| /* |
| * Performance counter core code |
| * |
| * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> |
| * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar |
| * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> |
| * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> |
| * |
| * For licensing details see kernel-base/COPYING |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/cpu.h> |
| #include <linux/smp.h> |
| #include <linux/file.h> |
| #include <linux/poll.h> |
| #include <linux/sysfs.h> |
| #include <linux/dcache.h> |
| #include <linux/percpu.h> |
| #include <linux/ptrace.h> |
| #include <linux/vmstat.h> |
| #include <linux/hardirq.h> |
| #include <linux/rculist.h> |
| #include <linux/uaccess.h> |
| #include <linux/syscalls.h> |
| #include <linux/anon_inodes.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/perf_counter.h> |
| |
| #include <asm/irq_regs.h> |
| |
| /* |
| * Each CPU has a list of per CPU counters: |
| */ |
| DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); |
| |
| int perf_max_counters __read_mostly = 1; |
| static int perf_reserved_percpu __read_mostly; |
| static int perf_overcommit __read_mostly = 1; |
| |
| static atomic_t nr_counters __read_mostly; |
| static atomic_t nr_mmap_counters __read_mostly; |
| static atomic_t nr_comm_counters __read_mostly; |
| |
| /* |
| * perf counter paranoia level: |
| * 0 - not paranoid |
| * 1 - disallow cpu counters to unpriv |
| * 2 - disallow kernel profiling to unpriv |
| */ |
| int sysctl_perf_counter_paranoid __read_mostly; |
| |
| static inline bool perf_paranoid_cpu(void) |
| { |
| return sysctl_perf_counter_paranoid > 0; |
| } |
| |
| static inline bool perf_paranoid_kernel(void) |
| { |
| return sysctl_perf_counter_paranoid > 1; |
| } |
| |
| int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */ |
| |
| /* |
| * max perf counter sample rate |
| */ |
| int sysctl_perf_counter_sample_rate __read_mostly = 100000; |
| |
| static atomic64_t perf_counter_id; |
| |
| /* |
| * Lock for (sysadmin-configurable) counter reservations: |
| */ |
| static DEFINE_SPINLOCK(perf_resource_lock); |
| |
| /* |
| * Architecture provided APIs - weak aliases: |
| */ |
| extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter) |
| { |
| return NULL; |
| } |
| |
| void __weak hw_perf_disable(void) { barrier(); } |
| void __weak hw_perf_enable(void) { barrier(); } |
| |
| void __weak hw_perf_counter_setup(int cpu) { barrier(); } |
| |
| int __weak |
| hw_perf_group_sched_in(struct perf_counter *group_leader, |
| struct perf_cpu_context *cpuctx, |
| struct perf_counter_context *ctx, int cpu) |
| { |
| return 0; |
| } |
| |
| void __weak perf_counter_print_debug(void) { } |
| |
| static DEFINE_PER_CPU(int, disable_count); |
| |
| void __perf_disable(void) |
| { |
| __get_cpu_var(disable_count)++; |
| } |
| |
| bool __perf_enable(void) |
| { |
| return !--__get_cpu_var(disable_count); |
| } |
| |
| void perf_disable(void) |
| { |
| __perf_disable(); |
| hw_perf_disable(); |
| } |
| |
| void perf_enable(void) |
| { |
| if (__perf_enable()) |
| hw_perf_enable(); |
| } |
| |
| static void get_ctx(struct perf_counter_context *ctx) |
| { |
| WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); |
| } |
| |
| static void free_ctx(struct rcu_head *head) |
| { |
| struct perf_counter_context *ctx; |
| |
| ctx = container_of(head, struct perf_counter_context, rcu_head); |
| kfree(ctx); |
| } |
| |
| static void put_ctx(struct perf_counter_context *ctx) |
| { |
| if (atomic_dec_and_test(&ctx->refcount)) { |
| if (ctx->parent_ctx) |
| put_ctx(ctx->parent_ctx); |
| if (ctx->task) |
| put_task_struct(ctx->task); |
| call_rcu(&ctx->rcu_head, free_ctx); |
| } |
| } |
| |
| /* |
| * Get the perf_counter_context for a task and lock it. |
| * This has to cope with with the fact that until it is locked, |
| * the context could get moved to another task. |
| */ |
| static struct perf_counter_context * |
| perf_lock_task_context(struct task_struct *task, unsigned long *flags) |
| { |
| struct perf_counter_context *ctx; |
| |
| rcu_read_lock(); |
| retry: |
| ctx = rcu_dereference(task->perf_counter_ctxp); |
| if (ctx) { |
| /* |
| * If this context is a clone of another, it might |
| * get swapped for another underneath us by |
| * perf_counter_task_sched_out, though the |
| * rcu_read_lock() protects us from any context |
| * getting freed. Lock the context and check if it |
| * got swapped before we could get the lock, and retry |
| * if so. If we locked the right context, then it |
| * can't get swapped on us any more. |
| */ |
| spin_lock_irqsave(&ctx->lock, *flags); |
| if (ctx != rcu_dereference(task->perf_counter_ctxp)) { |
| spin_unlock_irqrestore(&ctx->lock, *flags); |
| goto retry; |
| } |
| |
| if (!atomic_inc_not_zero(&ctx->refcount)) { |
| spin_unlock_irqrestore(&ctx->lock, *flags); |
| ctx = NULL; |
| } |
| } |
| rcu_read_unlock(); |
| return ctx; |
| } |
| |
| /* |
| * Get the context for a task and increment its pin_count so it |
| * can't get swapped to another task. This also increments its |
| * reference count so that the context can't get freed. |
| */ |
| static struct perf_counter_context *perf_pin_task_context(struct task_struct *task) |
| { |
| struct perf_counter_context *ctx; |
| unsigned long flags; |
| |
| ctx = perf_lock_task_context(task, &flags); |
| if (ctx) { |
| ++ctx->pin_count; |
| spin_unlock_irqrestore(&ctx->lock, flags); |
| } |
| return ctx; |
| } |
| |
| static void perf_unpin_context(struct perf_counter_context *ctx) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ctx->lock, flags); |
| --ctx->pin_count; |
| spin_unlock_irqrestore(&ctx->lock, flags); |
| put_ctx(ctx); |
| } |
| |
| /* |
| * Add a counter from the lists for its context. |
| * Must be called with ctx->mutex and ctx->lock held. |
| */ |
| static void |
| list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx) |
| { |
| struct perf_counter *group_leader = counter->group_leader; |
| |
| /* |
| * Depending on whether it is a standalone or sibling counter, |
| * add it straight to the context's counter list, or to the group |
| * leader's sibling list: |
| */ |
| if (group_leader == counter) |
| list_add_tail(&counter->list_entry, &ctx->counter_list); |
| else { |
| list_add_tail(&counter->list_entry, &group_leader->sibling_list); |
| group_leader->nr_siblings++; |
| } |
| |
| list_add_rcu(&counter->event_entry, &ctx->event_list); |
| ctx->nr_counters++; |
| } |
| |
| /* |
| * Remove a counter from the lists for its context. |
| * Must be called with ctx->mutex and ctx->lock held. |
| */ |
| static void |
| list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx) |
| { |
| struct perf_counter *sibling, *tmp; |
| |
| if (list_empty(&counter->list_entry)) |
| return; |
| ctx->nr_counters--; |
| |
| list_del_init(&counter->list_entry); |
| list_del_rcu(&counter->event_entry); |
| |
| if (counter->group_leader != counter) |
| counter->group_leader->nr_siblings--; |
| |
| /* |
| * If this was a group counter with sibling counters then |
| * upgrade the siblings to singleton counters by adding them |
| * to the context list directly: |
| */ |
| list_for_each_entry_safe(sibling, tmp, |
| &counter->sibling_list, list_entry) { |
| |
| list_move_tail(&sibling->list_entry, &ctx->counter_list); |
| sibling->group_leader = sibling; |
| } |
| } |
| |
| static void |
| counter_sched_out(struct perf_counter *counter, |
| struct perf_cpu_context *cpuctx, |
| struct perf_counter_context *ctx) |
| { |
| if (counter->state != PERF_COUNTER_STATE_ACTIVE) |
| return; |
| |
| counter->state = PERF_COUNTER_STATE_INACTIVE; |
| counter->tstamp_stopped = ctx->time; |
| counter->pmu->disable(counter); |
| counter->oncpu = -1; |
| |
| if (!is_software_counter(counter)) |
| cpuctx->active_oncpu--; |
| ctx->nr_active--; |
| if (counter->attr.exclusive || !cpuctx->active_oncpu) |
| cpuctx->exclusive = 0; |
| } |
| |
| static void |
| group_sched_out(struct perf_counter *group_counter, |
| struct perf_cpu_context *cpuctx, |
| struct perf_counter_context *ctx) |
| { |
| struct perf_counter *counter; |
| |
| if (group_counter->state != PERF_COUNTER_STATE_ACTIVE) |
| return; |
| |
| counter_sched_out(group_counter, cpuctx, ctx); |
| |
| /* |
| * Schedule out siblings (if any): |
| */ |
| list_for_each_entry(counter, &group_counter->sibling_list, list_entry) |
| counter_sched_out(counter, cpuctx, ctx); |
| |
| if (group_counter->attr.exclusive) |
| cpuctx->exclusive = 0; |
| } |
| |
| /* |
| * Cross CPU call to remove a performance counter |
| * |
| * We disable the counter on the hardware level first. After that we |
| * remove it from the context list. |
| */ |
| static void __perf_counter_remove_from_context(void *info) |
| { |
| struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
| struct perf_counter *counter = info; |
| struct perf_counter_context *ctx = counter->ctx; |
| |
| /* |
| * If this is a task context, we need to check whether it is |
| * the current task context of this cpu. If not it has been |
| * scheduled out before the smp call arrived. |
| */ |
| if (ctx->task && cpuctx->task_ctx != ctx) |
| return; |
| |
| spin_lock(&ctx->lock); |
| /* |
| * Protect the list operation against NMI by disabling the |
| * counters on a global level. |
| */ |
| perf_disable(); |
| |
| counter_sched_out(counter, cpuctx, ctx); |
| |
| list_del_counter(counter, ctx); |
| |
| if (!ctx->task) { |
| /* |
| * Allow more per task counters with respect to the |
| * reservation: |
| */ |
| cpuctx->max_pertask = |
| min(perf_max_counters - ctx->nr_counters, |
| perf_max_counters - perf_reserved_percpu); |
| } |
| |
| perf_enable(); |
| spin_unlock(&ctx->lock); |
| } |
| |
| |
| /* |
| * Remove the counter from a task's (or a CPU's) list of counters. |
| * |
| * Must be called with ctx->mutex held. |
| * |
| * CPU counters are removed with a smp call. For task counters we only |
| * call when the task is on a CPU. |
| * |
| * If counter->ctx is a cloned context, callers must make sure that |
| * every task struct that counter->ctx->task could possibly point to |
| * remains valid. This is OK when called from perf_release since |
| * that only calls us on the top-level context, which can't be a clone. |
| * When called from perf_counter_exit_task, it's OK because the |
| * context has been detached from its task. |
| */ |
| static void perf_counter_remove_from_context(struct perf_counter *counter) |
| { |
| struct perf_counter_context *ctx = counter->ctx; |
| struct task_struct *task = ctx->task; |
| |
| if (!task) { |
| /* |
| * Per cpu counters are removed via an smp call and |
| * the removal is always sucessful. |
| */ |
| smp_call_function_single(counter->cpu, |
| __perf_counter_remove_from_context, |
| counter, 1); |
| return; |
| } |
| |
| retry: |
| task_oncpu_function_call(task, __perf_counter_remove_from_context, |
| counter); |
| |
| spin_lock_irq(&ctx->lock); |
| /* |
| * If the context is active we need to retry the smp call. |
| */ |
| if (ctx->nr_active && !list_empty(&counter->list_entry)) { |
| spin_unlock_irq(&ctx->lock); |
| goto retry; |
| } |
| |
| /* |
| * The lock prevents that this context is scheduled in so we |
| * can remove the counter safely, if the call above did not |
| * succeed. |
| */ |
| if (!list_empty(&counter->list_entry)) { |
| list_del_counter(counter, ctx); |
| } |
| spin_unlock_irq(&ctx->lock); |
| } |
| |
| static inline u64 perf_clock(void) |
| { |
| return cpu_clock(smp_processor_id()); |
| } |
| |
| /* |
| * Update the record of the current time in a context. |
| */ |
| static void update_context_time(struct perf_counter_context *ctx) |
| { |
| u64 now = perf_clock(); |
| |
| ctx->time += now - ctx->timestamp; |
| ctx->timestamp = now; |
| } |
| |
| /* |
| * Update the total_time_enabled and total_time_running fields for a counter. |
| */ |
| static void update_counter_times(struct perf_counter *counter) |
| { |
| struct perf_counter_context *ctx = counter->ctx; |
| u64 run_end; |
| |
| if (counter->state < PERF_COUNTER_STATE_INACTIVE) |
| return; |
| |
| counter->total_time_enabled = ctx->time - counter->tstamp_enabled; |
| |
| if (counter->state == PERF_COUNTER_STATE_INACTIVE) |
| run_end = counter->tstamp_stopped; |
| else |
| run_end = ctx->time; |
| |
| counter->total_time_running = run_end - counter->tstamp_running; |
| } |
| |
| /* |
| * Update total_time_enabled and total_time_running for all counters in a group. |
| */ |
| static void update_group_times(struct perf_counter *leader) |
| { |
| struct perf_counter *counter; |
| |
| update_counter_times(leader); |
| list_for_each_entry(counter, &leader->sibling_list, list_entry) |
| update_counter_times(counter); |
| } |
| |
| /* |
| * Cross CPU call to disable a performance counter |
| */ |
| static void __perf_counter_disable(void *info) |
| { |
| struct perf_counter *counter = info; |
| struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
| struct perf_counter_context *ctx = counter->ctx; |
| |
| /* |
| * If this is a per-task counter, need to check whether this |
| * counter's task is the current task on this cpu. |
| */ |
| if (ctx->task && cpuctx->task_ctx != ctx) |
| return; |
| |
| spin_lock(&ctx->lock); |
| |
| /* |
| * If the counter is on, turn it off. |
| * If it is in error state, leave it in error state. |
| */ |
| if (counter->state >= PERF_COUNTER_STATE_INACTIVE) { |
| update_context_time(ctx); |
| update_counter_times(counter); |
| if (counter == counter->group_leader) |
| group_sched_out(counter, cpuctx, ctx); |
| else |
| counter_sched_out(counter, cpuctx, ctx); |
| counter->state = PERF_COUNTER_STATE_OFF; |
| } |
| |
| spin_unlock(&ctx->lock); |
| } |
| |
| /* |
| * Disable a counter. |
| * |
| * If counter->ctx is a cloned context, callers must make sure that |
| * every task struct that counter->ctx->task could possibly point to |
| * remains valid. This condition is satisifed when called through |
| * perf_counter_for_each_child or perf_counter_for_each because they |
| * hold the top-level counter's child_mutex, so any descendant that |
| * goes to exit will block in sync_child_counter. |
| * When called from perf_pending_counter it's OK because counter->ctx |
| * is the current context on this CPU and preemption is disabled, |
| * hence we can't get into perf_counter_task_sched_out for this context. |
| */ |
| static void perf_counter_disable(struct perf_counter *counter) |
| { |
| struct perf_counter_context *ctx = counter->ctx; |
| struct task_struct *task = ctx->task; |
| |
| if (!task) { |
| /* |
| * Disable the counter on the cpu that it's on |
| */ |
| smp_call_function_single(counter->cpu, __perf_counter_disable, |
| counter, 1); |
