|  | /* Intel PRO/1000 Linux driver | 
|  | * Copyright(c) 1999 - 2014 Intel Corporation. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms and conditions of the GNU General Public License, | 
|  | * version 2, as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * The full GNU General Public License is included in this distribution in | 
|  | * the file called "COPYING". | 
|  | * | 
|  | * Contact Information: | 
|  | * Linux NICS <linux.nics@intel.com> | 
|  | * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/tcp.h> | 
|  | #include <linux/ipv6.h> | 
|  | #include <linux/slab.h> | 
|  | #include <net/checksum.h> | 
|  | #include <net/ip6_checksum.h> | 
|  | #include <linux/ethtool.h> | 
|  | #include <linux/if_vlan.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/pm_qos.h> | 
|  | #include <linux/pm_runtime.h> | 
|  | #include <linux/aer.h> | 
|  | #include <linux/prefetch.h> | 
|  |  | 
|  | #include "e1000.h" | 
|  |  | 
|  | #define DRV_EXTRAVERSION "-k" | 
|  |  | 
|  | #define DRV_VERSION "2.3.2" DRV_EXTRAVERSION | 
|  | char e1000e_driver_name[] = "e1000e"; | 
|  | const char e1000e_driver_version[] = DRV_VERSION; | 
|  |  | 
|  | #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) | 
|  | static int debug = -1; | 
|  | module_param(debug, int, 0); | 
|  | MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); | 
|  |  | 
|  | static const struct e1000_info *e1000_info_tbl[] = { | 
|  | [board_82571]		= &e1000_82571_info, | 
|  | [board_82572]		= &e1000_82572_info, | 
|  | [board_82573]		= &e1000_82573_info, | 
|  | [board_82574]		= &e1000_82574_info, | 
|  | [board_82583]		= &e1000_82583_info, | 
|  | [board_80003es2lan]	= &e1000_es2_info, | 
|  | [board_ich8lan]		= &e1000_ich8_info, | 
|  | [board_ich9lan]		= &e1000_ich9_info, | 
|  | [board_ich10lan]	= &e1000_ich10_info, | 
|  | [board_pchlan]		= &e1000_pch_info, | 
|  | [board_pch2lan]		= &e1000_pch2_info, | 
|  | [board_pch_lpt]		= &e1000_pch_lpt_info, | 
|  | }; | 
|  |  | 
|  | struct e1000_reg_info { | 
|  | u32 ofs; | 
|  | char *name; | 
|  | }; | 
|  |  | 
|  | static const struct e1000_reg_info e1000_reg_info_tbl[] = { | 
|  | /* General Registers */ | 
|  | {E1000_CTRL, "CTRL"}, | 
|  | {E1000_STATUS, "STATUS"}, | 
|  | {E1000_CTRL_EXT, "CTRL_EXT"}, | 
|  |  | 
|  | /* Interrupt Registers */ | 
|  | {E1000_ICR, "ICR"}, | 
|  |  | 
|  | /* Rx Registers */ | 
|  | {E1000_RCTL, "RCTL"}, | 
|  | {E1000_RDLEN(0), "RDLEN"}, | 
|  | {E1000_RDH(0), "RDH"}, | 
|  | {E1000_RDT(0), "RDT"}, | 
|  | {E1000_RDTR, "RDTR"}, | 
|  | {E1000_RXDCTL(0), "RXDCTL"}, | 
|  | {E1000_ERT, "ERT"}, | 
|  | {E1000_RDBAL(0), "RDBAL"}, | 
|  | {E1000_RDBAH(0), "RDBAH"}, | 
|  | {E1000_RDFH, "RDFH"}, | 
|  | {E1000_RDFT, "RDFT"}, | 
|  | {E1000_RDFHS, "RDFHS"}, | 
|  | {E1000_RDFTS, "RDFTS"}, | 
|  | {E1000_RDFPC, "RDFPC"}, | 
|  |  | 
|  | /* Tx Registers */ | 
|  | {E1000_TCTL, "TCTL"}, | 
|  | {E1000_TDBAL(0), "TDBAL"}, | 
|  | {E1000_TDBAH(0), "TDBAH"}, | 
|  | {E1000_TDLEN(0), "TDLEN"}, | 
|  | {E1000_TDH(0), "TDH"}, | 
|  | {E1000_TDT(0), "TDT"}, | 
|  | {E1000_TIDV, "TIDV"}, | 
|  | {E1000_TXDCTL(0), "TXDCTL"}, | 
|  | {E1000_TADV, "TADV"}, | 
|  | {E1000_TARC(0), "TARC"}, | 
|  | {E1000_TDFH, "TDFH"}, | 
|  | {E1000_TDFT, "TDFT"}, | 
|  | {E1000_TDFHS, "TDFHS"}, | 
|  | {E1000_TDFTS, "TDFTS"}, | 
|  | {E1000_TDFPC, "TDFPC"}, | 
|  |  | 
|  | /* List Terminator */ | 
|  | {0, NULL} | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * __ew32_prepare - prepare to write to MAC CSR register on certain parts | 
|  | * @hw: pointer to the HW structure | 
|  | * | 
|  | * When updating the MAC CSR registers, the Manageability Engine (ME) could | 
|  | * be accessing the registers at the same time.  Normally, this is handled in | 
|  | * h/w by an arbiter but on some parts there is a bug that acknowledges Host | 
|  | * accesses later than it should which could result in the register to have | 
|  | * an incorrect value.  Workaround this by checking the FWSM register which | 
|  | * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set | 
|  | * and try again a number of times. | 
|  | **/ | 
|  | s32 __ew32_prepare(struct e1000_hw *hw) | 
|  | { | 
|  | s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT; | 
|  |  | 
|  | while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i) | 
|  | udelay(50); | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val) | 
|  | { | 
|  | if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) | 
|  | __ew32_prepare(hw); | 
|  |  | 
|  | writel(val, hw->hw_addr + reg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_regdump - register printout routine | 
|  | * @hw: pointer to the HW structure | 
|  | * @reginfo: pointer to the register info table | 
|  | **/ | 
|  | static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo) | 
|  | { | 
|  | int n = 0; | 
|  | char rname[16]; | 
|  | u32 regs[8]; | 
|  |  | 
|  | switch (reginfo->ofs) { | 
|  | case E1000_RXDCTL(0): | 
|  | for (n = 0; n < 2; n++) | 
|  | regs[n] = __er32(hw, E1000_RXDCTL(n)); | 
|  | break; | 
|  | case E1000_TXDCTL(0): | 
|  | for (n = 0; n < 2; n++) | 
|  | regs[n] = __er32(hw, E1000_TXDCTL(n)); | 
|  | break; | 
|  | case E1000_TARC(0): | 
|  | for (n = 0; n < 2; n++) | 
|  | regs[n] = __er32(hw, E1000_TARC(n)); | 
|  | break; | 
|  | default: | 
|  | pr_info("%-15s %08x\n", | 
|  | reginfo->name, __er32(hw, reginfo->ofs)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]"); | 
|  | pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]); | 
|  | } | 
|  |  | 
|  | static void e1000e_dump_ps_pages(struct e1000_adapter *adapter, | 
|  | struct e1000_buffer *bi) | 
|  | { | 
|  | int i; | 
|  | struct e1000_ps_page *ps_page; | 
|  |  | 
|  | for (i = 0; i < adapter->rx_ps_pages; i++) { | 
|  | ps_page = &bi->ps_pages[i]; | 
|  |  | 
|  | if (ps_page->page) { | 
|  | pr_info("packet dump for ps_page %d:\n", i); | 
|  | print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, | 
|  | 16, 1, page_address(ps_page->page), | 
|  | PAGE_SIZE, true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_dump - Print registers, Tx-ring and Rx-ring | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  | static void e1000e_dump(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_reg_info *reginfo; | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | struct e1000_tx_desc *tx_desc; | 
|  | struct my_u0 { | 
|  | __le64 a; | 
|  | __le64 b; | 
|  | } *u0; | 
|  | struct e1000_buffer *buffer_info; | 
|  | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  | union e1000_rx_desc_packet_split *rx_desc_ps; | 
|  | union e1000_rx_desc_extended *rx_desc; | 
|  | struct my_u1 { | 
|  | __le64 a; | 
|  | __le64 b; | 
|  | __le64 c; | 
|  | __le64 d; | 
|  | } *u1; | 
|  | u32 staterr; | 
|  | int i = 0; | 
|  |  | 
|  | if (!netif_msg_hw(adapter)) | 
|  | return; | 
|  |  | 
|  | /* Print netdevice Info */ | 
|  | if (netdev) { | 
|  | dev_info(&adapter->pdev->dev, "Net device Info\n"); | 
|  | pr_info("Device Name     state            trans_start      last_rx\n"); | 
|  | pr_info("%-15s %016lX %016lX %016lX\n", netdev->name, | 
|  | netdev->state, netdev->trans_start, netdev->last_rx); | 
|  | } | 
|  |  | 
|  | /* Print Registers */ | 
|  | dev_info(&adapter->pdev->dev, "Register Dump\n"); | 
|  | pr_info(" Register Name   Value\n"); | 
|  | for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl; | 
|  | reginfo->name; reginfo++) { | 
|  | e1000_regdump(hw, reginfo); | 
|  | } | 
|  |  | 
|  | /* Print Tx Ring Summary */ | 
|  | if (!netdev || !netif_running(netdev)) | 
|  | return; | 
|  |  | 
|  | dev_info(&adapter->pdev->dev, "Tx Ring Summary\n"); | 
|  | pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n"); | 
|  | buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; | 
|  | pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n", | 
|  | 0, tx_ring->next_to_use, tx_ring->next_to_clean, | 
|  | (unsigned long long)buffer_info->dma, | 
|  | buffer_info->length, | 
|  | buffer_info->next_to_watch, | 
|  | (unsigned long long)buffer_info->time_stamp); | 
|  |  | 
|  | /* Print Tx Ring */ | 
|  | if (!netif_msg_tx_done(adapter)) | 
|  | goto rx_ring_summary; | 
|  |  | 
|  | dev_info(&adapter->pdev->dev, "Tx Ring Dump\n"); | 
|  |  | 
|  | /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) | 
|  | * | 
|  | * Legacy Transmit Descriptor | 
|  | *   +--------------------------------------------------------------+ | 
|  | * 0 |         Buffer Address [63:0] (Reserved on Write Back)       | | 
|  | *   +--------------------------------------------------------------+ | 
|  | * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  | | 
|  | *   +--------------------------------------------------------------+ | 
|  | *   63       48 47        36 35    32 31     24 23    16 15        0 | 
|  | * | 
|  | * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload | 
|  | *   63      48 47    40 39       32 31             16 15    8 7      0 | 
|  | *   +----------------------------------------------------------------+ | 
|  | * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS | | 
|  | *   +----------------------------------------------------------------+ | 
|  | * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      | | 
|  | *   +----------------------------------------------------------------+ | 
|  | *   63      48 47    40 39 36 35 32 31   24 23  20 19                0 | 
|  | * | 
|  | * Extended Data Descriptor (DTYP=0x1) | 
|  | *   +----------------------------------------------------------------+ | 
|  | * 0 |                     Buffer Address [63:0]                      | | 
|  | *   +----------------------------------------------------------------+ | 
|  | * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  | | 
|  | *   +----------------------------------------------------------------+ | 
|  | *   63       48 47     40 39  36 35    32 31     24 23  20 19        0 | 
|  | */ | 
|  | pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n"); | 
|  | pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n"); | 
|  | pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n"); | 
|  | for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { | 
|  | const char *next_desc; | 
|  | tx_desc = E1000_TX_DESC(*tx_ring, i); | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | u0 = (struct my_u0 *)tx_desc; | 
|  | if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) | 
|  | next_desc = " NTC/U"; | 
|  | else if (i == tx_ring->next_to_use) | 
|  | next_desc = " NTU"; | 
|  | else if (i == tx_ring->next_to_clean) | 
|  | next_desc = " NTC"; | 
|  | else | 
|  | next_desc = ""; | 
|  | pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n", | 
|  | (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' : | 
|  | ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), | 
|  | i, | 
|  | (unsigned long long)le64_to_cpu(u0->a), | 
|  | (unsigned long long)le64_to_cpu(u0->b), | 
|  | (unsigned long long)buffer_info->dma, | 
|  | buffer_info->length, buffer_info->next_to_watch, | 
|  | (unsigned long long)buffer_info->time_stamp, | 
|  | buffer_info->skb, next_desc); | 
|  |  | 
|  | if (netif_msg_pktdata(adapter) && buffer_info->skb) | 
|  | print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, | 
|  | 16, 1, buffer_info->skb->data, | 
|  | buffer_info->skb->len, true); | 
|  | } | 
|  |  | 
|  | /* Print Rx Ring Summary */ | 
|  | rx_ring_summary: | 
|  | dev_info(&adapter->pdev->dev, "Rx Ring Summary\n"); | 
|  | pr_info("Queue [NTU] [NTC]\n"); | 
|  | pr_info(" %5d %5X %5X\n", | 
|  | 0, rx_ring->next_to_use, rx_ring->next_to_clean); | 
|  |  | 
|  | /* Print Rx Ring */ | 
|  | if (!netif_msg_rx_status(adapter)) | 
|  | return; | 
|  |  | 
|  | dev_info(&adapter->pdev->dev, "Rx Ring Dump\n"); | 
|  | switch (adapter->rx_ps_pages) { | 
|  | case 1: | 
|  | case 2: | 
|  | case 3: | 
|  | /* [Extended] Packet Split Receive Descriptor Format | 
|  | * | 
|  | *    +-----------------------------------------------------+ | 
|  | *  0 |                Buffer Address 0 [63:0]              | | 
|  | *    +-----------------------------------------------------+ | 
|  | *  8 |                Buffer Address 1 [63:0]              | | 
|  | *    +-----------------------------------------------------+ | 
|  | * 16 |                Buffer Address 2 [63:0]              | | 
|  | *    +-----------------------------------------------------+ | 
|  | * 24 |                Buffer Address 3 [63:0]              | | 
|  | *    +-----------------------------------------------------+ | 
|  | */ | 
|  | pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n"); | 
|  | /* [Extended] Receive Descriptor (Write-Back) Format | 
|  | * | 
|  | *   63       48 47    32 31     13 12    8 7    4 3        0 | 
|  | *   +------------------------------------------------------+ | 
|  | * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS | | 
|  | *   | Checksum | Ident  |         | Queue |      |  Type   | | 
|  | *   +------------------------------------------------------+ | 
|  | * 8 | VLAN Tag | Length | Extended Error | Extended Status | | 
|  | *   +------------------------------------------------------+ | 
|  | *   63       48 47    32 31            20 19               0 | 
|  | */ | 
|  | pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n"); | 
|  | for (i = 0; i < rx_ring->count; i++) { | 
|  | const char *next_desc; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i); | 
|  | u1 = (struct my_u1 *)rx_desc_ps; | 
|  | staterr = | 
|  | le32_to_cpu(rx_desc_ps->wb.middle.status_error); | 
|  |  | 
|  | if (i == rx_ring->next_to_use) | 
|  | next_desc = " NTU"; | 
|  | else if (i == rx_ring->next_to_clean) | 
|  | next_desc = " NTC"; | 
|  | else | 
|  | next_desc = ""; | 
|  |  | 
|  | if (staterr & E1000_RXD_STAT_DD) { | 
|  | /* Descriptor Done */ | 
|  | pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n", | 
|  | "RWB", i, | 
|  | (unsigned long long)le64_to_cpu(u1->a), | 
|  | (unsigned long long)le64_to_cpu(u1->b), | 
|  | (unsigned long long)le64_to_cpu(u1->c), | 
|  | (unsigned long long)le64_to_cpu(u1->d), | 
|  | buffer_info->skb, next_desc); | 
|  | } else { | 
|  | pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n", | 
|  | "R  ", i, | 
|  | (unsigned long long)le64_to_cpu(u1->a), | 
|  | (unsigned long long)le64_to_cpu(u1->b), | 
|  | (unsigned long long)le64_to_cpu(u1->c), | 
|  | (unsigned long long)le64_to_cpu(u1->d), | 
|  | (unsigned long long)buffer_info->dma, | 
|  | buffer_info->skb, next_desc); | 
|  |  | 
|  | if (netif_msg_pktdata(adapter)) | 
|  | e1000e_dump_ps_pages(adapter, | 
|  | buffer_info); | 
|  | } | 
|  | } | 
|  | break; | 
|  | default: | 
|  | case 0: | 
|  | /* Extended Receive Descriptor (Read) Format | 
|  | * | 
|  | *   +-----------------------------------------------------+ | 
|  | * 0 |                Buffer Address [63:0]                | | 
|  | *   +-----------------------------------------------------+ | 
|  | * 8 |                      Reserved                       | | 
|  | *   +-----------------------------------------------------+ | 
|  | */ | 
|  | pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n"); | 
|  | /* Extended Receive Descriptor (Write-Back) Format | 
|  | * | 
|  | *   63       48 47    32 31    24 23            4 3        0 | 
|  | *   +------------------------------------------------------+ | 
|  | *   |     RSS Hash      |        |               |         | | 
|  | * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS | | 
|  | *   | Packet   | IP     |        |               |  Type   | | 
|  | *   | Checksum | Ident  |        |               |         | | 
|  | *   +------------------------------------------------------+ | 
|  | * 8 | VLAN Tag | Length | Extended Error | Extended Status | | 
|  | *   +------------------------------------------------------+ | 
|  | *   63       48 47    32 31            20 19               0 | 
|  | */ | 
|  | pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n"); | 
|  |  | 
|  | for (i = 0; i < rx_ring->count; i++) { | 
|  | const char *next_desc; | 
|  |  | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); | 
|  | u1 = (struct my_u1 *)rx_desc; | 
|  | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | 
|  |  | 
|  | if (i == rx_ring->next_to_use) | 
|  | next_desc = " NTU"; | 
|  | else if (i == rx_ring->next_to_clean) | 
|  | next_desc = " NTC"; | 
|  | else | 
|  | next_desc = ""; | 
|  |  | 
|  | if (staterr & E1000_RXD_STAT_DD) { | 
|  | /* Descriptor Done */ | 
|  | pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n", | 
|  | "RWB", i, | 
|  | (unsigned long long)le64_to_cpu(u1->a), | 
|  | (unsigned long long)le64_to_cpu(u1->b), | 
|  | buffer_info->skb, next_desc); | 
|  | } else { | 
|  | pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n", | 
|  | "R  ", i, | 
|  | (unsigned long long)le64_to_cpu(u1->a), | 
|  | (unsigned long long)le64_to_cpu(u1->b), | 
|  | (unsigned long long)buffer_info->dma, | 
|  | buffer_info->skb, next_desc); | 
|  |  | 
|  | if (netif_msg_pktdata(adapter) && | 
|  | buffer_info->skb) | 
|  | print_hex_dump(KERN_INFO, "", | 
|  | DUMP_PREFIX_ADDRESS, 16, | 
|  | 1, | 
|  | buffer_info->skb->data, | 
|  | adapter->rx_buffer_len, | 
|  | true); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_desc_unused - calculate if we have unused descriptors | 
|  | **/ | 
|  | static int e1000_desc_unused(struct e1000_ring *ring) | 
|  | { | 
|  | if (ring->next_to_clean > ring->next_to_use) | 
|  | return ring->next_to_clean - ring->next_to_use - 1; | 
|  |  | 
|  | return ring->count + ring->next_to_clean - ring->next_to_use - 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp | 
|  | * @adapter: board private structure | 
|  | * @hwtstamps: time stamp structure to update | 
|  | * @systim: unsigned 64bit system time value. | 
|  | * | 
|  | * Convert the system time value stored in the RX/TXSTMP registers into a | 
|  | * hwtstamp which can be used by the upper level time stamping functions. | 
|  | * | 
|  | * The 'systim_lock' spinlock is used to protect the consistency of the | 
|  | * system time value. This is needed because reading the 64 bit time | 
|  | * value involves reading two 32 bit registers. The first read latches the | 
|  | * value. | 
|  | **/ | 
|  | static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter, | 
|  | struct skb_shared_hwtstamps *hwtstamps, | 
|  | u64 systim) | 
|  | { | 
|  | u64 ns; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&adapter->systim_lock, flags); | 
|  | ns = timecounter_cyc2time(&adapter->tc, systim); | 
|  | spin_unlock_irqrestore(&adapter->systim_lock, flags); | 
|  |  | 
|  | memset(hwtstamps, 0, sizeof(*hwtstamps)); | 
|  | hwtstamps->hwtstamp = ns_to_ktime(ns); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp | 
|  | * @adapter: board private structure | 
|  | * @status: descriptor extended error and status field | 
|  | * @skb: particular skb to include time stamp | 
|  | * | 
|  | * If the time stamp is valid, convert it into the timecounter ns value | 
|  | * and store that result into the shhwtstamps structure which is passed | 
|  | * up the network stack. | 
|  | **/ | 
|  | static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u64 rxstmp; | 
|  |  | 
|  | if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) || | 
|  | !(status & E1000_RXDEXT_STATERR_TST) || | 
|  | !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) | 
|  | return; | 
|  |  | 
|  | /* The Rx time stamp registers contain the time stamp.  No other | 
|  | * received packet will be time stamped until the Rx time stamp | 
|  | * registers are read.  Because only one packet can be time stamped | 
|  | * at a time, the register values must belong to this packet and | 
|  | * therefore none of the other additional attributes need to be | 
|  | * compared. | 
|  | */ | 
|  | rxstmp = (u64)er32(RXSTMPL); | 
|  | rxstmp |= (u64)er32(RXSTMPH) << 32; | 
|  | e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp); | 
|  |  | 
|  | adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_receive_skb - helper function to handle Rx indications | 
|  | * @adapter: board private structure | 
|  | * @staterr: descriptor extended error and status field as written by hardware | 
|  | * @vlan: descriptor vlan field as written by hardware (no le/be conversion) | 
|  | * @skb: pointer to sk_buff to be indicated to stack | 
|  | **/ | 
|  | static void e1000_receive_skb(struct e1000_adapter *adapter, | 
|  | struct net_device *netdev, struct sk_buff *skb, | 
|  | u32 staterr, __le16 vlan) | 
|  | { | 
|  | u16 tag = le16_to_cpu(vlan); | 
|  |  | 
|  | e1000e_rx_hwtstamp(adapter, staterr, skb); | 
|  |  | 
|  | skb->protocol = eth_type_trans(skb, netdev); | 
|  |  | 
|  | if (staterr & E1000_RXD_STAT_VP) | 
|  | __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag); | 
|  |  | 
|  | napi_gro_receive(&adapter->napi, skb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_rx_checksum - Receive Checksum Offload | 
|  | * @adapter: board private structure | 
|  | * @status_err: receive descriptor status and error fields | 
|  | * @csum: receive descriptor csum field | 
|  | * @sk_buff: socket buffer with received data | 
|  | **/ | 
|  | static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | u16 status = (u16)status_err; | 
|  | u8 errors = (u8)(status_err >> 24); | 
|  |  | 
|  | skb_checksum_none_assert(skb); | 
|  |  | 
|  | /* Rx checksum disabled */ | 
|  | if (!(adapter->netdev->features & NETIF_F_RXCSUM)) | 
|  | return; | 
|  |  | 
|  | /* Ignore Checksum bit is set */ | 
|  | if (status & E1000_RXD_STAT_IXSM) | 
|  | return; | 
|  |  | 
|  | /* TCP/UDP checksum error bit or IP checksum error bit is set */ | 
|  | if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) { | 
|  | /* let the stack verify checksum errors */ | 
|  | adapter->hw_csum_err++; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* TCP/UDP Checksum has not been calculated */ | 
|  | if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) | 
|  | return; | 
|  |  | 
|  | /* It must be a TCP or UDP packet with a valid checksum */ | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  | adapter->hw_csum_good++; | 
|  | } | 
|  |  | 
|  | static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i) | 
|  | { | 
|  | struct e1000_adapter *adapter = rx_ring->adapter; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | s32 ret_val = __ew32_prepare(hw); | 
|  |  | 
|  | writel(i, rx_ring->tail); | 
|  |  | 
|  | if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) { | 
|  | u32 rctl = er32(RCTL); | 
|  |  | 
|  | ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
|  | e_err("ME firmware caused invalid RDT - resetting\n"); | 
|  | schedule_work(&adapter->reset_task); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i) | 
|  | { | 
|  | struct e1000_adapter *adapter = tx_ring->adapter; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | s32 ret_val = __ew32_prepare(hw); | 
|  |  | 
|  | writel(i, tx_ring->tail); | 
|  |  | 
|  | if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) { | 
|  | u32 tctl = er32(TCTL); | 
|  |  | 
|  | ew32(TCTL, tctl & ~E1000_TCTL_EN); | 
|  | e_err("ME firmware caused invalid TDT - resetting\n"); | 
|  | schedule_work(&adapter->reset_task); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_alloc_rx_buffers - Replace used receive buffers | 
|  | * @rx_ring: Rx descriptor ring | 
|  | **/ | 
|  | static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring, | 
|  | int cleaned_count, gfp_t gfp) | 
|  | { | 
|  | struct e1000_adapter *adapter = rx_ring->adapter; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | union e1000_rx_desc_extended *rx_desc; | 
|  | struct e1000_buffer *buffer_info; | 
|  | struct sk_buff *skb; | 
|  | unsigned int i; | 
|  | unsigned int bufsz = adapter->rx_buffer_len; | 
|  |  | 
|  | i = rx_ring->next_to_use; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | while (cleaned_count--) { | 
|  | skb = buffer_info->skb; | 
|  | if (skb) { | 
|  | skb_trim(skb, 0); | 
|  | goto map_skb; | 
|  | } | 
|  |  | 
|  | skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); | 
|  | if (!skb) { | 
|  | /* Better luck next round */ | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | buffer_info->skb = skb; | 
|  | map_skb: | 
|  | buffer_info->dma = dma_map_single(&pdev->dev, skb->data, | 
|  | adapter->rx_buffer_len, | 
|  | DMA_FROM_DEVICE); | 
|  | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { | 
|  | dev_err(&pdev->dev, "Rx DMA map failed\n"); | 
|  | adapter->rx_dma_failed++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); | 
|  | rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); | 
|  |  | 
|  | if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { | 
|  | /* Force memory writes to complete before letting h/w | 
|  | * know there are new descriptors to fetch.  (Only | 
|  | * applicable for weak-ordered memory model archs, | 
|  | * such as IA-64). | 
|  | */ | 
|  | wmb(); | 
|  | if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) | 
|  | e1000e_update_rdt_wa(rx_ring, i); | 
|  | else | 
|  | writel(i, rx_ring->tail); | 
|  | } | 
|  | i++; | 
|  | if (i == rx_ring->count) | 
|  | i = 0; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | } | 
|  |  | 
|  | rx_ring->next_to_use = i; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split | 
|  | * @rx_ring: Rx descriptor ring | 
|  | **/ | 
|  | static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring, | 
|  | int cleaned_count, gfp_t gfp) | 
|  | { | 
|  | struct e1000_adapter *adapter = rx_ring->adapter; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | union e1000_rx_desc_packet_split *rx_desc; | 
|  | struct e1000_buffer *buffer_info; | 
|  | struct e1000_ps_page *ps_page; | 
|  | struct sk_buff *skb; | 
|  | unsigned int i, j; | 
|  |  | 
|  | i = rx_ring->next_to_use; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | while (cleaned_count--) { | 
|  | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | 
|  |  | 
|  | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | 
|  | ps_page = &buffer_info->ps_pages[j]; | 
|  | if (j >= adapter->rx_ps_pages) { | 
|  | /* all unused desc entries get hw null ptr */ | 
|  | rx_desc->read.buffer_addr[j + 1] = | 
|  | ~cpu_to_le64(0); | 
|  | continue; | 
|  | } | 
|  | if (!ps_page->page) { | 
|  | ps_page->page = alloc_page(gfp); | 
|  | if (!ps_page->page) { | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | goto no_buffers; | 
|  | } | 
|  | ps_page->dma = dma_map_page(&pdev->dev, | 
|  | ps_page->page, | 
|  | 0, PAGE_SIZE, | 
|  | DMA_FROM_DEVICE); | 
|  | if (dma_mapping_error(&pdev->dev, | 
|  | ps_page->dma)) { | 
|  | dev_err(&adapter->pdev->dev, | 
|  | "Rx DMA page map failed\n"); | 
|  | adapter->rx_dma_failed++; | 
|  | goto no_buffers; | 
|  | } | 
|  | } | 
|  | /* Refresh the desc even if buffer_addrs | 
|  | * didn't change because each write-back | 
|  | * erases this info. | 
|  | */ | 
|  | rx_desc->read.buffer_addr[j + 1] = | 
|  | cpu_to_le64(ps_page->dma); | 
|  | } | 
|  |  | 
|  | skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0, | 
|  | gfp); | 
|  |  | 
|  | if (!skb) { | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | buffer_info->skb = skb; | 
|  | buffer_info->dma = dma_map_single(&pdev->dev, skb->data, | 
|  | adapter->rx_ps_bsize0, | 
|  | DMA_FROM_DEVICE); | 
|  | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { | 
|  | dev_err(&pdev->dev, "Rx DMA map failed\n"); | 
|  | adapter->rx_dma_failed++; | 
|  | /* cleanup skb */ | 
|  | dev_kfree_skb_any(skb); | 
|  | buffer_info->skb = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); | 
|  |  | 
|  | if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { | 
|  | /* Force memory writes to complete before letting h/w | 
|  | * know there are new descriptors to fetch.  (Only | 
|  | * applicable for weak-ordered memory model archs, | 
|  | * such as IA-64). | 
|  | */ | 
|  | wmb(); | 
|  | if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) | 
|  | e1000e_update_rdt_wa(rx_ring, i << 1); | 
|  | else | 
|  | writel(i << 1, rx_ring->tail); | 
|  | } | 
|  |  | 
|  | i++; | 
|  | if (i == rx_ring->count) | 
|  | i = 0; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | } | 
|  |  | 
|  | no_buffers: | 
|  | rx_ring->next_to_use = i; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers | 
|  | * @rx_ring: Rx descriptor ring | 
|  | * @cleaned_count: number of buffers to allocate this pass | 
|  | **/ | 
|  |  | 
|  | static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring, | 
|  | int cleaned_count, gfp_t gfp) | 
|  | { | 
|  | struct e1000_adapter *adapter = rx_ring->adapter; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | union e1000_rx_desc_extended *rx_desc; | 
|  | struct e1000_buffer *buffer_info; | 
|  | struct sk_buff *skb; | 
|  | unsigned int i; | 
|  | unsigned int bufsz = 256 - 16;	/* for skb_reserve */ | 
|  |  | 
|  | i = rx_ring->next_to_use; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | while (cleaned_count--) { | 
|  | skb = buffer_info->skb; | 
|  | if (skb) { | 
|  | skb_trim(skb, 0); | 
|  | goto check_page; | 
|  | } | 
|  |  | 
|  | skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); | 
|  | if (unlikely(!skb)) { | 
|  | /* Better luck next round */ | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | buffer_info->skb = skb; | 
|  | check_page: | 
|  | /* allocate a new page if necessary */ | 
|  | if (!buffer_info->page) { | 
|  | buffer_info->page = alloc_page(gfp); | 
|  | if (unlikely(!buffer_info->page)) { | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!buffer_info->dma) { | 
