blob: 91b14dfacd1dd72fe80b12b3c88deaa0434af5c7 [file] [log] [blame]
/*
* Copyright (C) 2015, 2016 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/irqchip/arm-gic.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <kvm/arm_vgic.h>
#include <asm/kvm_mmu.h>
#include "vgic.h"
static inline void vgic_v2_write_lr(int lr, u32 val)
{
void __iomem *base = kvm_vgic_global_state.vctrl_base;
writel_relaxed(val, base + GICH_LR0 + (lr * 4));
}
void vgic_v2_init_lrs(void)
{
int i;
for (i = 0; i < kvm_vgic_global_state.nr_lr; i++)
vgic_v2_write_lr(i, 0);
}
void vgic_v2_set_underflow(struct kvm_vcpu *vcpu)
{
struct vgic_v2_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v2;
cpuif->vgic_hcr |= GICH_HCR_UIE;
}
static bool lr_signals_eoi_mi(u32 lr_val)
{
return !(lr_val & GICH_LR_STATE) && (lr_val & GICH_LR_EOI) &&
!(lr_val & GICH_LR_HW);
}
/*
* transfer the content of the LRs back into the corresponding ap_list:
* - active bit is transferred as is
* - pending bit is
* - transferred as is in case of edge sensitive IRQs
* - set to the line-level (resample time) for level sensitive IRQs
*/
void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_v2_cpu_if *cpuif = &vgic_cpu->vgic_v2;
int lr;
DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
cpuif->vgic_hcr &= ~GICH_HCR_UIE;
for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
u32 val = cpuif->vgic_lr[lr];
u32 cpuid, intid = val & GICH_LR_VIRTUALID;
struct vgic_irq *irq;
/* Extract the source vCPU id from the LR */
cpuid = val & GICH_LR_PHYSID_CPUID;
cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
cpuid &= 7;
/* Notify fds when the guest EOI'ed a level-triggered SPI */
if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
kvm_notify_acked_irq(vcpu->kvm, 0,
intid - VGIC_NR_PRIVATE_IRQS);
irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
spin_lock(&irq->irq_lock);
/* Always preserve the active bit */
irq->active = !!(val & GICH_LR_ACTIVE_BIT);
if (irq->active && vgic_irq_is_sgi(intid))
irq->active_source = cpuid;
/* Edge is the only case where we preserve the pending bit */
if (irq->config == VGIC_CONFIG_EDGE &&
(val & GICH_LR_PENDING_BIT)) {
irq->pending_latch = true;
if (vgic_irq_is_sgi(intid))
irq->source |= (1 << cpuid);
}
/*
* Clear soft pending state when level irqs have been acked.
*/
if (irq->config == VGIC_CONFIG_LEVEL && !(val & GICH_LR_STATE))
irq->pending_latch = false;
/*
* Level-triggered mapped IRQs are special because we only
* observe rising edges as input to the VGIC.
*
* If the guest never acked the interrupt we have to sample
* the physical line and set the line level, because the
* device state could have changed or we simply need to
* process the still pending interrupt later.
*
* If this causes us to lower the level, we have to also clear
* the physical active state, since we will otherwise never be
* told when the interrupt becomes asserted again.
*/
if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT)) {
irq->line_level = vgic_get_phys_line_level(irq);
if (!irq->line_level)
vgic_irq_set_phys_active(irq, false);
}
spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
}
vgic_cpu->used_lrs = 0;
}
/*
* Populates the particular LR with the state of a given IRQ:
* - for an edge sensitive IRQ the pending state is cleared in struct vgic_irq
* - for a level sensitive IRQ the pending state value is unchanged;
* it is dictated directly by the input level
*
* If @irq describes an SGI with multiple sources, we choose the
* lowest-numbered source VCPU and clear that bit in the source bitmap.
*
* The irq_lock must be held by the caller.