| return; |
| } |
| |
| retry: |
| task_oncpu_function_call(task, __perf_counter_disable, counter); |
| |
| spin_lock_irq(&ctx->lock); |
| /* |
| * If the counter is still active, we need to retry the cross-call. |
| */ |
| if (counter->state == PERF_COUNTER_STATE_ACTIVE) { |
| spin_unlock_irq(&ctx->lock); |
| goto retry; |
| } |
| |
| /* |
| * Since we have the lock this context can't be scheduled |
| * in, so we can change the state safely. |
| */ |
| if (counter->state == PERF_COUNTER_STATE_INACTIVE) { |
| update_counter_times(counter); |
| counter->state = PERF_COUNTER_STATE_OFF; |
| } |
| |
| spin_unlock_irq(&ctx->lock); |
| } |
| |
| static int |
| counter_sched_in(struct perf_counter *counter, |
| struct perf_cpu_context *cpuctx, |
| struct perf_counter_context *ctx, |
| int cpu) |
| { |
| if (counter->state <= PERF_COUNTER_STATE_OFF) |
| return 0; |
| |
| counter->state = PERF_COUNTER_STATE_ACTIVE; |
| counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ |
| /* |
| * The new state must be visible before we turn it on in the hardware: |
| */ |
| smp_wmb(); |
| |
| if (counter->pmu->enable(counter)) { |
| counter->state = PERF_COUNTER_STATE_INACTIVE; |
| counter->oncpu = -1; |
| return -EAGAIN; |
| } |
| |
| counter->tstamp_running += ctx->time - counter->tstamp_stopped; |
| |
| if (!is_software_counter(counter)) |
| cpuctx->active_oncpu++; |
| ctx->nr_active++; |
| |
| if (counter->attr.exclusive) |
| cpuctx->exclusive = 1; |
| |
| return 0; |
| } |
| |
| static int |
| group_sched_in(struct perf_counter *group_counter, |
| struct perf_cpu_context *cpuctx, |
| struct perf_counter_context *ctx, |
| int cpu) |
| { |
| struct perf_counter *counter, *partial_group; |
| int ret; |
| |
| if (group_counter->state == PERF_COUNTER_STATE_OFF) |
| return 0; |
| |
| ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu); |
| if (ret) |
| return ret < 0 ? ret : 0; |
| |
| if (counter_sched_in(group_counter, cpuctx, ctx, cpu)) |
| return -EAGAIN; |
| |
| /* |
| * Schedule in siblings as one group (if any): |
| */ |
| list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { |
| if (counter_sched_in(counter, cpuctx, ctx, cpu)) { |
| partial_group = counter; |
| goto group_error; |
| } |
| } |
| |
| return 0; |
| |
| group_error: |
| /* |
| * Groups can be scheduled in as one unit only, so undo any |
| * partial group before returning: |
| */ |
| list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { |
| if (counter == partial_group) |
| break; |
| counter_sched_out(counter, cpuctx, ctx); |
| } |
| counter_sched_out(group_counter, cpuctx, ctx); |
| |
| return -EAGAIN; |
| } |
| |
| /* |
| * Return 1 for a group consisting entirely of software counters, |
| * 0 if the group contains any hardware counters. |
| */ |
| static int is_software_only_group(struct perf_counter *leader) |
| { |
| struct perf_counter *counter; |
| |
| if (!is_software_counter(leader)) |
| return 0; |
| |
| list_for_each_entry(counter, &leader->sibling_list, list_entry) |
| if (!is_software_counter(counter)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* |
| * Work out whether we can put this counter group on the CPU now. |
| */ |
| static int group_can_go_on(struct perf_counter *counter, |
| struct perf_cpu_context *cpuctx, |
| int can_add_hw) |
| { |
| /* |
| * Groups consisting entirely of software counters can always go on. |
| */ |
| if (is_software_only_group(counter)) |
| return 1; |
| /* |
| * If an exclusive group is already on, no other hardware |
| * counters can go on. |
| */ |
| if (cpuctx->exclusive) |
| return 0; |
| /* |
| * If this group is exclusive and there are already |
| * counters on the CPU, it can't go on. |
| */ |
| if (counter->attr.exclusive && cpuctx->active_oncpu) |
| return 0; |
| /* |
| * Otherwise, try to add it if all previous groups were able |
| * to go on. |
| */ |
| return can_add_hw; |
| } |
| |
| static void add_counter_to_ctx(struct perf_counter *counter, |
| struct perf_counter_context *ctx) |
| { |
| list_add_counter(counter, ctx); |
| counter->tstamp_enabled = ctx->time; |
| counter->tstamp_running = ctx->time; |
| counter->tstamp_stopped = ctx->time; |
| } |
| |
| /* |
| * Cross CPU call to install and enable a performance counter |
| * |
| * Must be called with ctx->mutex held |
| */ |
| static void __perf_install_in_context(void *info) |
| { |
| struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
| struct perf_counter *counter = info; |
| struct perf_counter_context *ctx = counter->ctx; |
| struct perf_counter *leader = counter->group_leader; |
| int cpu = smp_processor_id(); |
| int err; |
| |
| /* |
| * If this is a task context, we need to check whether it is |
| * the current task context of this cpu. If not it has been |
| * scheduled out before the smp call arrived. |
| * Or possibly this is the right context but it isn't |
| * on this cpu because it had no counters. |
| */ |
| if (ctx->task && cpuctx->task_ctx != ctx) { |
| if (cpuctx->task_ctx || ctx->task != current) |
| return; |
| cpuctx->task_ctx = ctx; |
| } |
| |
| spin_lock(&ctx->lock); |
| ctx->is_active = 1; |
| update_context_time(ctx); |
| |
| /* |
| * Protect the list operation against NMI by disabling the |
| * counters on a global level. NOP for non NMI based counters. |
| */ |
| perf_disable(); |
| |
| add_counter_to_ctx(counter, ctx); |
| |
| /* |
| * Don't put the counter on if it is disabled or if |
| * it is in a group and the group isn't on. |
| */ |
| if (counter->state != PERF_COUNTER_STATE_INACTIVE || |
| (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)) |
| goto unlock; |
| |
| /* |
| * An exclusive counter can't go on if there are already active |
| * hardware counters, and no hardware counter can go on if there |
| * is already an exclusive counter on. |
| */ |
| if (!group_can_go_on(counter, cpuctx, 1)) |
| err = -EEXIST; |
| else |
| err = counter_sched_in(counter, cpuctx, ctx, cpu); |
| |
| if (err) { |
| /* |
| * This counter couldn't go on. If it is in a group |
| * then we have to pull the whole group off. |
| * If the counter group is pinned then put it in error state. |
| */ |
| if (leader != counter) |
| group_sched_out(leader, cpuctx, ctx); |
| if (leader->attr.pinned) { |
| update_group_times(leader); |
| leader->state = PERF_COUNTER_STATE_ERROR; |
| } |
| } |
| |
| if (!err && !ctx->task && cpuctx->max_pertask) |
| cpuctx->max_pertask--; |
| |
| unlock: |
| perf_enable(); |
| |
| spin_unlock(&ctx->lock); |
| } |
| |
| /* |
| * Attach a performance counter to a context |
| * |
| * First we add the counter to the list with the hardware enable bit |
| * in counter->hw_config cleared. |
| * |
| * If the counter is attached to a task which is on a CPU we use a smp |
| * call to enable it in the task context. The task might have been |
| * scheduled away, but we check this in the smp call again. |
| * |
| * Must be called with ctx->mutex held. |
| */ |
| static void |
| perf_install_in_context(struct perf_counter_context *ctx, |
| struct perf_counter *counter, |
| int cpu) |
| { |
| struct task_struct *task = ctx->task; |
| |
| if (!task) { |
| /* |
| * Per cpu counters are installed via an smp call and |
| * the install is always sucessful. |
| */ |
| smp_call_function_single(cpu, __perf_install_in_context, |
| counter, 1); |
| return; |
| } |
| |
| retry: |
| task_oncpu_function_call(task, __perf_install_in_context, |
| counter); |
| |
| spin_lock_irq(&ctx->lock); |
| /* |
| * we need to retry the smp call. |
| */ |
| if (ctx->is_active && list_empty(&counter->list_entry)) { |
| spin_unlock_irq(&ctx->lock); |
| goto retry; |
| } |
| |
| /* |
| * The lock prevents that this context is scheduled in so we |
| * can add the counter safely, if it the call above did not |
| * succeed. |
| */ |
| if (list_empty(&counter->list_entry)) |
| add_counter_to_ctx(counter, ctx); |
| spin_unlock_irq(&ctx->lock); |
| } |
| |
| /* |
| * Cross CPU call to enable a performance counter |
| */ |
| static void __perf_counter_enable(void *info) |
| { |
| struct perf_counter *counter = info; |
| struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
| struct perf_counter_context *ctx = counter->ctx; |
| struct perf_counter *leader = counter->group_leader; |
| int err; |
| |
| /* |
| * If this is a per-task counter, need to check whether this |
| * counter's task is the current task on this cpu. |
| */ |
| if (ctx->task && cpuctx->task_ctx != ctx) { |
| if (cpuctx->task_ctx || ctx->task != current) |
| return; |
| cpuctx->task_ctx = ctx; |
| } |
| |
| spin_lock(&ctx->lock); |
| ctx->is_active = 1; |
| update_context_time(ctx); |
| |
| if (counter->state >= PERF_COUNTER_STATE_INACTIVE) |
| goto unlock; |
| counter->state = PERF_COUNTER_STATE_INACTIVE; |
| counter->tstamp_enabled = ctx->time - counter->total_time_enabled; |
| |
| /* |
| * If the counter is in a group and isn't the group leader, |
| * then don't put it on unless the group is on. |
| */ |
| if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE) |
| goto unlock; |
| |
| if (!group_can_go_on(counter, cpuctx, 1)) { |
| err = -EEXIST; |
| } else { |
| perf_disable(); |
| if (counter == leader) |
| err = group_sched_in(counter, cpuctx, ctx, |
| smp_processor_id()); |
| else |
| err = counter_sched_in(counter, cpuctx, ctx, |
| smp_processor_id()); |
| perf_enable(); |
| } |
| |
| if (err) { |
| /* |
| * If this counter can't go on and it's part of a |
| * group, then the whole group has to come off. |
| */ |
| if (leader != counter) |
| group_sched_out(leader, cpuctx, ctx); |
| if (leader->attr.pinned) { |
| update_group_times(leader); |
| leader->state = PERF_COUNTER_STATE_ERROR; |
| } |
| } |
| |
| unlock: |
| spin_unlock(&ctx->lock); |
| } |
| |
| /* |
| * Enable a counter. |
| * |
| * If counter->ctx is a cloned context, callers must make sure that |
| * every task struct that counter->ctx->task could possibly point to |
| * remains valid. This condition is satisfied when called through |
| * perf_counter_for_each_child or perf_counter_for_each as described |
| * for perf_counter_disable. |
| */ |
| static void perf_counter_enable(struct perf_counter *counter) |
| { |
| struct perf_counter_context *ctx = counter->ctx; |
| struct task_struct *task = ctx->task; |
| |
| if (!task) { |
| /* |
| * Enable the counter on the cpu that it's on |
| */ |
| smp_call_function_single(counter->cpu, __perf_counter_enable, |
| counter, 1); |
| return; |
| } |
| |
| spin_lock_irq(&ctx->lock); |
| if (counter->state >= PERF_COUNTER_STATE_INACTIVE) |
| goto out; |
| |
| /* |
| * If the counter is in error state, clear that first. |
| * That way, if we see the counter in error state below, we |
| * know that it has gone back into error state, as distinct |
| * from the task having been scheduled away before the |
| * cross-call arrived. |
| */ |
| if (counter->state == PERF_COUNTER_STATE_ERROR) |
| counter->state = PERF_COUNTER_STATE_OFF; |
| |
| retry: |
| spin_unlock_irq(&ctx->lock); |
| task_oncpu_function_call(task, __perf_counter_enable, counter); |
| |
| spin_lock_irq(&ctx->lock); |
| |
| /* |
| * If the context is active and the counter is still off, |
| * we need to retry the cross-call. |
| */ |
| if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF) |
| goto retry; |
| |
| /* |
| * Since we have the lock this context can't be scheduled |
| * in, so we can change the state safely. |
| */ |
| if (counter->state == PERF_COUNTER_STATE_OFF) { |
| counter->state = PERF_COUNTER_STATE_INACTIVE; |
| counter->tstamp_enabled = |
| ctx->time - counter->total_time_enabled; |
| } |
| out: |
| spin_unlock_irq(&ctx->lock); |
| } |
| |
| static int perf_counter_refresh(struct perf_counter *counter, int refresh) |
| { |
| /* |
| * not supported on inherited counters |
| */ |
| if (counter->attr.inherit) |
| return -EINVAL; |
| |
| atomic_add(refresh, &counter->event_limit); |
| perf_counter_enable(counter); |
| |
| return 0; |
| } |
| |
| void __perf_counter_sched_out(struct perf_counter_context *ctx, |
| struct perf_cpu_context *cpuctx) |
| { |
| struct perf_counter *counter; |
| |
| spin_lock(&ctx->lock); |
| ctx->is_active = 0; |
| if (likely(!ctx->nr_counters)) |
| goto out; |
| update_context_time(ctx); |
| |
| perf_disable(); |
| if (ctx->nr_active) { |
| list_for_each_entry(counter, &ctx->counter_list, list_entry) { |
| if (counter != counter->group_leader) |
| counter_sched_out(counter, cpuctx, ctx); |
| else |
| group_sched_out(counter, cpuctx, ctx); |
| } |
| } |
| perf_enable(); |
| out: |
| spin_unlock(&ctx->lock); |
| } |
| |
| /* |
| * Test whether two contexts are equivalent, i.e. whether they |
| * have both been cloned from the same version of the same context |
| * and they both have the same number of enabled counters. |
| * If the number of enabled counters is the same, then the set |
| * of enabled counters should be the same, because these are both |
| * inherited contexts, therefore we can't access individual counters |
| * in them directly with an fd; we can only enable/disable all |
| * counters via prctl, or enable/disable all counters in a family |
| * via ioctl, which will have the same effect on both contexts. |
| */ |
| static int context_equiv(struct perf_counter_context *ctx1, |
| struct perf_counter_context *ctx2) |
| { |
| return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx |
| && ctx1->parent_gen == ctx2->parent_gen |
| && !ctx1->pin_count && !ctx2->pin_count; |
| } |
| |
| /* |
| * Called from scheduler to remove the counters of the current task, |
| * with interrupts disabled. |
| * |
| * We stop each counter and update the counter value in counter->count. |
| * |
| * This does not protect us against NMI, but disable() |
| * sets the disabled bit in the control field of counter _before_ |
| * accessing the counter control register. If a NMI hits, then it will |
| * not restart the counter. |
| */ |
| void perf_counter_task_sched_out(struct task_struct *task, |
| struct task_struct *next, int cpu) |
| { |
| struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); |
| struct perf_counter_context *ctx = task->perf_counter_ctxp; |
| struct perf_counter_context *next_ctx; |
| struct perf_counter_context *parent; |
| struct pt_regs *regs; |
| int do_switch = 1; |
| |
| regs = task_pt_regs(task); |
| perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); |
| |
| if (likely(!ctx || !cpuctx->task_ctx)) |
| return; |
| |
| update_context_time(ctx); |
| |
| rcu_read_lock(); |
| parent = rcu_dereference(ctx->parent_ctx); |
| next_ctx = next->perf_counter_ctxp; |
| if (parent && next_ctx && |
| rcu_dereference(next_ctx->parent_ctx) == parent) { |
| /* |
| * Looks like the two contexts are clones, so we might be |
