| /* | 
 |  * apb_timer.c: Driver for Langwell APB timers | 
 |  * | 
 |  * (C) Copyright 2009 Intel Corporation | 
 |  * Author: Jacob Pan (jacob.jun.pan@intel.com) | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License | 
 |  * as published by the Free Software Foundation; version 2 | 
 |  * of the License. | 
 |  * | 
 |  * Note: | 
 |  * Langwell is the south complex of Intel Moorestown MID platform. There are | 
 |  * eight external timers in total that can be used by the operating system. | 
 |  * The timer information, such as frequency and addresses, is provided to the | 
 |  * OS via SFI tables. | 
 |  * Timer interrupts are routed via FW/HW emulated IOAPIC independently via | 
 |  * individual redirection table entries (RTE). | 
 |  * Unlike HPET, there is no master counter, therefore one of the timers are | 
 |  * used as clocksource. The overall allocation looks like: | 
 |  *  - timer 0 - NR_CPUs for per cpu timer | 
 |  *  - one timer for clocksource | 
 |  *  - one timer for watchdog driver. | 
 |  * It is also worth notice that APB timer does not support true one-shot mode, | 
 |  * free-running mode will be used here to emulate one-shot mode. | 
 |  * APB timer can also be used as broadcast timer along with per cpu local APIC | 
 |  * timer, but by default APB timer has higher rating than local APIC timers. | 
 |  */ | 
 |  | 
 | #include <linux/delay.h> | 
 | #include <linux/dw_apb_timer.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/init.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/pm.h> | 
 | #include <linux/sfi.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/irq.h> | 
 |  | 
 | #include <asm/fixmap.h> | 
 | #include <asm/apb_timer.h> | 
 | #include <asm/intel-mid.h> | 
 | #include <asm/time.h> | 
 |  | 
 | #define APBT_CLOCKEVENT_RATING		110 | 
 | #define APBT_CLOCKSOURCE_RATING		250 | 
 |  | 
 | #define APBT_CLOCKEVENT0_NUM   (0) | 
 | #define APBT_CLOCKSOURCE_NUM   (2) | 
 |  | 
 | static phys_addr_t apbt_address; | 
 | static int apb_timer_block_enabled; | 
 | static void __iomem *apbt_virt_address; | 
 |  | 
 | /* | 
 |  * Common DW APB timer info | 
 |  */ | 
 | static unsigned long apbt_freq; | 
 |  | 
 | struct apbt_dev { | 
 | 	struct dw_apb_clock_event_device	*timer; | 
 | 	unsigned int				num; | 
 | 	int					cpu; | 
 | 	unsigned int				irq; | 
 | 	char					name[10]; | 
 | }; | 
 |  | 
 | static struct dw_apb_clocksource *clocksource_apbt; | 
 |  | 
 | static inline void __iomem *adev_virt_addr(struct apbt_dev *adev) | 
 | { | 
 | 	return apbt_virt_address + adev->num * APBTMRS_REG_SIZE; | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | static unsigned int apbt_num_timers_used; | 
 | #endif | 
 |  | 
 | static inline void apbt_set_mapping(void) | 
 | { | 
 | 	struct sfi_timer_table_entry *mtmr; | 
 | 	int phy_cs_timer_id = 0; | 
 |  | 
 | 	if (apbt_virt_address) { | 
 | 		pr_debug("APBT base already mapped\n"); | 
 | 		return; | 
 | 	} | 
 | 	mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); | 
 | 	if (mtmr == NULL) { | 
 | 		printk(KERN_ERR "Failed to get MTMR %d from SFI\n", | 
 | 		       APBT_CLOCKEVENT0_NUM); | 
 | 		return; | 
 | 	} | 
 | 	apbt_address = (phys_addr_t)mtmr->phys_addr; | 
 | 	if (!apbt_address) { | 
 | 		printk(KERN_WARNING "No timer base from SFI, use default\n"); | 
 | 		apbt_address = APBT_DEFAULT_BASE; | 
 | 	} | 
 | 	apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE); | 
