_media_type_copper) { | 
|  | /* Attempt to setup Loopback mode on Non-integrated PHY. | 
|  | * Some PHY registers get corrupted at random, so | 
|  | * attempt this 10 times. | 
|  | */ | 
|  | while (e1000_nonintegrated_phy_loopback(adapter) && | 
|  | count++ < 10); | 
|  | if (count < 11) | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case e1000_82544: | 
|  | case e1000_82540: | 
|  | case e1000_82545: | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546: | 
|  | case e1000_82546_rev_3: | 
|  | case e1000_82541: | 
|  | case e1000_82541_rev_2: | 
|  | case e1000_82547: | 
|  | case e1000_82547_rev_2: | 
|  | return e1000_integrated_phy_loopback(adapter); | 
|  | break; | 
|  | default: | 
|  | /* Default PHY loopback work is to read the MII | 
|  | * control register and assert bit 14 (loopback mode). | 
|  | */ | 
|  | e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); | 
|  | phy_reg |= MII_CR_LOOPBACK; | 
|  | e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); | 
|  | return 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 8; | 
|  | } | 
|  |  | 
|  | static int e1000_setup_loopback_test(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 rctl; | 
|  |  | 
|  | if (hw->media_type == e1000_media_type_fiber || | 
|  | hw->media_type == e1000_media_type_internal_serdes) { | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82545: | 
|  | case e1000_82546: | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546_rev_3: | 
|  | return e1000_set_phy_loopback(adapter); | 
|  | break; | 
|  | default: | 
|  | rctl = er32(RCTL); | 
|  | rctl |= E1000_RCTL_LBM_TCVR; | 
|  | ew32(RCTL, rctl); | 
|  | return 0; | 
|  | } | 
|  | } else if (hw->media_type == e1000_media_type_copper) | 
|  | return e1000_set_phy_loopback(adapter); | 
|  |  | 
|  | return 7; | 
|  | } | 
|  |  | 
|  | static void e1000_loopback_cleanup(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 rctl; | 
|  | u16 phy_reg; | 
|  |  | 
|  | rctl = er32(RCTL); | 
|  | rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); | 
|  | ew32(RCTL, rctl); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82545: | 
|  | case e1000_82546: | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546_rev_3: | 
|  | default: | 
|  | hw->autoneg = true; | 
|  | e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); | 
|  | if (phy_reg & MII_CR_LOOPBACK) { | 
|  | phy_reg &= ~MII_CR_LOOPBACK; | 
|  | e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); | 
|  | e1000_phy_reset(hw); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void e1000_create_lbtest_frame(struct sk_buff *skb, | 
|  | unsigned int frame_size) | 
|  | { | 
|  | memset(skb->data, 0xFF, frame_size); | 
|  | frame_size &= ~1; | 
|  | memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); | 
|  | memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); | 
|  | memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); | 
|  | } | 
|  |  | 
|  | static int e1000_check_lbtest_frame(struct sk_buff *skb, | 
|  | unsigned int frame_size) | 
|  | { | 
|  | frame_size &= ~1; | 
|  | if (*(skb->data + 3) == 0xFF) { | 
|  | if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && | 
|  | (*(skb->data + frame_size / 2 + 12) == 0xAF)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return 13; | 
|  | } | 
|  |  | 
|  | static int e1000_run_loopback_test(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_tx_ring *txdr = &adapter->test_tx_ring; | 
|  | struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | int i, j, k, l, lc, good_cnt, ret_val=0; | 
|  | unsigned long time; | 
|  |  | 
|  | ew32(RDT, rxdr->count - 1); | 
|  |  | 
|  | /* Calculate the loop count based on the largest descriptor ring | 
|  | * The idea is to wrap the largest ring a number of times using 64 | 
|  | * send/receive pairs during each loop | 
|  | */ | 
|  |  | 