| * able to optimize the context switch. We lock both |
| * contexts and check that they are clones under the |
| * lock (including re-checking that neither has been |
| * uncloned in the meantime). It doesn't matter which |
| * order we take the locks because no other cpu could |
| * be trying to lock both of these tasks. |
| */ |
| spin_lock(&ctx->lock); |
| spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); |
| if (context_equiv(ctx, next_ctx)) { |
| /* |
| * XXX do we need a memory barrier of sorts |
| * wrt to rcu_dereference() of perf_counter_ctxp |
| */ |
| task->perf_counter_ctxp = next_ctx; |
| next->perf_counter_ctxp = ctx; |
| ctx->task = next; |
| next_ctx->task = task; |
| do_switch = 0; |
| } |
| spin_unlock(&next_ctx->lock); |
| spin_unlock(&ctx->lock); |
| } |
| rcu_read_unlock(); |
| |
| if (do_switch) { |
| __perf_counter_sched_out(ctx, cpuctx); |
| cpuctx->task_ctx = NULL; |
| } |
| } |
| |
| /* |
| * Called with IRQs disabled |
| */ |
| static void __perf_counter_task_sched_out(struct perf_counter_context *ctx) |
| { |
| struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
| |
| if (!cpuctx->task_ctx) |
| return; |
| |
| if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) |
| return; |
| |
| __perf_counter_sched_out(ctx, cpuctx); |
| cpuctx->task_ctx = NULL; |
| } |
| |
| /* |
| * Called with IRQs disabled |
| */ |
| static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx) |
| { |
| __perf_counter_sched_out(&cpuctx->ctx, cpuctx); |
| } |
| |
| static void |
| __perf_counter_sched_in(struct perf_counter_context *ctx, |
| struct perf_cpu_context *cpuctx, int cpu) |
| { |
| struct perf_counter *counter; |
| int can_add_hw = 1; |
| |
| spin_lock(&ctx->lock); |
| ctx->is_active = 1; |
| if (likely(!ctx->nr_counters)) |
| goto out; |
| |
| ctx->timestamp = perf_clock(); |
| |
| perf_disable(); |
| |
| /* |
| * First go through the list and put on any pinned groups |
| * in order to give them the best chance of going on. |
| */ |
| list_for_each_entry(counter, &ctx->counter_list, list_entry) { |
| if (counter->state <= PERF_COUNTER_STATE_OFF || |
| !counter->attr.pinned) |
| continue; |
| if (counter->cpu != -1 && counter->cpu != cpu) |
| continue; |
| |
| if (counter != counter->group_leader) |
| counter_sched_in(counter, cpuctx, ctx, cpu); |
| else { |
| if (group_can_go_on(counter, cpuctx, 1)) |
| group_sched_in(counter, cpuctx, ctx, cpu); |
| } |
| |
| /* |
| * If this pinned group hasn't been scheduled, |
| * put it in error state. |
| */ |
| if (counter->state == PERF_COUNTER_STATE_INACTIVE) { |
| update_group_times(counter); |
| counter->state = PERF_COUNTER_STATE_ERROR; |
| } |
| } |
| |
| list_for_each_entry(counter, &ctx->counter_list, list_entry) { |
| /* |
| * Ignore counters in OFF or ERROR state, and |
| * ignore pinned counters since we did them already. |
| */ |
| if (counter->state <= PERF_COUNTER_STATE_OFF || |
| counter->attr.pinned) |
| continue; |
| |
| /* |
| * Listen to the 'cpu' scheduling filter constraint |
| * of counters: |
| */ |
| if (counter->cpu != -1 && counter->cpu != cpu) |
| continue; |
| |
| if (counter != counter->group_leader) { |
| if (counter_sched_in(counter, cpuctx, ctx, cpu)) |
| can_add_hw = 0; |
| } else { |
| if (group_can_go_on(counter, cpuctx, can_add_hw)) { |
| if (group_sched_in(counter, cpuctx, ctx, cpu)) |
| can_add_hw = 0; |
| } |
| } |
| } |
| perf_enable(); |
| out: |
| spin_unlock(&ctx->lock); |
| } |
| |
| /* |
| * Called from scheduler to add the counters of the current task |
| * with interrupts disabled. |
| * |
| * We restore the counter value and then enable it. |
| * |
| * This does not protect us against NMI, but enable() |
| * sets the enabled bit in the control field of counter _before_ |
| * accessing the counter control register. If a NMI hits, then it will |
| * keep the counter running. |
| */ |
| void perf_counter_task_sched_in(struct task_struct *task, int cpu) |
| { |
| struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); |
| struct perf_counter_context *ctx = task->perf_counter_ctxp; |
| |
| if (likely(!ctx)) |
| return; |
| if (cpuctx->task_ctx == ctx) |
| return; |
| __perf_counter_sched_in(ctx, cpuctx, cpu); |
| cpuctx->task_ctx = ctx; |
| } |
| |
| static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) |
| { |
| struct perf_counter_context *ctx = &cpuctx->ctx; |
| |
| __perf_counter_sched_in(ctx, cpuctx, cpu); |
| } |
| |
| #define MAX_INTERRUPTS (~0ULL) |
| |
| static void perf_log_throttle(struct perf_counter *counter, int enable); |
| static void perf_log_period(struct perf_counter *counter, u64 period); |
| |
| static void perf_adjust_period(struct perf_counter *counter, u64 events) |
| { |
| struct hw_perf_counter *hwc = &counter->hw; |
| u64 period, sample_period; |
| s64 delta; |
| |
| events *= hwc->sample_period; |
| period = div64_u64(events, counter->attr.sample_freq); |
| |
| delta = (s64)(period - hwc->sample_period); |
| delta = (delta + 7) / 8; /* low pass filter */ |
| |
| sample_period = hwc->sample_period + delta; |
| |
| if (!sample_period) |
| sample_period = 1; |
| |
| perf_log_period(counter, sample_period); |
| |
| hwc->sample_period = sample_period; |
| } |
| |
| static void perf_ctx_adjust_freq(struct perf_counter_context *ctx) |
| { |
| struct perf_counter *counter; |
| struct hw_perf_counter *hwc; |
| u64 interrupts, freq; |
| |
| spin_lock(&ctx->lock); |
| list_for_each_entry(counter, &ctx->counter_list, list_entry) { |
| if (counter->state != PERF_COUNTER_STATE_ACTIVE) |
| continue; |
| |
| hwc = &counter->hw; |
| |
| interrupts = hwc->interrupts; |
| hwc->interrupts = 0; |
| |
| /* |
| * unthrottle counters on the tick |
| */ |
| if (interrupts == MAX_INTERRUPTS) { |
| perf_log_throttle(counter, 1); |
| counter->pmu->unthrottle(counter); |
| interrupts = 2*sysctl_perf_counter_sample_rate/HZ; |
| } |
| |
| if (!counter->attr.freq || !counter->attr.sample_freq) |
| continue; |
| |
| /* |
| * if the specified freq < HZ then we need to skip ticks |
| */ |
| if (counter->attr.sample_freq < HZ) { |
| freq = counter->attr.sample_freq; |
| |
| hwc->freq_count += freq; |
| hwc->freq_interrupts += interrupts; |
| |
| if (hwc->freq_count < HZ) |
| continue; |
| |
| interrupts = hwc->freq_interrupts; |
| hwc->freq_interrupts = 0; |
| hwc->freq_count -= HZ; |
| } else |
| freq = HZ; |
| |
| perf_adjust_period(counter, freq * interrupts); |
| |
| /* |
| * In order to avoid being stalled by an (accidental) huge |
| * sample period, force reset the sample period if we didn't |
| * get any events in this freq period. |
| */ |
| if (!interrupts) { |
| perf_disable(); |
| counter->pmu->disable(counter); |
| atomic64_set(&hwc->period_left, 0); |
| counter->pmu->enable(counter); |
| perf_enable(); |
| } |
| } |
| spin_unlock(&ctx->lock); |
| } |
| |
| /* |
| * Round-robin a context's counters: |
| */ |
| static void rotate_ctx(struct perf_counter_context *ctx) |
| { |
| struct perf_counter *counter; |
| |
| if (!ctx->nr_counters) |
| return; |
| |
| spin_lock(&ctx->lock); |
| /* |
| * Rotate the first entry last (works just fine for group counters too): |
| */ |
| perf_disable(); |
| list_for_each_entry(counter, &ctx->counter_list, list_entry) { |
| list_move_tail(&counter->list_entry, &ctx->counter_list); |
| break; |
| } |
| perf_enable(); |
| |
| spin_unlock(&ctx->lock); |
| } |
| |
| void perf_counter_task_tick(struct task_struct *curr, int cpu) |
| { |
| struct perf_cpu_context *cpuctx; |
| struct perf_counter_context *ctx; |
| |
| if (!atomic_read(&nr_counters)) |
| return; |
| |
| cpuctx = &per_cpu(perf_cpu_context, cpu); |
| ctx = curr->perf_counter_ctxp; |
| |
| perf_ctx_adjust_freq(&cpuctx->ctx); |
| if (ctx) |
| perf_ctx_adjust_freq(ctx); |
| |
| perf_counter_cpu_sched_out(cpuctx); |
| if (ctx) |
| __perf_counter_task_sched_out(ctx); |
| |
| rotate_ctx(&cpuctx->ctx); |
| if (ctx) |
| rotate_ctx(ctx); |
| |
| perf_counter_cpu_sched_in(cpuctx, cpu); |
| if (ctx) |
| perf_counter_task_sched_in(curr, cpu); |
| } |
| |
| /* |
| * Cross CPU call to read the hardware counter |
| */ |
| static void __read(void *info) |
| { |
| struct perf_counter *counter = info; |
| struct perf_counter_context *ctx = counter->ctx; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| if (ctx->is_active) |
| update_context_time(ctx); |
| counter->pmu->read(counter); |
| update_counter_times(counter); |
| local_irq_restore(flags); |
| } |
| |
| static u64 perf_counter_read(struct perf_counter *counter) |
| { |
| /* |
| * If counter is enabled and currently active on a CPU, update the |
| * value in the counter structure: |
| */ |
| if (counter->state == PERF_COUNTER_STATE_ACTIVE) { |
| smp_call_function_single(counter->oncpu, |
| __read, counter, 1); |
| } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) { |
| update_counter_times(counter); |
| } |
| |
| return atomic64_read(&counter->count); |
| } |
| |
| /* |
| * Initialize the perf_counter context in a task_struct: |
| */ |
| static void |
| __perf_counter_init_context(struct perf_counter_context *ctx, |
| struct task_struct *task) |
| { |
| memset(ctx, 0, sizeof(*ctx)); |
| spin_lock_init(&ctx->lock); |
| mutex_init(&ctx->mutex); |
| INIT_LIST_HEAD(&ctx->counter_list); |
| INIT_LIST_HEAD(&ctx->event_list); |
| atomic_set(&ctx->refcount, 1); |
| ctx->task = task; |
| } |
| |
| static struct perf_counter_context *find_get_context(pid_t pid, int cpu) |
| { |
| struct perf_counter_context *parent_ctx; |
| struct perf_counter_context *ctx; |
| struct perf_cpu_context *cpuctx; |
| struct task_struct *task; |
| unsigned long flags; |
| int err; |
| |
| /* |
| * If cpu is not a wildcard then this is a percpu counter: |
| */ |
| if (cpu != -1) { |
| /* Must be root to operate on a CPU counter: */ |
| if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) |
| return ERR_PTR(-EACCES); |
| |
| if (cpu < 0 || cpu > num_possible_cpus()) |
| return ERR_PTR(-EINVAL); |
| |
| /* |
| * We could be clever and allow to attach a counter to an |
| * offline CPU and activate it when the CPU comes up, but |
| * that's for later. |
| */ |
| if (!cpu_isset(cpu, cpu_online_map)) |
| return ERR_PTR(-ENODEV); |
| |
| cpuctx = &per_cpu(perf_cpu_context, cpu); |
| ctx = &cpuctx->ctx; |
| get_ctx(ctx); |
| |
| return ctx; |
| } |
| |
| rcu_read_lock(); |
| if (!pid) |
| task = current; |
| else |
| task = find_task_by_vpid(pid); |
| if (task) |
| get_task_struct(task); |
| rcu_read_unlock(); |
| |
| if (!task) |
| return ERR_PTR(-ESRCH); |
| |
| /* |
| * Can't attach counters to a dying task. |
| */ |
| err = -ESRCH; |
| if (task->flags & PF_EXITING) |
| goto errout; |
| |
| /* Reuse ptrace permission checks for now. */ |
| err = -EACCES; |
| if (!ptrace_may_access(task, PTRACE_MODE_READ)) |
| goto errout; |
| |
| retry: |
| ctx = perf_lock_task_context(task, &flags); |
| if (ctx) { |
| parent_ctx = ctx->parent_ctx; |
| if (parent_ctx) { |
| put_ctx(parent_ctx); |
| ctx->parent_ctx = NULL; /* no longer a clone */ |
| } |
| spin_unlock_irqrestore(&ctx->lock, flags); |
| } |
| |
| if (!ctx) { |
| ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); |
| err = -ENOMEM; |
| if (!ctx) |
| goto errout; |
| __perf_counter_init_context(ctx, task); |
| get_ctx(ctx); |
| if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) { |
| /* |
| * We raced with some other task; use |
| * the context they set. |
| */ |
| kfree(ctx); |
| goto retry; |
| } |
| get_task_struct(task); |
| } |
| |
| put_task_struct(task); |
| return ctx; |
| |
| errout: |
| put_task_struct(task); |
| return ERR_PTR(err); |
| } |
| |
| static void free_counter_rcu(struct rcu_head *head) |
| { |
| struct perf_counter *counter; |
| |
| counter = container_of(head, struct perf_counter, rcu_head); |
| if (counter->ns) |
| put_pid_ns(counter->ns); |
| kfree(counter); |
| } |
| |
| static void perf_pending_sync(struct perf_counter *counter); |
| |
| static void free_counter(struct perf_counter *counter) |
| { |
| perf_pending_sync(counter); |
| |
| if (!counter->parent) { |
| atomic_dec(&nr_counters); |
| if (counter->attr.mmap) |
| atomic_dec(&nr_mmap_counters); |
| if (counter->attr.comm) |
| atomic_dec(&nr_comm_counters); |
| } |
| |
| if (counter->destroy) |
| counter->destroy(counter); |
| |
| put_ctx(counter->ctx); |
| call_rcu(&counter->rcu_head, free_counter_rcu); |
| } |
| |
| /* |
| * Called when the last reference to the file is gone. |
| */ |
| static int perf_release(struct inode *inode, struct file *file) |
| { |
| struct perf_counter *counter = file->private_data; |
| struct perf_counter_context *ctx = counter->ctx; |
| |
| file->private_data = NULL; |
| |
| WARN_ON_ONCE(ctx->parent_ctx); |
| mutex_lock(&ctx->mutex); |
| perf_counter_remove_from_context(counter); |
| mutex_unlock(&ctx->mutex); |
| |
| mutex_lock(&counter->owner->perf_counter_mutex); |
| list_del_init(&counter->owner_entry); |
| mutex_unlock(&counter->owner->perf_counter_mutex); |
| put_task_struct(counter->owner); |
| |
| free_counter(counter); |
| |
| return 0; |
| } |
| |
| /* |
| * Read the performance counter - simple non blocking version for now |
| */ |
| static ssize_t |
| perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) |
| { |
| u64 values[4]; |
| int n; |
| |
| /* |
| * Return end-of-file for a read on a counter that is in |
| * error state (i.e. because it was pinned but it couldn't be |
| * scheduled on to the CPU at some point). |
| */ |
| if (counter->state == PERF_COUNTER_STATE_ERROR) |
| return 0; |
| |
| WARN_ON_ONCE(counter->ctx->parent_ctx); |
| mutex_lock(&counter->child_mutex); |
| values[0] = perf_counter_read(counter); |
| n = 1; |
| if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) |
| values[n++] = counter->total_time_enabled + |
| atomic64_read(&counter->child_total_time_enabled); |
| if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) |
| values[n++] = counter->total_time_running + |
| atomic64_read(&counter->child_total_time_running); |
| if (counter->attr.read_format & PERF_FORMAT_ID) |
| values[n++] = counter->id; |
| mutex_unlock(&counter->child_mutex); |
| |
| if (count < n * sizeof(u64)) |
| return -EINVAL; |
| count = n * sizeof(u64); |
| |
| if (copy_to_user(buf, values, count)) |
| return -EFAULT; |
| |
| return count; |
| } |
| |
| static ssize_t |
| perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) |
| { |
| struct perf_counter *counter = file->private_data; |
| |
| return perf_read_hw(counter, buf, count); |
| } |
| |
| static unsigned int perf_poll(struct file *file, poll_table *wait) |
| { |
| struct perf_counter *counter = file->private_data; |
| struct perf_mmap_data *data; |
| unsigned int events = POLL_HUP; |
| |
| rcu_read_lock(); |
