|  | /* | 
|  | *  Kernel Probes (KProbes) | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|  | * | 
|  | * Copyright IBM Corp. 2002, 2006 | 
|  | * | 
|  | * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/preempt.h> | 
|  | #include <linux/stop_machine.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/dis.h> | 
|  |  | 
|  | DEFINE_PER_CPU(struct kprobe *, current_kprobe); | 
|  | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); | 
|  |  | 
|  | struct kretprobe_blackpoint kretprobe_blacklist[] = { }; | 
|  |  | 
|  | DEFINE_INSN_CACHE_OPS(dmainsn); | 
|  |  | 
|  | static void *alloc_dmainsn_page(void) | 
|  | { | 
|  | return (void *)__get_free_page(GFP_KERNEL | GFP_DMA); | 
|  | } | 
|  |  | 
|  | static void free_dmainsn_page(void *page) | 
|  | { | 
|  | free_page((unsigned long)page); | 
|  | } | 
|  |  | 
|  | struct kprobe_insn_cache kprobe_dmainsn_slots = { | 
|  | .mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex), | 
|  | .alloc = alloc_dmainsn_page, | 
|  | .free = free_dmainsn_page, | 
|  | .pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages), | 
|  | .insn_size = MAX_INSN_SIZE, | 
|  | }; | 
|  |  | 
|  | static void __kprobes copy_instruction(struct kprobe *p) | 
|  | { | 
|  | s64 disp, new_disp; | 
|  | u64 addr, new_addr; | 
|  |  | 
|  | memcpy(p->ainsn.insn, p->addr, insn_length(p->opcode >> 8)); | 
|  | if (!probe_is_insn_relative_long(p->ainsn.insn)) | 
|  | return; | 
|  | /* | 
|  | * For pc-relative instructions in RIL-b or RIL-c format patch the | 
|  | * RI2 displacement field. We have already made sure that the insn | 
|  | * slot for the patched instruction is within the same 2GB area | 
|  | * as the original instruction (either kernel image or module area). | 
|  | * Therefore the new displacement will always fit. | 
|  | */ | 
|  | disp = *(s32 *)&p->ainsn.insn[1]; | 
|  | addr = (u64)(unsigned long)p->addr; | 
|  | new_addr = (u64)(unsigned long)p->ainsn.insn; | 
|  | new_disp = ((addr + (disp * 2)) - new_addr) / 2; | 
|  | *(s32 *)&p->ainsn.insn[1] = new_disp; | 
|  | } | 
|  |  | 
|  | static inline int is_kernel_addr(void *addr) | 
|  | { | 
|  | return addr < (void *)_end; | 
|  | } | 
|  |  | 
|  | static inline int is_module_addr(void *addr) | 
|  | { | 
|  | #ifdef CONFIG_64BIT | 
|  | BUILD_BUG_ON(MODULES_LEN > (1UL << 31)); | 
|  | if (addr < (void *)MODULES_VADDR) | 
|  | return 0; | 
|  | if (addr > (void *)MODULES_END) | 
|  | return 0; | 
|  | #endif | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int __kprobes s390_get_insn_slot(struct kprobe *p) | 
|  | { | 
|  | /* | 
|  | * Get an insn slot that is within the same 2GB area like the original | 
|  | * instruction. That way instructions with a 32bit signed displacement | 
|  | * field can be patched and executed within the insn slot. | 
|  | */ | 
|  | p->ainsn.insn = NULL; | 
|  | if (is_kernel_addr(p->addr)) | 
|  | p->ainsn.insn = get_dmainsn_slot(); | 
|  | else if (is_module_addr(p->addr)) | 
|  | p->ainsn.insn = get_insn_slot(); | 
|  | return p->ainsn.insn ? 0 : -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void __kprobes s390_free_insn_slot(struct kprobe *p) | 
|  | { | 
|  | if (!p->ainsn.insn) | 
|  | return; | 
|  | if (is_kernel_addr(p->addr)) | 
|  | free_dmainsn_slot(p->ainsn.insn, 0); | 
|  | else | 
|  | free_insn_slot(p->ainsn.insn, 0); | 
|  | p->ainsn.insn = NULL; | 
|  | } | 
|  |  | 
|  | int __kprobes arch_prepare_kprobe(struct kprobe *p) | 
|  | { | 
|  | if ((unsigned long) p->addr & 0x01) | 
|  | return -EINVAL; | 