*/
void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
{
u32 val = irq->intid;
bool allow_pending = true;
if (irq->active) {
val |= GICH_LR_ACTIVE_BIT;
if (vgic_irq_is_sgi(irq->intid))
val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
if (vgic_irq_is_multi_sgi(irq)) {
allow_pending = false;
val |= GICH_LR_EOI;
}
}
if (irq->group)
val |= GICH_LR_GROUP1;
if (irq->hw) {
val |= GICH_LR_HW;
val |= irq->hwintid << GICH_LR_PHYSID_CPUID_SHIFT;
/*
* Never set pending+active on a HW interrupt, as the
* pending state is kept at the physical distributor
* level.
*/
if (irq->active)
allow_pending = false;
} else {
if (irq->config == VGIC_CONFIG_LEVEL) {
val |= GICH_LR_EOI;
/*
* Software resampling doesn't work very well
* if we allow P+A, so let's not do that.
*/
if (irq->active)
allow_pending = false;
}
}
if (allow_pending && irq_is_pending(irq)) {
val |= GICH_LR_PENDING_BIT;
if (irq->config == VGIC_CONFIG_EDGE)
irq->pending_latch = false;
if (vgic_irq_is_sgi(irq->intid)) {
u32 src = ffs(irq->source);
if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
irq->intid))
return;
val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
irq->source &= ~(1 << (src - 1));
if (irq->source) {
irq->pending_latch = true;
val |= GICH_LR_EOI;
}
}
}
/*
* Level-triggered mapped IRQs are special because we only observe
* rising edges as input to the VGIC. We therefore lower the line
* level here, so that we can take new virtual IRQs. See
* vgic_v2_fold_lr_state for more info.
*/
if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT))
irq->line_level = false;
/* The GICv2 LR only holds five bits of priority. */
val |= (irq->priority >> 3) << GICH_LR_PRIORITY_SHIFT;
vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = val;
}
void vgic_v2_clear_lr(struct kvm_vcpu *vcpu, int lr)
{
vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = 0;
}
void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
u32 vmcr;
vmcr = (vmcrp->grpen0 << GICH_VMCR_ENABLE_GRP0_SHIFT) &
GICH_VMCR_ENABLE_GRP0_MASK;
vmcr |= (vmcrp->grpen1 << GICH_VMCR_ENABLE_GRP1_SHIFT) &
GICH_VMCR_ENABLE_GRP1_MASK;
vmcr |= (vmcrp->ackctl << GICH_VMCR_ACK_CTL_SHIFT) &
GICH_VMCR_ACK_CTL_MASK;
vmcr |= (vmcrp->fiqen << GICH_VMCR_FIQ_EN_SHIFT) &
GICH_VMCR_FIQ_EN_MASK;
vmcr |= (vmcrp->cbpr << GICH_VMCR_CBPR_SHIFT) &
GICH_VMCR_CBPR_MASK;
vmcr |= (vmcrp->eoim << GICH_VMCR_EOI_MODE_SHIFT) &
GICH_VMCR_EOI_MODE_MASK;
vmcr |= (vmcrp->abpr << GICH_VMCR_ALIAS_BINPOINT_SHIFT) &
GICH_VMCR_ALIAS_BINPOINT_MASK;
vmcr |= (vmcrp->bpr << GICH_VMCR_BINPOINT_SHIFT) &
GICH_VMCR_BINPOINT_MASK;
vmcr |= ((vmcrp->pmr >> GICV_PMR_PRIORITY_SHIFT) <<
GICH_VMCR_PRIMASK_SHIFT) & GICH_VMCR_PRIMASK_MASK;
cpu_if->vgic_vmcr = vmcr;
}
void vgic_v2_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
u32 vmcr;
vmcr = cpu_if->vgic_vmcr;
vmcrp->grpen0 = (vmcr & GICH_VMCR_ENABLE_GRP0_MASK) >>
GICH_VMCR_ENABLE_GRP0_SHIFT;
vmcrp->grpen1 = (vmcr & GICH_VMCR_ENABLE_GRP1_MASK) >>
GICH_VMCR_ENABLE_GRP1_SHIFT;