|  | buffer_info->dma = dma_map_page(&pdev->dev, | 
|  | buffer_info->page, 0, | 
|  | PAGE_SIZE, | 
|  | DMA_FROM_DEVICE); | 
|  | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); | 
|  | rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); | 
|  |  | 
|  | if (unlikely(++i == rx_ring->count)) | 
|  | i = 0; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | } | 
|  |  | 
|  | if (likely(rx_ring->next_to_use != i)) { | 
|  | rx_ring->next_to_use = i; | 
|  | if (unlikely(i-- == 0)) | 
|  | i = (rx_ring->count - 1); | 
|  |  | 
|  | /* Force memory writes to complete before letting h/w | 
|  | * know there are new descriptors to fetch.  (Only | 
|  | * applicable for weak-ordered memory model archs, | 
|  | * such as IA-64). | 
|  | */ | 
|  | wmb(); | 
|  | if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) | 
|  | e1000e_update_rdt_wa(rx_ring, i); | 
|  | else | 
|  | writel(i, rx_ring->tail); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | if (netdev->features & NETIF_F_RXHASH) | 
|  | skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_rx_irq - Send received data up the network stack | 
|  | * @rx_ring: Rx descriptor ring | 
|  | * | 
|  | * the return value indicates whether actual cleaning was done, there | 
|  | * is no guarantee that everything was cleaned | 
|  | **/ | 
|  | static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done, | 
|  | int work_to_do) | 
|  | { | 
|  | struct e1000_adapter *adapter = rx_ring->adapter; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | union e1000_rx_desc_extended *rx_desc, *next_rxd; | 
|  | struct e1000_buffer *buffer_info, *next_buffer; | 
|  | u32 length, staterr; | 
|  | unsigned int i; | 
|  | int cleaned_count = 0; | 
|  | bool cleaned = false; | 
|  | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | 
|  |  | 
|  | i = rx_ring->next_to_clean; | 
|  | rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); | 
|  | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | while (staterr & E1000_RXD_STAT_DD) { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | if (*work_done >= work_to_do) | 
|  | break; | 
|  | (*work_done)++; | 
|  | rmb();	/* read descriptor and rx_buffer_info after status DD */ | 
|  |  | 
|  | skb = buffer_info->skb; | 
|  | buffer_info->skb = NULL; | 
|  |  | 
|  | prefetch(skb->data - NET_IP_ALIGN); | 
|  |  | 
|  | i++; | 
|  | if (i == rx_ring->count) | 
|  | i = 0; | 
|  | next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); | 
|  | prefetch(next_rxd); | 
|  |  | 
|  | next_buffer = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | cleaned = true; | 
|  | cleaned_count++; | 
|  | dma_unmap_single(&pdev->dev, buffer_info->dma, | 
|  | adapter->rx_buffer_len, DMA_FROM_DEVICE); | 
|  | buffer_info->dma = 0; | 
|  |  | 
|  | length = le16_to_cpu(rx_desc->wb.upper.length); | 
|  |  | 
|  | /* !EOP means multiple descriptors were used to store a single | 
|  | * packet, if that's the case we need to toss it.  In fact, we | 
|  | * need to toss every packet with the EOP bit clear and the | 
|  | * next frame that _does_ have the EOP bit set, as it is by | 
|  | * definition only a frame fragment | 
|  | */ | 
|  | if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) | 
|  | adapter->flags2 |= FLAG2_IS_DISCARDING; | 
|  |  | 
|  | if (adapter->flags2 & FLAG2_IS_DISCARDING) { | 
|  | /* All receives must fit into a single buffer */ | 
|  | e_dbg("Receive packet consumed multiple buffers\n"); | 
|  | /* recycle */ | 
|  | buffer_info->skb = skb; | 
|  | if (staterr & E1000_RXD_STAT_EOP) | 
|  | adapter->flags2 &= ~FLAG2_IS_DISCARDING; | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && | 
|  | !(netdev->features & NETIF_F_RXALL))) { | 
|  | /* recycle */ | 
|  | buffer_info->skb = skb; | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | /* adjust length to remove Ethernet CRC */ | 
|  | if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { | 
|  | /* If configured to store CRC, don't subtract FCS, | 
|  | * but keep the FCS bytes out of the total_rx_bytes | 
|  | * counter | 
|  | */ | 
|  | if (netdev->features & NETIF_F_RXFCS) | 
|  | total_rx_bytes -= 4; | 
|  | else | 
|  | length -= 4; | 
|  | } | 
|  |  | 
|  | total_rx_bytes += length; | 
|  | total_rx_packets++; | 
|  |  | 
|  | /* code added for copybreak, this should improve | 
|  | * performance for small packets with large amounts | 
|  | * of reassembly being done in the stack | 
|  | */ | 
|  | if (length < copybreak) { | 
|  | struct sk_buff *new_skb = | 
|  | netdev_alloc_skb_ip_align(netdev, length); | 
|  | if (new_skb) { | 
|  | skb_copy_to_linear_data_offset(new_skb, | 
|  | -NET_IP_ALIGN, | 
|  | (skb->data - | 
|  | NET_IP_ALIGN), | 
|  | (length + | 
|  | NET_IP_ALIGN)); | 
|  | /* save the skb in buffer_info as good */ | 
|  | buffer_info->skb = skb; | 
|  | skb = new_skb; | 
|  | } | 
|  | /* else just continue with the old one */ | 
|  | } | 
|  | /* end copybreak code */ | 
|  | skb_put(skb, length); | 
|  |  | 
|  | /* Receive Checksum Offload */ | 
|  | e1000_rx_checksum(adapter, staterr, skb); | 
|  |  | 
|  | e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); | 
|  |  | 
|  | e1000_receive_skb(adapter, netdev, skb, staterr, | 
|  | rx_desc->wb.upper.vlan); | 
|  |  | 
|  | next_desc: | 
|  | rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); | 
|  |  | 
|  | /* return some buffers to hardware, one at a time is too slow */ | 
|  | if (cleaned_count >= E1000_RX_BUFFER_WRITE) { | 
|  | adapter->alloc_rx_buf(rx_ring, cleaned_count, | 
|  | GFP_ATOMIC); | 
|  | cleaned_count = 0; | 
|  | } | 
|  |  | 
|  | /* use prefetched values */ | 
|  | rx_desc = next_rxd; | 
|  | buffer_info = next_buffer; | 
|  |  | 
|  | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | 
|  | } | 
|  | rx_ring->next_to_clean = i; | 
|  |  | 
|  | cleaned_count = e1000_desc_unused(rx_ring); | 
|  | if (cleaned_count) | 
|  | adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); | 
|  |  | 
|  | adapter->total_rx_bytes += total_rx_bytes; | 
|  | adapter->total_rx_packets += total_rx_packets; | 
|  | return cleaned; | 
|  | } | 
|  |  | 
|  | static void e1000_put_txbuf(struct e1000_ring *tx_ring, | 
|  | struct e1000_buffer *buffer_info) | 
|  | { | 
|  | struct e1000_adapter *adapter = tx_ring->adapter; | 
|  |  | 
|  | if (buffer_info->dma) { | 
|  | if (buffer_info->mapped_as_page) | 
|  | dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, | 
|  | buffer_info->length, DMA_TO_DEVICE); | 
|  | else | 
|  | dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, | 
|  | buffer_info->length, DMA_TO_DEVICE); | 
|  | buffer_info->dma = 0; | 
|  | } | 
|  | if (buffer_info->skb) { | 
|  | dev_kfree_skb_any(buffer_info->skb); | 
|  | buffer_info->skb = NULL; | 
|  | } | 
|  | buffer_info->time_stamp = 0; | 
|  | } | 
|  |  | 
|  | static void e1000_print_hw_hang(struct work_struct *work) | 
|  | { | 
|  | struct e1000_adapter *adapter = container_of(work, | 
|  | struct e1000_adapter, | 
|  | print_hang_task); | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | unsigned int i = tx_ring->next_to_clean; | 
|  | unsigned int eop = tx_ring->buffer_info[i].next_to_watch; | 
|  | struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u16 phy_status, phy_1000t_status, phy_ext_status; | 
|  | u16 pci_status; | 
|  |  | 
|  | if (test_bit(__E1000_DOWN, &adapter->state)) | 
|  | return; | 
|  |  | 
|  | if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) { | 
|  | /* May be block on write-back, flush and detect again | 
|  | * flush pending descriptor writebacks to memory | 
|  | */ | 
|  | ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); | 
|  | /* execute the writes immediately */ | 
|  | e1e_flush(); | 
|  | /* Due to rare timing issues, write to TIDV again to ensure | 
|  | * the write is successful | 
|  | */ | 
|  | ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); | 
|  | /* execute the writes immediately */ | 
|  | e1e_flush(); | 
|  | adapter->tx_hang_recheck = true; | 
|  | return; | 
|  | } | 
|  | adapter->tx_hang_recheck = false; | 
|  |  | 
|  | if (er32(TDH(0)) == er32(TDT(0))) { | 
|  | e_dbg("false hang detected, ignoring\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Real hang detected */ | 
|  | netif_stop_queue(netdev); | 
|  |  | 
|  | e1e_rphy(hw, MII_BMSR, &phy_status); | 
|  | e1e_rphy(hw, MII_STAT1000, &phy_1000t_status); | 
|  | e1e_rphy(hw, MII_ESTATUS, &phy_ext_status); | 
|  |  | 
|  | pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status); | 
|  |  | 
|  | /* detected Hardware unit hang */ | 
|  | e_err("Detected Hardware Unit Hang:\n" | 
|  | "  TDH                  <%x>\n" | 
|  | "  TDT                  <%x>\n" | 
|  | "  next_to_use          <%x>\n" | 
|  | "  next_to_clean        <%x>\n" | 
|  | "buffer_info[next_to_clean]:\n" | 
|  | "  time_stamp           <%lx>\n" | 
|  | "  next_to_watch        <%x>\n" | 
|  | "  jiffies              <%lx>\n" | 
|  | "  next_to_watch.status <%x>\n" | 
|  | "MAC Status             <%x>\n" | 
|  | "PHY Status             <%x>\n" | 
|  | "PHY 1000BASE-T Status  <%x>\n" | 
|  | "PHY Extended Status    <%x>\n" | 
|  | "PCI Status             <%x>\n", | 
|  | readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use, | 
|  | tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp, | 
|  | eop, jiffies, eop_desc->upper.fields.status, er32(STATUS), | 
|  | phy_status, phy_1000t_status, phy_ext_status, pci_status); | 
|  |  | 
|  | e1000e_dump(adapter); | 
|  |  | 
|  | /* Suggest workaround for known h/w issue */ | 
|  | if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE)) | 
|  | e_err("Try turning off Tx pause (flow control) via ethtool\n"); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_tx_hwtstamp_work - check for Tx time stamp | 
|  | * @work: pointer to work struct | 
|  | * | 
|  | * This work function polls the TSYNCTXCTL valid bit to determine when a | 
|  | * timestamp has been taken for the current stored skb.  The timestamp must | 
|  | * be for this skb because only one such packet is allowed in the queue. | 
|  | */ | 
|  | static void e1000e_tx_hwtstamp_work(struct work_struct *work) | 
|  | { | 
|  | struct e1000_adapter *adapter = container_of(work, struct e1000_adapter, | 
|  | tx_hwtstamp_work); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) { | 
|  | struct skb_shared_hwtstamps shhwtstamps; | 
|  | u64 txstmp; | 
|  |  | 
|  | txstmp = er32(TXSTMPL); | 
|  | txstmp |= (u64)er32(TXSTMPH) << 32; | 
|  |  | 
|  | e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp); | 
|  |  | 
|  | skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps); | 
|  | dev_kfree_skb_any(adapter->tx_hwtstamp_skb); | 
|  | adapter->tx_hwtstamp_skb = NULL; | 
|  | } else if (time_after(jiffies, adapter->tx_hwtstamp_start | 
|  | + adapter->tx_timeout_factor * HZ)) { | 
|  | dev_kfree_skb_any(adapter->tx_hwtstamp_skb); | 
|  | adapter->tx_hwtstamp_skb = NULL; | 
|  | adapter->tx_hwtstamp_timeouts++; | 
|  | e_warn("clearing Tx timestamp hang\n"); | 
|  | } else { | 
|  | /* reschedule to check later */ | 
|  | schedule_work(&adapter->tx_hwtstamp_work); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_tx_irq - Reclaim resources after transmit completes | 
|  | * @tx_ring: Tx descriptor ring | 
|  | * | 
|  | * the return value indicates whether actual cleaning was done, there | 
|  | * is no guarantee that everything was cleaned | 
|  | **/ | 
|  | static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring) | 
|  | { | 
|  | struct e1000_adapter *adapter = tx_ring->adapter; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_tx_desc *tx_desc, *eop_desc; | 
|  | struct e1000_buffer *buffer_info; | 
|  | unsigned int i, eop; | 
|  | unsigned int count = 0; | 
|  | unsigned int total_tx_bytes = 0, total_tx_packets = 0; | 
|  | unsigned int bytes_compl = 0, pkts_compl = 0; | 
|  |  | 
|  | i = tx_ring->next_to_clean; | 
|  | eop = tx_ring->buffer_info[i].next_to_watch; | 
|  | eop_desc = E1000_TX_DESC(*tx_ring, eop); | 
|  |  | 
|  | while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && | 
|  | (count < tx_ring->count)) { | 
|  | bool cleaned = false; | 
|  |  | 
|  | rmb();		/* read buffer_info after eop_desc */ | 
|  | for (; !cleaned; count++) { | 
|  | tx_desc = E1000_TX_DESC(*tx_ring, i); | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | cleaned = (i == eop); | 
|  |  | 
|  | if (cleaned) { | 
|  | total_tx_packets += buffer_info->segs; | 
|  | total_tx_bytes += buffer_info->bytecount; | 
|  | if (buffer_info->skb) { | 
|  | bytes_compl += buffer_info->skb->len; | 
|  | pkts_compl++; | 
|  | } | 
|  | } | 
|  |  | 
|  | e1000_put_txbuf(tx_ring, buffer_info); | 
|  | tx_desc->upper.data = 0; | 
|  |  | 
|  | i++; | 
|  | if (i == tx_ring->count) | 
|  | i = 0; | 
|  | } | 
|  |  | 
|  | if (i == tx_ring->next_to_use) | 
|  | break; | 
|  | eop = tx_ring->buffer_info[i].next_to_watch; | 
|  | eop_desc = E1000_TX_DESC(*tx_ring, eop); | 
|  | } | 
|  |  | 
|  | tx_ring->next_to_clean = i; | 
|  |  | 
|  | netdev_completed_queue(netdev, pkts_compl, bytes_compl); | 
|  |  | 
|  | #define TX_WAKE_THRESHOLD 32 | 
|  | if (count && netif_carrier_ok(netdev) && | 
|  | e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { | 
|  | /* Make sure that anybody stopping the queue after this | 
|  | * sees the new next_to_clean. | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | if (netif_queue_stopped(netdev) && | 
|  | !(test_bit(__E1000_DOWN, &adapter->state))) { | 
|  | netif_wake_queue(netdev); | 
|  | ++adapter->restart_queue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (adapter->detect_tx_hung) { | 
|  | /* Detect a transmit hang in hardware, this serializes the | 
|  | * check with the clearing of time_stamp and movement of i | 
|  | */ | 
|  | adapter->detect_tx_hung = false; | 
|  | if (tx_ring->buffer_info[i].time_stamp && | 
|  | time_after(jiffies, tx_ring->buffer_info[i].time_stamp | 
|  | + (adapter->tx_timeout_factor * HZ)) && | 
|  | !(er32(STATUS) & E1000_STATUS_TXOFF)) | 
|  | schedule_work(&adapter->print_hang_task); | 
|  | else | 
|  | adapter->tx_hang_recheck = false; | 
|  | } | 
|  | adapter->total_tx_bytes += total_tx_bytes; | 
|  | adapter->total_tx_packets += total_tx_packets; | 
|  | return count < tx_ring->count; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split | 
|  | * @rx_ring: Rx descriptor ring | 
|  | * | 
|  | * the return value indicates whether actual cleaning was done, there | 
|  | * is no guarantee that everything was cleaned | 
|  | **/ | 
|  | static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done, | 
|  | int work_to_do) | 
|  | { | 
|  | struct e1000_adapter *adapter = rx_ring->adapter; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | union e1000_rx_desc_packet_split *rx_desc, *next_rxd; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_buffer *buffer_info, *next_buffer; | 
|  | struct e1000_ps_page *ps_page; | 
|  | struct sk_buff *skb; | 
|  | unsigned int i, j; | 
|  | u32 length, staterr; | 
|  | int cleaned_count = 0; | 
|  | bool cleaned = false; | 
|  | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | 
|  |  | 
|  | i = rx_ring->next_to_clean; | 
|  | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | 
|  | staterr = le32_to_cpu(rx_desc->wb.middle.status_error); | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | while (staterr & E1000_RXD_STAT_DD) { | 
|  | if (*work_done >= work_to_do) | 
|  | break; | 
|  | (*work_done)++; | 
|  | skb = buffer_info->skb; | 
|  | rmb();	/* read descriptor and rx_buffer_info after status DD */ | 
|  |  | 
|  | /* in the packet split case this is header only */ | 
|  | prefetch(skb->data - NET_IP_ALIGN); | 
|  |  | 
|  | i++; | 
|  | if (i == rx_ring->count) | 
|  | i = 0; | 
|  | next_rxd = E1000_RX_DESC_PS(*rx_ring, i); | 
|  | prefetch(next_rxd); | 
|  |  | 
|  | next_buffer = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | cleaned = true; | 
|  | cleaned_count++; | 
|  | dma_unmap_single(&pdev->dev, buffer_info->dma, | 
|  | adapter->rx_ps_bsize0, DMA_FROM_DEVICE); | 
|  | buffer_info->dma = 0; | 
|  |  | 
|  | /* see !EOP comment in other Rx routine */ | 
|  | if (!(staterr & E1000_RXD_STAT_EOP)) | 
|  | adapter->flags2 |= FLAG2_IS_DISCARDING; | 
|  |  | 
|  | if (adapter->flags2 & FLAG2_IS_DISCARDING) { | 
|  | e_dbg("Packet Split buffers didn't pick up the full packet\n"); | 
|  | dev_kfree_skb_irq(skb); | 
|  | if (staterr & E1000_RXD_STAT_EOP) | 
|  | adapter->flags2 &= ~FLAG2_IS_DISCARDING; | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && | 
|  | !(netdev->features & NETIF_F_RXALL))) { | 
|  | dev_kfree_skb_irq(skb); | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | length = le16_to_cpu(rx_desc->wb.middle.length0); | 
|  |  | 
|  | if (!length) { | 
|  | e_dbg("Last part of the packet spanning multiple descriptors\n"); | 
|  | dev_kfree_skb_irq(skb); | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | /* Good Receive */ | 
|  | skb_put(skb, length); | 
|  |  | 
|  | { | 
|  | /* this looks ugly, but it seems compiler issues make | 
|  | * it more efficient than reusing j | 
|  | */ | 
|  | int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); | 
|  |  | 
|  | /* page alloc/put takes too long and effects small | 
|  | * packet throughput, so unsplit small packets and | 
|  | * save the alloc/put only valid in softirq (napi) | 
|  | * context to call kmap_* | 
|  | */ | 
|  | if (l1 && (l1 <= copybreak) && | 
|  | ((length + l1) <= adapter->rx_ps_bsize0)) { | 
|  | u8 *vaddr; | 
|  |  | 
|  | ps_page = &buffer_info->ps_pages[0]; | 
|  |  | 
|  | /* there is no documentation about how to call | 
|  | * kmap_atomic, so we can't hold the mapping | 
|  | * very long | 
|  | */ | 
|  | dma_sync_single_for_cpu(&pdev->dev, | 
|  | ps_page->dma, | 
|  | PAGE_SIZE, | 
|  | DMA_FROM_DEVICE); | 
|  | vaddr = kmap_atomic(ps_page->page); | 
|  | memcpy(skb_tail_pointer(skb), vaddr, l1); | 
|  | kunmap_atomic(vaddr); | 
|  | dma_sync_single_for_device(&pdev->dev, | 
|  | ps_page->dma, | 
|  | PAGE_SIZE, | 
|  | DMA_FROM_DEVICE); | 
|  |  | 
|  | /* remove the CRC */ | 
|  | if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { | 
|  | if (!(netdev->features & NETIF_F_RXFCS)) | 
|  | l1 -= 4; | 
|  | } | 
|  |  | 
|  | skb_put(skb, l1); | 
|  | goto copydone; | 
|  | }	/* if */ | 
|  | } | 
|  |  | 
|  | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | 
|  | length = le16_to_cpu(rx_desc->wb.upper.length[j]); | 
|  | if (!length) | 
|  | break; | 
|  |  | 
|  | ps_page = &buffer_info->ps_pages[j]; | 
|  | dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, | 
|  | DMA_FROM_DEVICE); | 
|  | ps_page->dma = 0; | 
|  | skb_fill_page_desc(skb, j, ps_page->page, 0, length); | 
|  | ps_page->page = NULL; | 
|  | skb->len += length; | 
|  | skb->data_len += length; | 
|  | skb->truesize += PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | /* strip the ethernet crc, problem is we're using pages now so | 
|  | * this whole operation can get a little cpu intensive | 
|  | */ | 
|  | if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { | 
|  | if (!(netdev->features & NETIF_F_RXFCS)) | 
|  | pskb_trim(skb, skb->len - 4); | 
|  | } | 
|  |  | 
|  | copydone: | 
|  | total_rx_bytes += skb->len; | 
|  | total_rx_packets++; | 
|  |  | 
|  | e1000_rx_checksum(adapter, staterr, skb); | 
|  |  | 
|  | e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); | 
|  |  | 
|  | if (rx_desc->wb.upper.header_status & | 
|  | cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) | 
|  | adapter->rx_hdr_split++; | 
|  |  | 
|  | e1000_receive_skb(adapter, netdev, skb, staterr, | 
|  | rx_desc->wb.middle.vlan); | 
|  |  | 
|  | next_desc: | 
|  | rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); | 
|  | buffer_info->skb = NULL; | 
|  |  | 
|  | /* return some buffers to hardware, one at a time is too slow */ | 
|  | if (cleaned_count >= E1000_RX_BUFFER_WRITE) { | 
|  | adapter->alloc_rx_buf(rx_ring, cleaned_count, | 
|  | GFP_ATOMIC); | 
|  | cleaned_count = 0; | 
|  | } | 
|  |  | 
|  | /* use prefetched values */ | 
|  | rx_desc = next_rxd; | 
|  | buffer_info = next_buffer; | 
|  |  | 
|  | staterr = le32_to_cpu(rx_desc->wb.middle.status_error); | 
|  | } | 
|  | rx_ring->next_to_clean = i; | 
|  |  | 
|  | cleaned_count = e1000_desc_unused(rx_ring); | 
|  | if (cleaned_count) | 
|  | adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); | 
|  |  | 
|  | adapter->total_rx_bytes += total_rx_bytes; | 
|  | adapter->total_rx_packets += total_rx_packets; | 
|  | return cleaned; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_consume_page - helper function | 
|  | **/ | 
|  | static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, | 
|  | u16 length) | 
|  | { | 
|  | bi->page = NULL; | 
|  | skb->len += length; | 
|  | skb->data_len += length; | 
|  | skb->truesize += PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * the return value indicates whether actual cleaning was done, there | 
|  | * is no guarantee that everything was cleaned | 
|  | **/ | 
|  | static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done, | 
|  | int work_to_do) | 
|  | { | 
|  | struct e1000_adapter *adapter = rx_ring->adapter; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | union e1000_rx_desc_extended *rx_desc, *next_rxd; | 
|  | struct e1000_buffer *buffer_info, *next_buffer; | 
|  | u32 length, staterr; | 
|  | unsigned int i; | 
|  | int cleaned_count = 0; | 
|  | bool cleaned = false; | 
|  | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | 
|  | struct skb_shared_info *shinfo; | 
|  |  | 
|  | i = rx_ring->next_to_clean; | 
|  | rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); | 
|  | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | while (staterr & E1000_RXD_STAT_DD) { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | if (*work_done >= work_to_do) | 
|  | break; | 
|  | (*work_done)++; | 
|  | rmb();	/* read descriptor and rx_buffer_info after status DD */ | 
|  |  | 
|  | skb = buffer_info->skb; | 
|  | buffer_info->skb = NULL; | 
|  |  | 
|  | ++i; | 
|  | if (i == rx_ring->count) | 
|  | i = 0; | 
|  | next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); | 
|  | prefetch(next_rxd); | 
|  |  | 
|  | next_buffer = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | cleaned = true; | 
|  | cleaned_count++; | 
|  | dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE, | 
|  | DMA_FROM_DEVICE); | 
|  | buffer_info->dma = 0; | 
|  |  | 
|  | length = le16_to_cpu(rx_desc->wb.upper.length); | 
|  |  | 
|  | /* errors is only valid for DD + EOP descriptors */ | 
|  | if (unlikely((staterr & E1000_RXD_STAT_EOP) && | 
|  | ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && | 
|  | !(netdev->features & NETIF_F_RXALL)))) { | 
|  | /* recycle both page and skb */ | 
|  | buffer_info->skb = skb; | 
|  | /* an error means any chain goes out the window too */ | 
|  | if (rx_ring->rx_skb_top) | 
|  | dev_kfree_skb_irq(rx_ring->rx_skb_top); | 
|  | rx_ring->rx_skb_top = NULL; | 
|  | goto next_desc; | 
|  | } | 
|  | #define rxtop (rx_ring->rx_skb_top) | 
|  | if (!(staterr & E1000_RXD_STAT_EOP)) { | 
|  | /* this descriptor is only the beginning (or middle) */ | 
|  | if (!rxtop) { | 
|  | /* this is the beginning of a chain */ | 
|  | rxtop = skb; | 
|  | skb_fill_page_desc(rxtop, 0, buffer_info->page, | 
|  | 0, length); | 
|  | } else { | 
|  | /* this is the middle of a chain */ | 
|  | shinfo = skb_shinfo(rxtop); | 
|  | skb_fill_page_desc(rxtop, shinfo->nr_frags, | 
|  | buffer_info->page, 0, | 
|  | length); | 
|  | /* re-use the skb, only consumed the page */ | 
|  | buffer_info->skb = skb; | 
|  | } | 
|  | e1000_consume_page(buffer_info, rxtop, length); | 
|  | goto next_desc; | 
|  | } else { | 
|  | if (rxtop) { | 
|  | /* end of the chain */ | 
|  | shinfo = skb_shinfo(rxtop); | 
|  | skb_fill_page_desc(rxtop, shinfo->nr_frags, | 
|  | buffer_info->page, 0, | 
|  | length); | 
|  | /* re-use the current skb, we only consumed the | 
|  | * page | 
|  | */ | 
|  | buffer_info->skb = skb; | 
|  | skb = rxtop; | 
|  | rxtop = NULL; | 
|  | e1000_consume_page(buffer_info, skb, length); | 
|  | } else { | 
|  | /* no chain, got EOP, this buf is the packet | 
|  | * copybreak to save the put_page/alloc_page | 
|  | */ | 
|  | if (length <= copybreak && | 
|  | skb_tailroom(skb) >= length) { | 
|  | u8 *vaddr; | 
|  | vaddr = kmap_atomic(buffer_info->page); | 
|  | memcpy(skb_tail_pointer(skb), vaddr, | 
|  | length); | 
|  | kunmap_atomic(vaddr); | 
|  | /* re-use the page, so don't erase | 
|  | * buffer_info->page | 
|  | */ | 
|  | skb_put(skb, length); | 
|  | } else { | 
|  | skb_fill_page_desc(skb, 0, | 
|  | buffer_info->page, 0, | 
|  | length); | 
|  | e1000_consume_page(buffer_info, skb, | 
|  | length); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Receive Checksum Offload */ | 
|  | e1000_rx_checksum(adapter, staterr, skb); | 
|  |  | 
|  | e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); | 
|  |  | 
|  | /* probably a little skewed due to removing CRC */ | 
|  | total_rx_bytes += skb->len; | 
|  | total_rx_packets++; | 
|  |  | 
|  | /* eth type trans needs skb->data to point to something */ | 
|  | if (!pskb_may_pull(skb, ETH_HLEN)) { | 
|  | e_err("pskb_may_pull failed.\n"); | 
|  | dev_kfree_skb_irq(skb); | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | e1000_receive_skb(adapter, netdev, skb, staterr, | 
|  | rx_desc->wb.upper.vlan); | 
|  |  | 
|  | next_desc: | 
|  | rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); | 
|  |  | 
|  | /* return some buffers to hardware, one at a time is too slow */ | 
|  | if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { | 
|  | adapter->alloc_rx_buf(rx_ring, cleaned_count, | 
|  | GFP_ATOMIC); | 
|  | cleaned_count = 0; | 
|  | } | 
|  |  | 
|  | /* use prefetched values */ | 
|  | rx_desc = next_rxd; | 
|  | buffer_info = next_buffer; | 
|  |  | 
|  | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | 
|  | } | 
|  | rx_ring->next_to_clean = i; | 
|  |  | 
|  | cleaned_count = e1000_desc_unused(rx_ring); | 
|  | if (cleaned_count) | 
|  | adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); | 
|  |  | 
|  | adapter->total_rx_bytes += total_rx_bytes; | 
|  | adapter->total_rx_packets += total_rx_packets; | 
|  | return cleaned; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_rx_ring - Free Rx Buffers per Queue | 
|  | * @rx_ring: Rx descriptor ring | 
|  | **/ | 
|  | static void e1000_clean_rx_ring(struct e1000_ring *rx_ring) | 
|  | { | 
|  | struct e1000_adapter *adapter = rx_ring->adapter; | 
|  | struct e1000_buffer *buffer_info; | 
|  | struct e1000_ps_page *ps_page; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | unsigned int i, j; | 
|  |  | 
|  | /* Free all the Rx ring sk_buffs */ | 
|  | for (i = 0; i < rx_ring->count; i++) { | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | if (buffer_info->dma) { | 
|  | if (adapter->clean_rx == e1000_clean_rx_irq) | 
|  | dma_unmap_single(&pdev->dev, buffer_info->dma, | 
|  | adapter->rx_buffer_len, | 
|  | DMA_FROM_DEVICE); | 
|  | else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) | 
|  | dma_unmap_page(&pdev->dev, buffer_info->dma, | 
|  | PAGE_SIZE, DMA_FROM_DEVICE); | 
|  | else if (adapter->clean_rx == e1000_clean_rx_irq_ps) | 
|  | dma_unmap_single(&pdev->dev, buffer_info->dma, | 
|  | adapter->rx_ps_bsize0, | 
|  | DMA_FROM_DEVICE); | 
|  | buffer_info->dma = 0; | 
|  | } | 
|  |  | 
|  | if (buffer_info->page) { | 
|  | put_page(buffer_info->page); | 
|  | buffer_info->page = NULL; | 
|  | } | 
|  |  | 
|  | if (buffer_info->skb) { | 
|  | dev_kfree_skb(buffer_info->skb); | 
|  | buffer_info->skb = NULL; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | 
|  | ps_page = &buffer_info->ps_pages[j]; | 
|  | if (!ps_page->page) | 
|  | break; | 
|  | dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, | 
|  | DMA_FROM_DEVICE); | 
|  | ps_page->dma = 0; | 
|  | put_page(ps_page->page); | 
|  | ps_page->page = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* there also may be some cached data from a chained receive */ | 
|  | if (rx_ring->rx_skb_top) { | 
|  | dev_kfree_skb(rx_ring->rx_skb_top); | 
|  | rx_ring->rx_skb_top = NULL; | 
|  | } | 
|  |  | 
|  | /* Zero out the descriptor ring */ | 
|  | memset(rx_ring->desc, 0, rx_ring->size); | 
|  |  | 
|  | rx_ring->next_to_clean = 0; | 
|  | rx_ring->next_to_use = 0; | 
|  | adapter->flags2 &= ~FLAG2_IS_DISCARDING; | 
|  |  | 
|  | writel(0, rx_ring->head); | 
|  | if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) | 
|  | e1000e_update_rdt_wa(rx_ring, 0); | 
|  | else | 
|  | writel(0, rx_ring->tail); | 
|  | } | 
|  |  | 
|  | static void e1000e_downshift_workaround(struct work_struct *work) | 
|  | { | 
|  | struct e1000_adapter *adapter = container_of(work, | 
|  | struct e1000_adapter, | 
|  | downshift_task); | 
|  |  | 
|  | if (test_bit(__E1000_DOWN, &adapter->state)) | 
|  | return; | 
|  |  | 
|  | e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_intr_msi - Interrupt Handler | 
|  | * @irq: interrupt number | 
|  | * @data: pointer to a network interface device structure | 
|  | **/ | 
|  | static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data) | 
|  | { | 
|  | struct net_device *netdev = data; | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 icr = er32(ICR); | 
|  |  | 
|  | /* read ICR disables interrupts using IAM */ | 
|  | if (icr & E1000_ICR_LSC) { | 
|  | hw->mac.get_link_status = true; | 
|  | /* ICH8 workaround-- Call gig speed drop workaround on cable | 
|  | * disconnect (LSC) before accessing any PHY registers | 
|  | */ | 