|  | /* Make sure the probe isn't going on a difficult instruction */ | 
|  | if (probe_is_prohibited_opcode(p->addr)) | 
|  | return -EINVAL; | 
|  | if (s390_get_insn_slot(p)) | 
|  | return -ENOMEM; | 
|  | p->opcode = *p->addr; | 
|  | copy_instruction(p); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct ins_replace_args { | 
|  | kprobe_opcode_t *ptr; | 
|  | kprobe_opcode_t opcode; | 
|  | }; | 
|  |  | 
|  | static int __kprobes swap_instruction(void *aref) | 
|  | { | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  | unsigned long status = kcb->kprobe_status; | 
|  | struct ins_replace_args *args = aref; | 
|  |  | 
|  | kcb->kprobe_status = KPROBE_SWAP_INST; | 
|  | probe_kernel_write(args->ptr, &args->opcode, sizeof(args->opcode)); | 
|  | kcb->kprobe_status = status; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __kprobes arch_arm_kprobe(struct kprobe *p) | 
|  | { | 
|  | struct ins_replace_args args; | 
|  |  | 
|  | args.ptr = p->addr; | 
|  | args.opcode = BREAKPOINT_INSTRUCTION; | 
|  | stop_machine(swap_instruction, &args, NULL); | 
|  | } | 
|  |  | 
|  | void __kprobes arch_disarm_kprobe(struct kprobe *p) | 
|  | { | 
|  | struct ins_replace_args args; | 
|  |  | 
|  | args.ptr = p->addr; | 
|  | args.opcode = p->opcode; | 
|  | stop_machine(swap_instruction, &args, NULL); | 
|  | } | 
|  |  | 
|  | void __kprobes arch_remove_kprobe(struct kprobe *p) | 
|  | { | 
|  | s390_free_insn_slot(p); | 
|  | } | 
|  |  | 
|  | static void __kprobes enable_singlestep(struct kprobe_ctlblk *kcb, | 
|  | struct pt_regs *regs, | 
|  | unsigned long ip) | 
|  | { | 
|  | struct per_regs per_kprobe; | 
|  |  | 
|  | /* Set up the PER control registers %cr9-%cr11 */ | 
|  | per_kprobe.control = PER_EVENT_IFETCH; | 
|  | per_kprobe.start = ip; | 
|  | per_kprobe.end = ip; | 
|  |  | 
|  | /* Save control regs and psw mask */ | 
|  | __ctl_store(kcb->kprobe_saved_ctl, 9, 11); | 
|  | kcb->kprobe_saved_imask = regs->psw.mask & | 
|  | (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT); | 
|  |  | 
|  | /* Set PER control regs, turns on single step for the given address */ | 
|  | __ctl_load(per_kprobe, 9, 11); | 
|  | regs->psw.mask |= PSW_MASK_PER; | 
|  | regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); | 
|  | regs->psw.addr = ip | PSW_ADDR_AMODE; | 
|  | } | 
|  |  | 
|  | static void __kprobes disable_singlestep(struct kprobe_ctlblk *kcb, | 
|  | struct pt_regs *regs, | 
|  | unsigned long ip) | 
|  | { | 
|  | /* Restore control regs and psw mask, set new psw address */ | 
|  | __ctl_load(kcb->kprobe_saved_ctl, 9, 11); | 
|  | regs->psw.mask &= ~PSW_MASK_PER; | 
|  | regs->psw.mask |= kcb->kprobe_saved_imask; | 
|  | regs->psw.addr = ip | PSW_ADDR_AMODE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Activate a kprobe by storing its pointer to current_kprobe. The | 
|  | * previous kprobe is stored in kcb->prev_kprobe. A stack of up to | 
|  | * two kprobes can be active, see KPROBE_REENTER. | 
|  | */ | 
|  | static void __kprobes push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p) | 
|  | { | 
|  | kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe); | 
|  | kcb->prev_kprobe.status = kcb->kprobe_status; | 
|  | __this_cpu_write(current_kprobe, p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Deactivate a kprobe by backing up to the previous state. If the | 
|  | * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL, | 
|  | * for any other state prev_kprobe.kp will be NULL. | 
|  | */ | 
|  | static void __kprobes pop_kprobe(struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); | 