|  | if (rxdr->count <= txdr->count) | 
|  | lc = ((txdr->count / 64) * 2) + 1; | 
|  | else | 
|  | lc = ((rxdr->count / 64) * 2) + 1; | 
|  |  | 
|  | k = l = 0; | 
|  | for (j = 0; j <= lc; j++) { /* loop count loop */ | 
|  | for (i = 0; i < 64; i++) { /* send the packets */ | 
|  | e1000_create_lbtest_frame(txdr->buffer_info[i].skb, | 
|  | 1024); | 
|  | dma_sync_single_for_device(&pdev->dev, | 
|  | txdr->buffer_info[k].dma, | 
|  | txdr->buffer_info[k].length, | 
|  | DMA_TO_DEVICE); | 
|  | if (unlikely(++k == txdr->count)) k = 0; | 
|  | } | 
|  | ew32(TDT, k); | 
|  | msleep(200); | 
|  | time = jiffies; /* set the start time for the receive */ | 
|  | good_cnt = 0; | 
|  | do { /* receive the sent packets */ | 
|  | dma_sync_single_for_cpu(&pdev->dev, | 
|  | rxdr->buffer_info[l].dma, | 
|  | rxdr->buffer_info[l].length, | 
|  | DMA_FROM_DEVICE); | 
|  |  | 
|  | ret_val = e1000_check_lbtest_frame( | 
|  | rxdr->buffer_info[l].skb, | 
|  | 1024); | 
|  | if (!ret_val) | 
|  | good_cnt++; | 
|  | if (unlikely(++l == rxdr->count)) l = 0; | 
|  | /* time + 20 msecs (200 msecs on 2.4) is more than | 
|  | * enough time to complete the receives, if it's | 
|  | * exceeded, break and error off | 
|  | */ | 
|  | } while (good_cnt < 64 && jiffies < (time + 20)); | 
|  | if (good_cnt != 64) { | 
|  | ret_val = 13; /* ret_val is the same as mis-compare */ | 
|  | break; | 
|  | } | 
|  | if (jiffies >= (time + 2)) { | 
|  | ret_val = 14; /* error code for time out error */ | 
|  | break; | 
|  | } | 
|  | } /* end loop count loop */ | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) | 
|  | { | 
|  | *data = e1000_setup_desc_rings(adapter); | 
|  | if (*data) | 
|  | goto out; | 
|  | *data = e1000_setup_loopback_test(adapter); | 
|  | if (*data) | 
|  | goto err_loopback; | 
|  | *data = e1000_run_loopback_test(adapter); | 
|  | e1000_loopback_cleanup(adapter); | 
|  |  | 
|  | err_loopback: | 
|  | e1000_free_desc_rings(adapter); | 
|  | out: | 
|  | return *data; | 
|  | } | 
|  |  | 
|  | static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | *data = 0; | 
|  | if (hw->media_type == e1000_media_type_internal_serdes) { | 
|  | int i = 0; | 
|  | hw->serdes_has_link = false; | 
|  |  | 
|  | /* On some blade server designs, link establishment | 
|  | * could take as long as 2-3 minutes */ | 
|  | do { | 
|  | e1000_check_for_link(hw); | 
|  | if (hw->serdes_has_link) | 
|  | return *data; | 
|  | msleep(20); | 
|  | } while (i++ < 3750); | 
|  |  | 
|  | *data = 1; | 
|  | } else { | 
|  | e1000_check_for_link(hw); | 
|  | if (hw->autoneg)  /* if auto_neg is set wait for it */ | 
|  | msleep(4000); | 
|  |  | 
|  | if (!(er32(STATUS) & E1000_STATUS_LU)) { | 
|  | *data = 1; | 
|  | } | 
|  | } | 
|  | return *data; | 
|  | } | 
|  |  | 
|  | static int e1000_get_sset_count(struct net_device *netdev, int sset) | 
|  | { | 
|  | switch (sset) { | 
|  | case ETH_SS_TEST: | 
|  | return E1000_TEST_LEN; | 
|  | case ETH_SS_STATS: | 
|  | return E1000_STATS_LEN; | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void e1000_diag_test(struct net_device *netdev, | 
|  | struct ethtool_test *eth_test, u64 *data) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | bool if_running = netif_running(netdev); | 
|  |  | 
|  | set_bit(__E1000_TESTING, &adapter->flags); | 
|  | if (eth_test->flags == ETH_TEST_FL_OFFLINE) { | 
|  | /* Offline tests */ | 
|  |  | 
|  | /* save speed, duplex, autoneg settings */ | 
|  | u16 autoneg_advertised = hw->autoneg_advertised; | 
|  | u8 forced_speed_duplex = hw->forced_speed_duplex; | 
|  | u8 autoneg = hw->autoneg; | 
|  |  | 
|  | e_info(hw, "offline testing starting\n"); | 
|  |  | 
|  | /* Link test performed before hardware reset so autoneg doesn't | 
|  | * interfere with test result */ | 
|  | if (e1000_link_test(adapter, &data[4])) | 