|  | if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && | 
|  | (!(er32(STATUS) & E1000_STATUS_LU))) | 
|  | schedule_work(&adapter->downshift_task); | 
|  |  | 
|  | /* 80003ES2LAN workaround-- For packet buffer work-around on | 
|  | * link down event; disable receives here in the ISR and reset | 
|  | * adapter in watchdog | 
|  | */ | 
|  | if (netif_carrier_ok(netdev) && | 
|  | adapter->flags & FLAG_RX_NEEDS_RESTART) { | 
|  | /* disable receives */ | 
|  | u32 rctl = er32(RCTL); | 
|  |  | 
|  | ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
|  | adapter->flags |= FLAG_RESTART_NOW; | 
|  | } | 
|  | /* guard against interrupt when we're going down */ | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | mod_timer(&adapter->watchdog_timer, jiffies + 1); | 
|  | } | 
|  |  | 
|  | /* Reset on uncorrectable ECC error */ | 
|  | if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) { | 
|  | u32 pbeccsts = er32(PBECCSTS); | 
|  |  | 
|  | adapter->corr_errors += | 
|  | pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; | 
|  | adapter->uncorr_errors += | 
|  | (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> | 
|  | E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; | 
|  |  | 
|  | /* Do the reset outside of interrupt context */ | 
|  | schedule_work(&adapter->reset_task); | 
|  |  | 
|  | /* return immediately since reset is imminent */ | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (napi_schedule_prep(&adapter->napi)) { | 
|  | adapter->total_tx_bytes = 0; | 
|  | adapter->total_tx_packets = 0; | 
|  | adapter->total_rx_bytes = 0; | 
|  | adapter->total_rx_packets = 0; | 
|  | __napi_schedule(&adapter->napi); | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_intr - Interrupt Handler | 
|  | * @irq: interrupt number | 
|  | * @data: pointer to a network interface device structure | 
|  | **/ | 
|  | static irqreturn_t e1000_intr(int __always_unused irq, void *data) | 
|  | { | 
|  | struct net_device *netdev = data; | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 rctl, icr = er32(ICR); | 
|  |  | 
|  | if (!icr || test_bit(__E1000_DOWN, &adapter->state)) | 
|  | return IRQ_NONE;	/* Not our interrupt */ | 
|  |  | 
|  | /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is | 
|  | * not set, then the adapter didn't send an interrupt | 
|  | */ | 
|  | if (!(icr & E1000_ICR_INT_ASSERTED)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | /* Interrupt Auto-Mask...upon reading ICR, | 
|  | * interrupts are masked.  No need for the | 
|  | * IMC write | 
|  | */ | 
|  |  | 
|  | if (icr & E1000_ICR_LSC) { | 
|  | hw->mac.get_link_status = true; | 
|  | /* ICH8 workaround-- Call gig speed drop workaround on cable | 
|  | * disconnect (LSC) before accessing any PHY registers | 
|  | */ | 
|  | if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && | 
|  | (!(er32(STATUS) & E1000_STATUS_LU))) | 
|  | schedule_work(&adapter->downshift_task); | 
|  |  | 
|  | /* 80003ES2LAN workaround-- | 
|  | * For packet buffer work-around on link down event; | 
|  | * disable receives here in the ISR and | 
|  | * reset adapter in watchdog | 
|  | */ | 
|  | if (netif_carrier_ok(netdev) && | 
|  | (adapter->flags & FLAG_RX_NEEDS_RESTART)) { | 
|  | /* disable receives */ | 
|  | rctl = er32(RCTL); | 
|  | ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
|  | adapter->flags |= FLAG_RESTART_NOW; | 
|  | } | 
|  | /* guard against interrupt when we're going down */ | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | mod_timer(&adapter->watchdog_timer, jiffies + 1); | 
|  | } | 
|  |  | 
|  | /* Reset on uncorrectable ECC error */ | 
|  | if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) { | 
|  | u32 pbeccsts = er32(PBECCSTS); | 
|  |  | 
|  | adapter->corr_errors += | 
|  | pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; | 
|  | adapter->uncorr_errors += | 
|  | (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> | 
|  | E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; | 
|  |  | 
|  | /* Do the reset outside of interrupt context */ | 
|  | schedule_work(&adapter->reset_task); | 
|  |  | 
|  | /* return immediately since reset is imminent */ | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (napi_schedule_prep(&adapter->napi)) { | 
|  | adapter->total_tx_bytes = 0; | 
|  | adapter->total_tx_packets = 0; | 
|  | adapter->total_rx_bytes = 0; | 
|  | adapter->total_rx_packets = 0; | 
|  | __napi_schedule(&adapter->napi); | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t e1000_msix_other(int __always_unused irq, void *data) | 
|  | { | 
|  | struct net_device *netdev = data; | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 icr = er32(ICR); | 
|  |  | 
|  | if (!(icr & E1000_ICR_INT_ASSERTED)) { | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | ew32(IMS, E1000_IMS_OTHER); | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | if (icr & adapter->eiac_mask) | 
|  | ew32(ICS, (icr & adapter->eiac_mask)); | 
|  |  | 
|  | if (icr & E1000_ICR_OTHER) { | 
|  | if (!(icr & E1000_ICR_LSC)) | 
|  | goto no_link_interrupt; | 
|  | hw->mac.get_link_status = true; | 
|  | /* guard against interrupt when we're going down */ | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | mod_timer(&adapter->watchdog_timer, jiffies + 1); | 
|  | } | 
|  |  | 
|  | no_link_interrupt: | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data) | 
|  | { | 
|  | struct net_device *netdev = data; | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  |  | 
|  | adapter->total_tx_bytes = 0; | 
|  | adapter->total_tx_packets = 0; | 
|  |  | 
|  | if (!e1000_clean_tx_irq(tx_ring)) | 
|  | /* Ring was not completely cleaned, so fire another interrupt */ | 
|  | ew32(ICS, tx_ring->ims_val); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data) | 
|  | { | 
|  | struct net_device *netdev = data; | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  |  | 
|  | /* Write the ITR value calculated at the end of the | 
|  | * previous interrupt. | 
|  | */ | 
|  | if (rx_ring->set_itr) { | 
|  | writel(1000000000 / (rx_ring->itr_val * 256), | 
|  | rx_ring->itr_register); | 
|  | rx_ring->set_itr = 0; | 
|  | } | 
|  |  | 
|  | if (napi_schedule_prep(&adapter->napi)) { | 
|  | adapter->total_rx_bytes = 0; | 
|  | adapter->total_rx_packets = 0; | 
|  | __napi_schedule(&adapter->napi); | 
|  | } | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_configure_msix - Configure MSI-X hardware | 
|  | * | 
|  | * e1000_configure_msix sets up the hardware to properly | 
|  | * generate MSI-X interrupts. | 
|  | **/ | 
|  | static void e1000_configure_msix(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | int vector = 0; | 
|  | u32 ctrl_ext, ivar = 0; | 
|  |  | 
|  | adapter->eiac_mask = 0; | 
|  |  | 
|  | /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ | 
|  | if (hw->mac.type == e1000_82574) { | 
|  | u32 rfctl = er32(RFCTL); | 
|  |  | 
|  | rfctl |= E1000_RFCTL_ACK_DIS; | 
|  | ew32(RFCTL, rfctl); | 
|  | } | 
|  |  | 
|  | /* Configure Rx vector */ | 
|  | rx_ring->ims_val = E1000_IMS_RXQ0; | 
|  | adapter->eiac_mask |= rx_ring->ims_val; | 
|  | if (rx_ring->itr_val) | 
|  | writel(1000000000 / (rx_ring->itr_val * 256), | 
|  | rx_ring->itr_register); | 
|  | else | 
|  | writel(1, rx_ring->itr_register); | 
|  | ivar = E1000_IVAR_INT_ALLOC_VALID | vector; | 
|  |  | 
|  | /* Configure Tx vector */ | 
|  | tx_ring->ims_val = E1000_IMS_TXQ0; | 
|  | vector++; | 
|  | if (tx_ring->itr_val) | 
|  | writel(1000000000 / (tx_ring->itr_val * 256), | 
|  | tx_ring->itr_register); | 
|  | else | 
|  | writel(1, tx_ring->itr_register); | 
|  | adapter->eiac_mask |= tx_ring->ims_val; | 
|  | ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); | 
|  |  | 
|  | /* set vector for Other Causes, e.g. link changes */ | 
|  | vector++; | 
|  | ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); | 
|  | if (rx_ring->itr_val) | 
|  | writel(1000000000 / (rx_ring->itr_val * 256), | 
|  | hw->hw_addr + E1000_EITR_82574(vector)); | 
|  | else | 
|  | writel(1, hw->hw_addr + E1000_EITR_82574(vector)); | 
|  |  | 
|  | /* Cause Tx interrupts on every write back */ | 
|  | ivar |= (1 << 31); | 
|  |  | 
|  | ew32(IVAR, ivar); | 
|  |  | 
|  | /* enable MSI-X PBA support */ | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ctrl_ext |= E1000_CTRL_EXT_PBA_CLR; | 
|  |  | 
|  | /* Auto-Mask Other interrupts upon ICR read */ | 
|  | ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER); | 
|  | ctrl_ext |= E1000_CTRL_EXT_EIAME; | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | e1e_flush(); | 
|  | } | 
|  |  | 
|  | void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) | 
|  | { | 
|  | if (adapter->msix_entries) { | 
|  | pci_disable_msix(adapter->pdev); | 
|  | kfree(adapter->msix_entries); | 
|  | adapter->msix_entries = NULL; | 
|  | } else if (adapter->flags & FLAG_MSI_ENABLED) { | 
|  | pci_disable_msi(adapter->pdev); | 
|  | adapter->flags &= ~FLAG_MSI_ENABLED; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_set_interrupt_capability - set MSI or MSI-X if supported | 
|  | * | 
|  | * Attempt to configure interrupts using the best available | 
|  | * capabilities of the hardware and kernel. | 
|  | **/ | 
|  | void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) | 
|  | { | 
|  | int err; | 
|  | int i; | 
|  |  | 
|  | switch (adapter->int_mode) { | 
|  | case E1000E_INT_MODE_MSIX: | 
|  | if (adapter->flags & FLAG_HAS_MSIX) { | 
|  | adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */ | 
|  | adapter->msix_entries = kcalloc(adapter->num_vectors, | 
|  | sizeof(struct | 
|  | msix_entry), | 
|  | GFP_KERNEL); | 
|  | if (adapter->msix_entries) { | 
|  | struct e1000_adapter *a = adapter; | 
|  |  | 
|  | for (i = 0; i < adapter->num_vectors; i++) | 
|  | adapter->msix_entries[i].entry = i; | 
|  |  | 
|  | err = pci_enable_msix_range(a->pdev, | 
|  | a->msix_entries, | 
|  | a->num_vectors, | 
|  | a->num_vectors); | 
|  | if (err > 0) | 
|  | return; | 
|  | } | 
|  | /* MSI-X failed, so fall through and try MSI */ | 
|  | e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n"); | 
|  | e1000e_reset_interrupt_capability(adapter); | 
|  | } | 
|  | adapter->int_mode = E1000E_INT_MODE_MSI; | 
|  | /* Fall through */ | 
|  | case E1000E_INT_MODE_MSI: | 
|  | if (!pci_enable_msi(adapter->pdev)) { | 
|  | adapter->flags |= FLAG_MSI_ENABLED; | 
|  | } else { | 
|  | adapter->int_mode = E1000E_INT_MODE_LEGACY; | 
|  | e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n"); | 
|  | } | 
|  | /* Fall through */ | 
|  | case E1000E_INT_MODE_LEGACY: | 
|  | /* Don't do anything; this is the system default */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* store the number of vectors being used */ | 
|  | adapter->num_vectors = 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_request_msix - Initialize MSI-X interrupts | 
|  | * | 
|  | * e1000_request_msix allocates MSI-X vectors and requests interrupts from the | 
|  | * kernel. | 
|  | **/ | 
|  | static int e1000_request_msix(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | int err = 0, vector = 0; | 
|  |  | 
|  | if (strlen(netdev->name) < (IFNAMSIZ - 5)) | 
|  | snprintf(adapter->rx_ring->name, | 
|  | sizeof(adapter->rx_ring->name) - 1, | 
|  | "%s-rx-0", netdev->name); | 
|  | else | 
|  | memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); | 
|  | err = request_irq(adapter->msix_entries[vector].vector, | 
|  | e1000_intr_msix_rx, 0, adapter->rx_ring->name, | 
|  | netdev); | 
|  | if (err) | 
|  | return err; | 
|  | adapter->rx_ring->itr_register = adapter->hw.hw_addr + | 
|  | E1000_EITR_82574(vector); | 
|  | adapter->rx_ring->itr_val = adapter->itr; | 
|  | vector++; | 
|  |  | 
|  | if (strlen(netdev->name) < (IFNAMSIZ - 5)) | 
|  | snprintf(adapter->tx_ring->name, | 
|  | sizeof(adapter->tx_ring->name) - 1, | 
|  | "%s-tx-0", netdev->name); | 
|  | else | 
|  | memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); | 
|  | err = request_irq(adapter->msix_entries[vector].vector, | 
|  | e1000_intr_msix_tx, 0, adapter->tx_ring->name, | 
|  | netdev); | 
|  | if (err) | 
|  | return err; | 
|  | adapter->tx_ring->itr_register = adapter->hw.hw_addr + | 
|  | E1000_EITR_82574(vector); | 
|  | adapter->tx_ring->itr_val = adapter->itr; | 
|  | vector++; | 
|  |  | 
|  | err = request_irq(adapter->msix_entries[vector].vector, | 
|  | e1000_msix_other, 0, netdev->name, netdev); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | e1000_configure_msix(adapter); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_request_irq - initialize interrupts | 
|  | * | 
|  | * Attempts to configure interrupts using the best available | 
|  | * capabilities of the hardware and kernel. | 
|  | **/ | 
|  | static int e1000_request_irq(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | int err; | 
|  |  | 
|  | if (adapter->msix_entries) { | 
|  | err = e1000_request_msix(adapter); | 
|  | if (!err) | 
|  | return err; | 
|  | /* fall back to MSI */ | 
|  | e1000e_reset_interrupt_capability(adapter); | 
|  | adapter->int_mode = E1000E_INT_MODE_MSI; | 
|  | e1000e_set_interrupt_capability(adapter); | 
|  | } | 
|  | if (adapter->flags & FLAG_MSI_ENABLED) { | 
|  | err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0, | 
|  | netdev->name, netdev); | 
|  | if (!err) | 
|  | return err; | 
|  |  | 
|  | /* fall back to legacy interrupt */ | 
|  | e1000e_reset_interrupt_capability(adapter); | 
|  | adapter->int_mode = E1000E_INT_MODE_LEGACY; | 
|  | } | 
|  |  | 
|  | err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED, | 
|  | netdev->name, netdev); | 
|  | if (err) | 
|  | e_err("Unable to allocate interrupt, Error: %d\n", err); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void e1000_free_irq(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  |  | 
|  | if (adapter->msix_entries) { | 
|  | int vector = 0; | 
|  |  | 
|  | free_irq(adapter->msix_entries[vector].vector, netdev); | 
|  | vector++; | 
|  |  | 
|  | free_irq(adapter->msix_entries[vector].vector, netdev); | 
|  | vector++; | 
|  |  | 
|  | /* Other Causes interrupt vector */ | 
|  | free_irq(adapter->msix_entries[vector].vector, netdev); | 
|  | return; | 
|  | } | 
|  |  | 
|  | free_irq(adapter->pdev->irq, netdev); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_irq_disable - Mask off interrupt generation on the NIC | 
|  | **/ | 
|  | static void e1000_irq_disable(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | ew32(IMC, ~0); | 
|  | if (adapter->msix_entries) | 
|  | ew32(EIAC_82574, 0); | 
|  | e1e_flush(); | 
|  |  | 
|  | if (adapter->msix_entries) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < adapter->num_vectors; i++) | 
|  | synchronize_irq(adapter->msix_entries[i].vector); | 
|  | } else { | 
|  | synchronize_irq(adapter->pdev->irq); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_irq_enable - Enable default interrupt generation settings | 
|  | **/ | 
|  | static void e1000_irq_enable(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if (adapter->msix_entries) { | 
|  | ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); | 
|  | ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC); | 
|  | } else if (hw->mac.type == e1000_pch_lpt) { | 
|  | ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER); | 
|  | } else { | 
|  | ew32(IMS, IMS_ENABLE_MASK); | 
|  | } | 
|  | e1e_flush(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_get_hw_control - get control of the h/w from f/w | 
|  | * @adapter: address of board private structure | 
|  | * | 
|  | * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. | 
|  | * For ASF and Pass Through versions of f/w this means that | 
|  | * the driver is loaded. For AMT version (only with 82573) | 
|  | * of the f/w this means that the network i/f is open. | 
|  | **/ | 
|  | void e1000e_get_hw_control(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ctrl_ext; | 
|  | u32 swsm; | 
|  |  | 
|  | /* Let firmware know the driver has taken over */ | 
|  | if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { | 
|  | swsm = er32(SWSM); | 
|  | ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); | 
|  | } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_release_hw_control - release control of the h/w to f/w | 
|  | * @adapter: address of board private structure | 
|  | * | 
|  | * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. | 
|  | * For ASF and Pass Through versions of f/w this means that the | 
|  | * driver is no longer loaded. For AMT version (only with 82573) i | 
|  | * of the f/w this means that the network i/f is closed. | 
|  | * | 
|  | **/ | 
|  | void e1000e_release_hw_control(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ctrl_ext; | 
|  | u32 swsm; | 
|  |  | 
|  | /* Let firmware taken over control of h/w */ | 
|  | if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { | 
|  | swsm = er32(SWSM); | 
|  | ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); | 
|  | } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_alloc_ring_dma - allocate memory for a ring structure | 
|  | **/ | 
|  | static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, | 
|  | struct e1000_ring *ring) | 
|  | { | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  |  | 
|  | ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, | 
|  | GFP_KERNEL); | 
|  | if (!ring->desc) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) | 
|  | * @tx_ring: Tx descriptor ring | 
|  | * | 
|  | * Return 0 on success, negative on failure | 
|  | **/ | 
|  | int e1000e_setup_tx_resources(struct e1000_ring *tx_ring) | 
|  | { | 
|  | struct e1000_adapter *adapter = tx_ring->adapter; | 
|  | int err = -ENOMEM, size; | 
|  |  | 
|  | size = sizeof(struct e1000_buffer) * tx_ring->count; | 
|  | tx_ring->buffer_info = vzalloc(size); | 
|  | if (!tx_ring->buffer_info) | 
|  | goto err; | 
|  |  | 
|  | /* round up to nearest 4K */ | 
|  | tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); | 
|  | tx_ring->size = ALIGN(tx_ring->size, 4096); | 
|  |  | 
|  | err = e1000_alloc_ring_dma(adapter, tx_ring); | 
|  | if (err) | 
|  | goto err; | 
|  |  | 
|  | tx_ring->next_to_use = 0; | 
|  | tx_ring->next_to_clean = 0; | 
|  |  | 
|  | return 0; | 
|  | err: | 
|  | vfree(tx_ring->buffer_info); | 
|  | e_err("Unable to allocate memory for the transmit descriptor ring\n"); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) | 
|  | * @rx_ring: Rx descriptor ring | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | **/ | 
|  | int e1000e_setup_rx_resources(struct e1000_ring *rx_ring) | 
|  | { | 
|  | struct e1000_adapter *adapter = rx_ring->adapter; | 
|  | struct e1000_buffer *buffer_info; | 
|  | int i, size, desc_len, err = -ENOMEM; | 
|  |  | 
|  | size = sizeof(struct e1000_buffer) * rx_ring->count; | 
|  | rx_ring->buffer_info = vzalloc(size); | 
|  | if (!rx_ring->buffer_info) | 
|  | goto err; | 
|  |  | 
|  | for (i = 0; i < rx_ring->count; i++) { | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, | 
|  | sizeof(struct e1000_ps_page), | 
|  | GFP_KERNEL); | 
|  | if (!buffer_info->ps_pages) | 
|  | goto err_pages; | 
|  | } | 
|  |  | 
|  | desc_len = sizeof(union e1000_rx_desc_packet_split); | 
|  |  | 
|  | /* Round up to nearest 4K */ | 
|  | rx_ring->size = rx_ring->count * desc_len; | 
|  | rx_ring->size = ALIGN(rx_ring->size, 4096); | 
|  |  | 
|  | err = e1000_alloc_ring_dma(adapter, rx_ring); | 
|  | if (err) | 
|  | goto err_pages; | 
|  |  | 
|  | rx_ring->next_to_clean = 0; | 
|  | rx_ring->next_to_use = 0; | 
|  | rx_ring->rx_skb_top = NULL; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_pages: | 
|  | for (i = 0; i < rx_ring->count; i++) { | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | kfree(buffer_info->ps_pages); | 
|  | } | 
|  | err: | 
|  | vfree(rx_ring->buffer_info); | 
|  | e_err("Unable to allocate memory for the receive descriptor ring\n"); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_tx_ring - Free Tx Buffers | 
|  | * @tx_ring: Tx descriptor ring | 
|  | **/ | 
|  | static void e1000_clean_tx_ring(struct e1000_ring *tx_ring) | 
|  | { | 
|  | struct e1000_adapter *adapter = tx_ring->adapter; | 
|  | struct e1000_buffer *buffer_info; | 
|  | unsigned long size; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < tx_ring->count; i++) { | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | e1000_put_txbuf(tx_ring, buffer_info); | 
|  | } | 
|  |  | 
|  | netdev_reset_queue(adapter->netdev); | 
|  | size = sizeof(struct e1000_buffer) * tx_ring->count; | 
|  | memset(tx_ring->buffer_info, 0, size); | 
|  |  | 
|  | memset(tx_ring->desc, 0, tx_ring->size); | 
|  |  | 
|  | tx_ring->next_to_use = 0; | 
|  | tx_ring->next_to_clean = 0; | 
|  |  | 
|  | writel(0, tx_ring->head); | 
|  | if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) | 
|  | e1000e_update_tdt_wa(tx_ring, 0); | 
|  | else | 
|  | writel(0, tx_ring->tail); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_free_tx_resources - Free Tx Resources per Queue | 
|  | * @tx_ring: Tx descriptor ring | 
|  | * | 
|  | * Free all transmit software resources | 
|  | **/ | 
|  | void e1000e_free_tx_resources(struct e1000_ring *tx_ring) | 
|  | { | 
|  | struct e1000_adapter *adapter = tx_ring->adapter; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  |  | 
|  | e1000_clean_tx_ring(tx_ring); | 
|  |  | 
|  | vfree(tx_ring->buffer_info); | 
|  | tx_ring->buffer_info = NULL; | 
|  |  | 
|  | dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, | 
|  | tx_ring->dma); | 
|  | tx_ring->desc = NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_free_rx_resources - Free Rx Resources | 
|  | * @rx_ring: Rx descriptor ring | 
|  | * | 
|  | * Free all receive software resources | 
|  | **/ | 
|  | void e1000e_free_rx_resources(struct e1000_ring *rx_ring) | 
|  | { | 
|  | struct e1000_adapter *adapter = rx_ring->adapter; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | int i; | 
|  |  | 
|  | e1000_clean_rx_ring(rx_ring); | 
|  |  | 
|  | for (i = 0; i < rx_ring->count; i++) | 
|  | kfree(rx_ring->buffer_info[i].ps_pages); | 
|  |  | 
|  | vfree(rx_ring->buffer_info); | 
|  | rx_ring->buffer_info = NULL; | 
|  |  | 
|  | dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, | 
|  | rx_ring->dma); | 
|  | rx_ring->desc = NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_update_itr - update the dynamic ITR value based on statistics | 
|  | * @adapter: pointer to adapter | 
|  | * @itr_setting: current adapter->itr | 
|  | * @packets: the number of packets during this measurement interval | 
|  | * @bytes: the number of bytes during this measurement interval | 
|  | * | 
|  | *      Stores a new ITR value based on packets and byte | 
|  | *      counts during the last interrupt.  The advantage of per interrupt | 
|  | *      computation is faster updates and more accurate ITR for the current | 
|  | *      traffic pattern.  Constants in this function were computed | 
|  | *      based on theoretical maximum wire speed and thresholds were set based | 
|  | *      on testing data as well as attempting to minimize response time | 
|  | *      while increasing bulk throughput.  This functionality is controlled | 
|  | *      by the InterruptThrottleRate module parameter. | 
|  | **/ | 
|  | static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes) | 
|  | { | 
|  | unsigned int retval = itr_setting; | 
|  |  | 
|  | if (packets == 0) | 
|  | return itr_setting; | 
|  |  | 
|  | switch (itr_setting) { | 
|  | case lowest_latency: | 
|  | /* handle TSO and jumbo frames */ | 
|  | if (bytes / packets > 8000) | 
|  | retval = bulk_latency; | 
|  | else if ((packets < 5) && (bytes > 512)) | 
|  | retval = low_latency; | 
|  | break; | 
|  | case low_latency:	/* 50 usec aka 20000 ints/s */ | 
|  | if (bytes > 10000) { | 
|  | /* this if handles the TSO accounting */ | 
|  | if (bytes / packets > 8000) | 
|  | retval = bulk_latency; | 
|  | else if ((packets < 10) || ((bytes / packets) > 1200)) | 
|  | retval = bulk_latency; | 
|  | else if ((packets > 35)) | 
|  | retval = lowest_latency; | 
|  | } else if (bytes / packets > 2000) { | 
|  | retval = bulk_latency; | 
|  | } else if (packets <= 2 && bytes < 512) { | 
|  | retval = lowest_latency; | 
|  | } | 
|  | break; | 
|  | case bulk_latency:	/* 250 usec aka 4000 ints/s */ | 
|  | if (bytes > 25000) { | 
|  | if (packets > 35) | 
|  | retval = low_latency; | 
|  | } else if (bytes < 6000) { | 
|  | retval = low_latency; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static void e1000_set_itr(struct e1000_adapter *adapter) | 
|  | { | 
|  | u16 current_itr; | 
|  | u32 new_itr = adapter->itr; | 
|  |  | 
|  | /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ | 
|  | if (adapter->link_speed != SPEED_1000) { | 
|  | current_itr = 0; | 
|  | new_itr = 4000; | 
|  | goto set_itr_now; | 
|  | } | 
|  |  | 
|  | if (adapter->flags2 & FLAG2_DISABLE_AIM) { | 
|  | new_itr = 0; | 
|  | goto set_itr_now; | 
|  | } | 
|  |  | 
|  | adapter->tx_itr = e1000_update_itr(adapter->tx_itr, | 
|  | adapter->total_tx_packets, | 
|  | adapter->total_tx_bytes); | 
|  | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | 
|  | if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) | 
|  | adapter->tx_itr = low_latency; | 
|  |  | 
|  | adapter->rx_itr = e1000_update_itr(adapter->rx_itr, | 
|  | adapter->total_rx_packets, | 
|  | adapter->total_rx_bytes); | 
|  | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | 
|  | if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) | 
|  | adapter->rx_itr = low_latency; | 
|  |  | 
|  | current_itr = max(adapter->rx_itr, adapter->tx_itr); | 
|  |  | 
|  | /* counts and packets in update_itr are dependent on these numbers */ | 
|  | switch (current_itr) { | 
|  | case lowest_latency: | 
|  | new_itr = 70000; | 
|  | break; | 
|  | case low_latency: | 
|  | new_itr = 20000;	/* aka hwitr = ~200 */ | 
|  | break; | 
|  | case bulk_latency: | 
|  | new_itr = 4000; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | set_itr_now: | 
|  | if (new_itr != adapter->itr) { | 
|  | /* this attempts to bias the interrupt rate towards Bulk | 
|  | * by adding intermediate steps when interrupt rate is | 
|  | * increasing | 
|  | */ | 
|  | new_itr = new_itr > adapter->itr ? | 
|  | min(adapter->itr + (new_itr >> 2), new_itr) : new_itr; | 
|  | adapter->itr = new_itr; | 
|  | adapter->rx_ring->itr_val = new_itr; | 
|  | if (adapter->msix_entries) | 
|  | adapter->rx_ring->set_itr = 1; | 
|  | else | 
|  | e1000e_write_itr(adapter, new_itr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_write_itr - write the ITR value to the appropriate registers | 
|  | * @adapter: address of board private structure | 
|  | * @itr: new ITR value to program | 
|  | * | 
|  | * e1000e_write_itr determines if the adapter is in MSI-X mode | 
|  | * and, if so, writes the EITR registers with the ITR value. | 
|  | * Otherwise, it writes the ITR value into the ITR register. | 
|  | **/ | 
|  | void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 new_itr = itr ? 1000000000 / (itr * 256) : 0; | 
|  |  | 
|  | if (adapter->msix_entries) { | 
|  | int vector; | 
|  |  | 
|  | for (vector = 0; vector < adapter->num_vectors; vector++) | 
|  | writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector)); | 
|  | } else { | 
|  | ew32(ITR, new_itr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_alloc_queues - Allocate memory for all rings | 
|  | * @adapter: board private structure to initialize | 
|  | **/ | 
|  | static int e1000_alloc_queues(struct e1000_adapter *adapter) | 
|  | { | 
|  | int size = sizeof(struct e1000_ring); | 
|  |  | 
|  | adapter->tx_ring = kzalloc(size, GFP_KERNEL); | 
|  | if (!adapter->tx_ring) | 
|  | goto err; | 
|  | adapter->tx_ring->count = adapter->tx_ring_count; | 
|  | adapter->tx_ring->adapter = adapter; | 
|  |  | 
|  | adapter->rx_ring = kzalloc(size, GFP_KERNEL); | 
|  | if (!adapter->rx_ring) | 
|  | goto err; | 
|  | adapter->rx_ring->count = adapter->rx_ring_count; | 
|  | adapter->rx_ring->adapter = adapter; | 
|  |  | 
|  | return 0; | 
|  | err: | 
|  | e_err("Unable to allocate memory for queues\n"); | 
|  | kfree(adapter->rx_ring); | 
|  | kfree(adapter->tx_ring); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_poll - NAPI Rx polling callback | 
|  | * @napi: struct associated with this polling callback | 
|  | * @weight: number of packets driver is allowed to process this poll | 
|  | **/ | 
|  | static int e1000e_poll(struct napi_struct *napi, int weight) | 
|  | { | 
|  | struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, | 
|  | napi); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct net_device *poll_dev = adapter->netdev; | 
|  | int tx_cleaned = 1, work_done = 0; | 
|  |  | 
|  | adapter = netdev_priv(poll_dev); | 
|  |  | 
|  | if (!adapter->msix_entries || | 
|  | (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) | 
|  | tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring); | 
|  |  | 
|  | adapter->clean_rx(adapter->rx_ring, &work_done, weight); | 
|  |  | 
|  | if (!tx_cleaned) | 
|  | work_done = weight; | 
|  |  | 
|  | /* If weight not fully consumed, exit the polling mode */ | 
|  | if (work_done < weight) { | 
|  | if (adapter->itr_setting & 3) | 
|  | e1000_set_itr(adapter); | 
|  | napi_complete(napi); | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) { | 
|  | if (adapter->msix_entries) | 
|  | ew32(IMS, adapter->rx_ring->ims_val); | 
|  | else | 
|  | e1000_irq_enable(adapter); | 
|  | } | 
|  | } | 
|  |  | 
|  | return work_done; | 
|  | } | 
|  |  | 
|  | static int e1000_vlan_rx_add_vid(struct net_device *netdev, | 