 | 	if (!apbt_virt_address) { | 
 | 		pr_debug("Failed mapping APBT phy address at %lu\n",\ | 
 | 			 (unsigned long)apbt_address); | 
 | 		goto panic_noapbt; | 
 | 	} | 
 | 	apbt_freq = mtmr->freq_hz; | 
 | 	sfi_free_mtmr(mtmr); | 
 |  | 
 | 	/* Now figure out the physical timer id for clocksource device */ | 
 | 	mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM); | 
 | 	if (mtmr == NULL) | 
 | 		goto panic_noapbt; | 
 |  | 
 | 	/* Now figure out the physical timer id */ | 
 | 	pr_debug("Use timer %d for clocksource\n", | 
 | 		 (int)(mtmr->phys_addr & 0xff) / APBTMRS_REG_SIZE); | 
 | 	phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) / | 
 | 		APBTMRS_REG_SIZE; | 
 |  | 
 | 	clocksource_apbt = dw_apb_clocksource_init(APBT_CLOCKSOURCE_RATING, | 
 | 		"apbt0", apbt_virt_address + phy_cs_timer_id * | 
 | 		APBTMRS_REG_SIZE, apbt_freq); | 
 | 	return; | 
 |  | 
 | panic_noapbt: | 
 | 	panic("Failed to setup APB system timer\n"); | 
 |  | 
 | } | 
 |  | 
 | static inline void apbt_clear_mapping(void) | 
 | { | 
 | 	iounmap(apbt_virt_address); | 
 | 	apbt_virt_address = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * APBT timer interrupt enable / disable | 
 |  */ | 
 | static inline int is_apbt_capable(void) | 
 | { | 
 | 	return apbt_virt_address ? 1 : 0; | 
 | } | 
 |  | 
 | static int __init apbt_clockevent_register(void) | 
 | { | 
 | 	struct sfi_timer_table_entry *mtmr; | 
 | 	struct apbt_dev *adev = this_cpu_ptr(&cpu_apbt_dev); | 
 |  | 
 | 	mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); | 
 | 	if (mtmr == NULL) { | 
 | 		printk(KERN_ERR "Failed to get MTMR %d from SFI\n", | 
 | 		       APBT_CLOCKEVENT0_NUM); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	adev->num = smp_processor_id(); | 
 | 	adev->timer = dw_apb_clockevent_init(smp_processor_id(), "apbt0", | 
 | 		intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT ? | 
 | 		APBT_CLOCKEVENT_RATING - 100 : APBT_CLOCKEVENT_RATING, | 
 | 		adev_virt_addr(adev), 0, apbt_freq); | 
 | 	/* Firmware does EOI handling for us. */ | 
 | 	adev->timer->eoi = NULL; | 
 |  | 
 | 	if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) { | 
 | 		global_clock_event = &adev->timer->ced; | 
 | 		printk(KERN_DEBUG "%s clockevent registered as global\n", | 
 | 		       global_clock_event->name); | 
 | 	} | 
 |  | 
 | 	dw_apb_clockevent_register(adev->timer); | 
 |  | 
 | 	sfi_free_mtmr(mtmr); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | static void apbt_setup_irq(struct apbt_dev *adev) | 
 | { | 
 | 	/* timer0 irq has been setup early */ | 
 | 	if (adev->irq == 0) | 
 | 		return; | 
 |  | 
 | 	irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT); | 
 | 	irq_set_affinity(adev->irq, cpumask_of(adev->cpu)); | 
 | } | 
 |  | 
 | /* Should be called with per cpu */ | 
 | void apbt_setup_secondary_clock(void) | 
 | { | 
 | 	struct apbt_dev *adev; | 
 | 	int cpu; | 
 |  | 
 | 	/* Don't register boot CPU clockevent */ | 
 | 	cpu = smp_processor_id(); | 
 | 	if (!cpu) | 
 | 		return; | 
 |  | 
 | 	adev = this_cpu_ptr(&cpu_apbt_dev); | 
 | 	if (!adev->timer) { | 
 | 		adev->timer = dw_apb_clockevent_init(cpu, adev->name, | 
 | 			APBT_CLOCKEVENT_RATING, adev_virt_addr(adev), | 
 | 			adev->irq, apbt_freq); | 
 | 		adev->timer->eoi = NULL; | 
 | 	} else { | 
 | 		dw_apb_clockevent_resume(adev->timer); | 
 | 	} | 
 |  | 
 | 	printk(KERN_INFO "Registering CPU %d clockevent device %s, cpu %08x\n", | 