| data = rcu_dereference(counter->data); |
| if (data) |
| events = atomic_xchg(&data->poll, 0); |
| rcu_read_unlock(); |
| |
| poll_wait(file, &counter->waitq, wait); |
| |
| return events; |
| } |
| |
| static void perf_counter_reset(struct perf_counter *counter) |
| { |
| (void)perf_counter_read(counter); |
| atomic64_set(&counter->count, 0); |
| perf_counter_update_userpage(counter); |
| } |
| |
| /* |
| * Holding the top-level counter's child_mutex means that any |
| * descendant process that has inherited this counter will block |
| * in sync_child_counter if it goes to exit, thus satisfying the |
| * task existence requirements of perf_counter_enable/disable. |
| */ |
| static void perf_counter_for_each_child(struct perf_counter *counter, |
| void (*func)(struct perf_counter *)) |
| { |
| struct perf_counter *child; |
| |
| WARN_ON_ONCE(counter->ctx->parent_ctx); |
| mutex_lock(&counter->child_mutex); |
| func(counter); |
| list_for_each_entry(child, &counter->child_list, child_list) |
| func(child); |
| mutex_unlock(&counter->child_mutex); |
| } |
| |
| static void perf_counter_for_each(struct perf_counter *counter, |
| void (*func)(struct perf_counter *)) |
| { |
| struct perf_counter_context *ctx = counter->ctx; |
| struct perf_counter *sibling; |
| |
| WARN_ON_ONCE(ctx->parent_ctx); |
| mutex_lock(&ctx->mutex); |
| counter = counter->group_leader; |
| |
| perf_counter_for_each_child(counter, func); |
| func(counter); |
| list_for_each_entry(sibling, &counter->sibling_list, list_entry) |
| perf_counter_for_each_child(counter, func); |
| mutex_unlock(&ctx->mutex); |
| } |
| |
| static int perf_counter_period(struct perf_counter *counter, u64 __user *arg) |
| { |
| struct perf_counter_context *ctx = counter->ctx; |
| unsigned long size; |
| int ret = 0; |
| u64 value; |
| |
| if (!counter->attr.sample_period) |
| return -EINVAL; |
| |
| size = copy_from_user(&value, arg, sizeof(value)); |
| if (size != sizeof(value)) |
| return -EFAULT; |
| |
| if (!value) |
| return -EINVAL; |
| |
| spin_lock_irq(&ctx->lock); |
| if (counter->attr.freq) { |
| if (value > sysctl_perf_counter_sample_rate) { |
| ret = -EINVAL; |
| goto unlock; |
| } |
| |
| counter->attr.sample_freq = value; |
| } else { |
| perf_log_period(counter, value); |
| |
| counter->attr.sample_period = value; |
| counter->hw.sample_period = value; |
| } |
| unlock: |
| spin_unlock_irq(&ctx->lock); |
| |
| return ret; |
| } |
| |
| static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
| { |
| struct perf_counter *counter = file->private_data; |
| void (*func)(struct perf_counter *); |
| u32 flags = arg; |
| |
| switch (cmd) { |
| case PERF_COUNTER_IOC_ENABLE: |
| func = perf_counter_enable; |
| break; |
| case PERF_COUNTER_IOC_DISABLE: |
| func = perf_counter_disable; |
| break; |
| case PERF_COUNTER_IOC_RESET: |
| func = perf_counter_reset; |
| break; |
| |
| case PERF_COUNTER_IOC_REFRESH: |
| return perf_counter_refresh(counter, arg); |
| |
| case PERF_COUNTER_IOC_PERIOD: |
| return perf_counter_period(counter, (u64 __user *)arg); |
| |
| default: |
| return -ENOTTY; |
| } |
| |
| if (flags & PERF_IOC_FLAG_GROUP) |
| perf_counter_for_each(counter, func); |
| else |
| perf_counter_for_each_child(counter, func); |
| |
| return 0; |
| } |
| |
| int perf_counter_task_enable(void) |
| { |
| struct perf_counter *counter; |
| |
| mutex_lock(¤t->perf_counter_mutex); |
| list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) |
| perf_counter_for_each_child(counter, perf_counter_enable); |
| mutex_unlock(¤t->perf_counter_mutex); |
| |
| return 0; |
| } |
| |
| int perf_counter_task_disable(void) |
| { |
| struct perf_counter *counter; |
| |
| mutex_lock(¤t->perf_counter_mutex); |
| list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) |
| perf_counter_for_each_child(counter, perf_counter_disable); |
| mutex_unlock(¤t->perf_counter_mutex); |
| |
| return 0; |
| } |
| |
| static int perf_counter_index(struct perf_counter *counter) |
| { |
| if (counter->state != PERF_COUNTER_STATE_ACTIVE) |
| return 0; |
| |
| return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET; |
| } |
| |
| /* |
| * Callers need to ensure there can be no nesting of this function, otherwise |
| * the seqlock logic goes bad. We can not serialize this because the arch |
| * code calls this from NMI context. |
| */ |
| void perf_counter_update_userpage(struct perf_counter *counter) |
| { |
| struct perf_counter_mmap_page *userpg; |
| struct perf_mmap_data *data; |
| |
| rcu_read_lock(); |
| data = rcu_dereference(counter->data); |
| if (!data) |
| goto unlock; |
| |
| userpg = data->user_page; |
| |
| /* |
| * Disable preemption so as to not let the corresponding user-space |
| * spin too long if we get preempted. |
| */ |
| preempt_disable(); |
| ++userpg->lock; |
| barrier(); |
| userpg->index = perf_counter_index(counter); |
| userpg->offset = atomic64_read(&counter->count); |
| if (counter->state == PERF_COUNTER_STATE_ACTIVE) |
| userpg->offset -= atomic64_read(&counter->hw.prev_count); |
| |
| userpg->time_enabled = counter->total_time_enabled + |
| atomic64_read(&counter->child_total_time_enabled); |
| |
| userpg->time_running = counter->total_time_running + |
| atomic64_read(&counter->child_total_time_running); |
| |
| barrier(); |
| ++userpg->lock; |
| preempt_enable(); |
| unlock: |
| rcu_read_unlock(); |
| } |
| |
| static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
| { |
| struct perf_counter *counter = vma->vm_file->private_data; |
| struct perf_mmap_data *data; |
| int ret = VM_FAULT_SIGBUS; |
| |
| if (vmf->flags & FAULT_FLAG_MKWRITE) { |
| if (vmf->pgoff == 0) |
| ret = 0; |
| return ret; |
| } |
| |
| rcu_read_lock(); |
| data = rcu_dereference(counter->data); |
| if (!data) |
| goto unlock; |
| |
| if (vmf->pgoff == 0) { |
| vmf->page = virt_to_page(data->user_page); |
| } else { |
| int nr = vmf->pgoff - 1; |
| |
| if ((unsigned)nr > data->nr_pages) |
| goto unlock; |
| |
| if (vmf->flags & FAULT_FLAG_WRITE) |
| goto unlock; |
| |
| vmf->page = virt_to_page(data->data_pages[nr]); |
| } |
| |
| get_page(vmf->page); |
| vmf->page->mapping = vma->vm_file->f_mapping; |
| vmf->page->index = vmf->pgoff; |
| |
| ret = 0; |
| unlock: |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages) |
| { |
| struct perf_mmap_data *data; |
| unsigned long size; |
| int i; |
| |
| WARN_ON(atomic_read(&counter->mmap_count)); |
| |
| size = sizeof(struct perf_mmap_data); |
| size += nr_pages * sizeof(void *); |
| |
| data = kzalloc(size, GFP_KERNEL); |
| if (!data) |
| goto fail; |
| |
| data->user_page = (void *)get_zeroed_page(GFP_KERNEL); |
| if (!data->user_page) |
| goto fail_user_page; |
| |
| for (i = 0; i < nr_pages; i++) { |
| data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); |
| if (!data->data_pages[i]) |
| goto fail_data_pages; |
| } |
| |
| data->nr_pages = nr_pages; |
| atomic_set(&data->lock, -1); |
| |
| rcu_assign_pointer(counter->data, data); |
| |
| return 0; |
| |
| fail_data_pages: |
| for (i--; i >= 0; i--) |
| free_page((unsigned long)data->data_pages[i]); |
| |
| free_page((unsigned long)data->user_page); |
| |
| fail_user_page: |
| kfree(data); |
| |
| fail: |
| return -ENOMEM; |
| } |
| |
| static void perf_mmap_free_page(unsigned long addr) |
| { |
| struct page *page = virt_to_page(addr); |
| |
| page->mapping = NULL; |
| __free_page(page); |
| } |
| |
| static void __perf_mmap_data_free(struct rcu_head *rcu_head) |
| { |
| struct perf_mmap_data *data; |
| int i; |
| |
| data = container_of(rcu_head, struct perf_mmap_data, rcu_head); |
| |
| perf_mmap_free_page((unsigned long)data->user_page); |
| for (i = 0; i < data->nr_pages; i++) |
| perf_mmap_free_page((unsigned long)data->data_pages[i]); |
| |
| kfree(data); |
| } |
| |
| static void perf_mmap_data_free(struct perf_counter *counter) |
| { |
| struct perf_mmap_data *data = counter->data; |
| |
| WARN_ON(atomic_read(&counter->mmap_count)); |
| |
| rcu_assign_pointer(counter->data, NULL); |
| call_rcu(&data->rcu_head, __perf_mmap_data_free); |
| } |
| |
| static void perf_mmap_open(struct vm_area_struct *vma) |
| { |
| struct perf_counter *counter = vma->vm_file->private_data; |
| |
| atomic_inc(&counter->mmap_count); |
| } |
| |
| static void perf_mmap_close(struct vm_area_struct *vma) |
| { |
| struct perf_counter *counter = vma->vm_file->private_data; |
| |
| WARN_ON_ONCE(counter->ctx->parent_ctx); |
| if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) { |
| struct user_struct *user = current_user(); |
| |
| atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm); |
| vma->vm_mm->locked_vm -= counter->data->nr_locked; |
| perf_mmap_data_free(counter); |
| mutex_unlock(&counter->mmap_mutex); |
| } |
| } |
| |
| static struct vm_operations_struct perf_mmap_vmops = { |
| .open = perf_mmap_open, |
| .close = perf_mmap_close, |
| .fault = perf_mmap_fault, |
| .page_mkwrite = perf_mmap_fault, |
| }; |
| |
| static int perf_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| struct perf_counter *counter = file->private_data; |
| unsigned long user_locked, user_lock_limit; |
| struct user_struct *user = current_user(); |
| unsigned long locked, lock_limit; |
| unsigned long vma_size; |
| unsigned long nr_pages; |
| long user_extra, extra; |
| int ret = 0; |
| |
| if (!(vma->vm_flags & VM_SHARED)) |
| return -EINVAL; |
| |
| vma_size = vma->vm_end - vma->vm_start; |
| nr_pages = (vma_size / PAGE_SIZE) - 1; |
| |
| /* |
| * If we have data pages ensure they're a power-of-two number, so we |
| * can do bitmasks instead of modulo. |
| */ |
| if (nr_pages != 0 && !is_power_of_2(nr_pages)) |
| return -EINVAL; |
| |
| if (vma_size != PAGE_SIZE * (1 + nr_pages)) |
| return -EINVAL; |
| |
| if (vma->vm_pgoff != 0) |
| return -EINVAL; |
| |
| WARN_ON_ONCE(counter->ctx->parent_ctx); |
| mutex_lock(&counter->mmap_mutex); |
| if (atomic_inc_not_zero(&counter->mmap_count)) { |
| if (nr_pages != counter->data->nr_pages) |
| ret = -EINVAL; |
| goto unlock; |
| } |
| |
| user_extra = nr_pages + 1; |
| user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10); |
| |
| /* |
| * Increase the limit linearly with more CPUs: |
| */ |
| user_lock_limit *= num_online_cpus(); |
| |
| user_locked = atomic_long_read(&user->locked_vm) + user_extra; |
| |
| extra = 0; |
| if (user_locked > user_lock_limit) |
| extra = user_locked - user_lock_limit; |
| |
| lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; |
| lock_limit >>= PAGE_SHIFT; |
| locked = vma->vm_mm->locked_vm + extra; |
| |
| if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) { |
| ret = -EPERM; |
| goto unlock; |
| } |
| |
| WARN_ON(counter->data); |
| ret = perf_mmap_data_alloc(counter, nr_pages); |
| if (ret) |
| goto unlock; |
| |
| atomic_set(&counter->mmap_count, 1); |
| atomic_long_add(user_extra, &user->locked_vm); |
| vma->vm_mm->locked_vm += extra; |
| counter->data->nr_locked = extra; |
| if (vma->vm_flags & VM_WRITE) |
| counter->data->writable = 1; |
| |
| unlock: |
| mutex_unlock(&counter->mmap_mutex); |
| |
| vma->vm_flags |= VM_RESERVED; |
| vma->vm_ops = &perf_mmap_vmops; |
| |
| return ret; |
| } |
| |
| static int perf_fasync(int fd, struct file *filp, int on) |
| { |
| struct inode *inode = filp->f_path.dentry->d_inode; |
| struct perf_counter *counter = filp->private_data; |
| int retval; |
| |
| mutex_lock(&inode->i_mutex); |
| retval = fasync_helper(fd, filp, on, &counter->fasync); |
| mutex_unlock(&inode->i_mutex); |
| |
| if (retval < 0) |
| return retval; |
| |
| return 0; |
| } |
| |
| static const struct file_operations perf_fops = { |
| .release = perf_release, |
| .read = perf_read, |
| .poll = perf_poll, |
| .unlocked_ioctl = perf_ioctl, |
| .compat_ioctl = perf_ioctl, |
| .mmap = perf_mmap, |
| .fasync = perf_fasync, |
| }; |
| |
| /* |
| * Perf counter wakeup |
| * |
| * If there's data, ensure we set the poll() state and publish everything |
| * to user-space before waking everybody up. |
| */ |
| |
| void perf_counter_wakeup(struct perf_counter *counter) |
| { |
| wake_up_all(&counter->waitq); |
| |
| if (counter->pending_kill) { |
| kill_fasync(&counter->fasync, SIGIO, counter->pending_kill); |
| counter->pending_kill = 0; |
| } |
| } |
| |
| /* |
| * Pending wakeups |
| * |
| * Handle the case where we need to wakeup up from NMI (or rq->lock) context. |
| * |
| * The NMI bit means we cannot possibly take locks. Therefore, maintain a |
| * single linked list and use cmpxchg() to add entries lockless. |
| */ |
| |
| static void perf_pending_counter(struct perf_pending_entry *entry) |
| { |
| struct perf_counter *counter = container_of(entry, |
| struct perf_counter, pending); |
| |
| if (counter->pending_disable) { |
| counter->pending_disable = 0; |
| perf_counter_disable(counter); |
| } |
| |
| if (counter->pending_wakeup) { |
| counter->pending_wakeup = 0; |
| perf_counter_wakeup(counter); |
| } |
| } |
| |
| #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) |
| |
| static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { |
| PENDING_TAIL, |
| }; |
| |
| static void perf_pending_queue(struct perf_pending_entry *entry, |
| void (*func)(struct perf_pending_entry *)) |
| { |
| struct perf_pending_entry **head; |
| |
| if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) |
| return; |
| |
| entry->func = func; |
| |
| head = &get_cpu_var(perf_pending_head); |
| |
| do { |
| entry->next = *head; |
| } while (cmpxchg(head, entry->next, entry) != entry->next); |
| |
| set_perf_counter_pending(); |
| |
| put_cpu_var(perf_pending_head); |
| } |
| |
| static int __perf_pending_run(void) |
| { |
| struct perf_pending_entry *list; |
| int nr = 0; |
| |
| list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); |
| while (list != PENDING_TAIL) { |
| void (*func)(struct perf_pending_entry *); |
| struct perf_pending_entry *entry = list; |
| |
| list = list->next; |
| |
| func = entry->func; |
| entry->next = NULL; |
| /* |
| * Ensure we observe the unqueue before we issue the wakeup, |
| * so that we won't be waiting forever. |
| * -- see perf_not_pending(). |
| */ |
| smp_wmb(); |
| |
| func(entry); |
| nr++; |
| } |
| |
| return nr; |
| } |
| |
| static inline int perf_not_pending(struct perf_counter *counter) |
| { |
| /* |
| * If we flush on whatever cpu we run, there is a chance we don't |
| * need to wait. |
| */ |
| get_cpu(); |
| __perf_pending_run(); |
| put_cpu(); |
| |
| /* |
| * Ensure we see the proper queue state before going to sleep |
| * so that we do not miss the wakeup. -- see perf_pending_handle() |
| */ |
| smp_rmb(); |
| return counter->pending.next == NULL; |
| } |
| |
| static void perf_pending_sync(struct perf_counter *counter) |
| { |