|  | __always_unused __be16 proto, u16 vid) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 vfta, index; | 
|  |  | 
|  | /* don't update vlan cookie if already programmed */ | 
|  | if ((adapter->hw.mng_cookie.status & | 
|  | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | 
|  | (vid == adapter->mng_vlan_id)) | 
|  | return 0; | 
|  |  | 
|  | /* add VID to filter table */ | 
|  | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | 
|  | index = (vid >> 5) & 0x7F; | 
|  | vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); | 
|  | vfta |= (1 << (vid & 0x1F)); | 
|  | hw->mac.ops.write_vfta(hw, index, vfta); | 
|  | } | 
|  |  | 
|  | set_bit(vid, adapter->active_vlans); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000_vlan_rx_kill_vid(struct net_device *netdev, | 
|  | __always_unused __be16 proto, u16 vid) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 vfta, index; | 
|  |  | 
|  | if ((adapter->hw.mng_cookie.status & | 
|  | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | 
|  | (vid == adapter->mng_vlan_id)) { | 
|  | /* release control to f/w */ | 
|  | e1000e_release_hw_control(adapter); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* remove VID from filter table */ | 
|  | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | 
|  | index = (vid >> 5) & 0x7F; | 
|  | vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); | 
|  | vfta &= ~(1 << (vid & 0x1F)); | 
|  | hw->mac.ops.write_vfta(hw, index, vfta); | 
|  | } | 
|  |  | 
|  | clear_bit(vid, adapter->active_vlans); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering | 
|  | * @adapter: board private structure to initialize | 
|  | **/ | 
|  | static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 rctl; | 
|  |  | 
|  | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | 
|  | /* disable VLAN receive filtering */ | 
|  | rctl = er32(RCTL); | 
|  | rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN); | 
|  | ew32(RCTL, rctl); | 
|  |  | 
|  | if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) { | 
|  | e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), | 
|  | adapter->mng_vlan_id); | 
|  | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering | 
|  | * @adapter: board private structure to initialize | 
|  | **/ | 
|  | static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 rctl; | 
|  |  | 
|  | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | 
|  | /* enable VLAN receive filtering */ | 
|  | rctl = er32(RCTL); | 
|  | rctl |= E1000_RCTL_VFE; | 
|  | rctl &= ~E1000_RCTL_CFIEN; | 
|  | ew32(RCTL, rctl); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping | 
|  | * @adapter: board private structure to initialize | 
|  | **/ | 
|  | static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ctrl; | 
|  |  | 
|  | /* disable VLAN tag insert/strip */ | 
|  | ctrl = er32(CTRL); | 
|  | ctrl &= ~E1000_CTRL_VME; | 
|  | ew32(CTRL, ctrl); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping | 
|  | * @adapter: board private structure to initialize | 
|  | **/ | 
|  | static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ctrl; | 
|  |  | 
|  | /* enable VLAN tag insert/strip */ | 
|  | ctrl = er32(CTRL); | 
|  | ctrl |= E1000_CTRL_VME; | 
|  | ew32(CTRL, ctrl); | 
|  | } | 
|  |  | 
|  | static void e1000_update_mng_vlan(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | u16 vid = adapter->hw.mng_cookie.vlan_id; | 
|  | u16 old_vid = adapter->mng_vlan_id; | 
|  |  | 
|  | if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { | 
|  | e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); | 
|  | adapter->mng_vlan_id = vid; | 
|  | } | 
|  |  | 
|  | if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid)) | 
|  | e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid); | 
|  | } | 
|  |  | 
|  | static void e1000_restore_vlan(struct e1000_adapter *adapter) | 
|  | { | 
|  | u16 vid; | 
|  |  | 
|  | e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0); | 
|  |  | 
|  | for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) | 
|  | e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); | 
|  | } | 
|  |  | 
|  | static void e1000_init_manageability_pt(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 manc, manc2h, mdef, i, j; | 
|  |  | 
|  | if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) | 
|  | return; | 
|  |  | 
|  | manc = er32(MANC); | 
|  |  | 
|  | /* enable receiving management packets to the host. this will probably | 
|  | * generate destination unreachable messages from the host OS, but | 
|  | * the packets will be handled on SMBUS | 
|  | */ | 
|  | manc |= E1000_MANC_EN_MNG2HOST; | 
|  | manc2h = er32(MANC2H); | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | default: | 
|  | manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664); | 
|  | break; | 
|  | case e1000_82574: | 
|  | case e1000_82583: | 
|  | /* Check if IPMI pass-through decision filter already exists; | 
|  | * if so, enable it. | 
|  | */ | 
|  | for (i = 0, j = 0; i < 8; i++) { | 
|  | mdef = er32(MDEF(i)); | 
|  |  | 
|  | /* Ignore filters with anything other than IPMI ports */ | 
|  | if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) | 
|  | continue; | 
|  |  | 
|  | /* Enable this decision filter in MANC2H */ | 
|  | if (mdef) | 
|  | manc2h |= (1 << i); | 
|  |  | 
|  | j |= mdef; | 
|  | } | 
|  |  | 
|  | if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) | 
|  | break; | 
|  |  | 
|  | /* Create new decision filter in an empty filter */ | 
|  | for (i = 0, j = 0; i < 8; i++) | 
|  | if (er32(MDEF(i)) == 0) { | 
|  | ew32(MDEF(i), (E1000_MDEF_PORT_623 | | 
|  | E1000_MDEF_PORT_664)); | 
|  | manc2h |= (1 << 1); | 
|  | j++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!j) | 
|  | e_warn("Unable to create IPMI pass-through filter\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | ew32(MANC2H, manc2h); | 
|  | ew32(MANC, manc); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_configure_tx - Configure Transmit Unit after Reset | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Configure the Tx unit of the MAC after a reset. | 
|  | **/ | 
|  | static void e1000_configure_tx(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | u64 tdba; | 
|  | u32 tdlen, tctl, tarc; | 
|  |  | 
|  | /* Setup the HW Tx Head and Tail descriptor pointers */ | 
|  | tdba = tx_ring->dma; | 
|  | tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); | 
|  | ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32))); | 
|  | ew32(TDBAH(0), (tdba >> 32)); | 
|  | ew32(TDLEN(0), tdlen); | 
|  | ew32(TDH(0), 0); | 
|  | ew32(TDT(0), 0); | 
|  | tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0); | 
|  | tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0); | 
|  |  | 
|  | /* Set the Tx Interrupt Delay register */ | 
|  | ew32(TIDV, adapter->tx_int_delay); | 
|  | /* Tx irq moderation */ | 
|  | ew32(TADV, adapter->tx_abs_int_delay); | 
|  |  | 
|  | if (adapter->flags2 & FLAG2_DMA_BURST) { | 
|  | u32 txdctl = er32(TXDCTL(0)); | 
|  |  | 
|  | txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH | | 
|  | E1000_TXDCTL_WTHRESH); | 
|  | /* set up some performance related parameters to encourage the | 
|  | * hardware to use the bus more efficiently in bursts, depends | 
|  | * on the tx_int_delay to be enabled, | 
|  | * wthresh = 1 ==> burst write is disabled to avoid Tx stalls | 
|  | * hthresh = 1 ==> prefetch when one or more available | 
|  | * pthresh = 0x1f ==> prefetch if internal cache 31 or less | 
|  | * BEWARE: this seems to work but should be considered first if | 
|  | * there are Tx hangs or other Tx related bugs | 
|  | */ | 
|  | txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE; | 
|  | ew32(TXDCTL(0), txdctl); | 
|  | } | 
|  | /* erratum work around: set txdctl the same for both queues */ | 
|  | ew32(TXDCTL(1), er32(TXDCTL(0))); | 
|  |  | 
|  | /* Program the Transmit Control Register */ | 
|  | tctl = er32(TCTL); | 
|  | tctl &= ~E1000_TCTL_CT; | 
|  | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | | 
|  | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | 
|  |  | 
|  | if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { | 
|  | tarc = er32(TARC(0)); | 
|  | /* set the speed mode bit, we'll clear it if we're not at | 
|  | * gigabit link later | 
|  | */ | 
|  | #define SPEED_MODE_BIT (1 << 21) | 
|  | tarc |= SPEED_MODE_BIT; | 
|  | ew32(TARC(0), tarc); | 
|  | } | 
|  |  | 
|  | /* errata: program both queues to unweighted RR */ | 
|  | if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { | 
|  | tarc = er32(TARC(0)); | 
|  | tarc |= 1; | 
|  | ew32(TARC(0), tarc); | 
|  | tarc = er32(TARC(1)); | 
|  | tarc |= 1; | 
|  | ew32(TARC(1), tarc); | 
|  | } | 
|  |  | 
|  | /* Setup Transmit Descriptor Settings for eop descriptor */ | 
|  | adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; | 
|  |  | 
|  | /* only set IDE if we are delaying interrupts using the timers */ | 
|  | if (adapter->tx_int_delay) | 
|  | adapter->txd_cmd |= E1000_TXD_CMD_IDE; | 
|  |  | 
|  | /* enable Report Status bit */ | 
|  | adapter->txd_cmd |= E1000_TXD_CMD_RS; | 
|  |  | 
|  | ew32(TCTL, tctl); | 
|  |  | 
|  | hw->mac.ops.config_collision_dist(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_setup_rctl - configure the receive control registers | 
|  | * @adapter: Board private structure | 
|  | **/ | 
|  | #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ | 
|  | (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) | 
|  | static void e1000_setup_rctl(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 rctl, rfctl; | 
|  | u32 pages = 0; | 
|  |  | 
|  | /* Workaround Si errata on PCHx - configure jumbo frame flow. | 
|  | * If jumbo frames not set, program related MAC/PHY registers | 
|  | * to h/w defaults | 
|  | */ | 
|  | if (hw->mac.type >= e1000_pch2lan) { | 
|  | s32 ret_val; | 
|  |  | 
|  | if (adapter->netdev->mtu > ETH_DATA_LEN) | 
|  | ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true); | 
|  | else | 
|  | ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false); | 
|  |  | 
|  | if (ret_val) | 
|  | e_dbg("failed to enable|disable jumbo frame workaround mode\n"); | 
|  | } | 
|  |  | 
|  | /* Program MC offset vector base */ | 
|  | rctl = er32(RCTL); | 
|  | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | 
|  | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | | 
|  | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | 
|  | (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); | 
|  |  | 
|  | /* Do not Store bad packets */ | 
|  | rctl &= ~E1000_RCTL_SBP; | 
|  |  | 
|  | /* Enable Long Packet receive */ | 
|  | if (adapter->netdev->mtu <= ETH_DATA_LEN) | 
|  | rctl &= ~E1000_RCTL_LPE; | 
|  | else | 
|  | rctl |= E1000_RCTL_LPE; | 
|  |  | 
|  | /* Some systems expect that the CRC is included in SMBUS traffic. The | 
|  | * hardware strips the CRC before sending to both SMBUS (BMC) and to | 
|  | * host memory when this is enabled | 
|  | */ | 
|  | if (adapter->flags2 & FLAG2_CRC_STRIPPING) | 
|  | rctl |= E1000_RCTL_SECRC; | 
|  |  | 
|  | /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */ | 
|  | if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) { | 
|  | u16 phy_data; | 
|  |  | 
|  | e1e_rphy(hw, PHY_REG(770, 26), &phy_data); | 
|  | phy_data &= 0xfff8; | 
|  | phy_data |= (1 << 2); | 
|  | e1e_wphy(hw, PHY_REG(770, 26), phy_data); | 
|  |  | 
|  | e1e_rphy(hw, 22, &phy_data); | 
|  | phy_data &= 0x0fff; | 
|  | phy_data |= (1 << 14); | 
|  | e1e_wphy(hw, 0x10, 0x2823); | 
|  | e1e_wphy(hw, 0x11, 0x0003); | 
|  | e1e_wphy(hw, 22, phy_data); | 
|  | } | 
|  |  | 
|  | /* Setup buffer sizes */ | 
|  | rctl &= ~E1000_RCTL_SZ_4096; | 
|  | rctl |= E1000_RCTL_BSEX; | 
|  | switch (adapter->rx_buffer_len) { | 
|  | case 2048: | 
|  | default: | 
|  | rctl |= E1000_RCTL_SZ_2048; | 
|  | rctl &= ~E1000_RCTL_BSEX; | 
|  | break; | 
|  | case 4096: | 
|  | rctl |= E1000_RCTL_SZ_4096; | 
|  | break; | 
|  | case 8192: | 
|  | rctl |= E1000_RCTL_SZ_8192; | 
|  | break; | 
|  | case 16384: | 
|  | rctl |= E1000_RCTL_SZ_16384; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Enable Extended Status in all Receive Descriptors */ | 
|  | rfctl = er32(RFCTL); | 
|  | rfctl |= E1000_RFCTL_EXTEN; | 
|  | ew32(RFCTL, rfctl); | 
|  |  | 
|  | /* 82571 and greater support packet-split where the protocol | 
|  | * header is placed in skb->data and the packet data is | 
|  | * placed in pages hanging off of skb_shinfo(skb)->nr_frags. | 
|  | * In the case of a non-split, skb->data is linearly filled, | 
|  | * followed by the page buffers.  Therefore, skb->data is | 
|  | * sized to hold the largest protocol header. | 
|  | * | 
|  | * allocations using alloc_page take too long for regular MTU | 
|  | * so only enable packet split for jumbo frames | 
|  | * | 
|  | * Using pages when the page size is greater than 16k wastes | 
|  | * a lot of memory, since we allocate 3 pages at all times | 
|  | * per packet. | 
|  | */ | 
|  | pages = PAGE_USE_COUNT(adapter->netdev->mtu); | 
|  | if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) | 
|  | adapter->rx_ps_pages = pages; | 
|  | else | 
|  | adapter->rx_ps_pages = 0; | 
|  |  | 
|  | if (adapter->rx_ps_pages) { | 
|  | u32 psrctl = 0; | 
|  |  | 
|  | /* Enable Packet split descriptors */ | 
|  | rctl |= E1000_RCTL_DTYP_PS; | 
|  |  | 
|  | psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT; | 
|  |  | 
|  | switch (adapter->rx_ps_pages) { | 
|  | case 3: | 
|  | psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT; | 
|  | /* fall-through */ | 
|  | case 2: | 
|  | psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT; | 
|  | /* fall-through */ | 
|  | case 1: | 
|  | psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ew32(PSRCTL, psrctl); | 
|  | } | 
|  |  | 
|  | /* This is useful for sniffing bad packets. */ | 
|  | if (adapter->netdev->features & NETIF_F_RXALL) { | 
|  | /* UPE and MPE will be handled by normal PROMISC logic | 
|  | * in e1000e_set_rx_mode | 
|  | */ | 
|  | rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */ | 
|  | E1000_RCTL_BAM |	/* RX All Bcast Pkts */ | 
|  | E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */ | 
|  |  | 
|  | rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */ | 
|  | E1000_RCTL_DPF |	/* Allow filtered pause */ | 
|  | E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */ | 
|  | /* Do not mess with E1000_CTRL_VME, it affects transmit as well, | 
|  | * and that breaks VLANs. | 
|  | */ | 
|  | } | 
|  |  | 
|  | ew32(RCTL, rctl); | 
|  | /* just started the receive unit, no need to restart */ | 
|  | adapter->flags &= ~FLAG_RESTART_NOW; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_configure_rx - Configure Receive Unit after Reset | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Configure the Rx unit of the MAC after a reset. | 
|  | **/ | 
|  | static void e1000_configure_rx(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  | u64 rdba; | 
|  | u32 rdlen, rctl, rxcsum, ctrl_ext; | 
|  |  | 
|  | if (adapter->rx_ps_pages) { | 
|  | /* this is a 32 byte descriptor */ | 
|  | rdlen = rx_ring->count * | 
|  | sizeof(union e1000_rx_desc_packet_split); | 
|  | adapter->clean_rx = e1000_clean_rx_irq_ps; | 
|  | adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; | 
|  | } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { | 
|  | rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); | 
|  | adapter->clean_rx = e1000_clean_jumbo_rx_irq; | 
|  | adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; | 
|  | } else { | 
|  | rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); | 
|  | adapter->clean_rx = e1000_clean_rx_irq; | 
|  | adapter->alloc_rx_buf = e1000_alloc_rx_buffers; | 
|  | } | 
|  |  | 
|  | /* disable receives while setting up the descriptors */ | 
|  | rctl = er32(RCTL); | 
|  | if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) | 
|  | ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
|  | e1e_flush(); | 
|  | usleep_range(10000, 20000); | 
|  |  | 
|  | if (adapter->flags2 & FLAG2_DMA_BURST) { | 
|  | /* set the writeback threshold (only takes effect if the RDTR | 
|  | * is set). set GRAN=1 and write back up to 0x4 worth, and | 
|  | * enable prefetching of 0x20 Rx descriptors | 
|  | * granularity = 01 | 
|  | * wthresh = 04, | 
|  | * hthresh = 04, | 
|  | * pthresh = 0x20 | 
|  | */ | 
|  | ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE); | 
|  | ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE); | 
|  |  | 
|  | /* override the delay timers for enabling bursting, only if | 
|  | * the value was not set by the user via module options | 
|  | */ | 
|  | if (adapter->rx_int_delay == DEFAULT_RDTR) | 
|  | adapter->rx_int_delay = BURST_RDTR; | 
|  | if (adapter->rx_abs_int_delay == DEFAULT_RADV) | 
|  | adapter->rx_abs_int_delay = BURST_RADV; | 
|  | } | 
|  |  | 
|  | /* set the Receive Delay Timer Register */ | 
|  | ew32(RDTR, adapter->rx_int_delay); | 
|  |  | 
|  | /* irq moderation */ | 
|  | ew32(RADV, adapter->rx_abs_int_delay); | 
|  | if ((adapter->itr_setting != 0) && (adapter->itr != 0)) | 
|  | e1000e_write_itr(adapter, adapter->itr); | 
|  |  | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | /* Auto-Mask interrupts upon ICR access */ | 
|  | ctrl_ext |= E1000_CTRL_EXT_IAME; | 
|  | ew32(IAM, 0xffffffff); | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | e1e_flush(); | 
|  |  | 
|  | /* Setup the HW Rx Head and Tail Descriptor Pointers and | 
|  | * the Base and Length of the Rx Descriptor Ring | 
|  | */ | 
|  | rdba = rx_ring->dma; | 
|  | ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32))); | 
|  | ew32(RDBAH(0), (rdba >> 32)); | 
|  | ew32(RDLEN(0), rdlen); | 
|  | ew32(RDH(0), 0); | 
|  | ew32(RDT(0), 0); | 
|  | rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0); | 
|  | rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0); | 
|  |  | 
|  | /* Enable Receive Checksum Offload for TCP and UDP */ | 
|  | rxcsum = er32(RXCSUM); | 
|  | if (adapter->netdev->features & NETIF_F_RXCSUM) | 
|  | rxcsum |= E1000_RXCSUM_TUOFL; | 
|  | else | 
|  | rxcsum &= ~E1000_RXCSUM_TUOFL; | 
|  | ew32(RXCSUM, rxcsum); | 
|  |  | 
|  | /* With jumbo frames, excessive C-state transition latencies result | 
|  | * in dropped transactions. | 
|  | */ | 
|  | if (adapter->netdev->mtu > ETH_DATA_LEN) { | 
|  | u32 lat = | 
|  | ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 - | 
|  | adapter->max_frame_size) * 8 / 1000; | 
|  |  | 
|  | if (adapter->flags & FLAG_IS_ICH) { | 
|  | u32 rxdctl = er32(RXDCTL(0)); | 
|  |  | 
|  | ew32(RXDCTL(0), rxdctl | 0x3); | 
|  | } | 
|  |  | 
|  | pm_qos_update_request(&adapter->netdev->pm_qos_req, lat); | 
|  | } else { | 
|  | pm_qos_update_request(&adapter->netdev->pm_qos_req, | 
|  | PM_QOS_DEFAULT_VALUE); | 
|  | } | 
|  |  | 
|  | /* Enable Receives */ | 
|  | ew32(RCTL, rctl); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_write_mc_addr_list - write multicast addresses to MTA | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * Writes multicast address list to the MTA hash table. | 
|  | * Returns: -ENOMEM on failure | 
|  | *                0 on no addresses written | 
|  | *                X on writing X addresses to MTA | 
|  | */ | 
|  | static int e1000e_write_mc_addr_list(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct netdev_hw_addr *ha; | 
|  | u8 *mta_list; | 
|  | int i; | 
|  |  | 
|  | if (netdev_mc_empty(netdev)) { | 
|  | /* nothing to program, so clear mc list */ | 
|  | hw->mac.ops.update_mc_addr_list(hw, NULL, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC); | 
|  | if (!mta_list) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* update_mc_addr_list expects a packed array of only addresses. */ | 
|  | i = 0; | 
|  | netdev_for_each_mc_addr(ha, netdev) | 
|  | memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); | 
|  |  | 
|  | hw->mac.ops.update_mc_addr_list(hw, mta_list, i); | 
|  | kfree(mta_list); | 
|  |  | 
|  | return netdev_mc_count(netdev); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_write_uc_addr_list - write unicast addresses to RAR table | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * Writes unicast address list to the RAR table. | 
|  | * Returns: -ENOMEM on failure/insufficient address space | 
|  | *                0 on no addresses written | 
|  | *                X on writing X addresses to the RAR table | 
|  | **/ | 
|  | static int e1000e_write_uc_addr_list(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | unsigned int rar_entries; | 
|  | int count = 0; | 
|  |  | 
|  | rar_entries = hw->mac.ops.rar_get_count(hw); | 
|  |  | 
|  | /* save a rar entry for our hardware address */ | 
|  | rar_entries--; | 
|  |  | 
|  | /* save a rar entry for the LAA workaround */ | 
|  | if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) | 
|  | rar_entries--; | 
|  |  | 
|  | /* return ENOMEM indicating insufficient memory for addresses */ | 
|  | if (netdev_uc_count(netdev) > rar_entries) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!netdev_uc_empty(netdev) && rar_entries) { | 
|  | struct netdev_hw_addr *ha; | 
|  |  | 
|  | /* write the addresses in reverse order to avoid write | 
|  | * combining | 
|  | */ | 
|  | netdev_for_each_uc_addr(ha, netdev) { | 
|  | int rval; | 
|  |  | 
|  | if (!rar_entries) | 
|  | break; | 
|  | rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--); | 
|  | if (rval < 0) | 
|  | return -ENOMEM; | 
|  | count++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* zero out the remaining RAR entries not used above */ | 
|  | for (; rar_entries > 0; rar_entries--) { | 
|  | ew32(RAH(rar_entries), 0); | 
|  | ew32(RAL(rar_entries), 0); | 
|  | } | 
|  | e1e_flush(); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * The ndo_set_rx_mode entry point is called whenever the unicast or multicast | 
|  | * address list or the network interface flags are updated.  This routine is | 
|  | * responsible for configuring the hardware for proper unicast, multicast, | 
|  | * promiscuous mode, and all-multi behavior. | 
|  | **/ | 
|  | static void e1000e_set_rx_mode(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 rctl; | 
|  |  | 
|  | if (pm_runtime_suspended(netdev->dev.parent)) | 
|  | return; | 
|  |  | 
|  | /* Check for Promiscuous and All Multicast modes */ | 
|  | rctl = er32(RCTL); | 
|  |  | 
|  | /* clear the affected bits */ | 
|  | rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); | 
|  |  | 
|  | if (netdev->flags & IFF_PROMISC) { | 
|  | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | 
|  | /* Do not hardware filter VLANs in promisc mode */ | 
|  | e1000e_vlan_filter_disable(adapter); | 
|  | } else { | 
|  | int count; | 
|  |  | 
|  | if (netdev->flags & IFF_ALLMULTI) { | 
|  | rctl |= E1000_RCTL_MPE; | 
|  | } else { | 
|  | /* Write addresses to the MTA, if the attempt fails | 
|  | * then we should just turn on promiscuous mode so | 
|  | * that we can at least receive multicast traffic | 
|  | */ | 
|  | count = e1000e_write_mc_addr_list(netdev); | 
|  | if (count < 0) | 
|  | rctl |= E1000_RCTL_MPE; | 
|  | } | 
|  | e1000e_vlan_filter_enable(adapter); | 
|  | /* Write addresses to available RAR registers, if there is not | 
|  | * sufficient space to store all the addresses then enable | 
|  | * unicast promiscuous mode | 
|  | */ | 
|  | count = e1000e_write_uc_addr_list(netdev); | 
|  | if (count < 0) | 
|  | rctl |= E1000_RCTL_UPE; | 
|  | } | 
|  |  | 
|  | ew32(RCTL, rctl); | 
|  |  | 
|  | if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) | 
|  | e1000e_vlan_strip_enable(adapter); | 
|  | else | 
|  | e1000e_vlan_strip_disable(adapter); | 
|  | } | 
|  |  | 
|  | static void e1000e_setup_rss_hash(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 mrqc, rxcsum; | 
|  | int i; | 
|  | static const u32 rsskey[10] = { | 
|  | 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0, | 
|  | 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe | 
|  | }; | 
|  |  | 
|  | /* Fill out hash function seed */ | 
|  | for (i = 0; i < 10; i++) | 
|  | ew32(RSSRK(i), rsskey[i]); | 
|  |  | 
|  | /* Direct all traffic to queue 0 */ | 
|  | for (i = 0; i < 32; i++) | 
|  | ew32(RETA(i), 0); | 
|  |  | 
|  | /* Disable raw packet checksumming so that RSS hash is placed in | 
|  | * descriptor on writeback. | 
|  | */ | 
|  | rxcsum = er32(RXCSUM); | 
|  | rxcsum |= E1000_RXCSUM_PCSD; | 
|  |  | 
|  | ew32(RXCSUM, rxcsum); | 
|  |  | 
|  | mrqc = (E1000_MRQC_RSS_FIELD_IPV4 | | 
|  | E1000_MRQC_RSS_FIELD_IPV4_TCP | | 
|  | E1000_MRQC_RSS_FIELD_IPV6 | | 
|  | E1000_MRQC_RSS_FIELD_IPV6_TCP | | 
|  | E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); | 
|  |  | 
|  | ew32(MRQC, mrqc); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_get_base_timinca - get default SYSTIM time increment attributes | 
|  | * @adapter: board private structure | 
|  | * @timinca: pointer to returned time increment attributes | 
|  | * | 
|  | * Get attributes for incrementing the System Time Register SYSTIML/H at | 
|  | * the default base frequency, and set the cyclecounter shift value. | 
|  | **/ | 
|  | s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 incvalue, incperiod, shift; | 
|  |  | 
|  | /* Make sure clock is enabled on I217 before checking the frequency */ | 
|  | if ((hw->mac.type == e1000_pch_lpt) && | 
|  | !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) && | 
|  | !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) { | 
|  | u32 fextnvm7 = er32(FEXTNVM7); | 
|  |  | 
|  | if (!(fextnvm7 & (1 << 0))) { | 
|  | ew32(FEXTNVM7, fextnvm7 | (1 << 0)); | 
|  | e1e_flush(); | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_pch2lan: | 
|  | case e1000_pch_lpt: | 
|  | /* On I217, the clock frequency is 25MHz or 96MHz as | 
|  | * indicated by the System Clock Frequency Indication | 
|  | */ | 
|  | if ((hw->mac.type != e1000_pch_lpt) || | 
|  | (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) { | 
|  | /* Stable 96MHz frequency */ | 
|  | incperiod = INCPERIOD_96MHz; | 
|  | incvalue = INCVALUE_96MHz; | 
|  | shift = INCVALUE_SHIFT_96MHz; | 
|  | adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz; | 
|  | break; | 
|  | } | 
|  | /* fall-through */ | 
|  | case e1000_82574: | 
|  | case e1000_82583: | 
|  | /* Stable 25MHz frequency */ | 
|  | incperiod = INCPERIOD_25MHz; | 
|  | incvalue = INCVALUE_25MHz; | 
|  | shift = INCVALUE_SHIFT_25MHz; | 
|  | adapter->cc.shift = shift; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) | | 
|  | ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Outgoing time stamping can be enabled and disabled. Play nice and | 
|  | * disable it when requested, although it shouldn't cause any overhead | 
|  | * when no packet needs it. At most one packet in the queue may be | 
|  | * marked for time stamping, otherwise it would be impossible to tell | 
|  | * for sure to which packet the hardware time stamp belongs. | 
|  | * | 
|  | * Incoming time stamping has to be configured via the hardware filters. | 
|  | * Not all combinations are supported, in particular event type has to be | 
|  | * specified. Matching the kind of event packet is not supported, with the | 
|  | * exception of "all V2 events regardless of level 2 or 4". | 
|  | **/ | 
|  | static int e1000e_config_hwtstamp(struct e1000_adapter *adapter, | 
|  | struct hwtstamp_config *config) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; | 
|  | u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; | 
|  | u32 rxmtrl = 0; | 
|  | u16 rxudp = 0; | 
|  | bool is_l4 = false; | 
|  | bool is_l2 = false; | 
|  | u32 regval; | 
|  | s32 ret_val; | 
|  |  | 
|  | if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* flags reserved for future extensions - must be zero */ | 
|  | if (config->flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | switch (config->tx_type) { | 
|  | case HWTSTAMP_TX_OFF: | 
|  | tsync_tx_ctl = 0; | 
|  | break; | 
|  | case HWTSTAMP_TX_ON: | 
|  | break; | 
|  | default: | 
|  | return -ERANGE; | 
|  | } | 
|  |  | 
|  | switch (config->rx_filter) { | 
|  | case HWTSTAMP_FILTER_NONE: | 
|  | tsync_rx_ctl = 0; | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: | 
|  | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; | 
|  | rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE; | 
|  | is_l4 = true; | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: | 
|  | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; | 
|  | rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE; | 
|  | is_l4 = true; | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: | 
|  | /* Also time stamps V2 L2 Path Delay Request/Response */ | 
|  | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2; | 
|  | rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE; | 
|  | is_l2 = true; | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: | 
|  | /* Also time stamps V2 L2 Path Delay Request/Response. */ | 
|  | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2; | 
|  | rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE; | 
|  | is_l2 = true; | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: | 
|  | /* Hardware cannot filter just V2 L4 Sync messages; | 
|  | * fall-through to V2 (both L2 and L4) Sync. | 
|  | */ | 
|  | case HWTSTAMP_FILTER_PTP_V2_SYNC: | 
|  | /* Also time stamps V2 Path Delay Request/Response. */ | 
|  | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; | 
|  | rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE; | 
|  | is_l2 = true; | 
|  | is_l4 = true; | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: | 
|  | /* Hardware cannot filter just V2 L4 Delay Request messages; | 