|  | kcb->kprobe_status = kcb->prev_kprobe.status; | 
|  | } | 
|  |  | 
|  | void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14]; | 
|  |  | 
|  | /* Replace the return addr with trampoline addr */ | 
|  | regs->gprs[14] = (unsigned long) &kretprobe_trampoline; | 
|  | } | 
|  |  | 
|  | static void __kprobes kprobe_reenter_check(struct kprobe_ctlblk *kcb, | 
|  | struct kprobe *p) | 
|  | { | 
|  | switch (kcb->kprobe_status) { | 
|  | case KPROBE_HIT_SSDONE: | 
|  | case KPROBE_HIT_ACTIVE: | 
|  | kprobes_inc_nmissed_count(p); | 
|  | break; | 
|  | case KPROBE_HIT_SS: | 
|  | case KPROBE_REENTER: | 
|  | default: | 
|  | /* | 
|  | * A kprobe on the code path to single step an instruction | 
|  | * is a BUG. The code path resides in the .kprobes.text | 
|  | * section and is executed with interrupts disabled. | 
|  | */ | 
|  | printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr); | 
|  | dump_kprobe(p); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __kprobes kprobe_handler(struct pt_regs *regs) | 
|  | { | 
|  | struct kprobe_ctlblk *kcb; | 
|  | struct kprobe *p; | 
|  |  | 
|  | /* | 
|  | * We want to disable preemption for the entire duration of kprobe | 
|  | * processing. That includes the calls to the pre/post handlers | 
|  | * and single stepping the kprobe instruction. | 
|  | */ | 
|  | preempt_disable(); | 
|  | kcb = get_kprobe_ctlblk(); | 
|  | p = get_kprobe((void *)((regs->psw.addr & PSW_ADDR_INSN) - 2)); | 
|  |  | 
|  | if (p) { | 
|  | if (kprobe_running()) { | 
|  | /* | 
|  | * We have hit a kprobe while another is still | 
|  | * active. This can happen in the pre and post | 
|  | * handler. Single step the instruction of the | 
|  | * new probe but do not call any handler function | 
|  | * of this secondary kprobe. | 
|  | * push_kprobe and pop_kprobe saves and restores | 
|  | * the currently active kprobe. | 
|  | */ | 
|  | kprobe_reenter_check(kcb, p); | 
|  | push_kprobe(kcb, p); | 
|  | kcb->kprobe_status = KPROBE_REENTER; | 
|  | } else { | 
|  | /* | 
|  | * If we have no pre-handler or it returned 0, we | 
|  | * continue with single stepping. If we have a | 
|  | * pre-handler and it returned non-zero, it prepped | 
|  | * for calling the break_handler below on re-entry | 
|  | * for jprobe processing, so get out doing nothing | 
|  | * more here. | 
|  | */ | 
|  | push_kprobe(kcb, p); | 
|  | kcb->kprobe_status = KPROBE_HIT_ACTIVE; | 
|  | if (p->pre_handler && p->pre_handler(p, regs)) | 
|  | return 1; | 
|  | kcb->kprobe_status = KPROBE_HIT_SS; | 
|  | } | 
|  | enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn); | 
|  | return 1; | 
|  | } else if (kprobe_running()) { | 
|  | p = __this_cpu_read(current_kprobe); | 
|  | if (p->break_handler && p->break_handler(p, regs)) { | 
|  | /* | 
|  | * Continuation after the jprobe completed and | 
|  | * caused the jprobe_return trap. The jprobe | 
|  | * break_handler "returns" to the original | 
|  | * function that still has the kprobe breakpoint | 
|  | * installed. We continue with single stepping. | 
|  | */ | 
|  | kcb->kprobe_status = KPROBE_HIT_SS; | 
|  | enable_singlestep(kcb, regs, | 
|  | (unsigned long) p->ainsn.insn); | 
|  | return 1; | 
|  | } /* else: | 
|  | * No kprobe at this address and the current kprobe | 
|  | * has no break handler (no jprobe!). The kernel just | 
|  | * exploded, let the standard trap handler pick up the | 
|  | * pieces. | 
|  | */ | 
|  | } /* else: | 
|  | * No kprobe at this address and no active kprobe. The trap has | 