|  | eth_test->flags |= ETH_TEST_FL_FAILED; | 
|  |  | 
|  | if (if_running) | 
|  | /* indicate we're in test mode */ | 
|  | dev_close(netdev); | 
|  | else | 
|  | e1000_reset(adapter); | 
|  |  | 
|  | if (e1000_reg_test(adapter, &data[0])) | 
|  | eth_test->flags |= ETH_TEST_FL_FAILED; | 
|  |  | 
|  | e1000_reset(adapter); | 
|  | if (e1000_eeprom_test(adapter, &data[1])) | 
|  | eth_test->flags |= ETH_TEST_FL_FAILED; | 
|  |  | 
|  | e1000_reset(adapter); | 
|  | if (e1000_intr_test(adapter, &data[2])) | 
|  | eth_test->flags |= ETH_TEST_FL_FAILED; | 
|  |  | 
|  | e1000_reset(adapter); | 
|  | /* make sure the phy is powered up */ | 
|  | e1000_power_up_phy(adapter); | 
|  | if (e1000_loopback_test(adapter, &data[3])) | 
|  | eth_test->flags |= ETH_TEST_FL_FAILED; | 
|  |  | 
|  | /* restore speed, duplex, autoneg settings */ | 
|  | hw->autoneg_advertised = autoneg_advertised; | 
|  | hw->forced_speed_duplex = forced_speed_duplex; | 
|  | hw->autoneg = autoneg; | 
|  |  | 
|  | e1000_reset(adapter); | 
|  | clear_bit(__E1000_TESTING, &adapter->flags); | 
|  | if (if_running) | 
|  | dev_open(netdev); | 
|  | } else { | 
|  | e_info(hw, "online testing starting\n"); | 
|  | /* Online tests */ | 
|  | if (e1000_link_test(adapter, &data[4])) | 
|  | eth_test->flags |= ETH_TEST_FL_FAILED; | 
|  |  | 
|  | /* Online tests aren't run; pass by default */ | 
|  | data[0] = 0; | 
|  | data[1] = 0; | 
|  | data[2] = 0; | 
|  | data[3] = 0; | 
|  |  | 
|  | clear_bit(__E1000_TESTING, &adapter->flags); | 
|  | } | 
|  | msleep_interruptible(4 * 1000); | 
|  | } | 
|  |  | 
|  | static int e1000_wol_exclusion(struct e1000_adapter *adapter, | 
|  | struct ethtool_wolinfo *wol) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int retval = 1; /* fail by default */ | 
|  |  | 
|  | switch (hw->device_id) { | 
|  | case E1000_DEV_ID_82542: | 
|  | case E1000_DEV_ID_82543GC_FIBER: | 
|  | case E1000_DEV_ID_82543GC_COPPER: | 
|  | case E1000_DEV_ID_82544EI_FIBER: | 
|  | case E1000_DEV_ID_82546EB_QUAD_COPPER: | 
|  | case E1000_DEV_ID_82545EM_FIBER: | 
|  | case E1000_DEV_ID_82545EM_COPPER: | 
|  | case E1000_DEV_ID_82546GB_QUAD_COPPER: | 
|  | case E1000_DEV_ID_82546GB_PCIE: | 
|  | /* these don't support WoL at all */ | 
|  | wol->supported = 0; | 
|  | break; | 
|  | case E1000_DEV_ID_82546EB_FIBER: | 
|  | case E1000_DEV_ID_82546GB_FIBER: | 
|  | /* Wake events not supported on port B */ | 
|  | if (er32(STATUS) & E1000_STATUS_FUNC_1) { | 
|  | wol->supported = 0; | 
|  | break; | 
|  | } | 
|  | /* return success for non excluded adapter ports */ | 
|  | retval = 0; | 
|  | break; | 
|  | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: | 
|  | /* quad port adapters only support WoL on port A */ | 
|  | if (!adapter->quad_port_a) { | 
|  | wol->supported = 0; | 
|  | break; | 
|  | } | 
|  | /* return success for non excluded adapter ports */ | 
|  | retval = 0; | 
|  | break; | 
|  | default: | 
|  | /* dual port cards only support WoL on port A from now on | 
|  | * unless it was enabled in the eeprom for port B | 
|  | * so exclude FUNC_1 ports from having WoL enabled */ | 
|  | if (er32(STATUS) & E1000_STATUS_FUNC_1 && | 
|  | !adapter->eeprom_wol) { | 
|  | wol->supported = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | retval = 0; | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static void e1000_get_wol(struct net_device *netdev, | 
|  | struct ethtool_wolinfo *wol) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | wol->supported = WAKE_UCAST | WAKE_MCAST | | 
|  | WAKE_BCAST | WAKE_MAGIC; | 
|  | wol->wolopts = 0; | 
|  |  | 
|  | /* this function will set ->supported = 0 and return 1 if wol is not | 
|  | * supported by this hardware */ | 
|  | if (e1000_wol_exclusion(adapter, wol) || | 
|  | !device_can_wakeup(&adapter->pdev->dev)) | 
|  | return; | 
|  |  | 
|  | /* apply any specific unsupported masks here */ | 