|  | * fall-through to V2 (both L2 and L4) Delay Request. | 
|  | */ | 
|  | case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: | 
|  | /* Also time stamps V2 Path Delay Request/Response. */ | 
|  | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; | 
|  | rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE; | 
|  | is_l2 = true; | 
|  | is_l4 = true; | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: | 
|  | case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: | 
|  | /* Hardware cannot filter just V2 L4 or L2 Event messages; | 
|  | * fall-through to all V2 (both L2 and L4) Events. | 
|  | */ | 
|  | case HWTSTAMP_FILTER_PTP_V2_EVENT: | 
|  | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; | 
|  | config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; | 
|  | is_l2 = true; | 
|  | is_l4 = true; | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: | 
|  | /* For V1, the hardware can only filter Sync messages or | 
|  | * Delay Request messages but not both so fall-through to | 
|  | * time stamp all packets. | 
|  | */ | 
|  | case HWTSTAMP_FILTER_ALL: | 
|  | is_l2 = true; | 
|  | is_l4 = true; | 
|  | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; | 
|  | config->rx_filter = HWTSTAMP_FILTER_ALL; | 
|  | break; | 
|  | default: | 
|  | return -ERANGE; | 
|  | } | 
|  |  | 
|  | adapter->hwtstamp_config = *config; | 
|  |  | 
|  | /* enable/disable Tx h/w time stamping */ | 
|  | regval = er32(TSYNCTXCTL); | 
|  | regval &= ~E1000_TSYNCTXCTL_ENABLED; | 
|  | regval |= tsync_tx_ctl; | 
|  | ew32(TSYNCTXCTL, regval); | 
|  | if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) != | 
|  | (regval & E1000_TSYNCTXCTL_ENABLED)) { | 
|  | e_err("Timesync Tx Control register not set as expected\n"); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* enable/disable Rx h/w time stamping */ | 
|  | regval = er32(TSYNCRXCTL); | 
|  | regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); | 
|  | regval |= tsync_rx_ctl; | 
|  | ew32(TSYNCRXCTL, regval); | 
|  | if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED | | 
|  | E1000_TSYNCRXCTL_TYPE_MASK)) != | 
|  | (regval & (E1000_TSYNCRXCTL_ENABLED | | 
|  | E1000_TSYNCRXCTL_TYPE_MASK))) { | 
|  | e_err("Timesync Rx Control register not set as expected\n"); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* L2: define ethertype filter for time stamped packets */ | 
|  | if (is_l2) | 
|  | rxmtrl |= ETH_P_1588; | 
|  |  | 
|  | /* define which PTP packets get time stamped */ | 
|  | ew32(RXMTRL, rxmtrl); | 
|  |  | 
|  | /* Filter by destination port */ | 
|  | if (is_l4) { | 
|  | rxudp = PTP_EV_PORT; | 
|  | cpu_to_be16s(&rxudp); | 
|  | } | 
|  | ew32(RXUDP, rxudp); | 
|  |  | 
|  | e1e_flush(); | 
|  |  | 
|  | /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */ | 
|  | er32(RXSTMPH); | 
|  | er32(TXSTMPH); | 
|  |  | 
|  | /* Get and set the System Time Register SYSTIM base frequency */ | 
|  | ret_val = e1000e_get_base_timinca(adapter, ®val); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ew32(TIMINCA, regval); | 
|  |  | 
|  | /* reset the ns time counter */ | 
|  | timecounter_init(&adapter->tc, &adapter->cc, | 
|  | ktime_to_ns(ktime_get_real())); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_configure - configure the hardware for Rx and Tx | 
|  | * @adapter: private board structure | 
|  | **/ | 
|  | static void e1000_configure(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  |  | 
|  | e1000e_set_rx_mode(adapter->netdev); | 
|  |  | 
|  | e1000_restore_vlan(adapter); | 
|  | e1000_init_manageability_pt(adapter); | 
|  |  | 
|  | e1000_configure_tx(adapter); | 
|  |  | 
|  | if (adapter->netdev->features & NETIF_F_RXHASH) | 
|  | e1000e_setup_rss_hash(adapter); | 
|  | e1000_setup_rctl(adapter); | 
|  | e1000_configure_rx(adapter); | 
|  | adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_power_up_phy - restore link in case the phy was powered down | 
|  | * @adapter: address of board private structure | 
|  | * | 
|  | * The phy may be powered down to save power and turn off link when the | 
|  | * driver is unloaded and wake on lan is not enabled (among others) | 
|  | * *** this routine MUST be followed by a call to e1000e_reset *** | 
|  | **/ | 
|  | void e1000e_power_up_phy(struct e1000_adapter *adapter) | 
|  | { | 
|  | if (adapter->hw.phy.ops.power_up) | 
|  | adapter->hw.phy.ops.power_up(&adapter->hw); | 
|  |  | 
|  | adapter->hw.mac.ops.setup_link(&adapter->hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_power_down_phy - Power down the PHY | 
|  | * | 
|  | * Power down the PHY so no link is implied when interface is down. | 
|  | * The PHY cannot be powered down if management or WoL is active. | 
|  | */ | 
|  | static void e1000_power_down_phy(struct e1000_adapter *adapter) | 
|  | { | 
|  | if (adapter->hw.phy.ops.power_down) | 
|  | adapter->hw.phy.ops.power_down(&adapter->hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_reset - bring the hardware into a known good state | 
|  | * | 
|  | * This function boots the hardware and enables some settings that | 
|  | * require a configuration cycle of the hardware - those cannot be | 
|  | * set/changed during runtime. After reset the device needs to be | 
|  | * properly configured for Rx, Tx etc. | 
|  | */ | 
|  | void e1000e_reset(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_mac_info *mac = &adapter->hw.mac; | 
|  | struct e1000_fc_info *fc = &adapter->hw.fc; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 tx_space, min_tx_space, min_rx_space; | 
|  | u32 pba = adapter->pba; | 
|  | u16 hwm; | 
|  |  | 
|  | /* reset Packet Buffer Allocation to default */ | 
|  | ew32(PBA, pba); | 
|  |  | 
|  | if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { | 
|  | /* To maintain wire speed transmits, the Tx FIFO should be | 
|  | * large enough to accommodate two full transmit packets, | 
|  | * rounded up to the next 1KB and expressed in KB.  Likewise, | 
|  | * the Rx FIFO should be large enough to accommodate at least | 
|  | * one full receive packet and is similarly rounded up and | 
|  | * expressed in KB. | 
|  | */ | 
|  | pba = er32(PBA); | 
|  | /* upper 16 bits has Tx packet buffer allocation size in KB */ | 
|  | tx_space = pba >> 16; | 
|  | /* lower 16 bits has Rx packet buffer allocation size in KB */ | 
|  | pba &= 0xffff; | 
|  | /* the Tx fifo also stores 16 bytes of information about the Tx | 
|  | * but don't include ethernet FCS because hardware appends it | 
|  | */ | 
|  | min_tx_space = (adapter->max_frame_size + | 
|  | sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2; | 
|  | min_tx_space = ALIGN(min_tx_space, 1024); | 
|  | min_tx_space >>= 10; | 
|  | /* software strips receive CRC, so leave room for it */ | 
|  | min_rx_space = adapter->max_frame_size; | 
|  | min_rx_space = ALIGN(min_rx_space, 1024); | 
|  | min_rx_space >>= 10; | 
|  |  | 
|  | /* If current Tx allocation is less than the min Tx FIFO size, | 
|  | * and the min Tx FIFO size is less than the current Rx FIFO | 
|  | * allocation, take space away from current Rx allocation | 
|  | */ | 
|  | if ((tx_space < min_tx_space) && | 
|  | ((min_tx_space - tx_space) < pba)) { | 
|  | pba -= min_tx_space - tx_space; | 
|  |  | 
|  | /* if short on Rx space, Rx wins and must trump Tx | 
|  | * adjustment | 
|  | */ | 
|  | if (pba < min_rx_space) | 
|  | pba = min_rx_space; | 
|  | } | 
|  |  | 
|  | ew32(PBA, pba); | 
|  | } | 
|  |  | 
|  | /* flow control settings | 
|  | * | 
|  | * The high water mark must be low enough to fit one full frame | 
|  | * (or the size used for early receive) above it in the Rx FIFO. | 
|  | * Set it to the lower of: | 
|  | * - 90% of the Rx FIFO size, and | 
|  | * - the full Rx FIFO size minus one full frame | 
|  | */ | 
|  | if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) | 
|  | fc->pause_time = 0xFFFF; | 
|  | else | 
|  | fc->pause_time = E1000_FC_PAUSE_TIME; | 
|  | fc->send_xon = true; | 
|  | fc->current_mode = fc->requested_mode; | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_ich9lan: | 
|  | case e1000_ich10lan: | 
|  | if (adapter->netdev->mtu > ETH_DATA_LEN) { | 
|  | pba = 14; | 
|  | ew32(PBA, pba); | 
|  | fc->high_water = 0x2800; | 
|  | fc->low_water = fc->high_water - 8; | 
|  | break; | 
|  | } | 
|  | /* fall-through */ | 
|  | default: | 
|  | hwm = min(((pba << 10) * 9 / 10), | 
|  | ((pba << 10) - adapter->max_frame_size)); | 
|  |  | 
|  | fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */ | 
|  | fc->low_water = fc->high_water - 8; | 
|  | break; | 
|  | case e1000_pchlan: | 
|  | /* Workaround PCH LOM adapter hangs with certain network | 
|  | * loads.  If hangs persist, try disabling Tx flow control. | 
|  | */ | 
|  | if (adapter->netdev->mtu > ETH_DATA_LEN) { | 
|  | fc->high_water = 0x3500; | 
|  | fc->low_water = 0x1500; | 
|  | } else { | 
|  | fc->high_water = 0x5000; | 
|  | fc->low_water = 0x3000; | 
|  | } | 
|  | fc->refresh_time = 0x1000; | 
|  | break; | 
|  | case e1000_pch2lan: | 
|  | case e1000_pch_lpt: | 
|  | fc->refresh_time = 0x0400; | 
|  |  | 
|  | if (adapter->netdev->mtu <= ETH_DATA_LEN) { | 
|  | fc->high_water = 0x05C20; | 
|  | fc->low_water = 0x05048; | 
|  | fc->pause_time = 0x0650; | 
|  | break; | 
|  | } | 
|  |  | 
|  | pba = 14; | 
|  | ew32(PBA, pba); | 
|  | fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH; | 
|  | fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Alignment of Tx data is on an arbitrary byte boundary with the | 
|  | * maximum size per Tx descriptor limited only to the transmit | 
|  | * allocation of the packet buffer minus 96 bytes with an upper | 
|  | * limit of 24KB due to receive synchronization limitations. | 
|  | */ | 
|  | adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96, | 
|  | 24 << 10); | 
|  |  | 
|  | /* Disable Adaptive Interrupt Moderation if 2 full packets cannot | 
|  | * fit in receive buffer. | 
|  | */ | 
|  | if (adapter->itr_setting & 0x3) { | 
|  | if ((adapter->max_frame_size * 2) > (pba << 10)) { | 
|  | if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) { | 
|  | dev_info(&adapter->pdev->dev, | 
|  | "Interrupt Throttle Rate off\n"); | 
|  | adapter->flags2 |= FLAG2_DISABLE_AIM; | 
|  | e1000e_write_itr(adapter, 0); | 
|  | } | 
|  | } else if (adapter->flags2 & FLAG2_DISABLE_AIM) { | 
|  | dev_info(&adapter->pdev->dev, | 
|  | "Interrupt Throttle Rate on\n"); | 
|  | adapter->flags2 &= ~FLAG2_DISABLE_AIM; | 
|  | adapter->itr = 20000; | 
|  | e1000e_write_itr(adapter, adapter->itr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Allow time for pending master requests to run */ | 
|  | mac->ops.reset_hw(hw); | 
|  |  | 
|  | /* For parts with AMT enabled, let the firmware know | 
|  | * that the network interface is in control | 
|  | */ | 
|  | if (adapter->flags & FLAG_HAS_AMT) | 
|  | e1000e_get_hw_control(adapter); | 
|  |  | 
|  | ew32(WUC, 0); | 
|  |  | 
|  | if (mac->ops.init_hw(hw)) | 
|  | e_err("Hardware Error\n"); | 
|  |  | 
|  | e1000_update_mng_vlan(adapter); | 
|  |  | 
|  | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | 
|  | ew32(VET, ETH_P_8021Q); | 
|  |  | 
|  | e1000e_reset_adaptive(hw); | 
|  |  | 
|  | /* initialize systim and reset the ns time counter */ | 
|  | e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config); | 
|  |  | 
|  | /* Set EEE advertisement as appropriate */ | 
|  | if (adapter->flags2 & FLAG2_HAS_EEE) { | 
|  | s32 ret_val; | 
|  | u16 adv_addr; | 
|  |  | 
|  | switch (hw->phy.type) { | 
|  | case e1000_phy_82579: | 
|  | adv_addr = I82579_EEE_ADVERTISEMENT; | 
|  | break; | 
|  | case e1000_phy_i217: | 
|  | adv_addr = I217_EEE_ADVERTISEMENT; | 
|  | break; | 
|  | default: | 
|  | dev_err(&adapter->pdev->dev, | 
|  | "Invalid PHY type setting EEE advertisement\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) { | 
|  | dev_err(&adapter->pdev->dev, | 
|  | "EEE advertisement - unable to acquire PHY\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | e1000_write_emi_reg_locked(hw, adv_addr, | 
|  | hw->dev_spec.ich8lan.eee_disable ? | 
|  | 0 : adapter->eee_advert); | 
|  |  | 
|  | hw->phy.ops.release(hw); | 
|  | } | 
|  |  | 
|  | if (!netif_running(adapter->netdev) && | 
|  | !test_bit(__E1000_TESTING, &adapter->state)) | 
|  | e1000_power_down_phy(adapter); | 
|  |  | 
|  | e1000_get_phy_info(hw); | 
|  |  | 
|  | if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && | 
|  | !(adapter->flags & FLAG_SMART_POWER_DOWN)) { | 
|  | u16 phy_data = 0; | 
|  | /* speed up time to link by disabling smart power down, ignore | 
|  | * the return value of this function because there is nothing | 
|  | * different we would do if it failed | 
|  | */ | 
|  | e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | 
|  | phy_data &= ~IGP02E1000_PM_SPD; | 
|  | e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | 
|  | } | 
|  | } | 
|  |  | 
|  | int e1000e_up(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | /* hardware has been reset, we need to reload some things */ | 
|  | e1000_configure(adapter); | 
|  |  | 
|  | clear_bit(__E1000_DOWN, &adapter->state); | 
|  |  | 
|  | if (adapter->msix_entries) | 
|  | e1000_configure_msix(adapter); | 
|  | e1000_irq_enable(adapter); | 
|  |  | 
|  | netif_start_queue(adapter->netdev); | 
|  |  | 
|  | /* fire a link change interrupt to start the watchdog */ | 
|  | if (adapter->msix_entries) | 
|  | ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); | 
|  | else | 
|  | ew32(ICS, E1000_ICS_LSC); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void e1000e_flush_descriptors(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if (!(adapter->flags2 & FLAG2_DMA_BURST)) | 
|  | return; | 
|  |  | 
|  | /* flush pending descriptor writebacks to memory */ | 
|  | ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); | 
|  | ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); | 
|  |  | 
|  | /* execute the writes immediately */ | 
|  | e1e_flush(); | 
|  |  | 
|  | /* due to rare timing issues, write to TIDV/RDTR again to ensure the | 
|  | * write is successful | 
|  | */ | 
|  | ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); | 
|  | ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); | 
|  |  | 
|  | /* execute the writes immediately */ | 
|  | e1e_flush(); | 
|  | } | 
|  |  | 
|  | static void e1000e_update_stats(struct e1000_adapter *adapter); | 
|  |  | 
|  | /** | 
|  | * e1000e_down - quiesce the device and optionally reset the hardware | 
|  | * @adapter: board private structure | 
|  | * @reset: boolean flag to reset the hardware or not | 
|  | */ | 
|  | void e1000e_down(struct e1000_adapter *adapter, bool reset) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 tctl, rctl; | 
|  |  | 
|  | /* signal that we're down so the interrupt handler does not | 
|  | * reschedule our watchdog timer | 
|  | */ | 
|  | set_bit(__E1000_DOWN, &adapter->state); | 
|  |  | 
|  | /* disable receives in the hardware */ | 
|  | rctl = er32(RCTL); | 
|  | if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) | 
|  | ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
|  | /* flush and sleep below */ | 
|  |  | 
|  | netif_stop_queue(netdev); | 
|  |  | 
|  | /* disable transmits in the hardware */ | 
|  | tctl = er32(TCTL); | 
|  | tctl &= ~E1000_TCTL_EN; | 
|  | ew32(TCTL, tctl); | 
|  |  | 
|  | /* flush both disables and wait for them to finish */ | 
|  | e1e_flush(); | 
|  | usleep_range(10000, 20000); | 
|  |  | 
|  | e1000_irq_disable(adapter); | 
|  |  | 
|  | napi_synchronize(&adapter->napi); | 
|  |  | 
|  | del_timer_sync(&adapter->watchdog_timer); | 
|  | del_timer_sync(&adapter->phy_info_timer); | 
|  |  | 
|  | netif_carrier_off(netdev); | 
|  |  | 
|  | spin_lock(&adapter->stats64_lock); | 
|  | e1000e_update_stats(adapter); | 
|  | spin_unlock(&adapter->stats64_lock); | 
|  |  | 
|  | e1000e_flush_descriptors(adapter); | 
|  | e1000_clean_tx_ring(adapter->tx_ring); | 
|  | e1000_clean_rx_ring(adapter->rx_ring); | 
|  |  | 
|  | adapter->link_speed = 0; | 
|  | adapter->link_duplex = 0; | 
|  |  | 
|  | /* Disable Si errata workaround on PCHx for jumbo frame flow */ | 
|  | if ((hw->mac.type >= e1000_pch2lan) && | 
|  | (adapter->netdev->mtu > ETH_DATA_LEN) && | 
|  | e1000_lv_jumbo_workaround_ich8lan(hw, false)) | 
|  | e_dbg("failed to disable jumbo frame workaround mode\n"); | 
|  |  | 
|  | if (reset && !pci_channel_offline(adapter->pdev)) | 
|  | e1000e_reset(adapter); | 
|  | } | 
|  |  | 
|  | void e1000e_reinit_locked(struct e1000_adapter *adapter) | 
|  | { | 
|  | might_sleep(); | 
|  | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) | 
|  | usleep_range(1000, 2000); | 
|  | e1000e_down(adapter, true); | 
|  | e1000e_up(adapter); | 
|  | clear_bit(__E1000_RESETTING, &adapter->state); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_cyclecounter_read - read raw cycle counter (used by time counter) | 
|  | * @cc: cyclecounter structure | 
|  | **/ | 
|  | static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc) | 
|  | { | 
|  | struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter, | 
|  | cc); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | cycle_t systim, systim_next; | 
|  |  | 
|  | /* latch SYSTIMH on read of SYSTIML */ | 
|  | systim = (cycle_t)er32(SYSTIML); | 
|  | systim |= (cycle_t)er32(SYSTIMH) << 32; | 
|  |  | 
|  | if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) { | 
|  | u64 incvalue, time_delta, rem, temp; | 
|  | int i; | 
|  |  | 
|  | /* errata for 82574/82583 possible bad bits read from SYSTIMH/L | 
|  | * check to see that the time is incrementing at a reasonable | 
|  | * rate and is a multiple of incvalue | 
|  | */ | 
|  | incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK; | 
|  | for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) { | 
|  | /* latch SYSTIMH on read of SYSTIML */ | 
|  | systim_next = (cycle_t)er32(SYSTIML); | 
|  | systim_next |= (cycle_t)er32(SYSTIMH) << 32; | 
|  |  | 
|  | time_delta = systim_next - systim; | 
|  | temp = time_delta; | 
|  | rem = do_div(temp, incvalue); | 
|  |  | 
|  | systim = systim_next; | 
|  |  | 
|  | if ((time_delta < E1000_82574_SYSTIM_EPSILON) && | 
|  | (rem == 0)) | 
|  | break; | 
|  | } | 
|  | } | 
|  | return systim; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_sw_init - Initialize general software structures (struct e1000_adapter) | 
|  | * @adapter: board private structure to initialize | 
|  | * | 
|  | * e1000_sw_init initializes the Adapter private data structure. | 
|  | * Fields are initialized based on PCI device information and | 
|  | * OS network device settings (MTU size). | 
|  | **/ | 
|  | static int e1000_sw_init(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  |  | 
|  | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; | 
|  | adapter->rx_ps_bsize0 = 128; | 
|  | adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; | 
|  | adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; | 
|  | adapter->tx_ring_count = E1000_DEFAULT_TXD; | 
|  | adapter->rx_ring_count = E1000_DEFAULT_RXD; | 
|  |  | 
|  | spin_lock_init(&adapter->stats64_lock); | 
|  |  | 
|  | e1000e_set_interrupt_capability(adapter); | 
|  |  | 
|  | if (e1000_alloc_queues(adapter)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Setup hardware time stamping cyclecounter */ | 
|  | if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) { | 
|  | adapter->cc.read = e1000e_cyclecounter_read; | 
|  | adapter->cc.mask = CLOCKSOURCE_MASK(64); | 
|  | adapter->cc.mult = 1; | 
|  | /* cc.shift set in e1000e_get_base_tininca() */ | 
|  |  | 
|  | spin_lock_init(&adapter->systim_lock); | 
|  | INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work); | 
|  | } | 
|  |  | 
|  | /* Explicitly disable IRQ since the NIC can be in any state. */ | 
|  | e1000_irq_disable(adapter); | 
|  |  | 
|  | set_bit(__E1000_DOWN, &adapter->state); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_intr_msi_test - Interrupt Handler | 
|  | * @irq: interrupt number | 
|  | * @data: pointer to a network interface device structure | 
|  | **/ | 
|  | static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data) | 
|  | { | 
|  | struct net_device *netdev = data; | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 icr = er32(ICR); | 
|  |  | 
|  | e_dbg("icr is %08X\n", icr); | 
|  | if (icr & E1000_ICR_RXSEQ) { | 
|  | adapter->flags &= ~FLAG_MSI_TEST_FAILED; | 
|  | /* Force memory writes to complete before acknowledging the | 
|  | * interrupt is handled. | 
|  | */ | 
|  | wmb(); | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_test_msi_interrupt - Returns 0 for successful test | 
|  | * @adapter: board private struct | 
|  | * | 
|  | * code flow taken from tg3.c | 
|  | **/ | 
|  | static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int err; | 
|  |  | 
|  | /* poll_enable hasn't been called yet, so don't need disable */ | 
|  | /* clear any pending events */ | 
|  | er32(ICR); | 
|  |  | 
|  | /* free the real vector and request a test handler */ | 
|  | e1000_free_irq(adapter); | 
|  | e1000e_reset_interrupt_capability(adapter); | 
|  |  | 
|  | /* Assume that the test fails, if it succeeds then the test | 
|  | * MSI irq handler will unset this flag | 
|  | */ | 
|  | adapter->flags |= FLAG_MSI_TEST_FAILED; | 
|  |  | 
|  | err = pci_enable_msi(adapter->pdev); | 
|  | if (err) | 
|  | goto msi_test_failed; | 
|  |  | 
|  | err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0, | 
|  | netdev->name, netdev); | 
|  | if (err) { | 
|  | pci_disable_msi(adapter->pdev); | 
|  | goto msi_test_failed; | 
|  | } | 
|  |  | 
|  | /* Force memory writes to complete before enabling and firing an | 
|  | * interrupt. | 
|  | */ | 
|  | wmb(); | 
|  |  | 
|  | e1000_irq_enable(adapter); | 
|  |  | 
|  | /* fire an unusual interrupt on the test handler */ | 
|  | ew32(ICS, E1000_ICS_RXSEQ); | 
|  | e1e_flush(); | 
|  | msleep(100); | 
|  |  | 
|  | e1000_irq_disable(adapter); | 
|  |  | 
|  | rmb();			/* read flags after interrupt has been fired */ | 
|  |  | 
|  | if (adapter->flags & FLAG_MSI_TEST_FAILED) { | 
|  | adapter->int_mode = E1000E_INT_MODE_LEGACY; | 
|  | e_info("MSI interrupt test failed, using legacy interrupt.\n"); | 
|  | } else { | 
|  | e_dbg("MSI interrupt test succeeded!\n"); | 
|  | } | 
|  |  | 
|  | free_irq(adapter->pdev->irq, netdev); | 
|  | pci_disable_msi(adapter->pdev); | 
|  |  | 
|  | msi_test_failed: | 
|  | e1000e_set_interrupt_capability(adapter); | 
|  | return e1000_request_irq(adapter); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored | 
|  | * @adapter: board private struct | 
|  | * | 
|  | * code flow taken from tg3.c, called with e1000 interrupts disabled. | 
|  | **/ | 
|  | static int e1000_test_msi(struct e1000_adapter *adapter) | 
|  | { | 
|  | int err; | 
|  | u16 pci_cmd; | 
|  |  | 
|  | if (!(adapter->flags & FLAG_MSI_ENABLED)) | 
|  | return 0; | 
|  |  | 
|  | /* disable SERR in case the MSI write causes a master abort */ | 
|  | pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); | 
|  | if (pci_cmd & PCI_COMMAND_SERR) | 
|  | pci_write_config_word(adapter->pdev, PCI_COMMAND, | 
|  | pci_cmd & ~PCI_COMMAND_SERR); | 
|  |  | 
|  | err = e1000_test_msi_interrupt(adapter); | 
|  |  | 
|  | /* re-enable SERR */ | 
|  | if (pci_cmd & PCI_COMMAND_SERR) { | 
|  | pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); | 
|  | pci_cmd |= PCI_COMMAND_SERR; | 
|  | pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_open - Called when a network interface is made active | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * Returns 0 on success, negative value on failure | 
|  | * | 
|  | * The open entry point is called when a network interface is made | 
|  | * active by the system (IFF_UP).  At this point all resources needed | 
|  | * for transmit and receive operations are allocated, the interrupt | 
|  | * handler is registered with the OS, the watchdog timer is started, | 
|  | * and the stack is notified that the interface is ready. | 
|  | **/ | 
|  | static int e1000_open(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | int err; | 
|  |  | 
|  | /* disallow open during test */ | 
|  | if (test_bit(__E1000_TESTING, &adapter->state)) | 
|  | return -EBUSY; | 
|  |  | 
|  | pm_runtime_get_sync(&pdev->dev); | 
|  |  | 
|  | netif_carrier_off(netdev); | 
|  |  | 
|  | /* allocate transmit descriptors */ | 
|  | err = e1000e_setup_tx_resources(adapter->tx_ring); | 
|  | if (err) | 
|  | goto err_setup_tx; | 
|  |  | 
|  | /* allocate receive descriptors */ | 
|  | err = e1000e_setup_rx_resources(adapter->rx_ring); | 
|  | if (err) | 
|  | goto err_setup_rx; | 
|  |  | 
|  | /* If AMT is enabled, let the firmware know that the network | 
|  | * interface is now open and reset the part to a known state. | 
|  | */ | 
|  | if (adapter->flags & FLAG_HAS_AMT) { | 
|  | e1000e_get_hw_control(adapter); | 
|  | e1000e_reset(adapter); | 
|  | } | 
|  |  | 
|  | e1000e_power_up_phy(adapter); | 
|  |  | 
|  | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 
|  | if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) | 
|  | e1000_update_mng_vlan(adapter); | 
|  |  | 
|  | /* DMA latency requirement to workaround jumbo issue */ | 
|  | pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, | 
|  | PM_QOS_DEFAULT_VALUE); | 
|  |  | 
|  | /* before we allocate an interrupt, we must be ready to handle it. | 
|  | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt | 
|  | * as soon as we call pci_request_irq, so we have to setup our | 
|  | * clean_rx handler before we do so. | 
|  | */ | 
|  | e1000_configure(adapter); | 
|  |  | 
|  | err = e1000_request_irq(adapter); | 
|  | if (err) | 
|  | goto err_req_irq; | 
|  |  | 
|  | /* Work around PCIe errata with MSI interrupts causing some chipsets to | 
|  | * ignore e1000e MSI messages, which means we need to test our MSI | 
|  | * interrupt now | 
|  | */ | 
|  | if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { | 
|  | err = e1000_test_msi(adapter); | 
|  | if (err) { | 
|  | e_err("Interrupt allocation failed\n"); | 
|  | goto err_req_irq; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* From here on the code is the same as e1000e_up() */ | 
|  | clear_bit(__E1000_DOWN, &adapter->state); | 
|  |  | 
|  | napi_enable(&adapter->napi); | 
|  |  | 
|  | e1000_irq_enable(adapter); | 
|  |  | 
|  | adapter->tx_hang_recheck = false; | 
|  | netif_start_queue(netdev); | 
|  |  | 
|  | hw->mac.get_link_status = true; | 
|  | pm_runtime_put(&pdev->dev); | 
|  |  | 
|  | /* fire a link status change interrupt to start the watchdog */ | 
|  | if (adapter->msix_entries) | 
|  | ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); | 
|  | else | 
|  | ew32(ICS, E1000_ICS_LSC); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_req_irq: | 
|  | e1000e_release_hw_control(adapter); | 
|  | e1000_power_down_phy(adapter); | 
|  | e1000e_free_rx_resources(adapter->rx_ring); | 
|  | err_setup_rx: | 
|  | e1000e_free_tx_resources(adapter->tx_ring); | 
|  | err_setup_tx: | 
|  | e1000e_reset(adapter); | 
|  | pm_runtime_put_sync(&pdev->dev); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_close - Disables a network interface | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * Returns 0, this is not allowed to fail | 
|  | * | 
|  | * The close entry point is called when an interface is de-activated | 
|  | * by the OS.  The hardware is still under the drivers control, but | 
|  | * needs to be disabled.  A global MAC reset is issued to stop the | 
|  | * hardware, and all transmit and receive resources are freed. | 
|  | **/ | 
|  | static int e1000_close(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | int count = E1000_CHECK_RESET_COUNT; | 
|  |  | 
|  | while (test_bit(__E1000_RESETTING, &adapter->state) && count--) | 
|  | usleep_range(10000, 20000); | 
|  |  | 
|  | WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); | 
|  |  | 
|  | pm_runtime_get_sync(&pdev->dev); | 
|  |  | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) { | 
|  | e1000e_down(adapter, true); | 
|  | e1000_free_irq(adapter); | 
|  |  | 
|  | /* Link status message must follow this format */ | 
|  | pr_info("%s NIC Link is Down\n", adapter->netdev->name); | 
|  | } | 
|  |  | 
|  | napi_disable(&adapter->napi); | 
|  |  | 
|  | e1000e_free_tx_resources(adapter->tx_ring); | 
|  | e1000e_free_rx_resources(adapter->rx_ring); | 
|  |  | 
|  | /* kill manageability vlan ID if supported, but not if a vlan with | 
|  | * the same ID is registered on the host OS (let 8021q kill it) | 
|  | */ | 
|  | if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) | 
|  | e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), | 
|  | adapter->mng_vlan_id); | 
|  |  | 
|  | /* If AMT is enabled, let the firmware know that the network | 
|  | * interface is now closed | 
|  | */ | 
|  | if ((adapter->flags & FLAG_HAS_AMT) && | 
|  | !test_bit(__E1000_TESTING, &adapter->state)) | 
|  | e1000e_release_hw_control(adapter); | 
|  |  | 
|  | pm_qos_remove_request(&adapter->netdev->pm_qos_req); | 
|  |  | 
|  | pm_runtime_put_sync(&pdev->dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_set_mac - Change the Ethernet Address of the NIC | 
|  | * @netdev: network interface device structure | 
|  | * @p: pointer to an address structure | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | **/ | 
|  | static int e1000_set_mac(struct net_device *netdev, void *p) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct sockaddr *addr = p; | 
|  |  | 
|  | if (!is_valid_ether_addr(addr->sa_data)) | 
|  | return -EADDRNOTAVAIL; | 
|  |  | 
|  | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | 
