| /* |
| * Copyright(c) 2015-2018 Intel Corporation. |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * BSD LICENSE |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * - Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * - Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| */ |
| #include <asm/page.h> |
| #include <linux/string.h> |
| |
| #include "mmu_rb.h" |
| #include "user_exp_rcv.h" |
| #include "trace.h" |
| |
| static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt, |
| struct exp_tid_set *set, |
| struct hfi1_filedata *fd); |
| static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages); |
| static int set_rcvarray_entry(struct hfi1_filedata *fd, |
| struct tid_user_buf *tbuf, |
| u32 rcventry, struct tid_group *grp, |
| u16 pageidx, unsigned int npages); |
| static int tid_rb_insert(void *arg, struct mmu_rb_node *node); |
| static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata, |
| struct tid_rb_node *tnode); |
| static void tid_rb_remove(void *arg, struct mmu_rb_node *node); |
| static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode); |
| static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *, |
| struct tid_group *grp, |
| unsigned int start, u16 count, |
| u32 *tidlist, unsigned int *tididx, |
| unsigned int *pmapped); |
| static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo, |
| struct tid_group **grp); |
| static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node); |
| |
| static struct mmu_rb_ops tid_rb_ops = { |
| .insert = tid_rb_insert, |
| .remove = tid_rb_remove, |
| .invalidate = tid_rb_invalidate |
| }; |
| |
| /* |
| * Initialize context and file private data needed for Expected |
| * receive caching. This needs to be done after the context has |
| * been configured with the eager/expected RcvEntry counts. |
| */ |
| int hfi1_user_exp_rcv_init(struct hfi1_filedata *fd, |
| struct hfi1_ctxtdata *uctxt) |
| { |
| struct hfi1_devdata *dd = uctxt->dd; |
| int ret = 0; |
| |
| fd->entry_to_rb = kcalloc(uctxt->expected_count, |
| sizeof(struct rb_node *), |
| GFP_KERNEL); |
| if (!fd->entry_to_rb) |
| return -ENOMEM; |
| |
| if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) { |
| fd->invalid_tid_idx = 0; |
| fd->invalid_tids = kcalloc(uctxt->expected_count, |
| sizeof(*fd->invalid_tids), |
| GFP_KERNEL); |
| if (!fd->invalid_tids) { |
| kfree(fd->entry_to_rb); |
| fd->entry_to_rb = NULL; |
| return -ENOMEM; |
| } |
| |
| /* |
| * Register MMU notifier callbacks. If the registration |
| * fails, continue without TID caching for this context. |
| */ |
| ret = hfi1_mmu_rb_register(fd, fd->mm, &tid_rb_ops, |
| dd->pport->hfi1_wq, |
| &fd->handler); |
| if (ret) { |
| dd_dev_info(dd, |
| "Failed MMU notifier registration %d\n", |
| ret); |
| ret = 0; |
| } |
| } |
| |
| /* |
| * PSM does not have a good way to separate, count, and |
| * effectively enforce a limit on RcvArray entries used by |
| * subctxts (when context sharing is used) when TID caching |
| * is enabled. To help with that, we calculate a per-process |
| * RcvArray entry share and enforce that. |
| * If TID caching is not in use, PSM deals with usage on its |
| * own. In that case, we allow any subctxt to take all of the |
| * entries. |
| * |
| * Make sure that we set the tid counts only after successful |
| * init. |
| */ |
| spin_lock(&fd->tid_lock); |
| if (uctxt->subctxt_cnt && fd->handler) { |
| u16 remainder; |
| |
| fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt; |
| remainder = uctxt->expected_count % uctxt->subctxt_cnt; |
| if (remainder && fd->subctxt < remainder) |
| fd->tid_limit++; |