vmcrp->ackctl = (vmcr & GICH_VMCR_ACK_CTL_MASK) >>
GICH_VMCR_ACK_CTL_SHIFT;
vmcrp->fiqen = (vmcr & GICH_VMCR_FIQ_EN_MASK) >>
GICH_VMCR_FIQ_EN_SHIFT;
vmcrp->cbpr = (vmcr & GICH_VMCR_CBPR_MASK) >>
GICH_VMCR_CBPR_SHIFT;
vmcrp->eoim = (vmcr & GICH_VMCR_EOI_MODE_MASK) >>
GICH_VMCR_EOI_MODE_SHIFT;
vmcrp->abpr = (vmcr & GICH_VMCR_ALIAS_BINPOINT_MASK) >>
GICH_VMCR_ALIAS_BINPOINT_SHIFT;
vmcrp->bpr = (vmcr & GICH_VMCR_BINPOINT_MASK) >>
GICH_VMCR_BINPOINT_SHIFT;
vmcrp->pmr = ((vmcr & GICH_VMCR_PRIMASK_MASK) >>
GICH_VMCR_PRIMASK_SHIFT) << GICV_PMR_PRIORITY_SHIFT;
}
void vgic_v2_enable(struct kvm_vcpu *vcpu)
{
/*
* By forcing VMCR to zero, the GIC will restore the binary
* points to their reset values. Anything else resets to zero
* anyway.
*/
vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr = 0;
/* Get the show on the road... */
vcpu->arch.vgic_cpu.vgic_v2.vgic_hcr = GICH_HCR_EN;
}
/* check for overlapping regions and for regions crossing the end of memory */
static bool vgic_v2_check_base(gpa_t dist_base, gpa_t cpu_base)
{
if (dist_base + KVM_VGIC_V2_DIST_SIZE < dist_base)
return false;
if (cpu_base + KVM_VGIC_V2_CPU_SIZE < cpu_base)
return false;
if (dist_base + KVM_VGIC_V2_DIST_SIZE <= cpu_base)
return true;
if (cpu_base + KVM_VGIC_V2_CPU_SIZE <= dist_base)
return true;
return false;
}
int vgic_v2_map_resources(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
int ret = 0;
if (vgic_ready(kvm))
goto out;
if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
IS_VGIC_ADDR_UNDEF(dist->vgic_cpu_base)) {
kvm_err("Need to set vgic cpu and dist addresses first\n");
ret = -ENXIO;
goto out;
}
if (!vgic_v2_check_base(dist->vgic_dist_base, dist->vgic_cpu_base)) {
kvm_err("VGIC CPU and dist frames overlap\n");
ret = -EINVAL;
goto out;
}
/*
* Initialize the vgic if this hasn't already been done on demand by
* accessing the vgic state from userspace.
*/
ret = vgic_init(kvm);
if (ret) {
kvm_err("Unable to initialize VGIC dynamic data structures\n");
goto out;
}
ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V2);
if (ret) {
kvm_err("Unable to register VGIC MMIO regions\n");
goto out;
}
if (!static_branch_unlikely(&vgic_v2_cpuif_trap)) {
ret = kvm_phys_addr_ioremap(kvm, dist->vgic_cpu_base,
kvm_vgic_global_state.vcpu_base,
KVM_VGIC_V2_CPU_SIZE, true);
if (ret) {
kvm_err("Unable to remap VGIC CPU to VCPU\n");
goto out;
}
}
dist->ready = true;
out:
return ret;
}
DEFINE_STATIC_KEY_FALSE(vgic_v2_cpuif_trap);
/**
* vgic_v2_probe - probe for a GICv2 compatible interrupt controller in DT
* @node: pointer to the DT node
*
* Returns 0 if a GICv2 has been found, returns an error code otherwise
*/
int vgic_v2_probe(const struct gic_kvm_info *info)
{
int ret;
u32 vtr;
if (!info->vctrl.start) {
kvm_err("GICH not present in the firmware table\n");
return -ENXIO;
}
if (!PAGE_ALIGNED(info->vcpu.start) ||
!PAGE_ALIGNED(resource_size(&info->vcpu))) {
kvm_info("GICV region size/alignment is unsafe, using trapping (reduced performance)\n");