|  | memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); | 
|  |  | 
|  | hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0); | 
|  |  | 
|  | if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { | 
|  | /* activate the work around */ | 
|  | e1000e_set_laa_state_82571(&adapter->hw, 1); | 
|  |  | 
|  | /* Hold a copy of the LAA in RAR[14] This is done so that | 
|  | * between the time RAR[0] gets clobbered  and the time it | 
|  | * gets fixed (in e1000_watchdog), the actual LAA is in one | 
|  | * of the RARs and no incoming packets directed to this port | 
|  | * are dropped. Eventually the LAA will be in RAR[0] and | 
|  | * RAR[14] | 
|  | */ | 
|  | hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, | 
|  | adapter->hw.mac.rar_entry_count - 1); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_update_phy_task - work thread to update phy | 
|  | * @work: pointer to our work struct | 
|  | * | 
|  | * this worker thread exists because we must acquire a | 
|  | * semaphore to read the phy, which we could msleep while | 
|  | * waiting for it, and we can't msleep in a timer. | 
|  | **/ | 
|  | static void e1000e_update_phy_task(struct work_struct *work) | 
|  | { | 
|  | struct e1000_adapter *adapter = container_of(work, | 
|  | struct e1000_adapter, | 
|  | update_phy_task); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if (test_bit(__E1000_DOWN, &adapter->state)) | 
|  | return; | 
|  |  | 
|  | e1000_get_phy_info(hw); | 
|  |  | 
|  | /* Enable EEE on 82579 after link up */ | 
|  | if (hw->phy.type >= e1000_phy_82579) | 
|  | e1000_set_eee_pchlan(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_update_phy_info - timre call-back to update PHY info | 
|  | * @data: pointer to adapter cast into an unsigned long | 
|  | * | 
|  | * Need to wait a few seconds after link up to get diagnostic information from | 
|  | * the phy | 
|  | **/ | 
|  | static void e1000_update_phy_info(unsigned long data) | 
|  | { | 
|  | struct e1000_adapter *adapter = (struct e1000_adapter *)data; | 
|  |  | 
|  | if (test_bit(__E1000_DOWN, &adapter->state)) | 
|  | return; | 
|  |  | 
|  | schedule_work(&adapter->update_phy_task); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_update_phy_stats - Update the PHY statistics counters | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Read/clear the upper 16-bit PHY registers and read/accumulate lower | 
|  | **/ | 
|  | static void e1000e_update_phy_stats(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | return; | 
|  |  | 
|  | /* A page set is expensive so check if already on desired page. | 
|  | * If not, set to the page with the PHY status registers. | 
|  | */ | 
|  | hw->phy.addr = 1; | 
|  | ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | goto release; | 
|  | if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) { | 
|  | ret_val = hw->phy.ops.set_page(hw, | 
|  | HV_STATS_PAGE << IGP_PAGE_SHIFT); | 
|  | if (ret_val) | 
|  | goto release; | 
|  | } | 
|  |  | 
|  | /* Single Collision Count */ | 
|  | hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); | 
|  | ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); | 
|  | if (!ret_val) | 
|  | adapter->stats.scc += phy_data; | 
|  |  | 
|  | /* Excessive Collision Count */ | 
|  | hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); | 
|  | ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); | 
|  | if (!ret_val) | 
|  | adapter->stats.ecol += phy_data; | 
|  |  | 
|  | /* Multiple Collision Count */ | 
|  | hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); | 
|  | ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); | 
|  | if (!ret_val) | 
|  | adapter->stats.mcc += phy_data; | 
|  |  | 
|  | /* Late Collision Count */ | 
|  | hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); | 
|  | ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); | 
|  | if (!ret_val) | 
|  | adapter->stats.latecol += phy_data; | 
|  |  | 
|  | /* Collision Count - also used for adaptive IFS */ | 
|  | hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); | 
|  | ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); | 
|  | if (!ret_val) | 
|  | hw->mac.collision_delta = phy_data; | 
|  |  | 
|  | /* Defer Count */ | 
|  | hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); | 
|  | ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); | 
|  | if (!ret_val) | 
|  | adapter->stats.dc += phy_data; | 
|  |  | 
|  | /* Transmit with no CRS */ | 
|  | hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); | 
|  | ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); | 
|  | if (!ret_val) | 
|  | adapter->stats.tncrs += phy_data; | 
|  |  | 
|  | release: | 
|  | hw->phy.ops.release(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_update_stats - Update the board statistics counters | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  | static void e1000e_update_stats(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  |  | 
|  | /* Prevent stats update while adapter is being reset, or if the pci | 
|  | * connection is down. | 
|  | */ | 
|  | if (adapter->link_speed == 0) | 
|  | return; | 
|  | if (pci_channel_offline(pdev)) | 
|  | return; | 
|  |  | 
|  | adapter->stats.crcerrs += er32(CRCERRS); | 
|  | adapter->stats.gprc += er32(GPRC); | 
|  | adapter->stats.gorc += er32(GORCL); | 
|  | er32(GORCH);		/* Clear gorc */ | 
|  | adapter->stats.bprc += er32(BPRC); | 
|  | adapter->stats.mprc += er32(MPRC); | 
|  | adapter->stats.roc += er32(ROC); | 
|  |  | 
|  | adapter->stats.mpc += er32(MPC); | 
|  |  | 
|  | /* Half-duplex statistics */ | 
|  | if (adapter->link_duplex == HALF_DUPLEX) { | 
|  | if (adapter->flags2 & FLAG2_HAS_PHY_STATS) { | 
|  | e1000e_update_phy_stats(adapter); | 
|  | } else { | 
|  | adapter->stats.scc += er32(SCC); | 
|  | adapter->stats.ecol += er32(ECOL); | 
|  | adapter->stats.mcc += er32(MCC); | 
|  | adapter->stats.latecol += er32(LATECOL); | 
|  | adapter->stats.dc += er32(DC); | 
|  |  | 
|  | hw->mac.collision_delta = er32(COLC); | 
|  |  | 
|  | if ((hw->mac.type != e1000_82574) && | 
|  | (hw->mac.type != e1000_82583)) | 
|  | adapter->stats.tncrs += er32(TNCRS); | 
|  | } | 
|  | adapter->stats.colc += hw->mac.collision_delta; | 
|  | } | 
|  |  | 
|  | adapter->stats.xonrxc += er32(XONRXC); | 
|  | adapter->stats.xontxc += er32(XONTXC); | 
|  | adapter->stats.xoffrxc += er32(XOFFRXC); | 
|  | adapter->stats.xofftxc += er32(XOFFTXC); | 
|  | adapter->stats.gptc += er32(GPTC); | 
|  | adapter->stats.gotc += er32(GOTCL); | 
|  | er32(GOTCH);		/* Clear gotc */ | 
|  | adapter->stats.rnbc += er32(RNBC); | 
|  | adapter->stats.ruc += er32(RUC); | 
|  |  | 
|  | adapter->stats.mptc += er32(MPTC); | 
|  | adapter->stats.bptc += er32(BPTC); | 
|  |  | 
|  | /* used for adaptive IFS */ | 
|  |  | 
|  | hw->mac.tx_packet_delta = er32(TPT); | 
|  | adapter->stats.tpt += hw->mac.tx_packet_delta; | 
|  |  | 
|  | adapter->stats.algnerrc += er32(ALGNERRC); | 
|  | adapter->stats.rxerrc += er32(RXERRC); | 
|  | adapter->stats.cexterr += er32(CEXTERR); | 
|  | adapter->stats.tsctc += er32(TSCTC); | 
|  | adapter->stats.tsctfc += er32(TSCTFC); | 
|  |  | 
|  | /* Fill out the OS statistics structure */ | 
|  | netdev->stats.multicast = adapter->stats.mprc; | 
|  | netdev->stats.collisions = adapter->stats.colc; | 
|  |  | 
|  | /* Rx Errors */ | 
|  |  | 
|  | /* RLEC on some newer hardware can be incorrect so build | 
|  | * our own version based on RUC and ROC | 
|  | */ | 
|  | netdev->stats.rx_errors = adapter->stats.rxerrc + | 
|  | adapter->stats.crcerrs + adapter->stats.algnerrc + | 
|  | adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; | 
|  | netdev->stats.rx_length_errors = adapter->stats.ruc + | 
|  | adapter->stats.roc; | 
|  | netdev->stats.rx_crc_errors = adapter->stats.crcerrs; | 
|  | netdev->stats.rx_frame_errors = adapter->stats.algnerrc; | 
|  | netdev->stats.rx_missed_errors = adapter->stats.mpc; | 
|  |  | 
|  | /* Tx Errors */ | 
|  | netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol; | 
|  | netdev->stats.tx_aborted_errors = adapter->stats.ecol; | 
|  | netdev->stats.tx_window_errors = adapter->stats.latecol; | 
|  | netdev->stats.tx_carrier_errors = adapter->stats.tncrs; | 
|  |  | 
|  | /* Tx Dropped needs to be maintained elsewhere */ | 
|  |  | 
|  | /* Management Stats */ | 
|  | adapter->stats.mgptc += er32(MGTPTC); | 
|  | adapter->stats.mgprc += er32(MGTPRC); | 
|  | adapter->stats.mgpdc += er32(MGTPDC); | 
|  |  | 
|  | /* Correctable ECC Errors */ | 
|  | if (hw->mac.type == e1000_pch_lpt) { | 
|  | u32 pbeccsts = er32(PBECCSTS); | 
|  |  | 
|  | adapter->corr_errors += | 
|  | pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; | 
|  | adapter->uncorr_errors += | 
|  | (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> | 
|  | E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_phy_read_status - Update the PHY register status snapshot | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  | static void e1000_phy_read_status(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_phy_regs *phy = &adapter->phy_regs; | 
|  |  | 
|  | if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) && | 
|  | (er32(STATUS) & E1000_STATUS_LU) && | 
|  | (adapter->hw.phy.media_type == e1000_media_type_copper)) { | 
|  | int ret_val; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr); | 
|  | ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr); | 
|  | ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise); | 
|  | ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa); | 
|  | ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion); | 
|  | ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000); | 
|  | ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000); | 
|  | ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus); | 
|  | if (ret_val) | 
|  | e_warn("Error reading PHY register\n"); | 
|  | } else { | 
|  | /* Do not read PHY registers if link is not up | 
|  | * Set values to typical power-on defaults | 
|  | */ | 
|  | phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); | 
|  | phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | | 
|  | BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | | 
|  | BMSR_ERCAP); | 
|  | phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | | 
|  | ADVERTISE_ALL | ADVERTISE_CSMA); | 
|  | phy->lpa = 0; | 
|  | phy->expansion = EXPANSION_ENABLENPAGE; | 
|  | phy->ctrl1000 = ADVERTISE_1000FULL; | 
|  | phy->stat1000 = 0; | 
|  | phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void e1000_print_link_info(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ctrl = er32(CTRL); | 
|  |  | 
|  | /* Link status message must follow this format for user tools */ | 
|  | pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", | 
|  | adapter->netdev->name, adapter->link_speed, | 
|  | adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half", | 
|  | (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" : | 
|  | (ctrl & E1000_CTRL_RFCE) ? "Rx" : | 
|  | (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None"); | 
|  | } | 
|  |  | 
|  | static bool e1000e_has_link(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | bool link_active = false; | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | /* get_link_status is set on LSC (link status) interrupt or | 
|  | * Rx sequence error interrupt.  get_link_status will stay | 
|  | * false until the check_for_link establishes link | 
|  | * for copper adapters ONLY | 
|  | */ | 
|  | switch (hw->phy.media_type) { | 
|  | case e1000_media_type_copper: | 
|  | if (hw->mac.get_link_status) { | 
|  | ret_val = hw->mac.ops.check_for_link(hw); | 
|  | link_active = !hw->mac.get_link_status; | 
|  | } else { | 
|  | link_active = true; | 
|  | } | 
|  | break; | 
|  | case e1000_media_type_fiber: | 
|  | ret_val = hw->mac.ops.check_for_link(hw); | 
|  | link_active = !!(er32(STATUS) & E1000_STATUS_LU); | 
|  | break; | 
|  | case e1000_media_type_internal_serdes: | 
|  | ret_val = hw->mac.ops.check_for_link(hw); | 
|  | link_active = adapter->hw.mac.serdes_has_link; | 
|  | break; | 
|  | default: | 
|  | case e1000_media_type_unknown: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && | 
|  | (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { | 
|  | /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ | 
|  | e_info("Gigabit has been disabled, downgrading speed\n"); | 
|  | } | 
|  |  | 
|  | return link_active; | 
|  | } | 
|  |  | 
|  | static void e1000e_enable_receives(struct e1000_adapter *adapter) | 
|  | { | 
|  | /* make sure the receive unit is started */ | 
|  | if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && | 
|  | (adapter->flags & FLAG_RESTART_NOW)) { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 rctl = er32(RCTL); | 
|  |  | 
|  | ew32(RCTL, rctl | E1000_RCTL_EN); | 
|  | adapter->flags &= ~FLAG_RESTART_NOW; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | /* With 82574 controllers, PHY needs to be checked periodically | 
|  | * for hung state and reset, if two calls return true | 
|  | */ | 
|  | if (e1000_check_phy_82574(hw)) | 
|  | adapter->phy_hang_count++; | 
|  | else | 
|  | adapter->phy_hang_count = 0; | 
|  |  | 
|  | if (adapter->phy_hang_count > 1) { | 
|  | adapter->phy_hang_count = 0; | 
|  | e_dbg("PHY appears hung - resetting\n"); | 
|  | schedule_work(&adapter->reset_task); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_watchdog - Timer Call-back | 
|  | * @data: pointer to adapter cast into an unsigned long | 
|  | **/ | 
|  | static void e1000_watchdog(unsigned long data) | 
|  | { | 
|  | struct e1000_adapter *adapter = (struct e1000_adapter *)data; | 
|  |  | 
|  | /* Do the rest outside of interrupt context */ | 
|  | schedule_work(&adapter->watchdog_task); | 
|  |  | 
|  | /* TODO: make this use queue_delayed_work() */ | 
|  | } | 
|  |  | 
|  | static void e1000_watchdog_task(struct work_struct *work) | 
|  | { | 
|  | struct e1000_adapter *adapter = container_of(work, | 
|  | struct e1000_adapter, | 
|  | watchdog_task); | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct e1000_mac_info *mac = &adapter->hw.mac; | 
|  | struct e1000_phy_info *phy = &adapter->hw.phy; | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 link, tctl; | 
|  |  | 
|  | if (test_bit(__E1000_DOWN, &adapter->state)) | 
|  | return; | 
|  |  | 
|  | link = e1000e_has_link(adapter); | 
|  | if ((netif_carrier_ok(netdev)) && link) { | 
|  | /* Cancel scheduled suspend requests. */ | 
|  | pm_runtime_resume(netdev->dev.parent); | 
|  |  | 
|  | e1000e_enable_receives(adapter); | 
|  | goto link_up; | 
|  | } | 
|  |  | 
|  | if ((e1000e_enable_tx_pkt_filtering(hw)) && | 
|  | (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) | 
|  | e1000_update_mng_vlan(adapter); | 
|  |  | 
|  | if (link) { | 
|  | if (!netif_carrier_ok(netdev)) { | 
|  | bool txb2b = true; | 
|  |  | 
|  | /* Cancel scheduled suspend requests. */ | 
|  | pm_runtime_resume(netdev->dev.parent); | 
|  |  | 
|  | /* update snapshot of PHY registers on LSC */ | 
|  | e1000_phy_read_status(adapter); | 
|  | mac->ops.get_link_up_info(&adapter->hw, | 
|  | &adapter->link_speed, | 
|  | &adapter->link_duplex); | 
|  | e1000_print_link_info(adapter); | 
|  |  | 
|  | /* check if SmartSpeed worked */ | 
|  | e1000e_check_downshift(hw); | 
|  | if (phy->speed_downgraded) | 
|  | netdev_warn(netdev, | 
|  | "Link Speed was downgraded by SmartSpeed\n"); | 
|  |  | 
|  | /* On supported PHYs, check for duplex mismatch only | 
|  | * if link has autonegotiated at 10/100 half | 
|  | */ | 
|  | if ((hw->phy.type == e1000_phy_igp_3 || | 
|  | hw->phy.type == e1000_phy_bm) && | 
|  | hw->mac.autoneg && | 
|  | (adapter->link_speed == SPEED_10 || | 
|  | adapter->link_speed == SPEED_100) && | 
|  | (adapter->link_duplex == HALF_DUPLEX)) { | 
|  | u16 autoneg_exp; | 
|  |  | 
|  | e1e_rphy(hw, MII_EXPANSION, &autoneg_exp); | 
|  |  | 
|  | if (!(autoneg_exp & EXPANSION_NWAY)) | 
|  | e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n"); | 
|  | } | 
|  |  | 
|  | /* adjust timeout factor according to speed/duplex */ | 
|  | adapter->tx_timeout_factor = 1; | 
|  | switch (adapter->link_speed) { | 
|  | case SPEED_10: | 
|  | txb2b = false; | 
|  | adapter->tx_timeout_factor = 16; | 
|  | break; | 
|  | case SPEED_100: | 
|  | txb2b = false; | 
|  | adapter->tx_timeout_factor = 10; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* workaround: re-program speed mode bit after | 
|  | * link-up event | 
|  | */ | 
|  | if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && | 
|  | !txb2b) { | 
|  | u32 tarc0; | 
|  |  | 
|  | tarc0 = er32(TARC(0)); | 
|  | tarc0 &= ~SPEED_MODE_BIT; | 
|  | ew32(TARC(0), tarc0); | 
|  | } | 
|  |  | 
|  | /* disable TSO for pcie and 10/100 speeds, to avoid | 
|  | * some hardware issues | 
|  | */ | 
|  | if (!(adapter->flags & FLAG_TSO_FORCE)) { | 
|  | switch (adapter->link_speed) { | 
|  | case SPEED_10: | 
|  | case SPEED_100: | 
|  | e_info("10/100 speed: disabling TSO\n"); | 
|  | netdev->features &= ~NETIF_F_TSO; | 
|  | netdev->features &= ~NETIF_F_TSO6; | 
|  | break; | 
|  | case SPEED_1000: | 
|  | netdev->features |= NETIF_F_TSO; | 
|  | netdev->features |= NETIF_F_TSO6; | 
|  | break; | 
|  | default: | 
|  | /* oops */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* enable transmits in the hardware, need to do this | 
|  | * after setting TARC(0) | 
|  | */ | 
|  | tctl = er32(TCTL); | 
|  | tctl |= E1000_TCTL_EN; | 
|  | ew32(TCTL, tctl); | 
|  |  | 
|  | /* Perform any post-link-up configuration before | 
|  | * reporting link up. | 
|  | */ | 
|  | if (phy->ops.cfg_on_link_up) | 
|  | phy->ops.cfg_on_link_up(hw); | 
|  |  | 
|  | netif_carrier_on(netdev); | 
|  |  | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | mod_timer(&adapter->phy_info_timer, | 
|  | round_jiffies(jiffies + 2 * HZ)); | 
|  | } | 
|  | } else { | 
|  | if (netif_carrier_ok(netdev)) { | 
|  | adapter->link_speed = 0; | 
|  | adapter->link_duplex = 0; | 
|  | /* Link status message must follow this format */ | 
|  | pr_info("%s NIC Link is Down\n", adapter->netdev->name); | 
|  | netif_carrier_off(netdev); | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | mod_timer(&adapter->phy_info_timer, | 
|  | round_jiffies(jiffies + 2 * HZ)); | 
|  |  | 
|  | /* 8000ES2LAN requires a Rx packet buffer work-around | 
|  | * on link down event; reset the controller to flush | 
|  | * the Rx packet buffer. | 
|  | */ | 
|  | if (adapter->flags & FLAG_RX_NEEDS_RESTART) | 
|  | adapter->flags |= FLAG_RESTART_NOW; | 
|  | else | 
|  | pm_schedule_suspend(netdev->dev.parent, | 
|  | LINK_TIMEOUT); | 
|  | } | 
|  | } | 
|  |  | 
|  | link_up: | 
|  | spin_lock(&adapter->stats64_lock); | 
|  | e1000e_update_stats(adapter); | 
|  |  | 
|  | mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; | 
|  | adapter->tpt_old = adapter->stats.tpt; | 
|  | mac->collision_delta = adapter->stats.colc - adapter->colc_old; | 
|  | adapter->colc_old = adapter->stats.colc; | 
|  |  | 
|  | adapter->gorc = adapter->stats.gorc - adapter->gorc_old; | 
|  | adapter->gorc_old = adapter->stats.gorc; | 
|  | adapter->gotc = adapter->stats.gotc - adapter->gotc_old; | 
|  | adapter->gotc_old = adapter->stats.gotc; | 
|  | spin_unlock(&adapter->stats64_lock); | 
|  |  | 
|  | /* If the link is lost the controller stops DMA, but | 
|  | * if there is queued Tx work it cannot be done.  So | 
|  | * reset the controller to flush the Tx packet buffers. | 
|  | */ | 
|  | if (!netif_carrier_ok(netdev) && | 
|  | (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) | 
|  | adapter->flags |= FLAG_RESTART_NOW; | 
|  |  | 
|  | /* If reset is necessary, do it outside of interrupt context. */ | 
|  | if (adapter->flags & FLAG_RESTART_NOW) { | 
|  | schedule_work(&adapter->reset_task); | 
|  | /* return immediately since reset is imminent */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | e1000e_update_adaptive(&adapter->hw); | 
|  |  | 
|  | /* Simple mode for Interrupt Throttle Rate (ITR) */ | 
|  | if (adapter->itr_setting == 4) { | 
|  | /* Symmetric Tx/Rx gets a reduced ITR=2000; | 
|  | * Total asymmetrical Tx or Rx gets ITR=8000; | 
|  | * everyone else is between 2000-8000. | 
|  | */ | 
|  | u32 goc = (adapter->gotc + adapter->gorc) / 10000; | 
|  | u32 dif = (adapter->gotc > adapter->gorc ? | 
|  | adapter->gotc - adapter->gorc : | 
|  | adapter->gorc - adapter->gotc) / 10000; | 
|  | u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; | 
|  |  | 
|  | e1000e_write_itr(adapter, itr); | 
|  | } | 
|  |  | 
|  | /* Cause software interrupt to ensure Rx ring is cleaned */ | 
|  | if (adapter->msix_entries) | 
|  | ew32(ICS, adapter->rx_ring->ims_val); | 
|  | else | 
|  | ew32(ICS, E1000_ICS_RXDMT0); | 
|  |  | 
|  | /* flush pending descriptors to memory before detecting Tx hang */ | 
|  | e1000e_flush_descriptors(adapter); | 
|  |  | 
|  | /* Force detection of hung controller every watchdog period */ | 
|  | adapter->detect_tx_hung = true; | 
|  |  | 
|  | /* With 82571 controllers, LAA may be overwritten due to controller | 
|  | * reset from the other port. Set the appropriate LAA in RAR[0] | 
|  | */ | 
|  | if (e1000e_get_laa_state_82571(hw)) | 
|  | hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0); | 
|  |  | 
|  | if (adapter->flags2 & FLAG2_CHECK_PHY_HANG) | 
|  | e1000e_check_82574_phy_workaround(adapter); | 
|  |  | 
|  | /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */ | 
|  | if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) { | 
|  | if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) && | 
|  | (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) { | 
|  | er32(RXSTMPH); | 
|  | adapter->rx_hwtstamp_cleared++; | 
|  | } else { | 
|  | adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Reset the timer */ | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | mod_timer(&adapter->watchdog_timer, | 
|  | round_jiffies(jiffies + 2 * HZ)); | 
|  | } | 
|  |  | 
|  | #define E1000_TX_FLAGS_CSUM		0x00000001 | 
|  | #define E1000_TX_FLAGS_VLAN		0x00000002 | 
|  | #define E1000_TX_FLAGS_TSO		0x00000004 | 
|  | #define E1000_TX_FLAGS_IPV4		0x00000008 | 
|  | #define E1000_TX_FLAGS_NO_FCS		0x00000010 | 
|  | #define E1000_TX_FLAGS_HWTSTAMP		0x00000020 | 
|  | #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000 | 
|  | #define E1000_TX_FLAGS_VLAN_SHIFT	16 | 
|  |  | 
|  | static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb, | 
|  | __be16 protocol) | 
|  | { | 
|  | struct e1000_context_desc *context_desc; | 
|  | struct e1000_buffer *buffer_info; | 
|  | unsigned int i; | 
|  | u32 cmd_length = 0; | 
|  | u16 ipcse = 0, mss; | 
|  | u8 ipcss, ipcso, tucss, tucso, hdr_len; | 
|  | int err; | 
|  |  | 
|  | if (!skb_is_gso(skb)) | 
|  | return 0; | 
|  |  | 
|  | err = skb_cow_head(skb, 0); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | 
|  | mss = skb_shinfo(skb)->gso_size; | 
|  | if (protocol == htons(ETH_P_IP)) { | 
|  | struct iphdr *iph = ip_hdr(skb); | 
|  | iph->tot_len = 0; | 
|  | iph->check = 0; | 
|  | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, | 
|  | 0, IPPROTO_TCP, 0); | 
|  | cmd_length = E1000_TXD_CMD_IP; | 
|  | ipcse = skb_transport_offset(skb) - 1; | 
|  | } else if (skb_is_gso_v6(skb)) { | 
|  | ipv6_hdr(skb)->payload_len = 0; | 
|  | tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | 
|  | &ipv6_hdr(skb)->daddr, | 
|  | 0, IPPROTO_TCP, 0); | 
|  | ipcse = 0; | 
|  | } | 
|  | ipcss = skb_network_offset(skb); | 
|  | ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; | 
|  | tucss = skb_transport_offset(skb); | 
|  | tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; | 
|  |  | 
|  | cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | | 
|  | E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); | 
|  |  | 
|  | i = tx_ring->next_to_use; | 
|  | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  |  | 
|  | context_desc->lower_setup.ip_fields.ipcss = ipcss; | 
|  | context_desc->lower_setup.ip_fields.ipcso = ipcso; | 
|  | context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); | 
|  | context_desc->upper_setup.tcp_fields.tucss = tucss; | 
|  | context_desc->upper_setup.tcp_fields.tucso = tucso; | 
|  | context_desc->upper_setup.tcp_fields.tucse = 0; | 
|  | context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); | 
|  | context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; | 
|  | context_desc->cmd_and_length = cpu_to_le32(cmd_length); | 
|  |  | 
|  | buffer_info->time_stamp = jiffies; | 
|  | buffer_info->next_to_watch = i; | 
|  |  | 
|  | i++; | 
|  | if (i == tx_ring->count) | 
|  | i = 0; | 
|  | tx_ring->next_to_use = i; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb, | 
|  | __be16 protocol) | 
|  | { | 
|  | struct e1000_adapter *adapter = tx_ring->adapter; | 
|  | struct e1000_context_desc *context_desc; | 
|  | struct e1000_buffer *buffer_info; | 
|  | unsigned int i; | 
|  | u8 css; | 
|  | u32 cmd_len = E1000_TXD_CMD_DEXT; | 
|  |  | 
|  | if (skb->ip_summed != CHECKSUM_PARTIAL) | 
|  | return false; | 
|  |  | 
|  | switch (protocol) { | 
|  | case cpu_to_be16(ETH_P_IP): | 
|  | if (ip_hdr(skb)->protocol == IPPROTO_TCP) | 
|  | cmd_len |= E1000_TXD_CMD_TCP; | 
|  | break; | 
|  | case cpu_to_be16(ETH_P_IPV6): | 
|  | /* XXX not handling all IPV6 headers */ | 
|  | if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) | 
|  | cmd_len |= E1000_TXD_CMD_TCP; | 
|  | break; | 
|  | default: | 
|  | if (unlikely(net_ratelimit())) | 
|  | e_warn("checksum_partial proto=%x!\n", | 
|  | be16_to_cpu(protocol)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | css = skb_checksum_start_offset(skb); | 
|  |  | 
|  | i = tx_ring->next_to_use; | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | 
|  |  | 
|  | context_desc->lower_setup.ip_config = 0; | 
|  | context_desc->upper_setup.tcp_fields.tucss = css; | 
|  | context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset; | 
|  | context_desc->upper_setup.tcp_fields.tucse = 0; | 
|  | context_desc->tcp_seg_setup.data = 0; | 
|  | context_desc->cmd_and_length = cpu_to_le32(cmd_len); | 
|  |  | 
|  | buffer_info->time_stamp = jiffies; | 
|  | buffer_info->next_to_watch = i; | 
|  |  | 
|  | i++; | 
|  | if (i == tx_ring->count) | 
|  | i = 0; | 
|  | tx_ring->next_to_use = i; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb, | 
|  | unsigned int first, unsigned int max_per_txd, | 
|  | unsigned int nr_frags) | 
|  | { | 
|  | struct e1000_adapter *adapter = tx_ring->adapter; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_buffer *buffer_info; | 
|  | unsigned int len = skb_headlen(skb); | 
|  | unsigned int offset = 0, size, count = 0, i; | 
|  | unsigned int f, bytecount, segs; | 
|  |  | 
|  | i = tx_ring->next_to_use; | 
|  |  | 
|  | while (len) { | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | size = min(len, max_per_txd); | 
|  |  | 
|  | buffer_info->length = size; | 
|  | buffer_info->time_stamp = jiffies; | 
|  | buffer_info->next_to_watch = i; | 
|  | buffer_info->dma = dma_map_single(&pdev->dev, | 
|  | skb->data + offset, | 
|  | size, DMA_TO_DEVICE); | 
|  | buffer_info->mapped_as_page = false; | 
|  | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) | 
|  | goto dma_error; | 
|  |  | 
|  | len -= size; | 
|  | offset += size; | 
|  | count++; | 
|  |  | 
|  | if (len) { | 
|  | i++; | 
|  | if (i == tx_ring->count) | 
|  | i = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (f = 0; f < nr_frags; f++) { | 
|  | const struct skb_frag_struct *frag; | 
|  |  | 
|  | frag = &skb_shinfo(skb)->frags[f]; | 
|  | len = skb_frag_size(frag); | 
|  | offset = 0; | 
|  |  | 
|  | while (len) { | 
|  | i++; | 
|  | if (i == tx_ring->count) | 
|  | i = 0; | 
|  |  | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | size = min(len, max_per_txd); | 
|  |  | 
|  | buffer_info->length = size; | 
|  | buffer_info->time_stamp = jiffies; | 
|  | buffer_info->next_to_watch = i; | 
|  | buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, | 
|  | offset, size, | 
|  | DMA_TO_DEVICE); | 
|  | buffer_info->mapped_as_page = true; | 
|  | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) | 
|  | goto dma_error; | 
|  |  | 
|  | len -= size; | 
|  | offset += size; | 
|  | count++; | 
|  | } | 
|  | } | 
|  |  | 
|  | segs = skb_shinfo(skb)->gso_segs ? : 1; | 
|  | /* multiply data chunks by size of headers */ | 
|  | bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; | 
|  |  | 
|  | tx_ring->buffer_info[i].skb = skb; | 
|  | tx_ring->buffer_info[i].segs = segs; | 
|  | tx_ring->buffer_info[i].bytecount = bytecount; | 
|  | tx_ring->buffer_info[first].next_to_watch = i; | 
|  |  | 
|  | return count; | 
|  |  | 
|  | dma_error: | 
|  | dev_err(&pdev->dev, "Tx DMA map failed\n"); | 
|  | buffer_info->dma = 0; | 
|  | if (count) | 
|  | count--; | 
|  |  | 
|  | while (count--) { | 
|  | if (i == 0) | 
|  | i += tx_ring->count; | 
|  | i--; | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | e1000_put_txbuf(tx_ring, buffer_info); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count) | 
|  | { | 
|  | struct e1000_adapter *adapter = tx_ring->adapter; | 
|  | struct e1000_tx_desc *tx_desc = NULL; | 
|  | struct e1000_buffer *buffer_info; | 
|  | u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; | 
|  | unsigned int i; | 
|  |  | 
|  | if (tx_flags & E1000_TX_FLAGS_TSO) { | 
|  | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | | 
|  | E1000_TXD_CMD_TSE; | 
|  | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | 
|  |  | 
|  | if (tx_flags & E1000_TX_FLAGS_IPV4) | 
|  | txd_upper |= E1000_TXD_POPTS_IXSM << 8; | 
