| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com> |
| * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org> |
| * swiped from i386, and cloned for MIPS by Geert, polished by Ralf. |
| */ |
| #include <linux/dma-direct.h> |
| #include <linux/dma-noncoherent.h> |
| #include <linux/dma-contiguous.h> |
| #include <linux/highmem.h> |
| |
| #include <asm/cache.h> |
| #include <asm/cpu-type.h> |
| #include <asm/dma-coherence.h> |
| #include <asm/io.h> |
| |
| #ifdef CONFIG_DMA_PERDEV_COHERENT |
| static inline int dev_is_coherent(struct device *dev) |
| { |
| return dev->archdata.dma_coherent; |
| } |
| #else |
| static inline int dev_is_coherent(struct device *dev) |
| { |
| switch (coherentio) { |
| default: |
| case IO_COHERENCE_DEFAULT: |
| return hw_coherentio; |
| case IO_COHERENCE_ENABLED: |
| return 1; |
| case IO_COHERENCE_DISABLED: |
| return 0; |
| } |
| } |
| #endif /* CONFIG_DMA_PERDEV_COHERENT */ |
| |
| /* |
| * The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively |
| * fill random cachelines with stale data at any time, requiring an extra |
| * flush post-DMA. |
| * |
| * Warning on the terminology - Linux calls an uncached area coherent; MIPS |
| * terminology calls memory areas with hardware maintained coherency coherent. |
| * |
| * Note that the R14000 and R16000 should also be checked for in this condition. |
| * However this function is only called on non-I/O-coherent systems and only the |
| * R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp. |
| * SGI IP32 aka O2. |
| */ |
| static inline bool cpu_needs_post_dma_flush(struct device *dev) |
| { |
| if (dev_is_coherent(dev)) |
| return false; |
| |
| switch (boot_cpu_type()) { |
| case CPU_R10000: |
| case CPU_R12000: |
| case CPU_BMIPS5000: |
| return true; |
| default: |
| /* |
| * Presence of MAARs suggests that the CPU supports |
| * speculatively prefetching data, and therefore requires |
| * the post-DMA flush/invalidate. |
| */ |
| return cpu_has_maar; |
| } |
| } |
| |
| void *arch_dma_alloc(struct device *dev, size_t size, |
| dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) |
| { |
| void *ret; |
| |
| ret = dma_direct_alloc(dev, size, dma_handle, gfp, attrs); |
| if (!ret) |
| return NULL; |
| |
| if (!dev_is_coherent(dev) && !(attrs & DMA_ATTR_NON_CONSISTENT)) { |
| dma_cache_wback_inv((unsigned long) ret, size); |
| ret = (void *)UNCAC_ADDR(ret); |
| } |
| |
| return ret; |
| } |
| |
| void arch_dma_free(struct device *dev, size_t size, void *cpu_addr, |
| dma_addr_t dma_addr, unsigned long attrs) |
| { |
| if (!(attrs & DMA_ATTR_NON_CONSISTENT) && !dev_is_coherent(dev)) |
| cpu_addr = (void *)CAC_ADDR((unsigned long)cpu_addr); |
| dma_direct_free(dev, size, cpu_addr, dma_addr, attrs); |
| } |
| |
| int arch_dma_mmap(struct device *dev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs) |
| { |
| unsigned long user_count = vma_pages(vma); |
| unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| unsigned long addr = (unsigned long)cpu_addr; |
| unsigned long off = vma->vm_pgoff; |
| unsigned long pfn; |
| int ret = -ENXIO; |
| |
| if (!dev_is_coherent(dev)) |
| addr = CAC_ADDR(addr); |
| |
| pfn = page_to_pfn(virt_to_page((void *)addr)); |
| |
| if (attrs & DMA_ATTR_WRITE_COMBINE) |
| vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); |
| else |
| vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); |
| |
| if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) |
| return ret; |
| |
| if (off < count && user_count <= (count - off)) { |
| ret = remap_pfn_range(vma, vma->vm_start, |
| pfn + off, |
| user_count << PAGE_SHIFT, |
| vma->vm_page_prot); |
| } |
| |
| return ret; |
| } |
| |
| static inline void dma_sync_virt(void *addr, size_t size, |
| enum dma_data_direction dir) |
| { |
| switch (dir) { |
| case DMA_TO_DEVICE: |
| dma_cache_wback((unsigned long)addr, size); |
| break; |
| |
| case DMA_FROM_DEVICE: |
| dma_cache_inv((unsigned long)addr, size); |
| break; |
| |
| case DMA_BIDIRECTIONAL: |
| dma_cache_wback_inv((unsigned long)addr, size); |
| break; |
| |
| default: |
| BUG(); |
| } |
| } |
| |
| /* |
| * A single sg entry may refer to multiple physically contiguous pages. But |
| * we still need to process highmem pages individually. If highmem is not |
| * configured then the bulk of this loop gets optimized out. |
| */ |
| static inline void dma_sync_phys(phys_addr_t paddr, size_t size, |
| enum dma_data_direction dir) |
| { |
| struct page *page = pfn_to_page(paddr >> PAGE_SHIFT); |
| unsigned long offset = paddr & ~PAGE_MASK; |
| size_t left = size; |
| |
| do { |
| size_t len = left; |
| |
| if (PageHighMem(page)) { |
| void *addr; |
| |
| if (offset + len > PAGE_SIZE) { |
| if (offset >= PAGE_SIZE) { |
| page += offset >> PAGE_SHIFT; |
| offset &= ~PAGE_MASK; |
| } |
| len = PAGE_SIZE - offset; |
| } |
| |
| addr = kmap_atomic(page); |
| dma_sync_virt(addr + offset, len, dir); |
| kunmap_atomic(addr); |
| } else |
| dma_sync_virt(page_address(page) + offset, size, dir); |
| offset = 0; |
| page++; |
| left -= len; |
| } while (left); |
| } |
| |
| void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr, |
| size_t size, enum dma_data_direction dir) |
| { |
| if (!dev_is_coherent(dev)) |
| dma_sync_phys(paddr, size, dir); |
| } |
| |
| void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr, |
| size_t size, enum dma_data_direction dir) |
| { |
| if (cpu_needs_post_dma_flush(dev)) |
| dma_sync_phys(paddr, size, dir); |
| } |
| |
| void arch_dma_cache_sync(struct device *dev, void *vaddr, size_t size, |
| enum dma_data_direction direction) |
| { |
| BUG_ON(direction == DMA_NONE); |
| |
| if (!dev_is_coherent(dev)) |
| dma_sync_virt(vaddr, size, direction); |
| } |