| } else { |
| fd->tid_limit = uctxt->expected_count; |
| } |
| spin_unlock(&fd->tid_lock); |
| |
| return ret; |
| } |
| |
| void hfi1_user_exp_rcv_free(struct hfi1_filedata *fd) |
| { |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| |
| /* |
| * The notifier would have been removed when the process'es mm |
| * was freed. |
| */ |
| if (fd->handler) { |
| hfi1_mmu_rb_unregister(fd->handler); |
| } else { |
| mutex_lock(&uctxt->exp_mutex); |
| if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list)) |
| unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd); |
| if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list)) |
| unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd); |
| mutex_unlock(&uctxt->exp_mutex); |
| } |
| |
| kfree(fd->invalid_tids); |
| fd->invalid_tids = NULL; |
| |
| kfree(fd->entry_to_rb); |
| fd->entry_to_rb = NULL; |
| } |
| |
| /** |
| * Release pinned receive buffer pages. |
| * |
| * @mapped - true if the pages have been DMA mapped. false otherwise. |
| * @idx - Index of the first page to unpin. |
| * @npages - No of pages to unpin. |
| * |
| * If the pages have been DMA mapped (indicated by mapped parameter), their |
| * info will be passed via a struct tid_rb_node. If they haven't been mapped, |
| * their info will be passed via a struct tid_user_buf. |
| */ |
| static void unpin_rcv_pages(struct hfi1_filedata *fd, |
| struct tid_user_buf *tidbuf, |
| struct tid_rb_node *node, |
| unsigned int idx, |
| unsigned int npages, |
| bool mapped) |
| { |
| struct page **pages; |
| struct hfi1_devdata *dd = fd->uctxt->dd; |
| |
| if (mapped) { |
| pci_unmap_single(dd->pcidev, node->dma_addr, |
| node->mmu.len, PCI_DMA_FROMDEVICE); |
| pages = &node->pages[idx]; |
| } else { |
| pages = &tidbuf->pages[idx]; |
| } |
| hfi1_release_user_pages(fd->mm, pages, npages, mapped); |
| fd->tid_n_pinned -= npages; |
| } |
| |
| /** |
| * Pin receive buffer pages. |
| */ |
| static int pin_rcv_pages(struct hfi1_filedata *fd, struct tid_user_buf *tidbuf) |
| { |
| int pinned; |
| unsigned int npages; |
| unsigned long vaddr = tidbuf->vaddr; |
| struct page **pages = NULL; |
| struct hfi1_devdata *dd = fd->uctxt->dd; |
| |
| /* Get the number of pages the user buffer spans */ |
| npages = num_user_pages(vaddr, tidbuf->length); |
| if (!npages) |
| return -EINVAL; |
| |
| if (npages > fd->uctxt->expected_count) { |
| dd_dev_err(dd, "Expected buffer too big\n"); |
| return -EINVAL; |
| } |
| |
| /* Verify that access is OK for the user buffer */ |
| if (!access_ok(VERIFY_WRITE, (void __user *)vaddr, |
| npages * PAGE_SIZE)) { |
| dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n", |
| (void *)vaddr, npages); |
| return -EFAULT; |
| } |
| /* Allocate the array of struct page pointers needed for pinning */ |
| pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL); |
| if (!pages) |
| return -ENOMEM; |
| |
| /* |
| * Pin all the pages of the user buffer. If we can't pin all the |
| * pages, accept the amount pinned so far and program only that. |
| * User space knows how to deal with partially programmed buffers. |
| */ |
| if (!hfi1_can_pin_pages(dd, fd->mm, fd->tid_n_pinned, npages)) { |
| kfree(pages); |
| return -ENOMEM; |
| } |
| |
| pinned = hfi1_acquire_user_pages(fd->mm, vaddr, npages, true, pages); |
| if (pinned <= 0) { |
| kfree(pages); |
| return pinned; |
| } |
| tidbuf->pages = pages; |
| tidbuf->npages = npages; |
| fd->tid_n_pinned += pinned; |
| return pinned; |
| } |
| |
| /* |
| * RcvArray entry allocation for Expected Receives is done by the |
| * following algorithm: |
| * |