| wait_event(counter->waitq, perf_not_pending(counter)); |
| } |
| |
| void perf_counter_do_pending(void) |
| { |
| __perf_pending_run(); |
| } |
| |
| /* |
| * Callchain support -- arch specific |
| */ |
| |
| __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) |
| { |
| return NULL; |
| } |
| |
| /* |
| * Output |
| */ |
| |
| struct perf_output_handle { |
| struct perf_counter *counter; |
| struct perf_mmap_data *data; |
| unsigned long head; |
| unsigned long offset; |
| int nmi; |
| int sample; |
| int locked; |
| unsigned long flags; |
| }; |
| |
| static bool perf_output_space(struct perf_mmap_data *data, |
| unsigned int offset, unsigned int head) |
| { |
| unsigned long tail; |
| unsigned long mask; |
| |
| if (!data->writable) |
| return true; |
| |
| mask = (data->nr_pages << PAGE_SHIFT) - 1; |
| /* |
| * Userspace could choose to issue a mb() before updating the tail |
| * pointer. So that all reads will be completed before the write is |
| * issued. |
| */ |
| tail = ACCESS_ONCE(data->user_page->data_tail); |
| smp_rmb(); |
| |
| offset = (offset - tail) & mask; |
| head = (head - tail) & mask; |
| |
| if ((int)(head - offset) < 0) |
| return false; |
| |
| return true; |
| } |
| |
| static void perf_output_wakeup(struct perf_output_handle *handle) |
| { |
| atomic_set(&handle->data->poll, POLL_IN); |
| |
| if (handle->nmi) { |
| handle->counter->pending_wakeup = 1; |
| perf_pending_queue(&handle->counter->pending, |
| perf_pending_counter); |
| } else |
| perf_counter_wakeup(handle->counter); |
| } |
| |
| /* |
| * Curious locking construct. |
| * |
| * We need to ensure a later event doesn't publish a head when a former |
| * event isn't done writing. However since we need to deal with NMIs we |
| * cannot fully serialize things. |
| * |
| * What we do is serialize between CPUs so we only have to deal with NMI |
| * nesting on a single CPU. |
| * |
| * We only publish the head (and generate a wakeup) when the outer-most |
| * event completes. |
| */ |
| static void perf_output_lock(struct perf_output_handle *handle) |
| { |
| struct perf_mmap_data *data = handle->data; |
| int cpu; |
| |
| handle->locked = 0; |
| |
| local_irq_save(handle->flags); |
| cpu = smp_processor_id(); |
| |
| if (in_nmi() && atomic_read(&data->lock) == cpu) |
| return; |
| |
| while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) |
| cpu_relax(); |
| |
| handle->locked = 1; |
| } |
| |
| static void perf_output_unlock(struct perf_output_handle *handle) |
| { |
| struct perf_mmap_data *data = handle->data; |
| unsigned long head; |
| int cpu; |
| |
| data->done_head = data->head; |
| |
| if (!handle->locked) |
| goto out; |
| |
| again: |
| /* |
| * The xchg implies a full barrier that ensures all writes are done |
| * before we publish the new head, matched by a rmb() in userspace when |
| * reading this position. |
| */ |
| while ((head = atomic_long_xchg(&data->done_head, 0))) |
| data->user_page->data_head = head; |
| |
| /* |
| * NMI can happen here, which means we can miss a done_head update. |
| */ |
| |
| cpu = atomic_xchg(&data->lock, -1); |
| WARN_ON_ONCE(cpu != smp_processor_id()); |
| |
| /* |
| * Therefore we have to validate we did not indeed do so. |
| */ |
| if (unlikely(atomic_long_read(&data->done_head))) { |
| /* |
| * Since we had it locked, we can lock it again. |
| */ |
| while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) |
| cpu_relax(); |
| |
| goto again; |
| } |
| |
| if (atomic_xchg(&data->wakeup, 0)) |
| perf_output_wakeup(handle); |
| out: |
| local_irq_restore(handle->flags); |
| } |
| |
| static void perf_output_copy(struct perf_output_handle *handle, |
| const void *buf, unsigned int len) |
| { |
| unsigned int pages_mask; |
| unsigned int offset; |
| unsigned int size; |
| void **pages; |
| |
| offset = handle->offset; |
| pages_mask = handle->data->nr_pages - 1; |
| pages = handle->data->data_pages; |
| |
| do { |
| unsigned int page_offset; |
| int nr; |
| |
| nr = (offset >> PAGE_SHIFT) & pages_mask; |
| page_offset = offset & (PAGE_SIZE - 1); |
| size = min_t(unsigned int, PAGE_SIZE - page_offset, len); |
| |
| memcpy(pages[nr] + page_offset, buf, size); |
| |
| len -= size; |
| buf += size; |
| offset += size; |
| } while (len); |
| |
| handle->offset = offset; |
| |
| /* |
| * Check we didn't copy past our reservation window, taking the |
| * possible unsigned int wrap into account. |
| */ |
| WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); |
| } |
| |
| #define perf_output_put(handle, x) \ |
| perf_output_copy((handle), &(x), sizeof(x)) |
| |
| static int perf_output_begin(struct perf_output_handle *handle, |
| struct perf_counter *counter, unsigned int size, |
| int nmi, int sample) |
| { |
| struct perf_mmap_data *data; |
| unsigned int offset, head; |
| int have_lost; |
| struct { |
| struct perf_event_header header; |
| u64 id; |
| u64 lost; |
| } lost_event; |
| |
| /* |
| * For inherited counters we send all the output towards the parent. |
| */ |
| if (counter->parent) |
| counter = counter->parent; |
| |
| rcu_read_lock(); |
| data = rcu_dereference(counter->data); |
| if (!data) |
| goto out; |
| |
| handle->data = data; |
| handle->counter = counter; |
| handle->nmi = nmi; |
| handle->sample = sample; |
| |
| if (!data->nr_pages) |
| goto fail; |
| |
| have_lost = atomic_read(&data->lost); |
| if (have_lost) |
| size += sizeof(lost_event); |
| |
| perf_output_lock(handle); |
| |
| do { |
| offset = head = atomic_long_read(&data->head); |
| head += size; |
| if (unlikely(!perf_output_space(data, offset, head))) |
| goto fail; |
| } while (atomic_long_cmpxchg(&data->head, offset, head) != offset); |
| |
| handle->offset = offset; |
| handle->head = head; |
| |
| if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT)) |
| atomic_set(&data->wakeup, 1); |
| |
| if (have_lost) { |
| lost_event.header.type = PERF_EVENT_LOST; |
| lost_event.header.misc = 0; |
| lost_event.header.size = sizeof(lost_event); |
| lost_event.id = counter->id; |
| lost_event.lost = atomic_xchg(&data->lost, 0); |
| |
| perf_output_put(handle, lost_event); |
| } |
| |
| return 0; |
| |
| fail: |
| atomic_inc(&data->lost); |
| perf_output_unlock(handle); |
| out: |
| rcu_read_unlock(); |
| |
| return -ENOSPC; |
| } |
| |
| static void perf_output_end(struct perf_output_handle *handle) |
| { |
| struct perf_counter *counter = handle->counter; |
| struct perf_mmap_data *data = handle->data; |
| |
| int wakeup_events = counter->attr.wakeup_events; |
| |
| if (handle->sample && wakeup_events) { |
| int events = atomic_inc_return(&data->events); |
| if (events >= wakeup_events) { |
| atomic_sub(wakeup_events, &data->events); |
| atomic_set(&data->wakeup, 1); |
| } |
| } |
| |
| perf_output_unlock(handle); |
| rcu_read_unlock(); |
| } |
| |
| static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p) |
| { |
| /* |
| * only top level counters have the pid namespace they were created in |
| */ |
| if (counter->parent) |
| counter = counter->parent; |
| |
| return task_tgid_nr_ns(p, counter->ns); |
| } |
| |
| static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p) |
| { |
| /* |
| * only top level counters have the pid namespace they were created in |
| */ |
| if (counter->parent) |
| counter = counter->parent; |
| |
| return task_pid_nr_ns(p, counter->ns); |
| } |
| |
| static void perf_counter_output(struct perf_counter *counter, int nmi, |
| struct perf_sample_data *data) |
| { |
| int ret; |
| u64 sample_type = counter->attr.sample_type; |
| struct perf_output_handle handle; |
| struct perf_event_header header; |
| u64 ip; |
| struct { |
| u32 pid, tid; |
| } tid_entry; |
| struct { |
| u64 id; |
| u64 counter; |
| } group_entry; |
| struct perf_callchain_entry *callchain = NULL; |
| int callchain_size = 0; |
| u64 time; |
| struct { |
| u32 cpu, reserved; |
| } cpu_entry; |
| |
| header.type = 0; |
| header.size = sizeof(header); |
| |
| header.misc = PERF_EVENT_MISC_OVERFLOW; |
| header.misc |= perf_misc_flags(data->regs); |
| |
| if (sample_type & PERF_SAMPLE_IP) { |
| ip = perf_instruction_pointer(data->regs); |
| header.type |= PERF_SAMPLE_IP; |
| header.size += sizeof(ip); |
| } |
| |
| if (sample_type & PERF_SAMPLE_TID) { |
| /* namespace issues */ |
| tid_entry.pid = perf_counter_pid(counter, current); |
| tid_entry.tid = perf_counter_tid(counter, current); |
| |
| header.type |= PERF_SAMPLE_TID; |
| header.size += sizeof(tid_entry); |
| } |
| |
| if (sample_type & PERF_SAMPLE_TIME) { |
| /* |
| * Maybe do better on x86 and provide cpu_clock_nmi() |
| */ |
| time = sched_clock(); |
| |
| header.type |= PERF_SAMPLE_TIME; |
| header.size += sizeof(u64); |
| } |
| |
| if (sample_type & PERF_SAMPLE_ADDR) { |
| header.type |= PERF_SAMPLE_ADDR; |
| header.size += sizeof(u64); |
| } |
| |
| if (sample_type & PERF_SAMPLE_ID) { |
| header.type |= PERF_SAMPLE_ID; |
| header.size += sizeof(u64); |
| } |
| |
| if (sample_type & PERF_SAMPLE_CPU) { |
| header.type |= PERF_SAMPLE_CPU; |
| header.size += sizeof(cpu_entry); |
| |
| cpu_entry.cpu = raw_smp_processor_id(); |
| } |
| |
| if (sample_type & PERF_SAMPLE_PERIOD) { |
| header.type |= PERF_SAMPLE_PERIOD; |
| header.size += sizeof(u64); |
| } |
| |
| if (sample_type & PERF_SAMPLE_GROUP) { |
| header.type |= PERF_SAMPLE_GROUP; |
| header.size += sizeof(u64) + |
| counter->nr_siblings * sizeof(group_entry); |
| } |
| |
| if (sample_type & PERF_SAMPLE_CALLCHAIN) { |
| callchain = perf_callchain(data->regs); |
| |
| if (callchain) { |
| callchain_size = (1 + callchain->nr) * sizeof(u64); |
| |
| header.type |= PERF_SAMPLE_CALLCHAIN; |
| header.size += callchain_size; |
| } |
| } |
| |
| ret = perf_output_begin(&handle, counter, header.size, nmi, 1); |
| if (ret) |
| return; |
| |
| perf_output_put(&handle, header); |
| |
| if (sample_type & PERF_SAMPLE_IP) |
| perf_output_put(&handle, ip); |
| |
| if (sample_type & PERF_SAMPLE_TID) |
| perf_output_put(&handle, tid_entry); |
| |
| if (sample_type & PERF_SAMPLE_TIME) |
| perf_output_put(&handle, time); |
| |
| if (sample_type & PERF_SAMPLE_ADDR) |
| perf_output_put(&handle, data->addr); |
| |
| if (sample_type & PERF_SAMPLE_ID) |
| perf_output_put(&handle, counter->id); |
| |
| if (sample_type & PERF_SAMPLE_CPU) |
| perf_output_put(&handle, cpu_entry); |
| |
| if (sample_type & PERF_SAMPLE_PERIOD) |
| perf_output_put(&handle, data->period); |
| |
| /* |
| * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult. |
| */ |
| if (sample_type & PERF_SAMPLE_GROUP) { |
| struct perf_counter *leader, *sub; |
| u64 nr = counter->nr_siblings; |
| |
| perf_output_put(&handle, nr); |
| |
| leader = counter->group_leader; |
| list_for_each_entry(sub, &leader->sibling_list, list_entry) { |
| if (sub != counter) |
| sub->pmu->read(sub); |
| |
| group_entry.id = sub->id; |
| group_entry.counter = atomic64_read(&sub->count); |
| |
| perf_output_put(&handle, group_entry); |
| } |
| } |
| |
| if (callchain) |
| perf_output_copy(&handle, callchain, callchain_size); |
| |
| perf_output_end(&handle); |
| } |
| |
| /* |
| * read event |
| */ |
| |
| struct perf_read_event { |
| struct perf_event_header header; |
| |
| u32 pid; |
| u32 tid; |
| u64 value; |
| u64 format[3]; |
| }; |
| |
| static void |
| perf_counter_read_event(struct perf_counter *counter, |
| struct task_struct *task) |
| { |
| struct perf_output_handle handle; |
| struct perf_read_event event = { |
| .header = { |
| .type = PERF_EVENT_READ, |
| .misc = 0, |
| .size = sizeof(event) - sizeof(event.format), |
| }, |
| .pid = perf_counter_pid(counter, task), |
| .tid = perf_counter_tid(counter, task), |
| .value = atomic64_read(&counter->count), |
| }; |
| int ret, i = 0; |
| |
| if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { |
| event.header.size += sizeof(u64); |
| event.format[i++] = counter->total_time_enabled; |
| } |
| |
| if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { |
| event.header.size += sizeof(u64); |
| event.format[i++] = counter->total_time_running; |
| } |
| |
| if (counter->attr.read_format & PERF_FORMAT_ID) { |
| u64 id; |
| |
| event.header.size += sizeof(u64); |
| if (counter->parent) |
| id = counter->parent->id; |
| else |
| id = counter->id; |
| |
| event.format[i++] = id; |
| } |
| |
| ret = perf_output_begin(&handle, counter, event.header.size, 0, 0); |
| if (ret) |
| return; |
| |
| perf_output_copy(&handle, &event, event.header.size); |
| perf_output_end(&handle); |
| } |
| |
| /* |
| * fork tracking |
| */ |
| |
| struct perf_fork_event { |
| struct task_struct *task; |
| |
| struct { |
| struct perf_event_header header; |
| |
| u32 pid; |
| u32 ppid; |
| } event; |
| }; |
| |
| static void perf_counter_fork_output(struct perf_counter *counter, |
| struct perf_fork_event *fork_event) |
| { |
| struct perf_output_handle handle; |
| int size = fork_event->event.header.size; |
| struct task_struct *task = fork_event->task; |
| int ret = perf_output_begin(&handle, counter, size, 0, 0); |
| |
| if (ret) |
| return; |
| |
| fork_event->event.pid = perf_counter_pid(counter, task); |
| fork_event->event.ppid = perf_counter_pid(counter, task->real_parent); |
| |
| perf_output_put(&handle, fork_event->event); |
| perf_output_end(&handle); |
| } |
| |
| static int perf_counter_fork_match(struct perf_counter *counter) |
| { |
| if (counter->attr.comm || counter->attr.mmap) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void perf_counter_fork_ctx(struct perf_counter_context *ctx, |
| struct perf_fork_event *fork_event) |
| { |
| struct perf_counter *counter; |
| |
| if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) |
| return; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { |
| if (perf_counter_fork_match(counter)) |
| perf_counter_fork_output(counter, fork_event); |
| } |
| rcu_read_unlock(); |
| } |
| |
| static void perf_counter_fork_event(struct perf_fork_event *fork_event) |
| { |
| struct perf_cpu_context *cpuctx; |
| struct perf_counter_context *ctx; |
| |
| cpuctx = &get_cpu_var(perf_cpu_context); |
| perf_counter_fork_ctx(&cpuctx->ctx, fork_event); |
| put_cpu_var(perf_cpu_context); |
| |
| rcu_read_lock(); |
| /* |
| * doesn't really matter which of the child contexts the |
| * events ends up in. |
| */ |
| ctx = rcu_dereference(current->perf_counter_ctxp); |
| if (ctx) |
| perf_counter_fork_ctx(ctx, fork_event); |
| rcu_read_unlock(); |
| } |
| |
| void perf_counter_fork(struct task_struct *task) |
| { |
| struct perf_fork_event fork_event; |
| |
| if (!atomic_read(&nr_comm_counters) && |
| !atomic_read(&nr_mmap_counters)) |
| return; |
| |
| fork_event = (struct perf_fork_event){ |
| .task = task, |
| .event = { |
| .header = { |
| .type = PERF_EVENT_FORK, |