|  | } | 
|  |  | 
|  | if (tx_flags & E1000_TX_FLAGS_CSUM) { | 
|  | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; | 
|  | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | 
|  | } | 
|  |  | 
|  | if (tx_flags & E1000_TX_FLAGS_VLAN) { | 
|  | txd_lower |= E1000_TXD_CMD_VLE; | 
|  | txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); | 
|  | } | 
|  |  | 
|  | if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) | 
|  | txd_lower &= ~(E1000_TXD_CMD_IFCS); | 
|  |  | 
|  | if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) { | 
|  | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; | 
|  | txd_upper |= E1000_TXD_EXTCMD_TSTAMP; | 
|  | } | 
|  |  | 
|  | i = tx_ring->next_to_use; | 
|  |  | 
|  | do { | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | tx_desc = E1000_TX_DESC(*tx_ring, i); | 
|  | tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | 
|  | tx_desc->lower.data = cpu_to_le32(txd_lower | | 
|  | buffer_info->length); | 
|  | tx_desc->upper.data = cpu_to_le32(txd_upper); | 
|  |  | 
|  | i++; | 
|  | if (i == tx_ring->count) | 
|  | i = 0; | 
|  | } while (--count > 0); | 
|  |  | 
|  | tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); | 
|  |  | 
|  | /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ | 
|  | if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) | 
|  | tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); | 
|  |  | 
|  | /* Force memory writes to complete before letting h/w | 
|  | * know there are new descriptors to fetch.  (Only | 
|  | * applicable for weak-ordered memory model archs, | 
|  | * such as IA-64). | 
|  | */ | 
|  | wmb(); | 
|  |  | 
|  | tx_ring->next_to_use = i; | 
|  |  | 
|  | if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) | 
|  | e1000e_update_tdt_wa(tx_ring, i); | 
|  | else | 
|  | writel(i, tx_ring->tail); | 
|  |  | 
|  | /* we need this if more than one processor can write to our tail | 
|  | * at a time, it synchronizes IO on IA64/Altix systems | 
|  | */ | 
|  | mmiowb(); | 
|  | } | 
|  |  | 
|  | #define MINIMUM_DHCP_PACKET_SIZE 282 | 
|  | static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u16 length, offset; | 
|  |  | 
|  | if (vlan_tx_tag_present(skb) && | 
|  | !((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && | 
|  | (adapter->hw.mng_cookie.status & | 
|  | E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) | 
|  | return 0; | 
|  |  | 
|  | if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) | 
|  | return 0; | 
|  |  | 
|  | if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP)) | 
|  | return 0; | 
|  |  | 
|  | { | 
|  | const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14); | 
|  | struct udphdr *udp; | 
|  |  | 
|  | if (ip->protocol != IPPROTO_UDP) | 
|  | return 0; | 
|  |  | 
|  | udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); | 
|  | if (ntohs(udp->dest) != 67) | 
|  | return 0; | 
|  |  | 
|  | offset = (u8 *)udp + 8 - skb->data; | 
|  | length = skb->len - offset; | 
|  | return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) | 
|  | { | 
|  | struct e1000_adapter *adapter = tx_ring->adapter; | 
|  |  | 
|  | netif_stop_queue(adapter->netdev); | 
|  | /* Herbert's original patch had: | 
|  | *  smp_mb__after_netif_stop_queue(); | 
|  | * but since that doesn't exist yet, just open code it. | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | /* We need to check again in a case another CPU has just | 
|  | * made room available. | 
|  | */ | 
|  | if (e1000_desc_unused(tx_ring) < size) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* A reprieve! */ | 
|  | netif_start_queue(adapter->netdev); | 
|  | ++adapter->restart_queue; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) | 
|  | { | 
|  | BUG_ON(size > tx_ring->count); | 
|  |  | 
|  | if (e1000_desc_unused(tx_ring) >= size) | 
|  | return 0; | 
|  | return __e1000_maybe_stop_tx(tx_ring, size); | 
|  | } | 
|  |  | 
|  | static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, | 
|  | struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | unsigned int first; | 
|  | unsigned int tx_flags = 0; | 
|  | unsigned int len = skb_headlen(skb); | 
|  | unsigned int nr_frags; | 
|  | unsigned int mss; | 
|  | int count = 0; | 
|  | int tso; | 
|  | unsigned int f; | 
|  | __be16 protocol = vlan_get_protocol(skb); | 
|  |  | 
|  | if (test_bit(__E1000_DOWN, &adapter->state)) { | 
|  | dev_kfree_skb_any(skb); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | if (skb->len <= 0) { | 
|  | dev_kfree_skb_any(skb); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | /* The minimum packet size with TCTL.PSP set is 17 bytes so | 
|  | * pad skb in order to meet this minimum size requirement | 
|  | */ | 
|  | if (unlikely(skb->len < 17)) { | 
|  | if (skb_pad(skb, 17 - skb->len)) | 
|  | return NETDEV_TX_OK; | 
|  | skb->len = 17; | 
|  | skb_set_tail_pointer(skb, 17); | 
|  | } | 
|  |  | 
|  | mss = skb_shinfo(skb)->gso_size; | 
|  | if (mss) { | 
|  | u8 hdr_len; | 
|  |  | 
|  | /* TSO Workaround for 82571/2/3 Controllers -- if skb->data | 
|  | * points to just header, pull a few bytes of payload from | 
|  | * frags into skb->data | 
|  | */ | 
|  | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | 
|  | /* we do this workaround for ES2LAN, but it is un-necessary, | 
|  | * avoiding it could save a lot of cycles | 
|  | */ | 
|  | if (skb->data_len && (hdr_len == len)) { | 
|  | unsigned int pull_size; | 
|  |  | 
|  | pull_size = min_t(unsigned int, 4, skb->data_len); | 
|  | if (!__pskb_pull_tail(skb, pull_size)) { | 
|  | e_err("__pskb_pull_tail failed.\n"); | 
|  | dev_kfree_skb_any(skb); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  | len = skb_headlen(skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* reserve a descriptor for the offload context */ | 
|  | if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) | 
|  | count++; | 
|  | count++; | 
|  |  | 
|  | count += DIV_ROUND_UP(len, adapter->tx_fifo_limit); | 
|  |  | 
|  | nr_frags = skb_shinfo(skb)->nr_frags; | 
|  | for (f = 0; f < nr_frags; f++) | 
|  | count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]), | 
|  | adapter->tx_fifo_limit); | 
|  |  | 
|  | if (adapter->hw.mac.tx_pkt_filtering) | 
|  | e1000_transfer_dhcp_info(adapter, skb); | 
|  |  | 
|  | /* need: count + 2 desc gap to keep tail from touching | 
|  | * head, otherwise try next time | 
|  | */ | 
|  | if (e1000_maybe_stop_tx(tx_ring, count + 2)) | 
|  | return NETDEV_TX_BUSY; | 
|  |  | 
|  | if (vlan_tx_tag_present(skb)) { | 
|  | tx_flags |= E1000_TX_FLAGS_VLAN; | 
|  | tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); | 
|  | } | 
|  |  | 
|  | first = tx_ring->next_to_use; | 
|  |  | 
|  | tso = e1000_tso(tx_ring, skb, protocol); | 
|  | if (tso < 0) { | 
|  | dev_kfree_skb_any(skb); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | if (tso) | 
|  | tx_flags |= E1000_TX_FLAGS_TSO; | 
|  | else if (e1000_tx_csum(tx_ring, skb, protocol)) | 
|  | tx_flags |= E1000_TX_FLAGS_CSUM; | 
|  |  | 
|  | /* Old method was to assume IPv4 packet by default if TSO was enabled. | 
|  | * 82571 hardware supports TSO capabilities for IPv6 as well... | 
|  | * no longer assume, we must. | 
|  | */ | 
|  | if (protocol == htons(ETH_P_IP)) | 
|  | tx_flags |= E1000_TX_FLAGS_IPV4; | 
|  |  | 
|  | if (unlikely(skb->no_fcs)) | 
|  | tx_flags |= E1000_TX_FLAGS_NO_FCS; | 
|  |  | 
|  | /* if count is 0 then mapping error has occurred */ | 
|  | count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit, | 
|  | nr_frags); | 
|  | if (count) { | 
|  | if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && | 
|  | !adapter->tx_hwtstamp_skb)) { | 
|  | skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; | 
|  | tx_flags |= E1000_TX_FLAGS_HWTSTAMP; | 
|  | adapter->tx_hwtstamp_skb = skb_get(skb); | 
|  | adapter->tx_hwtstamp_start = jiffies; | 
|  | schedule_work(&adapter->tx_hwtstamp_work); | 
|  | } else { | 
|  | skb_tx_timestamp(skb); | 
|  | } | 
|  |  | 
|  | netdev_sent_queue(netdev, skb->len); | 
|  | e1000_tx_queue(tx_ring, tx_flags, count); | 
|  | /* Make sure there is space in the ring for the next send. */ | 
|  | e1000_maybe_stop_tx(tx_ring, | 
|  | (MAX_SKB_FRAGS * | 
|  | DIV_ROUND_UP(PAGE_SIZE, | 
|  | adapter->tx_fifo_limit) + 2)); | 
|  | } else { | 
|  | dev_kfree_skb_any(skb); | 
|  | tx_ring->buffer_info[first].time_stamp = 0; | 
|  | tx_ring->next_to_use = first; | 
|  | } | 
|  |  | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_tx_timeout - Respond to a Tx Hang | 
|  | * @netdev: network interface device structure | 
|  | **/ | 
|  | static void e1000_tx_timeout(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | /* Do the reset outside of interrupt context */ | 
|  | adapter->tx_timeout_count++; | 
|  | schedule_work(&adapter->reset_task); | 
|  | } | 
|  |  | 
|  | static void e1000_reset_task(struct work_struct *work) | 
|  | { | 
|  | struct e1000_adapter *adapter; | 
|  | adapter = container_of(work, struct e1000_adapter, reset_task); | 
|  |  | 
|  | /* don't run the task if already down */ | 
|  | if (test_bit(__E1000_DOWN, &adapter->state)) | 
|  | return; | 
|  |  | 
|  | if (!(adapter->flags & FLAG_RESTART_NOW)) { | 
|  | e1000e_dump(adapter); | 
|  | e_err("Reset adapter unexpectedly\n"); | 
|  | } | 
|  | e1000e_reinit_locked(adapter); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_get_stats64 - Get System Network Statistics | 
|  | * @netdev: network interface device structure | 
|  | * @stats: rtnl_link_stats64 pointer | 
|  | * | 
|  | * Returns the address of the device statistics structure. | 
|  | **/ | 
|  | struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev, | 
|  | struct rtnl_link_stats64 *stats) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | memset(stats, 0, sizeof(struct rtnl_link_stats64)); | 
|  | spin_lock(&adapter->stats64_lock); | 
|  | e1000e_update_stats(adapter); | 
|  | /* Fill out the OS statistics structure */ | 
|  | stats->rx_bytes = adapter->stats.gorc; | 
|  | stats->rx_packets = adapter->stats.gprc; | 
|  | stats->tx_bytes = adapter->stats.gotc; | 
|  | stats->tx_packets = adapter->stats.gptc; | 
|  | stats->multicast = adapter->stats.mprc; | 
|  | stats->collisions = adapter->stats.colc; | 
|  |  | 
|  | /* Rx Errors */ | 
|  |  | 
|  | /* RLEC on some newer hardware can be incorrect so build | 
|  | * our own version based on RUC and ROC | 
|  | */ | 
|  | stats->rx_errors = adapter->stats.rxerrc + | 
|  | adapter->stats.crcerrs + adapter->stats.algnerrc + | 
|  | adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; | 
|  | stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc; | 
|  | stats->rx_crc_errors = adapter->stats.crcerrs; | 
|  | stats->rx_frame_errors = adapter->stats.algnerrc; | 
|  | stats->rx_missed_errors = adapter->stats.mpc; | 
|  |  | 
|  | /* Tx Errors */ | 
|  | stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol; | 
|  | stats->tx_aborted_errors = adapter->stats.ecol; | 
|  | stats->tx_window_errors = adapter->stats.latecol; | 
|  | stats->tx_carrier_errors = adapter->stats.tncrs; | 
|  |  | 
|  | /* Tx Dropped needs to be maintained elsewhere */ | 
|  |  | 
|  | spin_unlock(&adapter->stats64_lock); | 
|  | return stats; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_change_mtu - Change the Maximum Transfer Unit | 
|  | * @netdev: network interface device structure | 
|  | * @new_mtu: new value for maximum frame size | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | **/ | 
|  | static int e1000_change_mtu(struct net_device *netdev, int new_mtu) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | int max_frame = new_mtu + VLAN_HLEN + ETH_HLEN + ETH_FCS_LEN; | 
|  |  | 
|  | /* Jumbo frame support */ | 
|  | if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) && | 
|  | !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { | 
|  | e_err("Jumbo Frames not supported.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Supported frame sizes */ | 
|  | if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) || | 
|  | (max_frame > adapter->max_hw_frame_size)) { | 
|  | e_err("Unsupported MTU setting\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */ | 
|  | if ((adapter->hw.mac.type >= e1000_pch2lan) && | 
|  | !(adapter->flags2 & FLAG2_CRC_STRIPPING) && | 
|  | (new_mtu > ETH_DATA_LEN)) { | 
|  | e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) | 
|  | usleep_range(1000, 2000); | 
|  | /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */ | 
|  | adapter->max_frame_size = max_frame; | 
|  | e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu); | 
|  | netdev->mtu = new_mtu; | 
|  |  | 
|  | pm_runtime_get_sync(netdev->dev.parent); | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e1000e_down(adapter, true); | 
|  |  | 
|  | /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | 
|  | * means we reserve 2 more, this pushes us to allocate from the next | 
|  | * larger slab size. | 
|  | * i.e. RXBUFFER_2048 --> size-4096 slab | 
|  | * However with the new *_jumbo_rx* routines, jumbo receives will use | 
|  | * fragmented skbs | 
|  | */ | 
|  |  | 
|  | if (max_frame <= 2048) | 
|  | adapter->rx_buffer_len = 2048; | 
|  | else | 
|  | adapter->rx_buffer_len = 4096; | 
|  |  | 
|  | /* adjust allocation if LPE protects us, and we aren't using SBP */ | 
|  | if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || | 
|  | (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) | 
|  | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN | 
|  | + ETH_FCS_LEN; | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e1000e_up(adapter); | 
|  | else | 
|  | e1000e_reset(adapter); | 
|  |  | 
|  | pm_runtime_put_sync(netdev->dev.parent); | 
|  |  | 
|  | clear_bit(__E1000_RESETTING, &adapter->state); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | 
|  | int cmd) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct mii_ioctl_data *data = if_mii(ifr); | 
|  |  | 
|  | if (adapter->hw.phy.media_type != e1000_media_type_copper) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | switch (cmd) { | 
|  | case SIOCGMIIPHY: | 
|  | data->phy_id = adapter->hw.phy.addr; | 
|  | break; | 
|  | case SIOCGMIIREG: | 
|  | e1000_phy_read_status(adapter); | 
|  |  | 
|  | switch (data->reg_num & 0x1F) { | 
|  | case MII_BMCR: | 
|  | data->val_out = adapter->phy_regs.bmcr; | 
|  | break; | 
|  | case MII_BMSR: | 
|  | data->val_out = adapter->phy_regs.bmsr; | 
|  | break; | 
|  | case MII_PHYSID1: | 
|  | data->val_out = (adapter->hw.phy.id >> 16); | 
|  | break; | 
|  | case MII_PHYSID2: | 
|  | data->val_out = (adapter->hw.phy.id & 0xFFFF); | 
|  | break; | 
|  | case MII_ADVERTISE: | 
|  | data->val_out = adapter->phy_regs.advertise; | 
|  | break; | 
|  | case MII_LPA: | 
|  | data->val_out = adapter->phy_regs.lpa; | 
|  | break; | 
|  | case MII_EXPANSION: | 
|  | data->val_out = adapter->phy_regs.expansion; | 
|  | break; | 
|  | case MII_CTRL1000: | 
|  | data->val_out = adapter->phy_regs.ctrl1000; | 
|  | break; | 
|  | case MII_STAT1000: | 
|  | data->val_out = adapter->phy_regs.stat1000; | 
|  | break; | 
|  | case MII_ESTATUS: | 
|  | data->val_out = adapter->phy_regs.estatus; | 
|  | break; | 
|  | default: | 
|  | return -EIO; | 
|  | } | 
|  | break; | 
|  | case SIOCSMIIREG: | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_hwtstamp_ioctl - control hardware time stamping | 
|  | * @netdev: network interface device structure | 
|  | * @ifreq: interface request | 
|  | * | 
|  | * Outgoing time stamping can be enabled and disabled. Play nice and | 
|  | * disable it when requested, although it shouldn't cause any overhead | 
|  | * when no packet needs it. At most one packet in the queue may be | 
|  | * marked for time stamping, otherwise it would be impossible to tell | 
|  | * for sure to which packet the hardware time stamp belongs. | 
|  | * | 
|  | * Incoming time stamping has to be configured via the hardware filters. | 
|  | * Not all combinations are supported, in particular event type has to be | 
|  | * specified. Matching the kind of event packet is not supported, with the | 
|  | * exception of "all V2 events regardless of level 2 or 4". | 
|  | **/ | 
|  | static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct hwtstamp_config config; | 
|  | int ret_val; | 
|  |  | 
|  | if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) | 
|  | return -EFAULT; | 
|  |  | 
|  | ret_val = e1000e_config_hwtstamp(adapter, &config); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | switch (config.rx_filter) { | 
|  | case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: | 
|  | case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: | 
|  | case HWTSTAMP_FILTER_PTP_V2_SYNC: | 
|  | case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: | 
|  | case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: | 
|  | case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: | 
|  | /* With V2 type filters which specify a Sync or Delay Request, | 
|  | * Path Delay Request/Response messages are also time stamped | 
|  | * by hardware so notify the caller the requested packets plus | 
|  | * some others are time stamped. | 
|  | */ | 
|  | config.rx_filter = HWTSTAMP_FILTER_SOME; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return copy_to_user(ifr->ifr_data, &config, | 
|  | sizeof(config)) ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config, | 
|  | sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | 
|  | { | 
|  | switch (cmd) { | 
|  | case SIOCGMIIPHY: | 
|  | case SIOCGMIIREG: | 
|  | case SIOCSMIIREG: | 
|  | return e1000_mii_ioctl(netdev, ifr, cmd); | 
|  | case SIOCSHWTSTAMP: | 
|  | return e1000e_hwtstamp_set(netdev, ifr); | 
|  | case SIOCGHWTSTAMP: | 
|  | return e1000e_hwtstamp_get(netdev, ifr); | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 i, mac_reg, wuc; | 
|  | u16 phy_reg, wuc_enable; | 
|  | int retval; | 
|  |  | 
|  | /* copy MAC RARs to PHY RARs */ | 
|  | e1000_copy_rx_addrs_to_phy_ich8lan(hw); | 
|  |  | 
|  | retval = hw->phy.ops.acquire(hw); | 
|  | if (retval) { | 
|  | e_err("Could not acquire PHY\n"); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */ | 
|  | retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable); | 
|  | if (retval) | 
|  | goto release; | 
|  |  | 
|  | /* copy MAC MTA to PHY MTA - only needed for pchlan */ | 
|  | for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) { | 
|  | mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); | 
|  | hw->phy.ops.write_reg_page(hw, BM_MTA(i), | 
|  | (u16)(mac_reg & 0xFFFF)); | 
|  | hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1, | 
|  | (u16)((mac_reg >> 16) & 0xFFFF)); | 
|  | } | 
|  |  | 
|  | /* configure PHY Rx Control register */ | 
|  | hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg); | 
|  | mac_reg = er32(RCTL); | 
|  | if (mac_reg & E1000_RCTL_UPE) | 
|  | phy_reg |= BM_RCTL_UPE; | 
|  | if (mac_reg & E1000_RCTL_MPE) | 
|  | phy_reg |= BM_RCTL_MPE; | 
|  | phy_reg &= ~(BM_RCTL_MO_MASK); | 
|  | if (mac_reg & E1000_RCTL_MO_3) | 
|  | phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) | 
|  | << BM_RCTL_MO_SHIFT); | 
|  | if (mac_reg & E1000_RCTL_BAM) | 
|  | phy_reg |= BM_RCTL_BAM; | 
|  | if (mac_reg & E1000_RCTL_PMCF) | 
|  | phy_reg |= BM_RCTL_PMCF; | 
|  | mac_reg = er32(CTRL); | 
|  | if (mac_reg & E1000_CTRL_RFCE) | 
|  | phy_reg |= BM_RCTL_RFCE; | 
|  | hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg); | 
|  |  | 
|  | wuc = E1000_WUC_PME_EN; | 
|  | if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC)) | 
|  | wuc |= E1000_WUC_APME; | 
|  |  | 
|  | /* enable PHY wakeup in MAC register */ | 
|  | ew32(WUFC, wufc); | 
|  | ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME | | 
|  | E1000_WUC_PME_STATUS | wuc)); | 
|  |  | 
|  | /* configure and enable PHY wakeup in PHY registers */ | 
|  | hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc); | 
|  | hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc); | 
|  |  | 
|  | /* activate PHY wakeup */ | 
|  | wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; | 
|  | retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable); | 
|  | if (retval) | 
|  | e_err("Could not set PHY Host Wakeup bit\n"); | 
|  | release: | 
|  | hw->phy.ops.release(hw); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static void e1000e_flush_lpic(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ret_val; | 
|  |  | 
|  | pm_runtime_get_sync(netdev->dev.parent); | 
|  |  | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | goto fl_out; | 
|  |  | 
|  | pr_info("EEE TX LPI TIMER: %08X\n", | 
|  | er32(LPIC) >> E1000_LPIC_LPIET_SHIFT); | 
|  |  | 
|  | hw->phy.ops.release(hw); | 
|  |  | 
|  | fl_out: | 
|  | pm_runtime_put_sync(netdev->dev.parent); | 
|  | } | 
|  |  | 
|  | static int e1000e_pm_freeze(struct device *dev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev)); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | netif_device_detach(netdev); | 
|  |  | 
|  | if (netif_running(netdev)) { | 
|  | int count = E1000_CHECK_RESET_COUNT; | 
|  |  | 
|  | while (test_bit(__E1000_RESETTING, &adapter->state) && count--) | 
|  | usleep_range(10000, 20000); | 
|  |  | 
|  | WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); | 
|  |  | 
|  | /* Quiesce the device without resetting the hardware */ | 
|  | e1000e_down(adapter, false); | 
|  | e1000_free_irq(adapter); | 
|  | } | 
|  | e1000e_reset_interrupt_capability(adapter); | 
|  |  | 
|  | /* Allow time for pending master requests to run */ | 
|  | e1000e_disable_pcie_master(&adapter->hw); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __e1000_shutdown(struct pci_dev *pdev, bool runtime) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ctrl, ctrl_ext, rctl, status; | 
|  | /* Runtime suspend should only enable wakeup for link changes */ | 
|  | u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; | 
|  | int retval = 0; | 
|  |  | 
|  | status = er32(STATUS); | 
|  | if (status & E1000_STATUS_LU) | 
|  | wufc &= ~E1000_WUFC_LNKC; | 
|  |  | 
|  | if (wufc) { | 
|  | e1000_setup_rctl(adapter); | 
|  | e1000e_set_rx_mode(netdev); | 
|  |  | 
|  | /* turn on all-multi mode if wake on multicast is enabled */ | 
|  | if (wufc & E1000_WUFC_MC) { | 
|  | rctl = er32(RCTL); | 
|  | rctl |= E1000_RCTL_MPE; | 
|  | ew32(RCTL, rctl); | 
|  | } | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  | ctrl |= E1000_CTRL_ADVD3WUC; | 
|  | if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)) | 
|  | ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT; | 
|  | ew32(CTRL, ctrl); | 
|  |  | 
|  | if (adapter->hw.phy.media_type == e1000_media_type_fiber || | 
|  | adapter->hw.phy.media_type == | 
|  | e1000_media_type_internal_serdes) { | 
|  | /* keep the laser running in D3 */ | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | } | 
|  |  | 
|  | if (!runtime) | 
|  | e1000e_power_up_phy(adapter); | 
|  |  | 
|  | if (adapter->flags & FLAG_IS_ICH) | 
|  | e1000_suspend_workarounds_ich8lan(&adapter->hw); | 
|  |  | 
|  | if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { | 
|  | /* enable wakeup by the PHY */ | 
|  | retval = e1000_init_phy_wakeup(adapter, wufc); | 
|  | if (retval) | 
|  | return retval; | 
|  | } else { | 
|  | /* enable wakeup by the MAC */ | 
|  | ew32(WUFC, wufc); | 
|  | ew32(WUC, E1000_WUC_PME_EN); | 
|  | } | 
|  | } else { | 
|  | ew32(WUC, 0); | 
|  | ew32(WUFC, 0); | 
|  |  | 
|  | e1000_power_down_phy(adapter); | 
|  | } | 
|  |  | 
|  | if (adapter->hw.phy.type == e1000_phy_igp_3) { | 
|  | e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); | 
|  | } else if (hw->mac.type == e1000_pch_lpt) { | 
|  | if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC))) | 
|  | /* ULP does not support wake from unicast, multicast | 
|  | * or broadcast. | 
|  | */ | 
|  | retval = e1000_enable_ulp_lpt_lp(hw, !runtime); | 
|  |  | 
|  | if (retval) | 
|  | return retval; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Release control of h/w to f/w.  If f/w is AMT enabled, this | 
|  | * would have already happened in close and is redundant. | 
|  | */ | 
|  | e1000e_release_hw_control(adapter); | 
|  |  | 
|  | pci_clear_master(pdev); | 
|  |  | 
|  | /* The pci-e switch on some quad port adapters will report a | 
|  | * correctable error when the MAC transitions from D0 to D3.  To | 
|  | * prevent this we need to mask off the correctable errors on the | 
|  | * downstream port of the pci-e switch. | 
|  | * | 
|  | * We don't have the associated upstream bridge while assigning | 
|  | * the PCI device into guest. For example, the KVM on power is | 
|  | * one of the cases. | 
|  | */ | 
|  | if (adapter->flags & FLAG_IS_QUAD_PORT) { | 
|  | struct pci_dev *us_dev = pdev->bus->self; | 
|  | u16 devctl; | 
|  |  | 
|  | if (!us_dev) | 
|  | return 0; | 
|  |  | 
|  | pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl); | 
|  | pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, | 
|  | (devctl & ~PCI_EXP_DEVCTL_CERE)); | 
|  |  | 
|  | pci_save_state(pdev); | 
|  | pci_prepare_to_sleep(pdev); | 
|  |  | 
|  | pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_disable_aspm - Disable ASPM states | 
|  | * @pdev: pointer to PCI device struct | 
|  | * @state: bit-mask of ASPM states to disable | 
|  | * | 
|  | * Some devices *must* have certain ASPM states disabled per hardware errata. | 
|  | **/ | 
|  | static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state) | 
|  | { | 
|  | struct pci_dev *parent = pdev->bus->self; | 
|  | u16 aspm_dis_mask = 0; | 
|  | u16 pdev_aspmc, parent_aspmc; | 
|  |  | 
|  | switch (state) { | 
|  | case PCIE_LINK_STATE_L0S: | 
|  | case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1: | 
|  | aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S; | 
|  | /* fall-through - can't have L1 without L0s */ | 
|  | case PCIE_LINK_STATE_L1: | 
|  | aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1; | 
|  | break; | 
|  | default: | 
|  | return; | 
|  | } | 
|  |  | 
|  | pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc); | 
|  | pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC; | 
|  |  | 
|  | if (parent) { | 
|  | pcie_capability_read_word(parent, PCI_EXP_LNKCTL, | 
|  | &parent_aspmc); | 
|  | parent_aspmc &= PCI_EXP_LNKCTL_ASPMC; | 
|  | } | 
|  |  | 
|  | /* Nothing to do if the ASPM states to be disabled already are */ | 
|  | if (!(pdev_aspmc & aspm_dis_mask) && | 
|  | (!parent || !(parent_aspmc & aspm_dis_mask))) | 
|  | return; | 
|  |  | 
|  | dev_info(&pdev->dev, "Disabling ASPM %s %s\n", | 
|  | (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ? | 
|  | "L0s" : "", | 
|  | (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ? | 
|  | "L1" : ""); | 
|  |  | 
|  | #ifdef CONFIG_PCIEASPM | 
|  | pci_disable_link_state_locked(pdev, state); | 
|  |  | 
|  | /* Double-check ASPM control.  If not disabled by the above, the | 
|  | * BIOS is preventing that from happening (or CONFIG_PCIEASPM is | 
|  | * not enabled); override by writing PCI config space directly. | 
|  | */ | 
|  | pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc); | 
|  | pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC; | 
|  |  | 
|  | if (!(aspm_dis_mask & pdev_aspmc)) | 
|  | return; | 
|  | #endif | 
|  |  | 
|  | /* Both device and parent should have the same ASPM setting. | 
|  | * Disable ASPM in downstream component first and then upstream. | 
|  | */ | 
|  | pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask); | 
|  |  | 
|  | if (parent) | 
|  | pcie_capability_clear_word(parent, PCI_EXP_LNKCTL, | 
|  | aspm_dis_mask); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static int __e1000_resume(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u16 aspm_disable_flag = 0; | 
|  |  | 
|  | if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) | 
|  | aspm_disable_flag = PCIE_LINK_STATE_L0S; | 
|  | if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) | 
|  | aspm_disable_flag |= PCIE_LINK_STATE_L1; | 
|  | if (aspm_disable_flag) | 
|  | e1000e_disable_aspm(pdev, aspm_disable_flag); | 
|  |  | 
|  | pci_set_master(pdev); | 
|  |  | 
|  | if (hw->mac.type >= e1000_pch2lan) | 
|  | e1000_resume_workarounds_pchlan(&adapter->hw); | 
|  |  | 
|  | e1000e_power_up_phy(adapter); | 
|  |  | 
|  | /* report the system wakeup cause from S3/S4 */ | 
|  | if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { | 
|  | u16 phy_data; | 
|  |  | 
|  | e1e_rphy(&adapter->hw, BM_WUS, &phy_data); | 
|  | if (phy_data) { | 
|  | e_info("PHY Wakeup cause - %s\n", | 
|  | phy_data & E1000_WUS_EX ? "Unicast Packet" : | 
|  | phy_data & E1000_WUS_MC ? "Multicast Packet" : | 
|  | phy_data & E1000_WUS_BC ? "Broadcast Packet" : | 
|  | phy_data & E1000_WUS_MAG ? "Magic Packet" : | 
|  | phy_data & E1000_WUS_LNKC ? | 
|  | "Link Status Change" : "other"); | 
|  | } | 
|  | e1e_wphy(&adapter->hw, BM_WUS, ~0); | 
|  | } else { | 
|  | u32 wus = er32(WUS); | 
|  |  | 
|  | if (wus) { | 
|  | e_info("MAC Wakeup cause - %s\n", | 
|  | wus & E1000_WUS_EX ? "Unicast Packet" : | 
|  | wus & E1000_WUS_MC ? "Multicast Packet" : | 
|  | wus & E1000_WUS_BC ? "Broadcast Packet" : | 
|  | wus & E1000_WUS_MAG ? "Magic Packet" : | 
|  | wus & E1000_WUS_LNKC ? "Link Status Change" : | 
|  | "other"); | 
|  | } | 
|  | ew32(WUS, ~0); | 
|  | } | 
|  |  | 
|  | e1000e_reset(adapter); | 
|  |  | 
|  | e1000_init_manageability_pt(adapter); | 
|  |  | 
|  | /* If the controller has AMT, do not set DRV_LOAD until the interface | 
|  | * is up.  For all other cases, let the f/w know that the h/w is now | 
|  | * under the control of the driver. | 
|  | */ | 