| * The context keeps 3 lists of groups of RcvArray entries: |
| * 1. List of empty groups - tid_group_list |
| * This list is created during user context creation and |
| * contains elements which describe sets (of 8) of empty |
| * RcvArray entries. |
| * 2. List of partially used groups - tid_used_list |
| * This list contains sets of RcvArray entries which are |
| * not completely used up. Another mapping request could |
| * use some of all of the remaining entries. |
| * 3. List of full groups - tid_full_list |
| * This is the list where sets that are completely used |
| * up go. |
| * |
| * An attempt to optimize the usage of RcvArray entries is |
| * made by finding all sets of physically contiguous pages in a |
| * user's buffer. |
| * These physically contiguous sets are further split into |
| * sizes supported by the receive engine of the HFI. The |
| * resulting sets of pages are stored in struct tid_pageset, |
| * which describes the sets as: |
| * * .count - number of pages in this set |
| * * .idx - starting index into struct page ** array |
| * of this set |
| * |
| * From this point on, the algorithm deals with the page sets |
| * described above. The number of pagesets is divided by the |
| * RcvArray group size to produce the number of full groups |
| * needed. |
| * |
| * Groups from the 3 lists are manipulated using the following |
| * rules: |
| * 1. For each set of 8 pagesets, a complete group from |
| * tid_group_list is taken, programmed, and moved to |
| * the tid_full_list list. |
| * 2. For all remaining pagesets: |
| * 2.1 If the tid_used_list is empty and the tid_group_list |
| * is empty, stop processing pageset and return only |
| * what has been programmed up to this point. |
| * 2.2 If the tid_used_list is empty and the tid_group_list |
| * is not empty, move a group from tid_group_list to |
| * tid_used_list. |
| * 2.3 For each group is tid_used_group, program as much as |
| * can fit into the group. If the group becomes fully |
| * used, move it to tid_full_list. |
| */ |
| int hfi1_user_exp_rcv_setup(struct hfi1_filedata *fd, |
| struct hfi1_tid_info *tinfo) |
| { |
| int ret = 0, need_group = 0, pinned; |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| struct hfi1_devdata *dd = uctxt->dd; |
| unsigned int ngroups, pageidx = 0, pageset_count, |
| tididx = 0, mapped, mapped_pages = 0; |
| u32 *tidlist = NULL; |
| struct tid_user_buf *tidbuf; |
| |
| if (!PAGE_ALIGNED(tinfo->vaddr)) |
| return -EINVAL; |
| |
| tidbuf = kzalloc(sizeof(*tidbuf), GFP_KERNEL); |
| if (!tidbuf) |
| return -ENOMEM; |
| |
| tidbuf->vaddr = tinfo->vaddr; |
| tidbuf->length = tinfo->length; |
| tidbuf->psets = kcalloc(uctxt->expected_count, sizeof(*tidbuf->psets), |
| GFP_KERNEL); |
| if (!tidbuf->psets) { |
| kfree(tidbuf); |
| return -ENOMEM; |
| } |
| |
| pinned = pin_rcv_pages(fd, tidbuf); |
| if (pinned <= 0) { |
| kfree(tidbuf->psets); |
| kfree(tidbuf); |
| return pinned; |
| } |
| |
| /* Find sets of physically contiguous pages */ |
| tidbuf->n_psets = find_phys_blocks(tidbuf, pinned); |
| |
| /* |
| * We don't need to access this under a lock since tid_used is per |
| * process and the same process cannot be in hfi1_user_exp_rcv_clear() |
| * and hfi1_user_exp_rcv_setup() at the same time. |
| */ |
| spin_lock(&fd->tid_lock); |
| if (fd->tid_used + tidbuf->n_psets > fd->tid_limit) |
| pageset_count = fd->tid_limit - fd->tid_used; |
| else |
| pageset_count = tidbuf->n_psets; |
| spin_unlock(&fd->tid_lock); |
| |
| if (!pageset_count) |
| goto bail; |
| |
| ngroups = pageset_count / dd->rcv_entries.group_size; |
| tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL); |
| if (!tidlist) { |
| ret = -ENOMEM; |
| goto nomem; |
| } |
| |
| tididx = 0; |
| |
| /* |
| * From this point on, we are going to be using shared (between master |
| * and subcontexts) context resources. We need to take the lock. |
| */ |
| mutex_lock(&uctxt->exp_mutex); |
| /* |
| * The first step is to program the RcvArray entries which are complete |
| * groups. |
| */ |
| while (ngroups && uctxt->tid_group_list.count) { |
| struct tid_group *grp = |
| tid_group_pop(&uctxt->tid_group_list); |
| |
| ret = program_rcvarray(fd, tidbuf, grp, |
| pageidx, dd->rcv_entries.group_size, |
| tidlist, &tididx, &mapped); |
| /* |
| * If there was a failure to program the RcvArray |
| * entries for the entire group, reset the grp fields |
| * and add the grp back to the free group list. |
| */ |
| if (ret <= 0) { |
| tid_group_add_tail(grp, &uctxt->tid_group_list); |
| hfi1_cdbg(TID, |
| "Failed to program RcvArray group %d", ret); |
| goto unlock; |
| } |
| |
| tid_group_add_tail(grp, &uctxt->tid_full_list); |
| ngroups--; |
| pageidx += ret; |
| mapped_pages += mapped; |
| } |
| |
| while (pageidx < pageset_count) { |
| struct tid_group *grp, *ptr; |
| /* |
| * If we don't have any partially used tid groups, check |
| * if we have empty groups. If so, take one from there and |
| * put in the partially used list. |
| */ |
| if (!uctxt->tid_used_list.count || need_group) { |
| if (!uctxt->tid_group_list.count) |
| goto unlock; |
| |
| grp = tid_group_pop(&uctxt->tid_group_list); |
| tid_group_add_tail(grp, &uctxt->tid_used_list); |
| need_group = 0; |
| } |
| /* |
| * There is an optimization opportunity here - instead of |
| * fitting as many page sets as we can, check for a group |
| * later on in the list that could fit all of them. |
| */ |
| list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list, |
| list) { |
| unsigned use = min_t(unsigned, pageset_count - pageidx, |
| grp->size - grp->used); |
| |
| ret = program_rcvarray(fd, tidbuf, grp, |
| pageidx, use, tidlist, |
| &tididx, &mapped); |
| if (ret < 0) { |
| hfi1_cdbg(TID, |
| "Failed to program RcvArray entries %d", |
| ret); |
| goto unlock; |
| } else if (ret > 0) { |
| if (grp->used == grp->size) |
| tid_group_move(grp, |
| &uctxt->tid_used_list, |
| &uctxt->tid_full_list); |
| pageidx += ret; |
| mapped_pages += mapped; |
| need_group = 0; |
| /* Check if we are done so we break out early */ |
| if (pageidx >= pageset_count) |
| break; |
| } else if (WARN_ON(ret == 0)) { |
| /* |
| * If ret is 0, we did not program any entries |
| * into this group, which can only happen if |
| * we've screwed up the accounting somewhere. |
| * Warn and try to continue. |
| */ |
| need_group = 1; |
| } |
| } |
| } |
| unlock: |
| mutex_unlock(&uctxt->exp_mutex); |
| nomem: |
| hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx, |
| mapped_pages, ret); |
| if (tididx) { |
| spin_lock(&fd->tid_lock); |
| fd->tid_used += tididx; |
| spin_unlock(&fd->tid_lock); |
| tinfo->tidcnt = tididx; |
| tinfo->length = mapped_pages * PAGE_SIZE; |
| |
| if (copy_to_user(u64_to_user_ptr(tinfo->tidlist), |
| tidlist, sizeof(tidlist[0]) * tididx)) { |
| /* |
| * On failure to copy to the user level, we need to undo |
| * everything done so far so we don't leak resources. |
| */ |
| tinfo->tidlist = (unsigned long)&tidlist; |
| hfi1_user_exp_rcv_clear(fd, tinfo); |
| tinfo->tidlist = 0; |
| ret = -EFAULT; |
| goto bail; |
| } |
| } |
| |
| /* |
| * If not everything was mapped (due to insufficient RcvArray entries, |
| * for example), unpin all unmapped pages so we can pin them nex time. |