|  | switch (hw->device_id) { | 
|  | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: | 
|  | /* KSP3 does not suppport UCAST wake-ups */ | 
|  | wol->supported &= ~WAKE_UCAST; | 
|  |  | 
|  | if (adapter->wol & E1000_WUFC_EX) | 
|  | e_err(drv, "Interface does not support directed " | 
|  | "(unicast) frame wake-up packets\n"); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (adapter->wol & E1000_WUFC_EX) | 
|  | wol->wolopts |= WAKE_UCAST; | 
|  | if (adapter->wol & E1000_WUFC_MC) | 
|  | wol->wolopts |= WAKE_MCAST; | 
|  | if (adapter->wol & E1000_WUFC_BC) | 
|  | wol->wolopts |= WAKE_BCAST; | 
|  | if (adapter->wol & E1000_WUFC_MAG) | 
|  | wol->wolopts |= WAKE_MAGIC; | 
|  | } | 
|  |  | 
|  | static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (e1000_wol_exclusion(adapter, wol) || | 
|  | !device_can_wakeup(&adapter->pdev->dev)) | 
|  | return wol->wolopts ? -EOPNOTSUPP : 0; | 
|  |  | 
|  | switch (hw->device_id) { | 
|  | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: | 
|  | if (wol->wolopts & WAKE_UCAST) { | 
|  | e_err(drv, "Interface does not support directed " | 
|  | "(unicast) frame wake-up packets\n"); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* these settings will always override what we currently have */ | 
|  | adapter->wol = 0; | 
|  |  | 
|  | if (wol->wolopts & WAKE_UCAST) | 
|  | adapter->wol |= E1000_WUFC_EX; | 
|  | if (wol->wolopts & WAKE_MCAST) | 
|  | adapter->wol |= E1000_WUFC_MC; | 
|  | if (wol->wolopts & WAKE_BCAST) | 
|  | adapter->wol |= E1000_WUFC_BC; | 
|  | if (wol->wolopts & WAKE_MAGIC) | 
|  | adapter->wol |= E1000_WUFC_MAG; | 
|  |  | 
|  | device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* toggle LED 4 times per second = 2 "blinks" per second */ | 
|  | #define E1000_ID_INTERVAL	(HZ/4) | 
|  |  | 
|  | /* bit defines for adapter->led_status */ | 
|  | #define E1000_LED_ON		0 | 
|  |  | 
|  | static void e1000_led_blink_callback(unsigned long data) | 
|  | { | 
|  | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if (test_and_change_bit(E1000_LED_ON, &adapter->led_status)) | 
|  | e1000_led_off(hw); | 
|  | else | 
|  | e1000_led_on(hw); | 
|  |  | 
|  | mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL); | 
|  | } | 
|  |  | 
|  | static int e1000_phys_id(struct net_device *netdev, u32 data) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if (!data) | 
|  | data = INT_MAX; | 
|  |  | 
|  | if (!adapter->blink_timer.function) { | 
|  | init_timer(&adapter->blink_timer); | 
|  | adapter->blink_timer.function = e1000_led_blink_callback; | 
|  | adapter->blink_timer.data = (unsigned long)adapter; | 
|  | } | 
|  | e1000_setup_led(hw); | 
|  | mod_timer(&adapter->blink_timer, jiffies); | 
|  | msleep_interruptible(data * 1000); | 
|  | del_timer_sync(&adapter->blink_timer); | 
|  |  | 
|  | e1000_led_off(hw); | 
|  | clear_bit(E1000_LED_ON, &adapter->led_status); | 
|  | e1000_cleanup_led(hw); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000_get_coalesce(struct net_device *netdev, | 
|  | struct ethtool_coalesce *ec) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | if (adapter->hw.mac_type < e1000_82545) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (adapter->itr_setting <= 4) | 
|  | ec->rx_coalesce_usecs = adapter->itr_setting; | 
|  | else | 
|  | ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000_set_coalesce(struct net_device *netdev, | 
|  | struct ethtool_coalesce *ec) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if (hw->mac_type < e1000_82545) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || | 
|  | ((ec->rx_coalesce_usecs > 4) && | 
|  | (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || | 
|  | (ec->rx_coalesce_usecs == 2)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (ec->rx_coalesce_usecs == 4) { | 
|  | adapter->itr = adapter->itr_setting = 4; | 