| .size = sizeof(fork_event.event), |
| }, |
| }, |
| }; |
| |
| perf_counter_fork_event(&fork_event); |
| } |
| |
| /* |
| * comm tracking |
| */ |
| |
| struct perf_comm_event { |
| struct task_struct *task; |
| char *comm; |
| int comm_size; |
| |
| struct { |
| struct perf_event_header header; |
| |
| u32 pid; |
| u32 tid; |
| } event; |
| }; |
| |
| static void perf_counter_comm_output(struct perf_counter *counter, |
| struct perf_comm_event *comm_event) |
| { |
| struct perf_output_handle handle; |
| int size = comm_event->event.header.size; |
| int ret = perf_output_begin(&handle, counter, size, 0, 0); |
| |
| if (ret) |
| return; |
| |
| comm_event->event.pid = perf_counter_pid(counter, comm_event->task); |
| comm_event->event.tid = perf_counter_tid(counter, comm_event->task); |
| |
| perf_output_put(&handle, comm_event->event); |
| perf_output_copy(&handle, comm_event->comm, |
| comm_event->comm_size); |
| perf_output_end(&handle); |
| } |
| |
| static int perf_counter_comm_match(struct perf_counter *counter) |
| { |
| if (counter->attr.comm) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void perf_counter_comm_ctx(struct perf_counter_context *ctx, |
| struct perf_comm_event *comm_event) |
| { |
| struct perf_counter *counter; |
| |
| if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) |
| return; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { |
| if (perf_counter_comm_match(counter)) |
| perf_counter_comm_output(counter, comm_event); |
| } |
| rcu_read_unlock(); |
| } |
| |
| static void perf_counter_comm_event(struct perf_comm_event *comm_event) |
| { |
| struct perf_cpu_context *cpuctx; |
| struct perf_counter_context *ctx; |
| unsigned int size; |
| char *comm = comm_event->task->comm; |
| |
| size = ALIGN(strlen(comm)+1, sizeof(u64)); |
| |
| comm_event->comm = comm; |
| comm_event->comm_size = size; |
| |
| comm_event->event.header.size = sizeof(comm_event->event) + size; |
| |
| cpuctx = &get_cpu_var(perf_cpu_context); |
| perf_counter_comm_ctx(&cpuctx->ctx, comm_event); |
| put_cpu_var(perf_cpu_context); |
| |
| rcu_read_lock(); |
| /* |
| * doesn't really matter which of the child contexts the |
| * events ends up in. |
| */ |
| ctx = rcu_dereference(current->perf_counter_ctxp); |
| if (ctx) |
| perf_counter_comm_ctx(ctx, comm_event); |
| rcu_read_unlock(); |
| } |
| |
| void perf_counter_comm(struct task_struct *task) |
| { |
| struct perf_comm_event comm_event; |
| |
| if (!atomic_read(&nr_comm_counters)) |
| return; |
| |
| comm_event = (struct perf_comm_event){ |
| .task = task, |
| .event = { |
| .header = { .type = PERF_EVENT_COMM, }, |
| }, |
| }; |
| |
| perf_counter_comm_event(&comm_event); |
| } |
| |
| /* |
| * mmap tracking |
| */ |
| |
| struct perf_mmap_event { |
| struct vm_area_struct *vma; |
| |
| const char *file_name; |
| int file_size; |
| |
| struct { |
| struct perf_event_header header; |
| |
| u32 pid; |
| u32 tid; |
| u64 start; |
| u64 len; |
| u64 pgoff; |
| } event; |
| }; |
| |
| static void perf_counter_mmap_output(struct perf_counter *counter, |
| struct perf_mmap_event *mmap_event) |
| { |
| struct perf_output_handle handle; |
| int size = mmap_event->event.header.size; |
| int ret = perf_output_begin(&handle, counter, size, 0, 0); |
| |
| if (ret) |
| return; |
| |
| mmap_event->event.pid = perf_counter_pid(counter, current); |
| mmap_event->event.tid = perf_counter_tid(counter, current); |
| |
| perf_output_put(&handle, mmap_event->event); |
| perf_output_copy(&handle, mmap_event->file_name, |
| mmap_event->file_size); |
| perf_output_end(&handle); |
| } |
| |
| static int perf_counter_mmap_match(struct perf_counter *counter, |
| struct perf_mmap_event *mmap_event) |
| { |
| if (counter->attr.mmap) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void perf_counter_mmap_ctx(struct perf_counter_context *ctx, |
| struct perf_mmap_event *mmap_event) |
| { |
| struct perf_counter *counter; |
| |
| if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) |
| return; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { |
| if (perf_counter_mmap_match(counter, mmap_event)) |
| perf_counter_mmap_output(counter, mmap_event); |
| } |
| rcu_read_unlock(); |
| } |
| |
| static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event) |
| { |
| struct perf_cpu_context *cpuctx; |
| struct perf_counter_context *ctx; |
| struct vm_area_struct *vma = mmap_event->vma; |
| struct file *file = vma->vm_file; |
| unsigned int size; |
| char tmp[16]; |
| char *buf = NULL; |
| const char *name; |
| |
| if (file) { |
| buf = kzalloc(PATH_MAX, GFP_KERNEL); |
| if (!buf) { |
| name = strncpy(tmp, "//enomem", sizeof(tmp)); |
| goto got_name; |
| } |
| name = d_path(&file->f_path, buf, PATH_MAX); |
| if (IS_ERR(name)) { |
| name = strncpy(tmp, "//toolong", sizeof(tmp)); |
| goto got_name; |
| } |
| } else { |
| name = arch_vma_name(mmap_event->vma); |
| if (name) |
| goto got_name; |
| |
| if (!vma->vm_mm) { |
| name = strncpy(tmp, "[vdso]", sizeof(tmp)); |
| goto got_name; |
| } |
| |
| name = strncpy(tmp, "//anon", sizeof(tmp)); |
| goto got_name; |
| } |
| |
| got_name: |
| size = ALIGN(strlen(name)+1, sizeof(u64)); |
| |
| mmap_event->file_name = name; |
| mmap_event->file_size = size; |
| |
| mmap_event->event.header.size = sizeof(mmap_event->event) + size; |
| |
| cpuctx = &get_cpu_var(perf_cpu_context); |
| perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event); |
| put_cpu_var(perf_cpu_context); |
| |
| rcu_read_lock(); |
| /* |
| * doesn't really matter which of the child contexts the |
| * events ends up in. |
| */ |
| ctx = rcu_dereference(current->perf_counter_ctxp); |
| if (ctx) |
| perf_counter_mmap_ctx(ctx, mmap_event); |
| rcu_read_unlock(); |
| |
| kfree(buf); |
| } |
| |
| void __perf_counter_mmap(struct vm_area_struct *vma) |
| { |
| struct perf_mmap_event mmap_event; |
| |
| if (!atomic_read(&nr_mmap_counters)) |
| return; |
| |
| mmap_event = (struct perf_mmap_event){ |
| .vma = vma, |
| .event = { |
| .header = { .type = PERF_EVENT_MMAP, }, |
| .start = vma->vm_start, |
| .len = vma->vm_end - vma->vm_start, |
| .pgoff = vma->vm_pgoff, |
| }, |
| }; |
| |
| perf_counter_mmap_event(&mmap_event); |
| } |
| |
| /* |
| * Log sample_period changes so that analyzing tools can re-normalize the |
| * event flow. |
| */ |
| |
| struct freq_event { |
| struct perf_event_header header; |
| u64 time; |
| u64 id; |
| u64 period; |
| }; |
| |
| static void perf_log_period(struct perf_counter *counter, u64 period) |
| { |
| struct perf_output_handle handle; |
| struct freq_event event; |
| int ret; |
| |
| if (counter->hw.sample_period == period) |
| return; |
| |
| if (counter->attr.sample_type & PERF_SAMPLE_PERIOD) |
| return; |
| |
| event = (struct freq_event) { |
| .header = { |
| .type = PERF_EVENT_PERIOD, |
| .misc = 0, |
| .size = sizeof(event), |
| }, |
| .time = sched_clock(), |
| .id = counter->id, |
| .period = period, |
| }; |
| |
| ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0); |
| if (ret) |
| return; |
| |
| perf_output_put(&handle, event); |
| perf_output_end(&handle); |
| } |
| |
| /* |
| * IRQ throttle logging |
| */ |
| |
| static void perf_log_throttle(struct perf_counter *counter, int enable) |
| { |
| struct perf_output_handle handle; |
| int ret; |
| |
| struct { |
| struct perf_event_header header; |
| u64 time; |
| u64 id; |
| } throttle_event = { |
| .header = { |
| .type = PERF_EVENT_THROTTLE + 1, |
| .misc = 0, |
| .size = sizeof(throttle_event), |
| }, |
| .time = sched_clock(), |
| .id = counter->id, |
| }; |
| |
| ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0); |
| if (ret) |
| return; |
| |
| perf_output_put(&handle, throttle_event); |
| perf_output_end(&handle); |
| } |
| |
| /* |
| * Generic counter overflow handling, sampling. |
| */ |
| |
| int perf_counter_overflow(struct perf_counter *counter, int nmi, |
| struct perf_sample_data *data) |
| { |
| int events = atomic_read(&counter->event_limit); |
| int throttle = counter->pmu->unthrottle != NULL; |
| struct hw_perf_counter *hwc = &counter->hw; |
| int ret = 0; |
| |
| if (!throttle) { |
| hwc->interrupts++; |
| } else { |
| if (hwc->interrupts != MAX_INTERRUPTS) { |
| hwc->interrupts++; |
| if (HZ * hwc->interrupts > |
| (u64)sysctl_perf_counter_sample_rate) { |
| hwc->interrupts = MAX_INTERRUPTS; |
| perf_log_throttle(counter, 0); |
| ret = 1; |
| } |
| } else { |
| /* |
| * Keep re-disabling counters even though on the previous |
| * pass we disabled it - just in case we raced with a |
| * sched-in and the counter got enabled again: |
| */ |
| ret = 1; |
| } |
| } |
| |
| if (counter->attr.freq) { |
| u64 now = sched_clock(); |
| s64 delta = now - hwc->freq_stamp; |
| |
| hwc->freq_stamp = now; |
| |
| if (delta > 0 && delta < TICK_NSEC) |
| perf_adjust_period(counter, NSEC_PER_SEC / (int)delta); |
| } |
| |
| /* |
| * XXX event_limit might not quite work as expected on inherited |
| * counters |
| */ |
| |
| counter->pending_kill = POLL_IN; |
| if (events && atomic_dec_and_test(&counter->event_limit)) { |
| ret = 1; |
| counter->pending_kill = POLL_HUP; |
| if (nmi) { |
| counter->pending_disable = 1; |
| perf_pending_queue(&counter->pending, |
| perf_pending_counter); |
| } else |
| perf_counter_disable(counter); |
| } |
| |
| perf_counter_output(counter, nmi, data); |
| return ret; |
| } |
| |
| /* |
| * Generic software counter infrastructure |
| */ |
| |
| static void perf_swcounter_update(struct perf_counter *counter) |
| { |
| struct hw_perf_counter *hwc = &counter->hw; |
| u64 prev, now; |
| s64 delta; |
| |
| again: |
| prev = atomic64_read(&hwc->prev_count); |
| now = atomic64_read(&hwc->count); |
| if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev) |
| goto again; |
| |
| delta = now - prev; |
| |
| atomic64_add(delta, &counter->count); |
| atomic64_sub(delta, &hwc->period_left); |
| } |
| |
| static void perf_swcounter_set_period(struct perf_counter *counter) |
| { |
| struct hw_perf_counter *hwc = &counter->hw; |
| s64 left = atomic64_read(&hwc->period_left); |
| s64 period = hwc->sample_period; |
| |
| if (unlikely(left <= -period)) { |
| left = period; |
| atomic64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| } |
| |
| if (unlikely(left <= 0)) { |
| left += period; |
| atomic64_add(period, &hwc->period_left); |
| hwc->last_period = period; |
| } |
| |
| atomic64_set(&hwc->prev_count, -left); |
| atomic64_set(&hwc->count, -left); |
| } |
| |
| static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer) |
| { |
| enum hrtimer_restart ret = HRTIMER_RESTART; |
| struct perf_sample_data data; |
| struct perf_counter *counter; |
| u64 period; |
| |
| counter = container_of(hrtimer, struct perf_counter, hw.hrtimer); |
| counter->pmu->read(counter); |
| |
| data.addr = 0; |
| data.regs = get_irq_regs(); |
| /* |
| * In case we exclude kernel IPs or are somehow not in interrupt |
| * context, provide the next best thing, the user IP. |
| */ |
| if ((counter->attr.exclude_kernel || !data.regs) && |
| !counter->attr.exclude_user) |
| data.regs = task_pt_regs(current); |
| |
| if (data.regs) { |
| if (perf_counter_overflow(counter, 0, &data)) |
| ret = HRTIMER_NORESTART; |
| } |
| |
| period = max_t(u64, 10000, counter->hw.sample_period); |
| hrtimer_forward_now(hrtimer, ns_to_ktime(period)); |
| |
| return ret; |
| } |
| |
| static void perf_swcounter_overflow(struct perf_counter *counter, |
| int nmi, struct perf_sample_data *data) |
| { |
| data->period = counter->hw.last_period; |
| |
| perf_swcounter_update(counter); |
| perf_swcounter_set_period(counter); |
| if (perf_counter_overflow(counter, nmi, data)) |
| /* soft-disable the counter */ |
| ; |
| } |
| |
| static int perf_swcounter_is_counting(struct perf_counter *counter) |
| { |
| struct perf_counter_context *ctx; |
| unsigned long flags; |
| int count; |
| |
| if (counter->state == PERF_COUNTER_STATE_ACTIVE) |
| return 1; |
| |
| if (counter->state != PERF_COUNTER_STATE_INACTIVE) |
| return 0; |
| |
| /* |
| * If the counter is inactive, it could be just because |
| * its task is scheduled out, or because it's in a group |
| * which could not go on the PMU. We want to count in |
| * the first case but not the second. If the context is |
| * currently active then an inactive software counter must |
| * be the second case. If it's not currently active then |
| * we need to know whether the counter was active when the |
| * context was last active, which we can determine by |
| * comparing counter->tstamp_stopped with ctx->time. |
| * |
| * We are within an RCU read-side critical section, |
| * which protects the existence of *ctx. |
| */ |
| ctx = counter->ctx; |
| spin_lock_irqsave(&ctx->lock, flags); |
| count = 1; |
| /* Re-check state now we have the lock */ |
| if (counter->state < PERF_COUNTER_STATE_INACTIVE || |
| counter->ctx->is_active || |
| counter->tstamp_stopped < ctx->time) |
| count = 0; |
| spin_unlock_irqrestore(&ctx->lock, flags); |
| return count; |
| } |
| |
| static int perf_swcounter_match(struct perf_counter *counter, |
| enum perf_type_id type, |
| u32 event, struct pt_regs *regs) |
| { |
| if (!perf_swcounter_is_counting(counter)) |
| return 0; |
| |
| if (counter->attr.type != type) |
| return 0; |
| if (counter->attr.config != event) |
| return 0; |
| |
| if (regs) { |
| if (counter->attr.exclude_user && user_mode(regs)) |
| return 0; |
| |
| if (counter->attr.exclude_kernel && !user_mode(regs)) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static void perf_swcounter_add(struct perf_counter *counter, u64 nr, |
| int nmi, struct perf_sample_data *data) |
| { |
| int neg = atomic64_add_negative(nr, &counter->hw.count); |
| |
| if (counter->hw.sample_period && !neg && data->regs) |
| perf_swcounter_overflow(counter, nmi, data); |
| } |
| |
| static void perf_swcounter_ctx_event(struct perf_counter_context *ctx, |
| enum perf_type_id type, |
| u32 event, u64 nr, int nmi, |
| struct perf_sample_data *data) |
| { |
| struct perf_counter *counter; |
| |
| if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) |
| return; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { |
| if (perf_swcounter_match(counter, type, event, data->regs)) |
| perf_swcounter_add(counter, nr, nmi, data); |
| } |
| rcu_read_unlock(); |
| } |
| |
| static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx) |
| { |
| if (in_nmi()) |
| return &cpuctx->recursion[3]; |
| |
| if (in_irq()) |
| return &cpuctx->recursion[2]; |
| |
| if (in_softirq()) |
| return &cpuctx->recursion[1]; |
| |
| return &cpuctx->recursion[0]; |
| } |
| |
| static void do_perf_swcounter_event(enum perf_type_id type, u32 event, |
| u64 nr, int nmi, |