| */ |
| if (mapped_pages != pinned) |
| unpin_rcv_pages(fd, tidbuf, NULL, mapped_pages, |
| (pinned - mapped_pages), false); |
| bail: |
| kfree(tidbuf->psets); |
| kfree(tidlist); |
| kfree(tidbuf->pages); |
| kfree(tidbuf); |
| return ret > 0 ? 0 : ret; |
| } |
| |
| int hfi1_user_exp_rcv_clear(struct hfi1_filedata *fd, |
| struct hfi1_tid_info *tinfo) |
| { |
| int ret = 0; |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| u32 *tidinfo; |
| unsigned tididx; |
| |
| if (unlikely(tinfo->tidcnt > fd->tid_used)) |
| return -EINVAL; |
| |
| tidinfo = memdup_user(u64_to_user_ptr(tinfo->tidlist), |
| sizeof(tidinfo[0]) * tinfo->tidcnt); |
| if (IS_ERR(tidinfo)) |
| return PTR_ERR(tidinfo); |
| |
| mutex_lock(&uctxt->exp_mutex); |
| for (tididx = 0; tididx < tinfo->tidcnt; tididx++) { |
| ret = unprogram_rcvarray(fd, tidinfo[tididx], NULL); |
| if (ret) { |
| hfi1_cdbg(TID, "Failed to unprogram rcv array %d", |
| ret); |
| break; |
| } |
| } |
| spin_lock(&fd->tid_lock); |
| fd->tid_used -= tididx; |
| spin_unlock(&fd->tid_lock); |
| tinfo->tidcnt = tididx; |
| mutex_unlock(&uctxt->exp_mutex); |
| |
| kfree(tidinfo); |
| return ret; |
| } |
| |
| int hfi1_user_exp_rcv_invalid(struct hfi1_filedata *fd, |
| struct hfi1_tid_info *tinfo) |
| { |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| unsigned long *ev = uctxt->dd->events + |
| (uctxt_offset(uctxt) + fd->subctxt); |
| u32 *array; |
| int ret = 0; |
| |
| /* |
| * copy_to_user() can sleep, which will leave the invalid_lock |
| * locked and cause the MMU notifier to be blocked on the lock |
| * for a long time. |
| * Copy the data to a local buffer so we can release the lock. |
| */ |
| array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL); |
| if (!array) |
| return -EFAULT; |
| |
| spin_lock(&fd->invalid_lock); |
| if (fd->invalid_tid_idx) { |
| memcpy(array, fd->invalid_tids, sizeof(*array) * |
| fd->invalid_tid_idx); |
| memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) * |
| fd->invalid_tid_idx); |
| tinfo->tidcnt = fd->invalid_tid_idx; |
| fd->invalid_tid_idx = 0; |
| /* |
| * Reset the user flag while still holding the lock. |
| * Otherwise, PSM can miss events. |
| */ |
| clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev); |
| } else { |
| tinfo->tidcnt = 0; |
| } |
| spin_unlock(&fd->invalid_lock); |
| |
| if (tinfo->tidcnt) { |
| if (copy_to_user((void __user *)tinfo->tidlist, |
| array, sizeof(*array) * tinfo->tidcnt)) |
| ret = -EFAULT; |
| } |
| kfree(array); |
| |
| return ret; |
| } |
| |
| static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages) |
| { |
| unsigned pagecount, pageidx, setcount = 0, i; |
| unsigned long pfn, this_pfn; |
| struct page **pages = tidbuf->pages; |
| struct tid_pageset *list = tidbuf->psets; |
| |
| if (!npages) |
| return 0; |
| |
| /* |
| * Look for sets of physically contiguous pages in the user buffer. |
| * This will allow us to optimize Expected RcvArray entry usage by |
| * using the bigger supported sizes. |
| */ |
| pfn = page_to_pfn(pages[0]); |
| for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) { |
| this_pfn = i < npages ? page_to_pfn(pages[i]) : 0; |
| |
| /* |
| * If the pfn's are not sequential, pages are not physically |
| * contiguous. |
| */ |
| if (this_pfn != ++pfn) { |
| /* |
| * At this point we have to loop over the set of |
| * physically contiguous pages and break them down it |
| * sizes supported by the HW. |
| * There are two main constraints: |
| * 1. The max buffer size is MAX_EXPECTED_BUFFER. |
| * If the total set size is bigger than that |