 | 	       cpu, adev->name, adev->cpu); | 
 |  | 
 | 	apbt_setup_irq(adev); | 
 | 	dw_apb_clockevent_register(adev->timer); | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * this notify handler process CPU hotplug events. in case of S0i3, nonboot | 
 |  * cpus are disabled/enabled frequently, for performance reasons, we keep the | 
 |  * per cpu timer irq registered so that we do need to do free_irq/request_irq. | 
 |  * | 
 |  * TODO: it might be more reliable to directly disable percpu clockevent device | 
 |  * without the notifier chain. currently, cpu 0 may get interrupts from other | 
 |  * cpu timers during the offline process due to the ordering of notification. | 
 |  * the extra interrupt is harmless. | 
 |  */ | 
 | static int apbt_cpuhp_notify(struct notifier_block *n, | 
 | 			     unsigned long action, void *hcpu) | 
 | { | 
 | 	unsigned long cpu = (unsigned long)hcpu; | 
 | 	struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu); | 
 |  | 
 | 	switch (action & 0xf) { | 
 | 	case CPU_DEAD: | 
 | 		dw_apb_clockevent_pause(adev->timer); | 
 | 		if (system_state == SYSTEM_RUNNING) { | 
 | 			pr_debug("skipping APBT CPU %lu offline\n", cpu); | 
 | 		} else { | 
 | 			pr_debug("APBT clockevent for cpu %lu offline\n", cpu); | 
 | 			dw_apb_clockevent_stop(adev->timer); | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		pr_debug("APBT notified %lu, no action\n", action); | 
 | 	} | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static __init int apbt_late_init(void) | 
 | { | 
 | 	if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT || | 
 | 		!apb_timer_block_enabled) | 
 | 		return 0; | 
 | 	/* This notifier should be called after workqueue is ready */ | 
 | 	hotcpu_notifier(apbt_cpuhp_notify, -20); | 
 | 	return 0; | 
 | } | 
 | fs_initcall(apbt_late_init); | 
 | #else | 
 |  | 
 | void apbt_setup_secondary_clock(void) {} | 
 |  | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | static int apbt_clocksource_register(void) | 
 | { | 
 | 	u64 start, now; | 
 | 	cycle_t t1; | 
 |  | 
 | 	/* Start the counter, use timer 2 as source, timer 0/1 for event */ | 
 | 	dw_apb_clocksource_start(clocksource_apbt); | 
 |  | 
 | 	/* Verify whether apbt counter works */ | 
 | 	t1 = dw_apb_clocksource_read(clocksource_apbt); | 
 | 	rdtscll(start); | 
 |  | 
 | 	/* | 
 | 	 * We don't know the TSC frequency yet, but waiting for | 
 | 	 * 200000 TSC cycles is safe: | 
 | 	 * 4 GHz == 50us | 
 | 	 * 1 GHz == 200us | 
 | 	 */ | 
 | 	do { | 
 | 		rep_nop(); | 
 | 		rdtscll(now); | 
 | 	} while ((now - start) < 200000UL); | 
 |  | 
 | 	/* APBT is the only always on clocksource, it has to work! */ | 
 | 	if (t1 == dw_apb_clocksource_read(clocksource_apbt)) | 
 | 		panic("APBT counter not counting. APBT disabled\n"); | 
 |  | 
 | 	dw_apb_clocksource_register(clocksource_apbt); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Early setup the APBT timer, only use timer 0 for booting then switch to | 
 |  * per CPU timer if possible. | 
 |  * returns 1 if per cpu apbt is setup | 
 |  * returns 0 if no per cpu apbt is chosen | 
 |  * panic if set up failed, this is the only platform timer on Moorestown. | 
 |  */ | 
 | void __init apbt_time_init(void) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	int i; | 
 | 	struct sfi_timer_table_entry *p_mtmr; | 
 | 	struct apbt_dev *adev; | 
 | #endif | 
 |  | 
 | 	if (apb_timer_block_enabled) | 