| struct perf_sample_data *data) |
| { |
| struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); |
| int *recursion = perf_swcounter_recursion_context(cpuctx); |
| struct perf_counter_context *ctx; |
| |
| if (*recursion) |
| goto out; |
| |
| (*recursion)++; |
| barrier(); |
| |
| perf_swcounter_ctx_event(&cpuctx->ctx, type, event, |
| nr, nmi, data); |
| rcu_read_lock(); |
| /* |
| * doesn't really matter which of the child contexts the |
| * events ends up in. |
| */ |
| ctx = rcu_dereference(current->perf_counter_ctxp); |
| if (ctx) |
| perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data); |
| rcu_read_unlock(); |
| |
| barrier(); |
| (*recursion)--; |
| |
| out: |
| put_cpu_var(perf_cpu_context); |
| } |
| |
| void __perf_swcounter_event(u32 event, u64 nr, int nmi, |
| struct pt_regs *regs, u64 addr) |
| { |
| struct perf_sample_data data = { |
| .regs = regs, |
| .addr = addr, |
| }; |
| |
| do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data); |
| } |
| |
| static void perf_swcounter_read(struct perf_counter *counter) |
| { |
| perf_swcounter_update(counter); |
| } |
| |
| static int perf_swcounter_enable(struct perf_counter *counter) |
| { |
| perf_swcounter_set_period(counter); |
| return 0; |
| } |
| |
| static void perf_swcounter_disable(struct perf_counter *counter) |
| { |
| perf_swcounter_update(counter); |
| } |
| |
| static const struct pmu perf_ops_generic = { |
| .enable = perf_swcounter_enable, |
| .disable = perf_swcounter_disable, |
| .read = perf_swcounter_read, |
| }; |
| |
| /* |
| * Software counter: cpu wall time clock |
| */ |
| |
| static void cpu_clock_perf_counter_update(struct perf_counter *counter) |
| { |
| int cpu = raw_smp_processor_id(); |
| s64 prev; |
| u64 now; |
| |
| now = cpu_clock(cpu); |
| prev = atomic64_read(&counter->hw.prev_count); |
| atomic64_set(&counter->hw.prev_count, now); |
| atomic64_add(now - prev, &counter->count); |
| } |
| |
| static int cpu_clock_perf_counter_enable(struct perf_counter *counter) |
| { |
| struct hw_perf_counter *hwc = &counter->hw; |
| int cpu = raw_smp_processor_id(); |
| |
| atomic64_set(&hwc->prev_count, cpu_clock(cpu)); |
| hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| hwc->hrtimer.function = perf_swcounter_hrtimer; |
| if (hwc->sample_period) { |
| u64 period = max_t(u64, 10000, hwc->sample_period); |
| __hrtimer_start_range_ns(&hwc->hrtimer, |
| ns_to_ktime(period), 0, |
| HRTIMER_MODE_REL, 0); |
| } |
| |
| return 0; |
| } |
| |
| static void cpu_clock_perf_counter_disable(struct perf_counter *counter) |
| { |
| if (counter->hw.sample_period) |
| hrtimer_cancel(&counter->hw.hrtimer); |
| cpu_clock_perf_counter_update(counter); |
| } |
| |
| static void cpu_clock_perf_counter_read(struct perf_counter *counter) |
| { |
| cpu_clock_perf_counter_update(counter); |
| } |
| |
| static const struct pmu perf_ops_cpu_clock = { |
| .enable = cpu_clock_perf_counter_enable, |
| .disable = cpu_clock_perf_counter_disable, |
| .read = cpu_clock_perf_counter_read, |
| }; |
| |
| /* |
| * Software counter: task time clock |
| */ |
| |
| static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now) |
| { |
| u64 prev; |
| s64 delta; |
| |
| prev = atomic64_xchg(&counter->hw.prev_count, now); |
| delta = now - prev; |
| atomic64_add(delta, &counter->count); |
| } |
| |
| static int task_clock_perf_counter_enable(struct perf_counter *counter) |
| { |
| struct hw_perf_counter *hwc = &counter->hw; |
| u64 now; |
| |
| now = counter->ctx->time; |
| |
| atomic64_set(&hwc->prev_count, now); |
| hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| hwc->hrtimer.function = perf_swcounter_hrtimer; |
| if (hwc->sample_period) { |
| u64 period = max_t(u64, 10000, hwc->sample_period); |
| __hrtimer_start_range_ns(&hwc->hrtimer, |
| ns_to_ktime(period), 0, |
| HRTIMER_MODE_REL, 0); |
| } |
| |
| return 0; |
| } |
| |
| static void task_clock_perf_counter_disable(struct perf_counter *counter) |
| { |
| if (counter->hw.sample_period) |
| hrtimer_cancel(&counter->hw.hrtimer); |
| task_clock_perf_counter_update(counter, counter->ctx->time); |
| |
| } |
| |
| static void task_clock_perf_counter_read(struct perf_counter *counter) |
| { |
| u64 time; |
| |
| if (!in_nmi()) { |
| update_context_time(counter->ctx); |
| time = counter->ctx->time; |
| } else { |
| u64 now = perf_clock(); |
| u64 delta = now - counter->ctx->timestamp; |
| time = counter->ctx->time + delta; |
| } |
| |
| task_clock_perf_counter_update(counter, time); |
| } |
| |
| static const struct pmu perf_ops_task_clock = { |
| .enable = task_clock_perf_counter_enable, |
| .disable = task_clock_perf_counter_disable, |
| .read = task_clock_perf_counter_read, |
| }; |
| |
| #ifdef CONFIG_EVENT_PROFILE |
| void perf_tpcounter_event(int event_id) |
| { |
| struct perf_sample_data data = { |
| .regs = get_irq_regs(); |
| .addr = 0, |
| }; |
| |
| if (!data.regs) |
| data.regs = task_pt_regs(current); |
| |
| do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, &data); |
| } |
| EXPORT_SYMBOL_GPL(perf_tpcounter_event); |
| |
| extern int ftrace_profile_enable(int); |
| extern void ftrace_profile_disable(int); |
| |
| static void tp_perf_counter_destroy(struct perf_counter *counter) |
| { |
| ftrace_profile_disable(perf_event_id(&counter->attr)); |
| } |
| |
| static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) |
| { |
| int event_id = perf_event_id(&counter->attr); |
| int ret; |
| |
| ret = ftrace_profile_enable(event_id); |
| if (ret) |
| return NULL; |
| |
| counter->destroy = tp_perf_counter_destroy; |
| |
| return &perf_ops_generic; |
| } |
| #else |
| static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) |
| { |
| return NULL; |
| } |
| #endif |
| |
| atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX]; |
| |
| static void sw_perf_counter_destroy(struct perf_counter *counter) |
| { |
| u64 event = counter->attr.config; |
| |
| WARN_ON(counter->parent); |
| |
| atomic_dec(&perf_swcounter_enabled[event]); |
| } |
| |
| static const struct pmu *sw_perf_counter_init(struct perf_counter *counter) |
| { |
| const struct pmu *pmu = NULL; |
| u64 event = counter->attr.config; |
| |
| /* |
| * Software counters (currently) can't in general distinguish |
| * between user, kernel and hypervisor events. |
| * However, context switches and cpu migrations are considered |
| * to be kernel events, and page faults are never hypervisor |
| * events. |
| */ |
| switch (event) { |
| case PERF_COUNT_SW_CPU_CLOCK: |
| pmu = &perf_ops_cpu_clock; |
| |
| break; |
| case PERF_COUNT_SW_TASK_CLOCK: |
| /* |
| * If the user instantiates this as a per-cpu counter, |
| * use the cpu_clock counter instead. |
| */ |
| if (counter->ctx->task) |
| pmu = &perf_ops_task_clock; |
| else |
| pmu = &perf_ops_cpu_clock; |
| |
| break; |
| case PERF_COUNT_SW_PAGE_FAULTS: |
| case PERF_COUNT_SW_PAGE_FAULTS_MIN: |
| case PERF_COUNT_SW_PAGE_FAULTS_MAJ: |
| case PERF_COUNT_SW_CONTEXT_SWITCHES: |
| case PERF_COUNT_SW_CPU_MIGRATIONS: |
| if (!counter->parent) { |
| atomic_inc(&perf_swcounter_enabled[event]); |
| counter->destroy = sw_perf_counter_destroy; |
| } |
| pmu = &perf_ops_generic; |
| break; |
| } |
| |
| return pmu; |
| } |
| |
| /* |
| * Allocate and initialize a counter structure |
| */ |
| static struct perf_counter * |
| perf_counter_alloc(struct perf_counter_attr *attr, |
| int cpu, |
| struct perf_counter_context *ctx, |
| struct perf_counter *group_leader, |
| struct perf_counter *parent_counter, |
| gfp_t gfpflags) |
| { |
| const struct pmu *pmu; |
| struct perf_counter *counter; |
| struct hw_perf_counter *hwc; |
| long err; |
| |
| counter = kzalloc(sizeof(*counter), gfpflags); |
| if (!counter) |
| return ERR_PTR(-ENOMEM); |
| |
| /* |
| * Single counters are their own group leaders, with an |
| * empty sibling list: |
| */ |
| if (!group_leader) |
| group_leader = counter; |
| |
| mutex_init(&counter->child_mutex); |
| INIT_LIST_HEAD(&counter->child_list); |
| |
| INIT_LIST_HEAD(&counter->list_entry); |
| INIT_LIST_HEAD(&counter->event_entry); |
| INIT_LIST_HEAD(&counter->sibling_list); |
| init_waitqueue_head(&counter->waitq); |
| |
| mutex_init(&counter->mmap_mutex); |
| |
| counter->cpu = cpu; |
| counter->attr = *attr; |
| counter->group_leader = group_leader; |
| counter->pmu = NULL; |
| counter->ctx = ctx; |
| counter->oncpu = -1; |
| |
| counter->parent = parent_counter; |
| |
| counter->ns = get_pid_ns(current->nsproxy->pid_ns); |
| counter->id = atomic64_inc_return(&perf_counter_id); |
| |
| counter->state = PERF_COUNTER_STATE_INACTIVE; |
| |
| if (attr->disabled) |
| counter->state = PERF_COUNTER_STATE_OFF; |
| |
| pmu = NULL; |
| |
| hwc = &counter->hw; |
| hwc->sample_period = attr->sample_period; |
| if (attr->freq && attr->sample_freq) |
| hwc->sample_period = 1; |
| |
| atomic64_set(&hwc->period_left, hwc->sample_period); |
| |
| /* |
| * we currently do not support PERF_SAMPLE_GROUP on inherited counters |
| */ |
| if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP)) |
| goto done; |
| |
| switch (attr->type) { |
| case PERF_TYPE_RAW: |
| case PERF_TYPE_HARDWARE: |
| case PERF_TYPE_HW_CACHE: |
| pmu = hw_perf_counter_init(counter); |
| break; |
| |
| case PERF_TYPE_SOFTWARE: |
| pmu = sw_perf_counter_init(counter); |
| break; |
| |
| case PERF_TYPE_TRACEPOINT: |
| pmu = tp_perf_counter_init(counter); |
| break; |
| |
| default: |
| break; |
| } |
| done: |
| err = 0; |
| if (!pmu) |
| err = -EINVAL; |
| else if (IS_ERR(pmu)) |
| err = PTR_ERR(pmu); |
| |
| if (err) { |
| if (counter->ns) |
| put_pid_ns(counter->ns); |
| kfree(counter); |
| return ERR_PTR(err); |
| } |
| |
| counter->pmu = pmu; |
| |
| if (!counter->parent) { |
| atomic_inc(&nr_counters); |
| if (counter->attr.mmap) |
| atomic_inc(&nr_mmap_counters); |
| if (counter->attr.comm) |
| atomic_inc(&nr_comm_counters); |
| } |
| |
| return counter; |
| } |
| |
| static int perf_copy_attr(struct perf_counter_attr __user *uattr, |
| struct perf_counter_attr *attr) |
| { |
| int ret; |
| u32 size; |
| |
| if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) |
| return -EFAULT; |
| |
| /* |
| * zero the full structure, so that a short copy will be nice. |
| */ |
| memset(attr, 0, sizeof(*attr)); |
| |
| ret = get_user(size, &uattr->size); |
| if (ret) |
| return ret; |
| |
| if (size > PAGE_SIZE) /* silly large */ |
| goto err_size; |
| |
| if (!size) /* abi compat */ |
| size = PERF_ATTR_SIZE_VER0; |
| |
| if (size < PERF_ATTR_SIZE_VER0) |
| goto err_size; |
| |
| /* |
| * If we're handed a bigger struct than we know of, |
| * ensure all the unknown bits are 0. |
| */ |
| if (size > sizeof(*attr)) { |
| unsigned long val; |
| unsigned long __user *addr; |
| unsigned long __user *end; |
| |
| addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr), |
| sizeof(unsigned long)); |
| end = PTR_ALIGN((void __user *)uattr + size, |
| sizeof(unsigned long)); |
| |
| for (; addr < end; addr += sizeof(unsigned long)) { |
| ret = get_user(val, addr); |
| if (ret) |
| return ret; |
| if (val) |
| goto err_size; |
| } |
| } |
| |
| ret = copy_from_user(attr, uattr, size); |
| if (ret) |
| return -EFAULT; |
| |
| /* |
| * If the type exists, the corresponding creation will verify |
| * the attr->config. |
| */ |
| if (attr->type >= PERF_TYPE_MAX) |
| return -EINVAL; |
| |
| if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) |
| return -EINVAL; |
| |
| if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) |
| return -EINVAL; |
| |
| if (attr->read_format & ~(PERF_FORMAT_MAX-1)) |
| return -EINVAL; |
| |
| out: |
| return ret; |
| |
| err_size: |
| put_user(sizeof(*attr), &uattr->size); |
| ret = -E2BIG; |
| goto out; |
| } |
| |
| /** |
| * sys_perf_counter_open - open a performance counter, associate it to a task/cpu |
| * |
| * @attr_uptr: event type attributes for monitoring/sampling |
| * @pid: target pid |
| * @cpu: target cpu |
| * @group_fd: group leader counter fd |
| */ |
| SYSCALL_DEFINE5(perf_counter_open, |
| struct perf_counter_attr __user *, attr_uptr, |
| pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) |
| { |
| struct perf_counter *counter, *group_leader; |
| struct perf_counter_attr attr; |
| struct perf_counter_context *ctx; |
| struct file *counter_file = NULL; |
| struct file *group_file = NULL; |
| int fput_needed = 0; |
| int fput_needed2 = 0; |
| int ret; |
| |
| /* for future expandability... */ |
| if (flags) |
| return -EINVAL; |
| |
| ret = perf_copy_attr(attr_uptr, &attr); |
| if (ret) |
| return ret; |
| |
| if (!attr.exclude_kernel) { |
| if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| } |
| |
| if (attr.freq) { |
| if (attr.sample_freq > sysctl_perf_counter_sample_rate) |
| return -EINVAL; |
| } |
| |
| /* |
| * Get the target context (task or percpu): |
| */ |
| ctx = find_get_context(pid, cpu); |
| if (IS_ERR(ctx)) |
| return PTR_ERR(ctx); |
| |
| /* |
| * Look up the group leader (we will attach this counter to it): |
| */ |
| group_leader = NULL; |
| if (group_fd != -1) { |
| ret = -EINVAL; |
| group_file = fget_light(group_fd, &fput_needed); |
| if (!group_file) |
| goto err_put_context; |
| if (group_file->f_op != &perf_fops) |
| goto err_put_context; |
| |
| group_leader = group_file->private_data; |
| /* |
| * Do not allow a recursive hierarchy (this new sibling |
| * becoming part of another group-sibling): |
| */ |
| if (group_leader->group_leader != group_leader) |
| goto err_put_context; |
| /* |
| * Do not allow to attach to a group in a different |
| * task or CPU context: |
| */ |
| if (group_leader->ctx != ctx) |
| goto err_put_context; |
| /* |
| * Only a group leader can be exclusive or pinned |
| */ |
| if (attr.exclusive || attr.pinned) |
| goto err_put_context; |
| } |
| |
| counter = perf_counter_alloc(&attr, cpu, ctx, group_leader, |
| NULL, GFP_KERNEL); |
| ret = PTR_ERR(counter); |
| if (IS_ERR(counter)) |
| goto err_put_context; |
| |
| ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0); |
| if (ret < 0) |
| goto err_free_put_context; |
| |
| counter_file = fget_light(ret, &fput_needed2); |
| if (!counter_file) |
| goto err_free_put_context; |
| |
| counter->filp = counter_file; |
| WARN_ON_ONCE(ctx->parent_ctx); |
| mutex_lock(&ctx->mutex); |
| perf_install_in_context(ctx, counter, cpu); |
| ++ctx->generation; |
| mutex_unlock(&ctx->mutex); |
| |
| counter->owner = current; |
| get_task_struct(current); |
| mutex_lock(¤t->perf_counter_mutex); |
| list_add_tail(&counter->owner_entry, ¤t->perf_counter_list); |
| mutex_unlock(¤t->perf_counter_mutex); |
| |
| fput_light(counter_file, fput_needed2); |
| |
| out_fput: |
| fput_light(group_file, fput_needed); |
| |
| return ret; |
| |
| err_free_put_context: |