|  | } else if (ec->rx_coalesce_usecs <= 3) { | 
|  | adapter->itr = 20000; | 
|  | adapter->itr_setting = ec->rx_coalesce_usecs; | 
|  | } else { | 
|  | adapter->itr = (1000000 / ec->rx_coalesce_usecs); | 
|  | adapter->itr_setting = adapter->itr & ~3; | 
|  | } | 
|  |  | 
|  | if (adapter->itr_setting != 0) | 
|  | ew32(ITR, 1000000000 / (adapter->itr * 256)); | 
|  | else | 
|  | ew32(ITR, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000_nway_reset(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | if (netif_running(netdev)) | 
|  | e1000_reinit_locked(adapter); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void e1000_get_ethtool_stats(struct net_device *netdev, | 
|  | struct ethtool_stats *stats, u64 *data) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | int i; | 
|  | char *p = NULL; | 
|  |  | 
|  | e1000_update_stats(adapter); | 
|  | for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { | 
|  | switch (e1000_gstrings_stats[i].type) { | 
|  | case NETDEV_STATS: | 
|  | p = (char *) netdev + | 
|  | e1000_gstrings_stats[i].stat_offset; | 
|  | break; | 
|  | case E1000_STATS: | 
|  | p = (char *) adapter + | 
|  | e1000_gstrings_stats[i].stat_offset; | 
|  | break; | 
|  | } | 
|  |  | 
|  | data[i] = (e1000_gstrings_stats[i].sizeof_stat == | 
|  | sizeof(u64)) ? *(u64 *)p : *(u32 *)p; | 
|  | } | 
|  | /*	BUG_ON(i != E1000_STATS_LEN); */ | 
|  | } | 
|  |  | 
|  | static void e1000_get_strings(struct net_device *netdev, u32 stringset, | 
|  | u8 *data) | 
|  | { | 
|  | u8 *p = data; | 
|  | int i; | 
|  |  | 
|  | switch (stringset) { | 
|  | case ETH_SS_TEST: | 
|  | memcpy(data, *e1000_gstrings_test, | 
|  | sizeof(e1000_gstrings_test)); | 
|  | break; | 
|  | case ETH_SS_STATS: | 
|  | for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { | 
|  | memcpy(p, e1000_gstrings_stats[i].stat_string, | 
|  | ETH_GSTRING_LEN); | 
|  | p += ETH_GSTRING_LEN; | 
|  | } | 
|  | /*		BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct ethtool_ops e1000_ethtool_ops = { | 
|  | .get_settings           = e1000_get_settings, | 
|  | .set_settings           = e1000_set_settings, | 
|  | .get_drvinfo            = e1000_get_drvinfo, | 
|  | .get_regs_len           = e1000_get_regs_len, | 
|  | .get_regs               = e1000_get_regs, | 
|  | .get_wol                = e1000_get_wol, | 
|  | .set_wol                = e1000_set_wol, | 
|  | .get_msglevel           = e1000_get_msglevel, | 
|  | .set_msglevel           = e1000_set_msglevel, | 
|  | .nway_reset             = e1000_nway_reset, | 
|  | .get_link               = e1000_get_link, | 
|  | .get_eeprom_len         = e1000_get_eeprom_len, | 
|  | .get_eeprom             = e1000_get_eeprom, | 
|  | .set_eeprom             = e1000_set_eeprom, | 
|  | .get_ringparam          = e1000_get_ringparam, | 
|  | .set_ringparam          = e1000_set_ringparam, | 
|  | .get_pauseparam         = e1000_get_pauseparam, | 
|  | .set_pauseparam         = e1000_set_pauseparam, | 
|  | .get_rx_csum            = e1000_get_rx_csum, | 
|  | .set_rx_csum            = e1000_set_rx_csum, | 
|  | .get_tx_csum            = e1000_get_tx_csum, | 
|  | .set_tx_csum            = e1000_set_tx_csum, | 
|  | .set_sg                 = ethtool_op_set_sg, | 
|  | .set_tso                = e1000_set_tso, | 
|  | .self_test              = e1000_diag_test, | 
|  | .get_strings            = e1000_get_strings, | 
|  | .phys_id                = e1000_phys_id, | 
|  | .get_ethtool_stats      = e1000_get_ethtool_stats, | 
|  | .get_sset_count         = e1000_get_sset_count, | 
|  | .get_coalesce           = e1000_get_coalesce, | 
|  | .set_coalesce           = e1000_set_coalesce, | 
|  | }; | 
|  |  | 
|  | void e1000_set_ethtool_ops(struct net_device *netdev) | 
|  | { | 
|  | SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); | 
|  | } |