|  | * not been caused by a kprobe breakpoint. The race of breakpoint | 
|  | * vs. kprobe remove does not exist because on s390 as we use | 
|  | * stop_machine to arm/disarm the breakpoints. | 
|  | */ | 
|  | preempt_enable_no_resched(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function return probe trampoline: | 
|  | *	- init_kprobes() establishes a probepoint here | 
|  | *	- When the probed function returns, this probe | 
|  | *		causes the handlers to fire | 
|  | */ | 
|  | static void __used kretprobe_trampoline_holder(void) | 
|  | { | 
|  | asm volatile(".global kretprobe_trampoline\n" | 
|  | "kretprobe_trampoline: bcr 0,0\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when the probe at kretprobe trampoline is hit | 
|  | */ | 
|  | static int __kprobes trampoline_probe_handler(struct kprobe *p, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | struct kretprobe_instance *ri; | 
|  | struct hlist_head *head, empty_rp; | 
|  | struct hlist_node *tmp; | 
|  | unsigned long flags, orig_ret_address; | 
|  | unsigned long trampoline_address; | 
|  | kprobe_opcode_t *correct_ret_addr; | 
|  |  | 
|  | INIT_HLIST_HEAD(&empty_rp); | 
|  | kretprobe_hash_lock(current, &head, &flags); | 
|  |  | 
|  | /* | 
|  | * It is possible to have multiple instances associated with a given | 
|  | * task either because an multiple functions in the call path | 
|  | * have a return probe installed on them, and/or more than one return | 
|  | * return probe was registered for a target function. | 
|  | * | 
|  | * We can handle this because: | 
|  | *     - instances are always inserted at the head of the list | 
|  | *     - when multiple return probes are registered for the same | 
|  | *	 function, the first instance's ret_addr will point to the | 
|  | *	 real return address, and all the rest will point to | 
|  | *	 kretprobe_trampoline | 
|  | */ | 
|  | ri = NULL; | 
|  | orig_ret_address = 0; | 
|  | correct_ret_addr = NULL; | 
|  | trampoline_address = (unsigned long) &kretprobe_trampoline; | 
|  | hlist_for_each_entry_safe(ri, tmp, head, hlist) { | 
|  | if (ri->task != current) | 
|  | /* another task is sharing our hash bucket */ | 
|  | continue; | 
|  |  | 
|  | orig_ret_address = (unsigned long) ri->ret_addr; | 
|  |  | 
|  | if (orig_ret_address != trampoline_address) | 
|  | /* | 
|  | * This is the real return address. Any other | 
|  | * instances associated with this task are for | 
|  | * other calls deeper on the call stack | 
|  | */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | kretprobe_assert(ri, orig_ret_address, trampoline_address); | 
|  |  | 
|  | correct_ret_addr = ri->ret_addr; | 
|  | hlist_for_each_entry_safe(ri, tmp, head, hlist) { | 
|  | if (ri->task != current) | 
|  | /* another task is sharing our hash bucket */ | 
|  | continue; | 
|  |  | 
|  | orig_ret_address = (unsigned long) ri->ret_addr; | 
|  |  | 
|  | if (ri->rp && ri->rp->handler) { | 
|  | ri->ret_addr = correct_ret_addr; | 
|  | ri->rp->handler(ri, regs); | 
|  | } | 
|  |  | 
|  | recycle_rp_inst(ri, &empty_rp); | 
|  |  | 
|  | if (orig_ret_address != trampoline_address) | 
|  | /* | 
|  | * This is the real return address. Any other | 
|  | * instances associated with this task are for | 
|  | * other calls deeper on the call stack | 
|  | */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE; | 
|  |  | 
|  | pop_kprobe(get_kprobe_ctlblk()); | 
|  | kretprobe_hash_unlock(current, &flags); | 
|  | preempt_enable_no_resched(); | 
|  |  | 