| kfree(counter); |
| |
| err_put_context: |
| put_ctx(ctx); |
| |
| goto out_fput; |
| } |
| |
| /* |
| * inherit a counter from parent task to child task: |
| */ |
| static struct perf_counter * |
| inherit_counter(struct perf_counter *parent_counter, |
| struct task_struct *parent, |
| struct perf_counter_context *parent_ctx, |
| struct task_struct *child, |
| struct perf_counter *group_leader, |
| struct perf_counter_context *child_ctx) |
| { |
| struct perf_counter *child_counter; |
| |
| /* |
| * Instead of creating recursive hierarchies of counters, |
| * we link inherited counters back to the original parent, |
| * which has a filp for sure, which we use as the reference |
| * count: |
| */ |
| if (parent_counter->parent) |
| parent_counter = parent_counter->parent; |
| |
| child_counter = perf_counter_alloc(&parent_counter->attr, |
| parent_counter->cpu, child_ctx, |
| group_leader, parent_counter, |
| GFP_KERNEL); |
| if (IS_ERR(child_counter)) |
| return child_counter; |
| get_ctx(child_ctx); |
| |
| /* |
| * Make the child state follow the state of the parent counter, |
| * not its attr.disabled bit. We hold the parent's mutex, |
| * so we won't race with perf_counter_{en, dis}able_family. |
| */ |
| if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE) |
| child_counter->state = PERF_COUNTER_STATE_INACTIVE; |
| else |
| child_counter->state = PERF_COUNTER_STATE_OFF; |
| |
| if (parent_counter->attr.freq) |
| child_counter->hw.sample_period = parent_counter->hw.sample_period; |
| |
| /* |
| * Link it up in the child's context: |
| */ |
| add_counter_to_ctx(child_counter, child_ctx); |
| |
| /* |
| * Get a reference to the parent filp - we will fput it |
| * when the child counter exits. This is safe to do because |
| * we are in the parent and we know that the filp still |
| * exists and has a nonzero count: |
| */ |
| atomic_long_inc(&parent_counter->filp->f_count); |
| |
| /* |
| * Link this into the parent counter's child list |
| */ |
| WARN_ON_ONCE(parent_counter->ctx->parent_ctx); |
| mutex_lock(&parent_counter->child_mutex); |
| list_add_tail(&child_counter->child_list, &parent_counter->child_list); |
| mutex_unlock(&parent_counter->child_mutex); |
| |
| return child_counter; |
| } |
| |
| static int inherit_group(struct perf_counter *parent_counter, |
| struct task_struct *parent, |
| struct perf_counter_context *parent_ctx, |
| struct task_struct *child, |
| struct perf_counter_context *child_ctx) |
| { |
| struct perf_counter *leader; |
| struct perf_counter *sub; |
| struct perf_counter *child_ctr; |
| |
| leader = inherit_counter(parent_counter, parent, parent_ctx, |
| child, NULL, child_ctx); |
| if (IS_ERR(leader)) |
| return PTR_ERR(leader); |
| list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) { |
| child_ctr = inherit_counter(sub, parent, parent_ctx, |
| child, leader, child_ctx); |
| if (IS_ERR(child_ctr)) |
| return PTR_ERR(child_ctr); |
| } |
| return 0; |
| } |
| |
| static void sync_child_counter(struct perf_counter *child_counter, |
| struct task_struct *child) |
| { |
| struct perf_counter *parent_counter = child_counter->parent; |
| u64 child_val; |
| |
| perf_counter_read_event(child_counter, child); |
| |
| child_val = atomic64_read(&child_counter->count); |
| |
| /* |
| * Add back the child's count to the parent's count: |
| */ |
| atomic64_add(child_val, &parent_counter->count); |
| atomic64_add(child_counter->total_time_enabled, |
| &parent_counter->child_total_time_enabled); |
| atomic64_add(child_counter->total_time_running, |
| &parent_counter->child_total_time_running); |
| |
| /* |
| * Remove this counter from the parent's list |
| */ |
| WARN_ON_ONCE(parent_counter->ctx->parent_ctx); |
| mutex_lock(&parent_counter->child_mutex); |
| list_del_init(&child_counter->child_list); |
| mutex_unlock(&parent_counter->child_mutex); |
| |
| /* |
| * Release the parent counter, if this was the last |
| * reference to it. |
| */ |
| fput(parent_counter->filp); |
| } |
| |
| static void |
| __perf_counter_exit_task(struct perf_counter *child_counter, |
| struct perf_counter_context *child_ctx, |
| struct task_struct *child) |
| { |
| struct perf_counter *parent_counter; |
| |
| update_counter_times(child_counter); |
| perf_counter_remove_from_context(child_counter); |
| |
| parent_counter = child_counter->parent; |
| /* |
| * It can happen that parent exits first, and has counters |
| * that are still around due to the child reference. These |
| * counters need to be zapped - but otherwise linger. |
| */ |
| if (parent_counter) { |
| sync_child_counter(child_counter, child); |
| free_counter(child_counter); |
| } |
| } |
| |
| /* |
| * When a child task exits, feed back counter values to parent counters. |
| */ |
| void perf_counter_exit_task(struct task_struct *child) |
| { |
| struct perf_counter *child_counter, *tmp; |
| struct perf_counter_context *child_ctx; |
| unsigned long flags; |
| |
| if (likely(!child->perf_counter_ctxp)) |
| return; |
| |
| local_irq_save(flags); |
| /* |
| * We can't reschedule here because interrupts are disabled, |
| * and either child is current or it is a task that can't be |
| * scheduled, so we are now safe from rescheduling changing |
| * our context. |
| */ |
| child_ctx = child->perf_counter_ctxp; |
| __perf_counter_task_sched_out(child_ctx); |
| |
| /* |
| * Take the context lock here so that if find_get_context is |
| * reading child->perf_counter_ctxp, we wait until it has |
| * incremented the context's refcount before we do put_ctx below. |
| */ |
| spin_lock(&child_ctx->lock); |
| child->perf_counter_ctxp = NULL; |
| if (child_ctx->parent_ctx) { |
| /* |
| * This context is a clone; unclone it so it can't get |
| * swapped to another process while we're removing all |
| * the counters from it. |
| */ |
| put_ctx(child_ctx->parent_ctx); |
| child_ctx->parent_ctx = NULL; |
| } |
| spin_unlock(&child_ctx->lock); |
| local_irq_restore(flags); |
| |
| /* |
| * We can recurse on the same lock type through: |
| * |
| * __perf_counter_exit_task() |
| * sync_child_counter() |
| * fput(parent_counter->filp) |
| * perf_release() |
| * mutex_lock(&ctx->mutex) |
| * |
| * But since its the parent context it won't be the same instance. |
| */ |
| mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); |
| |
| again: |
| list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list, |
| list_entry) |
| __perf_counter_exit_task(child_counter, child_ctx, child); |
| |
| /* |
| * If the last counter was a group counter, it will have appended all |
| * its siblings to the list, but we obtained 'tmp' before that which |
| * will still point to the list head terminating the iteration. |
| */ |
| if (!list_empty(&child_ctx->counter_list)) |
| goto again; |
| |
| mutex_unlock(&child_ctx->mutex); |
| |
| put_ctx(child_ctx); |
| } |
| |
| /* |
| * free an unexposed, unused context as created by inheritance by |
| * init_task below, used by fork() in case of fail. |
| */ |
| void perf_counter_free_task(struct task_struct *task) |
| { |
| struct perf_counter_context *ctx = task->perf_counter_ctxp; |
| struct perf_counter *counter, *tmp; |
| |
| if (!ctx) |
| return; |
| |
| mutex_lock(&ctx->mutex); |
| again: |
| list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) { |
| struct perf_counter *parent = counter->parent; |
| |
| if (WARN_ON_ONCE(!parent)) |
| continue; |
| |
| mutex_lock(&parent->child_mutex); |
| list_del_init(&counter->child_list); |
| mutex_unlock(&parent->child_mutex); |
| |
| fput(parent->filp); |
| |
| list_del_counter(counter, ctx); |
| free_counter(counter); |
| } |
| |
| if (!list_empty(&ctx->counter_list)) |
| goto again; |
| |
| mutex_unlock(&ctx->mutex); |
| |
| put_ctx(ctx); |
| } |
| |
| /* |
| * Initialize the perf_counter context in task_struct |
| */ |
| int perf_counter_init_task(struct task_struct *child) |
| { |
| struct perf_counter_context *child_ctx, *parent_ctx; |
| struct perf_counter_context *cloned_ctx; |
| struct perf_counter *counter; |
| struct task_struct *parent = current; |
| int inherited_all = 1; |
| int ret = 0; |
| |
| child->perf_counter_ctxp = NULL; |
| |
| mutex_init(&child->perf_counter_mutex); |
| INIT_LIST_HEAD(&child->perf_counter_list); |
| |
| if (likely(!parent->perf_counter_ctxp)) |
| return 0; |
| |
| /* |
| * This is executed from the parent task context, so inherit |
| * counters that have been marked for cloning. |
| * First allocate and initialize a context for the child. |
| */ |
| |
| child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); |
| if (!child_ctx) |
| return -ENOMEM; |
| |
| __perf_counter_init_context(child_ctx, child); |
| child->perf_counter_ctxp = child_ctx; |
| get_task_struct(child); |
| |
| /* |
| * If the parent's context is a clone, pin it so it won't get |
| * swapped under us. |
| */ |
| parent_ctx = perf_pin_task_context(parent); |
| |
| /* |
| * No need to check if parent_ctx != NULL here; since we saw |
| * it non-NULL earlier, the only reason for it to become NULL |
| * is if we exit, and since we're currently in the middle of |
| * a fork we can't be exiting at the same time. |
| */ |
| |
| /* |
| * Lock the parent list. No need to lock the child - not PID |
| * hashed yet and not running, so nobody can access it. |
| */ |
| mutex_lock(&parent_ctx->mutex); |
| |
| /* |
| * We dont have to disable NMIs - we are only looking at |
| * the list, not manipulating it: |
| */ |
| list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) { |
| if (counter != counter->group_leader) |
| continue; |
| |
| if (!counter->attr.inherit) { |
| inherited_all = 0; |
| continue; |
| } |
| |
| ret = inherit_group(counter, parent, parent_ctx, |
| child, child_ctx); |
| if (ret) { |
| inherited_all = 0; |
| break; |
| } |
| } |
| |
| if (inherited_all) { |
| /* |
| * Mark the child context as a clone of the parent |
| * context, or of whatever the parent is a clone of. |
| * Note that if the parent is a clone, it could get |
| * uncloned at any point, but that doesn't matter |
| * because the list of counters and the generation |
| * count can't have changed since we took the mutex. |
| */ |
| cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); |
| if (cloned_ctx) { |
| child_ctx->parent_ctx = cloned_ctx; |
| child_ctx->parent_gen = parent_ctx->parent_gen; |
| } else { |
| child_ctx->parent_ctx = parent_ctx; |
| child_ctx->parent_gen = parent_ctx->generation; |
| } |
| get_ctx(child_ctx->parent_ctx); |
| } |
| |
| mutex_unlock(&parent_ctx->mutex); |
| |
| perf_unpin_context(parent_ctx); |
| |
| return ret; |
| } |
| |
| static void __cpuinit perf_counter_init_cpu(int cpu) |
| { |
| struct perf_cpu_context *cpuctx; |
| |
| cpuctx = &per_cpu(perf_cpu_context, cpu); |
| __perf_counter_init_context(&cpuctx->ctx, NULL); |
| |
| spin_lock(&perf_resource_lock); |
| cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu; |
| spin_unlock(&perf_resource_lock); |
| |
| hw_perf_counter_setup(cpu); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static void __perf_counter_exit_cpu(void *info) |
| { |
| struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
| struct perf_counter_context *ctx = &cpuctx->ctx; |
| struct perf_counter *counter, *tmp; |
| |
| list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) |
| __perf_counter_remove_from_context(counter); |
| } |
| static void perf_counter_exit_cpu(int cpu) |
| { |
| struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); |
| struct perf_counter_context *ctx = &cpuctx->ctx; |
| |
| mutex_lock(&ctx->mutex); |
| smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1); |
| mutex_unlock(&ctx->mutex); |
| } |
| #else |
| static inline void perf_counter_exit_cpu(int cpu) { } |
| #endif |
| |
| static int __cpuinit |
| perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) |
| { |
| unsigned int cpu = (long)hcpu; |
| |
| switch (action) { |
| |
| case CPU_UP_PREPARE: |
| case CPU_UP_PREPARE_FROZEN: |
| perf_counter_init_cpu(cpu); |
| break; |
| |
| case CPU_DOWN_PREPARE: |
| case CPU_DOWN_PREPARE_FROZEN: |
| perf_counter_exit_cpu(cpu); |
| break; |
| |
| default: |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| /* |
| * This has to have a higher priority than migration_notifier in sched.c. |
| */ |
| static struct notifier_block __cpuinitdata perf_cpu_nb = { |
| .notifier_call = perf_cpu_notify, |
| .priority = 20, |
| }; |
| |
| void __init perf_counter_init(void) |
| { |
| perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, |
| (void *)(long)smp_processor_id()); |
| register_cpu_notifier(&perf_cpu_nb); |
| } |
| |
| static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) |
| { |
| return sprintf(buf, "%d\n", perf_reserved_percpu); |
| } |
| |
| static ssize_t |
| perf_set_reserve_percpu(struct sysdev_class *class, |
| const char *buf, |
| size_t count) |
| { |
| struct perf_cpu_context *cpuctx; |
| unsigned long val; |
| int err, cpu, mpt; |
| |
| err = strict_strtoul(buf, 10, &val); |
| if (err) |
| return err; |
| if (val > perf_max_counters) |
| return -EINVAL; |
| |
| spin_lock(&perf_resource_lock); |
| perf_reserved_percpu = val; |
| for_each_online_cpu(cpu) { |
| cpuctx = &per_cpu(perf_cpu_context, cpu); |
| spin_lock_irq(&cpuctx->ctx.lock); |
| mpt = min(perf_max_counters - cpuctx->ctx.nr_counters, |
| perf_max_counters - perf_reserved_percpu); |
| cpuctx->max_pertask = mpt; |
| spin_unlock_irq(&cpuctx->ctx.lock); |
| } |
| spin_unlock(&perf_resource_lock); |
| |
| return count; |
| } |
| |
| static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) |
| { |
| return sprintf(buf, "%d\n", perf_overcommit); |
| } |
| |
| static ssize_t |
| perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) |
| { |
| unsigned long val; |
| int err; |
| |
| err = strict_strtoul(buf, 10, &val); |
| if (err) |
| return err; |
| if (val > 1) |
| return -EINVAL; |
| |
| spin_lock(&perf_resource_lock); |
| perf_overcommit = val; |
| spin_unlock(&perf_resource_lock); |
| |
| return count; |
| } |
| |
| static SYSDEV_CLASS_ATTR( |
| reserve_percpu, |
| 0644, |
| perf_show_reserve_percpu, |
| perf_set_reserve_percpu |
| ); |
| |
| static SYSDEV_CLASS_ATTR( |
| overcommit, |
| 0644, |
| perf_show_overcommit, |
| perf_set_overcommit |
| ); |
| |
| static struct attribute *perfclass_attrs[] = { |
| &attr_reserve_percpu.attr, |
| &attr_overcommit.attr, |
| NULL |
| }; |
| |
| static struct attribute_group perfclass_attr_group = { |
| .attrs = perfclass_attrs, |
| .name = "perf_counters", |
| }; |
| |
| static int __init perf_counter_sysfs_init(void) |
| { |
| return sysfs_create_group(&cpu_sysdev_class.kset.kobj, |
| &perfclass_attr_group); |
| } |
| device_initcall(perf_counter_sysfs_init); |