| * program only a MAX_EXPECTED_BUFFER chunk. |
| * 2. The buffer size has to be a power of two. If |
| * it is not, round down to the closes power of |
| * 2 and program that size. |
| */ |
| while (pagecount) { |
| int maxpages = pagecount; |
| u32 bufsize = pagecount * PAGE_SIZE; |
| |
| if (bufsize > MAX_EXPECTED_BUFFER) |
| maxpages = |
| MAX_EXPECTED_BUFFER >> |
| PAGE_SHIFT; |
| else if (!is_power_of_2(bufsize)) |
| maxpages = |
| rounddown_pow_of_two(bufsize) >> |
| PAGE_SHIFT; |
| |
| list[setcount].idx = pageidx; |
| list[setcount].count = maxpages; |
| pagecount -= maxpages; |
| pageidx += maxpages; |
| setcount++; |
| } |
| pageidx = i; |
| pagecount = 1; |
| pfn = this_pfn; |
| } else { |
| pagecount++; |
| } |
| } |
| return setcount; |
| } |
| |
| /** |
| * program_rcvarray() - program an RcvArray group with receive buffers |
| * @fd: filedata pointer |
| * @tbuf: pointer to struct tid_user_buf that has the user buffer starting |
| * virtual address, buffer length, page pointers, pagesets (array of |
| * struct tid_pageset holding information on physically contiguous |
| * chunks from the user buffer), and other fields. |
| * @grp: RcvArray group |
| * @start: starting index into sets array |
| * @count: number of struct tid_pageset's to program |
| * @tidlist: the array of u32 elements when the information about the |
| * programmed RcvArray entries is to be encoded. |
| * @tididx: starting offset into tidlist |
| * @pmapped: (output parameter) number of pages programmed into the RcvArray |
| * entries. |
| * |
| * This function will program up to 'count' number of RcvArray entries from the |
| * group 'grp'. To make best use of write-combining writes, the function will |
| * perform writes to the unused RcvArray entries which will be ignored by the |
| * HW. Each RcvArray entry will be programmed with a physically contiguous |
| * buffer chunk from the user's virtual buffer. |
| * |
| * Return: |
| * -EINVAL if the requested count is larger than the size of the group, |
| * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or |
| * number of RcvArray entries programmed. |
| */ |
| static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *tbuf, |
| struct tid_group *grp, |
| unsigned int start, u16 count, |
| u32 *tidlist, unsigned int *tididx, |
| unsigned int *pmapped) |
| { |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| struct hfi1_devdata *dd = uctxt->dd; |
| u16 idx; |
| u32 tidinfo = 0, rcventry, useidx = 0; |
| int mapped = 0; |
| |
| /* Count should never be larger than the group size */ |
| if (count > grp->size) |
| return -EINVAL; |
| |
| /* Find the first unused entry in the group */ |
| for (idx = 0; idx < grp->size; idx++) { |
| if (!(grp->map & (1 << idx))) { |
| useidx = idx; |
| break; |
| } |
| rcv_array_wc_fill(dd, grp->base + idx); |
| } |
| |
| idx = 0; |
| while (idx < count) { |
| u16 npages, pageidx, setidx = start + idx; |
| int ret = 0; |
| |
| /* |
| * If this entry in the group is used, move to the next one. |
| * If we go past the end of the group, exit the loop. |
| */ |
| if (useidx >= grp->size) { |
| break; |
| } else if (grp->map & (1 << useidx)) { |
| rcv_array_wc_fill(dd, grp->base + useidx); |
| useidx++; |
| continue; |
| } |
| |
| rcventry = grp->base + useidx; |
| npages = tbuf->psets[setidx].count; |
| pageidx = tbuf->psets[setidx].idx; |
| |
| ret = set_rcvarray_entry(fd, tbuf, |
| rcventry, grp, pageidx, |
| npages); |
| if (ret) |
| return ret; |
| mapped += npages; |
| |
| tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) | |
| EXP_TID_SET(LEN, npages); |
| tidlist[(*tididx)++] = tidinfo; |