|  | if (!(adapter->flags & FLAG_HAS_AMT)) | 
|  | e1000e_get_hw_control(adapter); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM_SLEEP | 
|  | static int e1000e_pm_thaw(struct device *dev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev)); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | e1000e_set_interrupt_capability(adapter); | 
|  | if (netif_running(netdev)) { | 
|  | u32 err = e1000_request_irq(adapter); | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | e1000e_up(adapter); | 
|  | } | 
|  |  | 
|  | netif_device_attach(netdev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000e_pm_suspend(struct device *dev) | 
|  | { | 
|  | struct pci_dev *pdev = to_pci_dev(dev); | 
|  |  | 
|  | e1000e_flush_lpic(pdev); | 
|  |  | 
|  | e1000e_pm_freeze(dev); | 
|  |  | 
|  | return __e1000_shutdown(pdev, false); | 
|  | } | 
|  |  | 
|  | static int e1000e_pm_resume(struct device *dev) | 
|  | { | 
|  | struct pci_dev *pdev = to_pci_dev(dev); | 
|  | int rc; | 
|  |  | 
|  | rc = __e1000_resume(pdev); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | return e1000e_pm_thaw(dev); | 
|  | } | 
|  | #endif /* CONFIG_PM_SLEEP */ | 
|  |  | 
|  | #ifdef CONFIG_PM_RUNTIME | 
|  | static int e1000e_pm_runtime_idle(struct device *dev) | 
|  | { | 
|  | struct pci_dev *pdev = to_pci_dev(dev); | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | u16 eee_lp; | 
|  |  | 
|  | eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability; | 
|  |  | 
|  | if (!e1000e_has_link(adapter)) { | 
|  | adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp; | 
|  | pm_schedule_suspend(dev, 5 * MSEC_PER_SEC); | 
|  | } | 
|  |  | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | static int e1000e_pm_runtime_resume(struct device *dev) | 
|  | { | 
|  | struct pci_dev *pdev = to_pci_dev(dev); | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | int rc; | 
|  |  | 
|  | rc = __e1000_resume(pdev); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | if (netdev->flags & IFF_UP) | 
|  | rc = e1000e_up(adapter); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int e1000e_pm_runtime_suspend(struct device *dev) | 
|  | { | 
|  | struct pci_dev *pdev = to_pci_dev(dev); | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | if (netdev->flags & IFF_UP) { | 
|  | int count = E1000_CHECK_RESET_COUNT; | 
|  |  | 
|  | while (test_bit(__E1000_RESETTING, &adapter->state) && count--) | 
|  | usleep_range(10000, 20000); | 
|  |  | 
|  | WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); | 
|  |  | 
|  | /* Down the device without resetting the hardware */ | 
|  | e1000e_down(adapter, false); | 
|  | } | 
|  |  | 
|  | if (__e1000_shutdown(pdev, true)) { | 
|  | e1000e_pm_runtime_resume(dev); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_PM_RUNTIME */ | 
|  | #endif /* CONFIG_PM */ | 
|  |  | 
|  | static void e1000_shutdown(struct pci_dev *pdev) | 
|  | { | 
|  | e1000e_flush_lpic(pdev); | 
|  |  | 
|  | e1000e_pm_freeze(&pdev->dev); | 
|  |  | 
|  | __e1000_shutdown(pdev, false); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  |  | 
|  | static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data) | 
|  | { | 
|  | struct net_device *netdev = data; | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | if (adapter->msix_entries) { | 
|  | int vector, msix_irq; | 
|  |  | 
|  | vector = 0; | 
|  | msix_irq = adapter->msix_entries[vector].vector; | 
|  | disable_irq(msix_irq); | 
|  | e1000_intr_msix_rx(msix_irq, netdev); | 
|  | enable_irq(msix_irq); | 
|  |  | 
|  | vector++; | 
|  | msix_irq = adapter->msix_entries[vector].vector; | 
|  | disable_irq(msix_irq); | 
|  | e1000_intr_msix_tx(msix_irq, netdev); | 
|  | enable_irq(msix_irq); | 
|  |  | 
|  | vector++; | 
|  | msix_irq = adapter->msix_entries[vector].vector; | 
|  | disable_irq(msix_irq); | 
|  | e1000_msix_other(msix_irq, netdev); | 
|  | enable_irq(msix_irq); | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_netpoll | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * Polling 'interrupt' - used by things like netconsole to send skbs | 
|  | * without having to re-enable interrupts. It's not called while | 
|  | * the interrupt routine is executing. | 
|  | */ | 
|  | static void e1000_netpoll(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | switch (adapter->int_mode) { | 
|  | case E1000E_INT_MODE_MSIX: | 
|  | e1000_intr_msix(adapter->pdev->irq, netdev); | 
|  | break; | 
|  | case E1000E_INT_MODE_MSI: | 
|  | disable_irq(adapter->pdev->irq); | 
|  | e1000_intr_msi(adapter->pdev->irq, netdev); | 
|  | enable_irq(adapter->pdev->irq); | 
|  | break; | 
|  | default:		/* E1000E_INT_MODE_LEGACY */ | 
|  | disable_irq(adapter->pdev->irq); | 
|  | e1000_intr(adapter->pdev->irq, netdev); | 
|  | enable_irq(adapter->pdev->irq); | 
|  | break; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * e1000_io_error_detected - called when PCI error is detected | 
|  | * @pdev: Pointer to PCI device | 
|  | * @state: The current pci connection state | 
|  | * | 
|  | * This function is called after a PCI bus error affecting | 
|  | * this device has been detected. | 
|  | */ | 
|  | static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, | 
|  | pci_channel_state_t state) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | netif_device_detach(netdev); | 
|  |  | 
|  | if (state == pci_channel_io_perm_failure) | 
|  | return PCI_ERS_RESULT_DISCONNECT; | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e1000e_down(adapter, true); | 
|  | pci_disable_device(pdev); | 
|  |  | 
|  | /* Request a slot slot reset. */ | 
|  | return PCI_ERS_RESULT_NEED_RESET; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_io_slot_reset - called after the pci bus has been reset. | 
|  | * @pdev: Pointer to PCI device | 
|  | * | 
|  | * Restart the card from scratch, as if from a cold-boot. Implementation | 
|  | * resembles the first-half of the e1000e_pm_resume routine. | 
|  | */ | 
|  | static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u16 aspm_disable_flag = 0; | 
|  | int err; | 
|  | pci_ers_result_t result; | 
|  |  | 
|  | if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) | 
|  | aspm_disable_flag = PCIE_LINK_STATE_L0S; | 
|  | if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) | 
|  | aspm_disable_flag |= PCIE_LINK_STATE_L1; | 
|  | if (aspm_disable_flag) | 
|  | e1000e_disable_aspm(pdev, aspm_disable_flag); | 
|  |  | 
|  | err = pci_enable_device_mem(pdev); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, | 
|  | "Cannot re-enable PCI device after reset.\n"); | 
|  | result = PCI_ERS_RESULT_DISCONNECT; | 
|  | } else { | 
|  | pdev->state_saved = true; | 
|  | pci_restore_state(pdev); | 
|  | pci_set_master(pdev); | 
|  |  | 
|  | pci_enable_wake(pdev, PCI_D3hot, 0); | 
|  | pci_enable_wake(pdev, PCI_D3cold, 0); | 
|  |  | 
|  | e1000e_reset(adapter); | 
|  | ew32(WUS, ~0); | 
|  | result = PCI_ERS_RESULT_RECOVERED; | 
|  | } | 
|  |  | 
|  | pci_cleanup_aer_uncorrect_error_status(pdev); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_io_resume - called when traffic can start flowing again. | 
|  | * @pdev: Pointer to PCI device | 
|  | * | 
|  | * This callback is called when the error recovery driver tells us that | 
|  | * its OK to resume normal operation. Implementation resembles the | 
|  | * second-half of the e1000e_pm_resume routine. | 
|  | */ | 
|  | static void e1000_io_resume(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | e1000_init_manageability_pt(adapter); | 
|  |  | 
|  | if (netif_running(netdev)) { | 
|  | if (e1000e_up(adapter)) { | 
|  | dev_err(&pdev->dev, | 
|  | "can't bring device back up after reset\n"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | netif_device_attach(netdev); | 
|  |  | 
|  | /* If the controller has AMT, do not set DRV_LOAD until the interface | 
|  | * is up.  For all other cases, let the f/w know that the h/w is now | 
|  | * under the control of the driver. | 
|  | */ | 
|  | if (!(adapter->flags & FLAG_HAS_AMT)) | 
|  | e1000e_get_hw_control(adapter); | 
|  | } | 
|  |  | 
|  | static void e1000_print_device_info(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | u32 ret_val; | 
|  | u8 pba_str[E1000_PBANUM_LENGTH]; | 
|  |  | 
|  | /* print bus type/speed/width info */ | 
|  | e_info("(PCI Express:2.5GT/s:%s) %pM\n", | 
|  | /* bus width */ | 
|  | ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : | 
|  | "Width x1"), | 
|  | /* MAC address */ | 
|  | netdev->dev_addr); | 
|  | e_info("Intel(R) PRO/%s Network Connection\n", | 
|  | (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); | 
|  | ret_val = e1000_read_pba_string_generic(hw, pba_str, | 
|  | E1000_PBANUM_LENGTH); | 
|  | if (ret_val) | 
|  | strlcpy((char *)pba_str, "Unknown", sizeof(pba_str)); | 
|  | e_info("MAC: %d, PHY: %d, PBA No: %s\n", | 
|  | hw->mac.type, hw->phy.type, pba_str); | 
|  | } | 
|  |  | 
|  | static void e1000_eeprom_checks(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int ret_val; | 
|  | u16 buf = 0; | 
|  |  | 
|  | if (hw->mac.type != e1000_82573) | 
|  | return; | 
|  |  | 
|  | ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); | 
|  | le16_to_cpus(&buf); | 
|  | if (!ret_val && (!(buf & (1 << 0)))) { | 
|  | /* Deep Smart Power Down (DSPD) */ | 
|  | dev_warn(&adapter->pdev->dev, | 
|  | "Warning: detected DSPD enabled in EEPROM\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int e1000_set_features(struct net_device *netdev, | 
|  | netdev_features_t features) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | netdev_features_t changed = features ^ netdev->features; | 
|  |  | 
|  | if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) | 
|  | adapter->flags |= FLAG_TSO_FORCE; | 
|  |  | 
|  | if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX | | 
|  | NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS | | 
|  | NETIF_F_RXALL))) | 
|  | return 0; | 
|  |  | 
|  | if (changed & NETIF_F_RXFCS) { | 
|  | if (features & NETIF_F_RXFCS) { | 
|  | adapter->flags2 &= ~FLAG2_CRC_STRIPPING; | 
|  | } else { | 
|  | /* We need to take it back to defaults, which might mean | 
|  | * stripping is still disabled at the adapter level. | 
|  | */ | 
|  | if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING) | 
|  | adapter->flags2 |= FLAG2_CRC_STRIPPING; | 
|  | else | 
|  | adapter->flags2 &= ~FLAG2_CRC_STRIPPING; | 
|  | } | 
|  | } | 
|  |  | 
|  | netdev->features = features; | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e1000e_reinit_locked(adapter); | 
|  | else | 
|  | e1000e_reset(adapter); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct net_device_ops e1000e_netdev_ops = { | 
|  | .ndo_open		= e1000_open, | 
|  | .ndo_stop		= e1000_close, | 
|  | .ndo_start_xmit		= e1000_xmit_frame, | 
|  | .ndo_get_stats64	= e1000e_get_stats64, | 
|  | .ndo_set_rx_mode	= e1000e_set_rx_mode, | 
|  | .ndo_set_mac_address	= e1000_set_mac, | 
|  | .ndo_change_mtu		= e1000_change_mtu, | 
|  | .ndo_do_ioctl		= e1000_ioctl, | 
|  | .ndo_tx_timeout		= e1000_tx_timeout, | 
|  | .ndo_validate_addr	= eth_validate_addr, | 
|  |  | 
|  | .ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid, | 
|  | .ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid, | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | .ndo_poll_controller	= e1000_netpoll, | 
|  | #endif | 
|  | .ndo_set_features = e1000_set_features, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * e1000_probe - Device Initialization Routine | 
|  | * @pdev: PCI device information struct | 
|  | * @ent: entry in e1000_pci_tbl | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | * | 
|  | * e1000_probe initializes an adapter identified by a pci_dev structure. | 
|  | * The OS initialization, configuring of the adapter private structure, | 
|  | * and a hardware reset occur. | 
|  | **/ | 
|  | static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) | 
|  | { | 
|  | struct net_device *netdev; | 
|  | struct e1000_adapter *adapter; | 
|  | struct e1000_hw *hw; | 
|  | const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; | 
|  | resource_size_t mmio_start, mmio_len; | 
|  | resource_size_t flash_start, flash_len; | 
|  | static int cards_found; | 
|  | u16 aspm_disable_flag = 0; | 
|  | int bars, i, err, pci_using_dac; | 
|  | u16 eeprom_data = 0; | 
|  | u16 eeprom_apme_mask = E1000_EEPROM_APME; | 
|  | s32 rval = 0; | 
|  |  | 
|  | if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S) | 
|  | aspm_disable_flag = PCIE_LINK_STATE_L0S; | 
|  | if (ei->flags2 & FLAG2_DISABLE_ASPM_L1) | 
|  | aspm_disable_flag |= PCIE_LINK_STATE_L1; | 
|  | if (aspm_disable_flag) | 
|  | e1000e_disable_aspm(pdev, aspm_disable_flag); | 
|  |  | 
|  | err = pci_enable_device_mem(pdev); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | pci_using_dac = 0; | 
|  | err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); | 
|  | if (!err) { | 
|  | pci_using_dac = 1; | 
|  | } else { | 
|  | err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, | 
|  | "No usable DMA configuration, aborting\n"); | 
|  | goto err_dma; | 
|  | } | 
|  | } | 
|  |  | 
|  | bars = pci_select_bars(pdev, IORESOURCE_MEM); | 
|  | err = pci_request_selected_regions_exclusive(pdev, bars, | 
|  | e1000e_driver_name); | 
|  | if (err) | 
|  | goto err_pci_reg; | 
|  |  | 
|  | /* AER (Advanced Error Reporting) hooks */ | 
|  | pci_enable_pcie_error_reporting(pdev); | 
|  |  | 
|  | pci_set_master(pdev); | 
|  | /* PCI config space info */ | 
|  | err = pci_save_state(pdev); | 
|  | if (err) | 
|  | goto err_alloc_etherdev; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | netdev = alloc_etherdev(sizeof(struct e1000_adapter)); | 
|  | if (!netdev) | 
|  | goto err_alloc_etherdev; | 
|  |  | 
|  | SET_NETDEV_DEV(netdev, &pdev->dev); | 
|  |  | 
|  | netdev->irq = pdev->irq; | 
|  |  | 
|  | pci_set_drvdata(pdev, netdev); | 
|  | adapter = netdev_priv(netdev); | 
|  | hw = &adapter->hw; | 
|  | adapter->netdev = netdev; | 
|  | adapter->pdev = pdev; | 
|  | adapter->ei = ei; | 
|  | adapter->pba = ei->pba; | 
|  | adapter->flags = ei->flags; | 
|  | adapter->flags2 = ei->flags2; | 
|  | adapter->hw.adapter = adapter; | 
|  | adapter->hw.mac.type = ei->mac; | 
|  | adapter->max_hw_frame_size = ei->max_hw_frame_size; | 
|  | adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); | 
|  |  | 
|  | mmio_start = pci_resource_start(pdev, 0); | 
|  | mmio_len = pci_resource_len(pdev, 0); | 
|  |  | 
|  | err = -EIO; | 
|  | adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); | 
|  | if (!adapter->hw.hw_addr) | 
|  | goto err_ioremap; | 
|  |  | 
|  | if ((adapter->flags & FLAG_HAS_FLASH) && | 
|  | (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { | 
|  | flash_start = pci_resource_start(pdev, 1); | 
|  | flash_len = pci_resource_len(pdev, 1); | 
|  | adapter->hw.flash_address = ioremap(flash_start, flash_len); | 
|  | if (!adapter->hw.flash_address) | 
|  | goto err_flashmap; | 
|  | } | 
|  |  | 
|  | /* Set default EEE advertisement */ | 
|  | if (adapter->flags2 & FLAG2_HAS_EEE) | 
|  | adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; | 
|  |  | 
|  | /* construct the net_device struct */ | 
|  | netdev->netdev_ops = &e1000e_netdev_ops; | 
|  | e1000e_set_ethtool_ops(netdev); | 
|  | netdev->watchdog_timeo = 5 * HZ; | 
|  | netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64); | 
|  | strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name)); | 
|  |  | 
|  | netdev->mem_start = mmio_start; | 
|  | netdev->mem_end = mmio_start + mmio_len; | 
|  |  | 
|  | adapter->bd_number = cards_found++; | 
|  |  | 
|  | e1000e_check_options(adapter); | 
|  |  | 
|  | /* setup adapter struct */ | 
|  | err = e1000_sw_init(adapter); | 
|  | if (err) | 
|  | goto err_sw_init; | 
|  |  | 
|  | memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); | 
|  | memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); | 
|  | memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); | 
|  |  | 
|  | err = ei->get_variants(adapter); | 
|  | if (err) | 
|  | goto err_hw_init; | 
|  |  | 
|  | if ((adapter->flags & FLAG_IS_ICH) && | 
|  | (adapter->flags & FLAG_READ_ONLY_NVM)) | 
|  | e1000e_write_protect_nvm_ich8lan(&adapter->hw); | 
|  |  | 
|  | hw->mac.ops.get_bus_info(&adapter->hw); | 
|  |  | 
|  | adapter->hw.phy.autoneg_wait_to_complete = 0; | 
|  |  | 
|  | /* Copper options */ | 
|  | if (adapter->hw.phy.media_type == e1000_media_type_copper) { | 
|  | adapter->hw.phy.mdix = AUTO_ALL_MODES; | 
|  | adapter->hw.phy.disable_polarity_correction = 0; | 
|  | adapter->hw.phy.ms_type = e1000_ms_hw_default; | 
|  | } | 
|  |  | 
|  | if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) | 
|  | dev_info(&pdev->dev, | 
|  | "PHY reset is blocked due to SOL/IDER session.\n"); | 
|  |  | 
|  | /* Set initial default active device features */ | 
|  | netdev->features = (NETIF_F_SG | | 
|  | NETIF_F_HW_VLAN_CTAG_RX | | 
|  | NETIF_F_HW_VLAN_CTAG_TX | | 
|  | NETIF_F_TSO | | 
|  | NETIF_F_TSO6 | | 
|  | NETIF_F_RXHASH | | 
|  | NETIF_F_RXCSUM | | 
|  | NETIF_F_HW_CSUM); | 
|  |  | 
|  | /* Set user-changeable features (subset of all device features) */ | 
|  | netdev->hw_features = netdev->features; | 
|  | netdev->hw_features |= NETIF_F_RXFCS; | 
|  | netdev->priv_flags |= IFF_SUPP_NOFCS; | 
|  | netdev->hw_features |= NETIF_F_RXALL; | 
|  |  | 
|  | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) | 
|  | netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; | 
|  |  | 
|  | netdev->vlan_features |= (NETIF_F_SG | | 
|  | NETIF_F_TSO | | 
|  | NETIF_F_TSO6 | | 
|  | NETIF_F_HW_CSUM); | 
|  |  | 
|  | netdev->priv_flags |= IFF_UNICAST_FLT; | 
|  |  | 
|  | if (pci_using_dac) { | 
|  | netdev->features |= NETIF_F_HIGHDMA; | 
|  | netdev->vlan_features |= NETIF_F_HIGHDMA; | 
|  | } | 
|  |  | 
|  | if (e1000e_enable_mng_pass_thru(&adapter->hw)) | 
|  | adapter->flags |= FLAG_MNG_PT_ENABLED; | 
|  |  | 
|  | /* before reading the NVM, reset the controller to | 
|  | * put the device in a known good starting state | 
|  | */ | 
|  | adapter->hw.mac.ops.reset_hw(&adapter->hw); | 
|  |  | 
|  | /* systems with ASPM and others may see the checksum fail on the first | 
|  | * attempt. Let's give it a few tries | 
|  | */ | 
|  | for (i = 0;; i++) { | 
|  | if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) | 
|  | break; | 
|  | if (i == 2) { | 
|  | dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); | 
|  | err = -EIO; | 
|  | goto err_eeprom; | 
|  | } | 
|  | } | 
|  |  | 
|  | e1000_eeprom_checks(adapter); | 
|  |  | 
|  | /* copy the MAC address */ | 
|  | if (e1000e_read_mac_addr(&adapter->hw)) | 
|  | dev_err(&pdev->dev, | 
|  | "NVM Read Error while reading MAC address\n"); | 
|  |  | 
|  | memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); | 
|  |  | 
|  | if (!is_valid_ether_addr(netdev->dev_addr)) { | 
|  | dev_err(&pdev->dev, "Invalid MAC Address: %pM\n", | 
|  | netdev->dev_addr); | 
|  | err = -EIO; | 
|  | goto err_eeprom; | 
|  | } | 
|  |  | 
|  | init_timer(&adapter->watchdog_timer); | 
|  | adapter->watchdog_timer.function = e1000_watchdog; | 
|  | adapter->watchdog_timer.data = (unsigned long)adapter; | 
|  |  | 
|  | init_timer(&adapter->phy_info_timer); | 
|  | adapter->phy_info_timer.function = e1000_update_phy_info; | 
|  | adapter->phy_info_timer.data = (unsigned long)adapter; | 
|  |  | 
|  | INIT_WORK(&adapter->reset_task, e1000_reset_task); | 
|  | INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); | 
|  | INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); | 
|  | INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); | 
|  | INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang); | 
|  |  | 
|  | /* Initialize link parameters. User can change them with ethtool */ | 
|  | adapter->hw.mac.autoneg = 1; | 
|  | adapter->fc_autoneg = true; | 
|  | adapter->hw.fc.requested_mode = e1000_fc_default; | 
|  | adapter->hw.fc.current_mode = e1000_fc_default; | 
|  | adapter->hw.phy.autoneg_advertised = 0x2f; | 
|  |  | 
|  | /* Initial Wake on LAN setting - If APM wake is enabled in | 
|  | * the EEPROM, enable the ACPI Magic Packet filter | 
|  | */ | 
|  | if (adapter->flags & FLAG_APME_IN_WUC) { | 
|  | /* APME bit in EEPROM is mapped to WUC.APME */ | 
|  | eeprom_data = er32(WUC); | 
|  | eeprom_apme_mask = E1000_WUC_APME; | 
|  | if ((hw->mac.type > e1000_ich10lan) && | 
|  | (eeprom_data & E1000_WUC_PHY_WAKE)) | 
|  | adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP; | 
|  | } else if (adapter->flags & FLAG_APME_IN_CTRL3) { | 
|  | if (adapter->flags & FLAG_APME_CHECK_PORT_B && | 
|  | (adapter->hw.bus.func == 1)) | 
|  | rval = e1000_read_nvm(&adapter->hw, | 
|  | NVM_INIT_CONTROL3_PORT_B, | 
|  | 1, &eeprom_data); | 
|  | else | 
|  | rval = e1000_read_nvm(&adapter->hw, | 
|  | NVM_INIT_CONTROL3_PORT_A, | 
|  | 1, &eeprom_data); | 
|  | } | 
|  |  | 
|  | /* fetch WoL from EEPROM */ | 
|  | if (rval) | 
|  | e_dbg("NVM read error getting WoL initial values: %d\n", rval); | 
|  | else if (eeprom_data & eeprom_apme_mask) | 
|  | adapter->eeprom_wol |= E1000_WUFC_MAG; | 
|  |  | 
|  | /* now that we have the eeprom settings, apply the special cases | 
|  | * where the eeprom may be wrong or the board simply won't support | 
|  | * wake on lan on a particular port | 
|  | */ | 
|  | if (!(adapter->flags & FLAG_HAS_WOL)) | 
|  | adapter->eeprom_wol = 0; | 
|  |  | 
|  | /* initialize the wol settings based on the eeprom settings */ | 
|  | adapter->wol = adapter->eeprom_wol; | 
|  |  | 
|  | /* make sure adapter isn't asleep if manageability is enabled */ | 
|  | if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) || | 
|  | (hw->mac.ops.check_mng_mode(hw))) | 
|  | device_wakeup_enable(&pdev->dev); | 
|  |  | 
|  | /* save off EEPROM version number */ | 
|  | rval = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); | 
|  |  | 
|  | if (rval) { | 
|  | e_dbg("NVM read error getting EEPROM version: %d\n", rval); | 
|  | adapter->eeprom_vers = 0; | 
|  | } | 
|  |  | 
|  | /* reset the hardware with the new settings */ | 
|  | e1000e_reset(adapter); | 
|  |  | 
|  | /* If the controller has AMT, do not set DRV_LOAD until the interface | 
|  | * is up.  For all other cases, let the f/w know that the h/w is now | 
|  | * under the control of the driver. | 
|  | */ | 
|  | if (!(adapter->flags & FLAG_HAS_AMT)) | 
|  | e1000e_get_hw_control(adapter); | 
|  |  | 
|  | strlcpy(netdev->name, "eth%d", sizeof(netdev->name)); | 
|  | err = register_netdev(netdev); | 
|  | if (err) | 
|  | goto err_register; | 
|  |  | 
|  | /* carrier off reporting is important to ethtool even BEFORE open */ | 
|  | netif_carrier_off(netdev); | 
|  |  | 
|  | /* init PTP hardware clock */ | 
|  | e1000e_ptp_init(adapter); | 
|  |  | 
|  | e1000_print_device_info(adapter); | 
|  |  | 
|  | if (pci_dev_run_wake(pdev)) | 
|  | pm_runtime_put_noidle(&pdev->dev); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_register: | 
|  | if (!(adapter->flags & FLAG_HAS_AMT)) | 
|  | e1000e_release_hw_control(adapter); | 
|  | err_eeprom: | 
|  | if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw)) | 
|  | e1000_phy_hw_reset(&adapter->hw); | 
|  | err_hw_init: | 
|  | kfree(adapter->tx_ring); | 
|  | kfree(adapter->rx_ring); | 
|  | err_sw_init: | 
|  | if (adapter->hw.flash_address) | 
|  | iounmap(adapter->hw.flash_address); | 
|  | e1000e_reset_interrupt_capability(adapter); | 
|  | err_flashmap: | 
|  | iounmap(adapter->hw.hw_addr); | 
|  | err_ioremap: | 
|  | free_netdev(netdev); | 
|  | err_alloc_etherdev: | 
|  | pci_release_selected_regions(pdev, | 
|  | pci_select_bars(pdev, IORESOURCE_MEM)); | 
|  | err_pci_reg: | 
|  | err_dma: | 
|  | pci_disable_device(pdev); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_remove - Device Removal Routine | 
|  | * @pdev: PCI device information struct | 
|  | * | 
|  | * e1000_remove is called by the PCI subsystem to alert the driver | 
|  | * that it should release a PCI device.  The could be caused by a | 
|  | * Hot-Plug event, or because the driver is going to be removed from | 
|  | * memory. | 
|  | **/ | 
|  | static void e1000_remove(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | bool down = test_bit(__E1000_DOWN, &adapter->state); | 
|  |  | 
|  | e1000e_ptp_remove(adapter); | 
|  |  | 
|  | /* The timers may be rescheduled, so explicitly disable them | 
|  | * from being rescheduled. | 
|  | */ | 
|  | if (!down) | 
|  | set_bit(__E1000_DOWN, &adapter->state); | 
|  | del_timer_sync(&adapter->watchdog_timer); | 
|  | del_timer_sync(&adapter->phy_info_timer); | 
|  |  | 
|  | cancel_work_sync(&adapter->reset_task); | 
|  | cancel_work_sync(&adapter->watchdog_task); | 
|  | cancel_work_sync(&adapter->downshift_task); | 
|  | cancel_work_sync(&adapter->update_phy_task); | 
|  | cancel_work_sync(&adapter->print_hang_task); | 
|  |  | 
|  | if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) { | 
|  | cancel_work_sync(&adapter->tx_hwtstamp_work); | 
|  | if (adapter->tx_hwtstamp_skb) { | 
|  | dev_kfree_skb_any(adapter->tx_hwtstamp_skb); | 
|  | adapter->tx_hwtstamp_skb = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Don't lie to e1000_close() down the road. */ | 
|  | if (!down) | 
|  | clear_bit(__E1000_DOWN, &adapter->state); | 
|  | unregister_netdev(netdev); | 
|  |  | 
|  | if (pci_dev_run_wake(pdev)) | 
|  | pm_runtime_get_noresume(&pdev->dev); | 
|  |  | 
|  | /* Release control of h/w to f/w.  If f/w is AMT enabled, this | 
|  | * would have already happened in close and is redundant. | 
|  | */ | 
|  | e1000e_release_hw_control(adapter); | 
|  |  | 
|  | e1000e_reset_interrupt_capability(adapter); | 
|  | kfree(adapter->tx_ring); | 
|  | kfree(adapter->rx_ring); | 
|  |  | 
|  | iounmap(adapter->hw.hw_addr); | 
|  | if (adapter->hw.flash_address) | 
|  | iounmap(adapter->hw.flash_address); | 
|  | pci_release_selected_regions(pdev, | 
|  | pci_select_bars(pdev, IORESOURCE_MEM)); | 
|  |  | 
|  | free_netdev(netdev); | 
|  |  | 
|  | /* AER disable */ | 
|  | pci_disable_pcie_error_reporting(pdev); | 
|  |  | 
|  | pci_disable_device(pdev); | 
|  | } | 
|  |  | 
|  | /* PCI Error Recovery (ERS) */ | 
|  | static const struct pci_error_handlers e1000_err_handler = { | 
|  | .error_detected = e1000_io_error_detected, | 
|  | .slot_reset = e1000_io_slot_reset, | 
|  | .resume = e1000_io_resume, | 
|  | }; | 
|  |  | 
|  | static const struct pci_device_id e1000_pci_tbl[] = { | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), | 
|  | board_82571 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, | 
|  |  | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, | 
|  |  | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, | 
|  |  | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, | 
|  |  | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), | 
|  | board_80003es2lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), | 
|  | board_80003es2lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), | 
|  | board_80003es2lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), | 
|  | board_80003es2lan }, | 
|  |  | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan }, | 
|  |  | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, | 
|  |  | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, | 
|  |  | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan }, | 
|  |  | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan }, | 
|  |  | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan }, | 
|  |  | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt }, | 
|  |  | 
|  | { 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */ | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); | 
|  |  | 
|  | static const struct dev_pm_ops e1000_pm_ops = { | 
|  | #ifdef CONFIG_PM_SLEEP | 
|  | .suspend	= e1000e_pm_suspend, | 
|  | .resume		= e1000e_pm_resume, | 
|  | .freeze		= e1000e_pm_freeze, | 
|  | .thaw		= e1000e_pm_thaw, | 
|  | .poweroff	= e1000e_pm_suspend, | 
|  | .restore	= e1000e_pm_resume, | 
|  | #endif | 
|  | SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume, | 
|  | e1000e_pm_runtime_idle) | 
|  | }; | 
|  |  | 
|  | /* PCI Device API Driver */ | 
|  | static struct pci_driver e1000_driver = { | 
|  | .name     = e1000e_driver_name, | 
|  | .id_table = e1000_pci_tbl, | 
|  | .probe    = e1000_probe, | 
|  | .remove   = e1000_remove, | 
|  | .driver   = { | 
|  | .pm = &e1000_pm_ops, | 
|  | }, | 
|  | .shutdown = e1000_shutdown, | 
|  | .err_handler = &e1000_err_handler | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * e1000_init_module - Driver Registration Routine | 
|  | * | 
|  | * e1000_init_module is the first routine called when the driver is | 
|  | * loaded. All it does is register with the PCI subsystem. | 
|  | **/ | 
|  | static int __init e1000_init_module(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | pr_info("Intel(R) PRO/1000 Network Driver - %s\n", | 
|  | e1000e_driver_version); | 
|  | pr_info("Copyright(c) 1999 - 2014 Intel Corporation.\n"); | 
|  | ret = pci_register_driver(&e1000_driver); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | module_init(e1000_init_module); | 
|  |  | 
|  | /** | 
|  | * e1000_exit_module - Driver Exit Cleanup Routine | 
|  | * | 
|  | * e1000_exit_module is called just before the driver is removed | 
|  | * from memory. | 
|  | **/ | 
|  | static void __exit e1000_exit_module(void) | 
|  | { | 
|  | pci_unregister_driver(&e1000_driver); | 
|  | } | 
|  | module_exit(e1000_exit_module); | 
|  |  | 
|  | MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); | 
|  | MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_VERSION(DRV_VERSION); | 
|  |  | 
|  | /* netdev.c */ |