ret = create_hyp_io_mappings(info->vcpu.start,
resource_size(&info->vcpu),
&kvm_vgic_global_state.vcpu_base_va,
&kvm_vgic_global_state.vcpu_hyp_va);
if (ret) {
kvm_err("Cannot map GICV into hyp\n");
goto out;
}
static_branch_enable(&vgic_v2_cpuif_trap);
}
ret = create_hyp_io_mappings(info->vctrl.start,
resource_size(&info->vctrl),
&kvm_vgic_global_state.vctrl_base,
&kvm_vgic_global_state.vctrl_hyp);
if (ret) {
kvm_err("Cannot map VCTRL into hyp\n");
goto out;
}
vtr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VTR);
kvm_vgic_global_state.nr_lr = (vtr & 0x3f) + 1;
ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
if (ret) {
kvm_err("Cannot register GICv2 KVM device\n");
goto out;
}
kvm_vgic_global_state.can_emulate_gicv2 = true;
kvm_vgic_global_state.vcpu_base = info->vcpu.start;
kvm_vgic_global_state.type = VGIC_V2;
kvm_vgic_global_state.max_gic_vcpus = VGIC_V2_MAX_CPUS;
kvm_debug("vgic-v2@%llx\n", info->vctrl.start);
return 0;
out:
if (kvm_vgic_global_state.vctrl_base)
iounmap(kvm_vgic_global_state.vctrl_base);
if (kvm_vgic_global_state.vcpu_base_va)
iounmap(kvm_vgic_global_state.vcpu_base_va);
return ret;
}
static void save_lrs(struct kvm_vcpu *vcpu, void __iomem *base)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
u64 used_lrs = vcpu->arch.vgic_cpu.used_lrs;
u64 elrsr;
int i;
elrsr = readl_relaxed(base + GICH_ELRSR0);
if (unlikely(used_lrs > 32))
elrsr |= ((u64)readl_relaxed(base + GICH_ELRSR1)) << 32;
for (i = 0; i < used_lrs; i++) {
if (elrsr & (1UL << i))
cpu_if->vgic_lr[i] &= ~GICH_LR_STATE;
else
cpu_if->vgic_lr[i] = readl_relaxed(base + GICH_LR0 + (i * 4));
writel_relaxed(0, base + GICH_LR0 + (i * 4));
}
}
void vgic_v2_save_state(struct kvm_vcpu *vcpu)
{
void __iomem *base = kvm_vgic_global_state.vctrl_base;
u64 used_lrs = vcpu->arch.vgic_cpu.used_lrs;
if (!base)
return;
if (used_lrs) {
save_lrs(vcpu, base);
writel_relaxed(0, base + GICH_HCR);
}
}
void vgic_v2_restore_state(struct kvm_vcpu *vcpu)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
void __iomem *base = kvm_vgic_global_state.vctrl_base;
u64 used_lrs = vcpu->arch.vgic_cpu.used_lrs;
int i;
if (!base)
return;
if (used_lrs) {
writel_relaxed(cpu_if->vgic_hcr, base + GICH_HCR);
for (i = 0; i < used_lrs; i++) {
writel_relaxed(cpu_if->vgic_lr[i],
base + GICH_LR0 + (i * 4));
}
}
}
void vgic_v2_load(struct kvm_vcpu *vcpu)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
writel_relaxed(cpu_if->vgic_vmcr,
kvm_vgic_global_state.vctrl_base + GICH_VMCR);
writel_relaxed(cpu_if->vgic_apr,
kvm_vgic_global_state.vctrl_base + GICH_APR);
}
void vgic_v2_vmcr_sync(struct kvm_vcpu *vcpu)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
cpu_if->vgic_vmcr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VMCR);
}
void vgic_v2_put(struct kvm_vcpu *vcpu)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
vgic_v2_vmcr_sync(vcpu);
cpu_if->vgic_apr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_APR);
}