|  | hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { | 
|  | hlist_del(&ri->hlist); | 
|  | kfree(ri); | 
|  | } | 
|  | /* | 
|  | * By returning a non-zero value, we are telling | 
|  | * kprobe_handler() that we don't want the post_handler | 
|  | * to run (and have re-enabled preemption) | 
|  | */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called after single-stepping.  p->addr is the address of the | 
|  | * instruction whose first byte has been replaced by the "breakpoint" | 
|  | * instruction.  To avoid the SMP problems that can occur when we | 
|  | * temporarily put back the original opcode to single-step, we | 
|  | * single-stepped a copy of the instruction.  The address of this | 
|  | * copy is p->ainsn.insn. | 
|  | */ | 
|  | static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  | unsigned long ip = regs->psw.addr & PSW_ADDR_INSN; | 
|  | int fixup = probe_get_fixup_type(p->ainsn.insn); | 
|  |  | 
|  | if (fixup & FIXUP_PSW_NORMAL) | 
|  | ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn; | 
|  |  | 
|  | if (fixup & FIXUP_BRANCH_NOT_TAKEN) { | 
|  | int ilen = insn_length(p->ainsn.insn[0] >> 8); | 
|  | if (ip - (unsigned long) p->ainsn.insn == ilen) | 
|  | ip = (unsigned long) p->addr + ilen; | 
|  | } | 
|  |  | 
|  | if (fixup & FIXUP_RETURN_REGISTER) { | 
|  | int reg = (p->ainsn.insn[0] & 0xf0) >> 4; | 
|  | regs->gprs[reg] += (unsigned long) p->addr - | 
|  | (unsigned long) p->ainsn.insn; | 
|  | } | 
|  |  | 
|  | disable_singlestep(kcb, regs, ip); | 
|  | } | 
|  |  | 
|  | static int __kprobes post_kprobe_handler(struct pt_regs *regs) | 
|  | { | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  | struct kprobe *p = kprobe_running(); | 
|  |  | 
|  | if (!p) | 
|  | return 0; | 
|  |  | 
|  | if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) { | 
|  | kcb->kprobe_status = KPROBE_HIT_SSDONE; | 
|  | p->post_handler(p, regs, 0); | 
|  | } | 
|  |  | 
|  | resume_execution(p, regs); | 
|  | pop_kprobe(kcb); | 
|  | preempt_enable_no_resched(); | 
|  |  | 
|  | /* | 
|  | * if somebody else is singlestepping across a probe point, psw mask | 
|  | * will have PER set, in which case, continue the remaining processing | 
|  | * of do_single_step, as if this is not a probe hit. | 
|  | */ | 
|  | if (regs->psw.mask & PSW_MASK_PER) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int __kprobes kprobe_trap_handler(struct pt_regs *regs, int trapnr) | 
|  | { | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  | struct kprobe *p = kprobe_running(); | 
|  | const struct exception_table_entry *entry; | 
|  |  | 
|  | switch(kcb->kprobe_status) { | 
|  | case KPROBE_SWAP_INST: | 
|  | /* We are here because the instruction replacement failed */ | 
|  | return 0; | 
|  | case KPROBE_HIT_SS: | 
|  | case KPROBE_REENTER: | 
|  | /* | 
|  | * We are here because the instruction being single | 
|  | * stepped caused a page fault. We reset the current | 
|  | * kprobe and the nip points back to the probe address | 
|  | * and allow the page fault handler to continue as a | 
|  | * normal page fault. | 
|  | */ | 
|  | disable_singlestep(kcb, regs, (unsigned long) p->addr); | 
|  | pop_kprobe(kcb); | 
|  | preempt_enable_no_resched(); | 
|  | break; | 
|  | case KPROBE_HIT_ACTIVE: | 
|  | case KPROBE_HIT_SSDONE: | 
|  | /* | 
|  | * We increment the nmissed count for accounting, | 
|  | * we can also use npre/npostfault count for accounting | 
|  | * these specific fault cases. | 
|  | */ | 
|  | kprobes_inc_nmissed_count(p); | 
|  |  | 