| grp->used++; |
| grp->map |= 1 << useidx++; |
| idx++; |
| } |
| |
| /* Fill the rest of the group with "blank" writes */ |
| for (; useidx < grp->size; useidx++) |
| rcv_array_wc_fill(dd, grp->base + useidx); |
| *pmapped = mapped; |
| return idx; |
| } |
| |
| static int set_rcvarray_entry(struct hfi1_filedata *fd, |
| struct tid_user_buf *tbuf, |
| u32 rcventry, struct tid_group *grp, |
| u16 pageidx, unsigned int npages) |
| { |
| int ret; |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| struct tid_rb_node *node; |
| struct hfi1_devdata *dd = uctxt->dd; |
| dma_addr_t phys; |
| struct page **pages = tbuf->pages + pageidx; |
| |
| /* |
| * Allocate the node first so we can handle a potential |
| * failure before we've programmed anything. |
| */ |
| node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages), |
| GFP_KERNEL); |
| if (!node) |
| return -ENOMEM; |
| |
| phys = pci_map_single(dd->pcidev, |
| __va(page_to_phys(pages[0])), |
| npages * PAGE_SIZE, PCI_DMA_FROMDEVICE); |
| if (dma_mapping_error(&dd->pcidev->dev, phys)) { |
| dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n", |
| phys); |
| kfree(node); |
| return -EFAULT; |
| } |
| |
| node->mmu.addr = tbuf->vaddr + (pageidx * PAGE_SIZE); |
| node->mmu.len = npages * PAGE_SIZE; |
| node->phys = page_to_phys(pages[0]); |
| node->npages = npages; |
| node->rcventry = rcventry; |
| node->dma_addr = phys; |
| node->grp = grp; |
| node->freed = false; |
| memcpy(node->pages, pages, sizeof(struct page *) * npages); |
| |
| if (!fd->handler) |
| ret = tid_rb_insert(fd, &node->mmu); |
| else |
| ret = hfi1_mmu_rb_insert(fd->handler, &node->mmu); |
| |
| if (ret) { |
| hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d", |
| node->rcventry, node->mmu.addr, node->phys, ret); |
| pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE, |
| PCI_DMA_FROMDEVICE); |
| kfree(node); |
| return -EFAULT; |
| } |
| hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1); |
| trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages, |
| node->mmu.addr, node->phys, phys); |
| return 0; |
| } |
| |
| static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo, |
| struct tid_group **grp) |
| { |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| struct hfi1_devdata *dd = uctxt->dd; |
| struct tid_rb_node *node; |
| u8 tidctrl = EXP_TID_GET(tidinfo, CTRL); |
| u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry; |
| |
| if (tididx >= uctxt->expected_count) { |
| dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n", |
| tididx, uctxt->ctxt); |
| return -EINVAL; |
| } |
| |
| if (tidctrl == 0x3) |
| return -EINVAL; |
| |
| rcventry = tididx + (tidctrl - 1); |
| |
| node = fd->entry_to_rb[rcventry]; |
| if (!node || node->rcventry != (uctxt->expected_base + rcventry)) |
| return -EBADF; |
| |
| if (grp) |
| *grp = node->grp; |
| |
| if (!fd->handler) |
| cacheless_tid_rb_remove(fd, node); |
| else |
| hfi1_mmu_rb_remove(fd->handler, &node->mmu); |
| |
| return 0; |
| } |
| |
| static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node) |
| { |
| struct hfi1_ctxtdata *uctxt = fd->uctxt; |
| struct hfi1_devdata *dd = uctxt->dd; |
| |
| trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry, |
| node->npages, node->mmu.addr, node->phys, |
| node->dma_addr); |
| |
| /* |
| * Make sure device has seen the write before we unpin the |
| * pages. |
| */ |
| hfi1_put_tid(dd, node->rcventry, PT_INVALID_FLUSH, 0, 0); |
| |
| unpin_rcv_pages(fd, NULL, node, 0, node->npages, true); |
| |
| node->grp->used--; |
| node->grp->map &= ~(1 << (node->rcventry - node->grp->base)); |