 | 		return; | 
 | 	apbt_set_mapping(); | 
 | 	if (!apbt_virt_address) | 
 | 		goto out_noapbt; | 
 | 	/* | 
 | 	 * Read the frequency and check for a sane value, for ESL model | 
 | 	 * we extend the possible clock range to allow time scaling. | 
 | 	 */ | 
 |  | 
 | 	if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) { | 
 | 		pr_debug("APBT has invalid freq 0x%lx\n", apbt_freq); | 
 | 		goto out_noapbt; | 
 | 	} | 
 | 	if (apbt_clocksource_register()) { | 
 | 		pr_debug("APBT has failed to register clocksource\n"); | 
 | 		goto out_noapbt; | 
 | 	} | 
 | 	if (!apbt_clockevent_register()) | 
 | 		apb_timer_block_enabled = 1; | 
 | 	else { | 
 | 		pr_debug("APBT has failed to register clockevent\n"); | 
 | 		goto out_noapbt; | 
 | 	} | 
 | #ifdef CONFIG_SMP | 
 | 	/* kernel cmdline disable apb timer, so we will use lapic timers */ | 
 | 	if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) { | 
 | 		printk(KERN_INFO "apbt: disabled per cpu timer\n"); | 
 | 		return; | 
 | 	} | 
 | 	pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus()); | 
 | 	if (num_possible_cpus() <= sfi_mtimer_num) | 
 | 		apbt_num_timers_used = num_possible_cpus(); | 
 | 	else | 
 | 		apbt_num_timers_used = 1; | 
 | 	pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used); | 
 |  | 
 | 	/* here we set up per CPU timer data structure */ | 
 | 	for (i = 0; i < apbt_num_timers_used; i++) { | 
 | 		adev = &per_cpu(cpu_apbt_dev, i); | 
 | 		adev->num = i; | 
 | 		adev->cpu = i; | 
 | 		p_mtmr = sfi_get_mtmr(i); | 
 | 		if (p_mtmr) | 
 | 			adev->irq = p_mtmr->irq; | 
 | 		else | 
 | 			printk(KERN_ERR "Failed to get timer for cpu %d\n", i); | 
 | 		snprintf(adev->name, sizeof(adev->name) - 1, "apbt%d", i); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	return; | 
 |  | 
 | out_noapbt: | 
 | 	apbt_clear_mapping(); | 
 | 	apb_timer_block_enabled = 0; | 
 | 	panic("failed to enable APB timer\n"); | 
 | } | 
 |  | 
 | /* called before apb_timer_enable, use early map */ | 
 | unsigned long apbt_quick_calibrate(void) | 
 | { | 
 | 	int i, scale; | 
 | 	u64 old, new; | 
 | 	cycle_t t1, t2; | 
 | 	unsigned long khz = 0; | 
 | 	u32 loop, shift; | 
 |  | 
 | 	apbt_set_mapping(); | 
 | 	dw_apb_clocksource_start(clocksource_apbt); | 
 |  | 
 | 	/* check if the timer can count down, otherwise return */ | 
 | 	old = dw_apb_clocksource_read(clocksource_apbt); | 
 | 	i = 10000; | 
 | 	while (--i) { | 
 | 		if (old != dw_apb_clocksource_read(clocksource_apbt)) | 
 | 			break; | 
 | 	} | 
 | 	if (!i) | 
 | 		goto failed; | 
 |  | 
 | 	/* count 16 ms */ | 
 | 	loop = (apbt_freq / 1000) << 4; | 
 |  | 
 | 	/* restart the timer to ensure it won't get to 0 in the calibration */ | 
 | 	dw_apb_clocksource_start(clocksource_apbt); | 
 |  | 
 | 	old = dw_apb_clocksource_read(clocksource_apbt); | 
 | 	old += loop; | 
 |  | 
 | 	t1 = __native_read_tsc(); | 
 |  | 
 | 	do { | 
 | 		new = dw_apb_clocksource_read(clocksource_apbt); | 
 | 	} while (new < old); | 
 |  | 
 | 	t2 = __native_read_tsc(); | 
 |  | 
 | 	shift = 5; | 
 | 	if (unlikely(loop >> shift == 0)) { | 
 | 		printk(KERN_INFO | 
 | 		       "APBT TSC calibration failed, not enough resolution\n"); | 
 | 		return 0; | 
 | 	} | 
 | 	scale = (int)div_u64((t2 - t1), loop >> shift); | 
 | 	khz = (scale * (apbt_freq / 1000)) >> shift; | 
 | 	printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz); | 
 | 	return khz; | 
 | failed: | 
 | 	return 0; | 
 | } |