|  | /* | 
|  | * We come here because instructions in the pre/post | 
|  | * handler caused the page_fault, this could happen | 
|  | * if handler tries to access user space by | 
|  | * copy_from_user(), get_user() etc. Let the | 
|  | * user-specified handler try to fix it first. | 
|  | */ | 
|  | if (p->fault_handler && p->fault_handler(p, regs, trapnr)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * In case the user-specified fault handler returned | 
|  | * zero, try to fix up. | 
|  | */ | 
|  | entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN); | 
|  | if (entry) { | 
|  | regs->psw.addr = extable_fixup(entry) | PSW_ADDR_AMODE; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fixup_exception() could not handle it, | 
|  | * Let do_page_fault() fix it. | 
|  | */ | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) | 
|  | local_irq_disable(); | 
|  | ret = kprobe_trap_handler(regs, trapnr); | 
|  | if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) | 
|  | local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wrapper routine to for handling exceptions. | 
|  | */ | 
|  | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, | 
|  | unsigned long val, void *data) | 
|  | { | 
|  | struct die_args *args = (struct die_args *) data; | 
|  | struct pt_regs *regs = args->regs; | 
|  | int ret = NOTIFY_DONE; | 
|  |  | 
|  | if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) | 
|  | local_irq_disable(); | 
|  |  | 
|  | switch (val) { | 
|  | case DIE_BPT: | 
|  | if (kprobe_handler(regs)) | 
|  | ret = NOTIFY_STOP; | 
|  | break; | 
|  | case DIE_SSTEP: | 
|  | if (post_kprobe_handler(regs)) | 
|  | ret = NOTIFY_STOP; | 
|  | break; | 
|  | case DIE_TRAP: | 
|  | if (!preemptible() && kprobe_running() && | 
|  | kprobe_trap_handler(regs, args->trapnr)) | 
|  | ret = NOTIFY_STOP; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) | 
|  | local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | struct jprobe *jp = container_of(p, struct jprobe, kp); | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  | unsigned long stack; | 
|  |  | 
|  | memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); | 
|  |  | 
|  | /* setup return addr to the jprobe handler routine */ | 
|  | regs->psw.addr = (unsigned long) jp->entry | PSW_ADDR_AMODE; | 
|  | regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); | 
|  |  | 
|  | /* r15 is the stack pointer */ | 
|  | stack = (unsigned long) regs->gprs[15]; | 
|  |  | 
|  | memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void __kprobes jprobe_return(void) | 
|  | { | 
|  | asm volatile(".word 0x0002"); | 
|  | } | 
|  |  | 
|  | int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  | unsigned long stack; | 
|  |  | 
|  | stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15]; | 
|  |  | 
|  | /* Put the regs back */ | 
|  | memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); | 
|  | /* put the stack back */ | 
|  | memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack)); | 
|  | preempt_enable_no_resched(); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static struct kprobe trampoline = { | 
|  | .addr = (kprobe_opcode_t *) &kretprobe_trampoline, | 
|  | .pre_handler = trampoline_probe_handler | 
|  | }; | 
|  |  | 
|  | int __init arch_init_kprobes(void) | 
|  | { | 
|  | return register_kprobe(&trampoline); | 
|  | } | 
|  |  | 
|  | int __kprobes arch_trampoline_kprobe(struct kprobe *p) | 
|  | { | 
|  | return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline; | 
|  | } |