| |
| if (node->grp->used == node->grp->size - 1) |
| tid_group_move(node->grp, &uctxt->tid_full_list, |
| &uctxt->tid_used_list); |
| else if (!node->grp->used) |
| tid_group_move(node->grp, &uctxt->tid_used_list, |
| &uctxt->tid_group_list); |
| kfree(node); |
| } |
| |
| /* |
| * As a simple helper for hfi1_user_exp_rcv_free, this function deals with |
| * clearing nodes in the non-cached case. |
| */ |
| static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt, |
| struct exp_tid_set *set, |
| struct hfi1_filedata *fd) |
| { |
| struct tid_group *grp, *ptr; |
| int i; |
| |
| list_for_each_entry_safe(grp, ptr, &set->list, list) { |
| list_del_init(&grp->list); |
| |
| for (i = 0; i < grp->size; i++) { |
| if (grp->map & (1 << i)) { |
| u16 rcventry = grp->base + i; |
| struct tid_rb_node *node; |
| |
| node = fd->entry_to_rb[rcventry - |
| uctxt->expected_base]; |
| if (!node || node->rcventry != rcventry) |
| continue; |
| |
| cacheless_tid_rb_remove(fd, node); |
| } |
| } |
| } |
| } |
| |
| /* |
| * Always return 0 from this function. A non-zero return indicates that the |
| * remove operation will be called and that memory should be unpinned. |
| * However, the driver cannot unpin out from under PSM. Instead, retain the |
| * memory (by returning 0) and inform PSM that the memory is going away. PSM |
| * will call back later when it has removed the memory from its list. |
| */ |
| static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode) |
| { |
| struct hfi1_filedata *fdata = arg; |
| struct hfi1_ctxtdata *uctxt = fdata->uctxt; |
| struct tid_rb_node *node = |
| container_of(mnode, struct tid_rb_node, mmu); |
| |
| if (node->freed) |
| return 0; |
| |
| trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->mmu.addr, |
| node->rcventry, node->npages, node->dma_addr); |
| node->freed = true; |
| |
| spin_lock(&fdata->invalid_lock); |
| if (fdata->invalid_tid_idx < uctxt->expected_count) { |
| fdata->invalid_tids[fdata->invalid_tid_idx] = |
| rcventry2tidinfo(node->rcventry - uctxt->expected_base); |
| fdata->invalid_tids[fdata->invalid_tid_idx] |= |
| EXP_TID_SET(LEN, node->npages); |
| if (!fdata->invalid_tid_idx) { |
| unsigned long *ev; |
| |
| /* |
| * hfi1_set_uevent_bits() sets a user event flag |
| * for all processes. Because calling into the |
| * driver to process TID cache invalidations is |
| * expensive and TID cache invalidations are |
| * handled on a per-process basis, we can |
| * optimize this to set the flag only for the |
| * process in question. |
| */ |
| ev = uctxt->dd->events + |
| (uctxt_offset(uctxt) + fdata->subctxt); |
| set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev); |
| } |
| fdata->invalid_tid_idx++; |
| } |
| spin_unlock(&fdata->invalid_lock); |
| return 0; |
| } |
| |
| static int tid_rb_insert(void *arg, struct mmu_rb_node *node) |
| { |
| struct hfi1_filedata *fdata = arg; |
| struct tid_rb_node *tnode = |
| container_of(node, struct tid_rb_node, mmu); |
| u32 base = fdata->uctxt->expected_base; |
| |
| fdata->entry_to_rb[tnode->rcventry - base] = tnode; |
| return 0; |
| } |
| |
| static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata, |
| struct tid_rb_node *tnode) |
| { |
| u32 base = fdata->uctxt->expected_base; |
| |
| fdata->entry_to_rb[tnode->rcventry - base] = NULL; |
| clear_tid_node(fdata, tnode); |
| } |
| |
| static void tid_rb_remove(void *arg, struct mmu_rb_node *node) |
| { |
| struct hfi1_filedata *fdata = arg; |
| struct tid_rb_node *tnode = |
| container_of(node, struct tid_rb_node, mmu); |
| |
| cacheless_tid_rb_remove(fdata, tnode); |
| } |