|  | /* | 
|  | * builtin-timechart.c - make an svg timechart of system activity | 
|  | * | 
|  | * (C) Copyright 2009 Intel Corporation | 
|  | * | 
|  | * Authors: | 
|  | *     Arjan van de Ven <arjan@linux.intel.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; version 2 | 
|  | * of the License. | 
|  | */ | 
|  |  | 
|  | #include "builtin.h" | 
|  |  | 
|  | #include "util/util.h" | 
|  |  | 
|  | #include "util/color.h" | 
|  | #include <linux/list.h> | 
|  | #include "util/cache.h" | 
|  | #include <linux/rbtree.h> | 
|  | #include "util/symbol.h" | 
|  | #include "util/string.h" | 
|  | #include "util/callchain.h" | 
|  | #include "util/strlist.h" | 
|  |  | 
|  | #include "perf.h" | 
|  | #include "util/header.h" | 
|  | #include "util/parse-options.h" | 
|  | #include "util/parse-events.h" | 
|  | #include "util/event.h" | 
|  | #include "util/session.h" | 
|  | #include "util/svghelper.h" | 
|  |  | 
|  | static char		const *input_name = "perf.data"; | 
|  | static char		const *output_name = "output.svg"; | 
|  |  | 
|  | static unsigned int	numcpus; | 
|  | static u64		min_freq;	/* Lowest CPU frequency seen */ | 
|  | static u64		max_freq;	/* Highest CPU frequency seen */ | 
|  | static u64		turbo_frequency; | 
|  |  | 
|  | static u64		first_time, last_time; | 
|  |  | 
|  | static int		power_only; | 
|  |  | 
|  |  | 
|  | struct per_pid; | 
|  | struct per_pidcomm; | 
|  |  | 
|  | struct cpu_sample; | 
|  | struct power_event; | 
|  | struct wake_event; | 
|  |  | 
|  | struct sample_wrapper; | 
|  |  | 
|  | /* | 
|  | * Datastructure layout: | 
|  | * We keep an list of "pid"s, matching the kernels notion of a task struct. | 
|  | * Each "pid" entry, has a list of "comm"s. | 
|  | *	this is because we want to track different programs different, while | 
|  | *	exec will reuse the original pid (by design). | 
|  | * Each comm has a list of samples that will be used to draw | 
|  | * final graph. | 
|  | */ | 
|  |  | 
|  | struct per_pid { | 
|  | struct per_pid *next; | 
|  |  | 
|  | int		pid; | 
|  | int		ppid; | 
|  |  | 
|  | u64		start_time; | 
|  | u64		end_time; | 
|  | u64		total_time; | 
|  | int		display; | 
|  |  | 
|  | struct per_pidcomm *all; | 
|  | struct per_pidcomm *current; | 
|  |  | 
|  | int painted; | 
|  | }; | 
|  |  | 
|  |  | 
|  | struct per_pidcomm { | 
|  | struct per_pidcomm *next; | 
|  |  | 
|  | u64		start_time; | 
|  | u64		end_time; | 
|  | u64		total_time; | 
|  |  | 
|  | int		Y; | 
|  | int		display; | 
|  |  | 
|  | long		state; | 
|  | u64		state_since; | 
|  |  | 
|  | char		*comm; | 
|  |  | 
|  | struct cpu_sample *samples; | 
|  | }; | 
|  |  | 
|  | struct sample_wrapper { | 
|  | struct sample_wrapper *next; | 
|  |  | 
|  | u64		timestamp; | 
|  | unsigned char	data[0]; | 
|  | }; | 
|  |  | 
|  | #define TYPE_NONE	0 | 
|  | #define TYPE_RUNNING	1 | 
|  | #define TYPE_WAITING	2 | 
|  | #define TYPE_BLOCKED	3 | 
|  |  | 
|  | struct cpu_sample { | 
|  | struct cpu_sample *next; | 
|  |  | 
|  | u64 start_time; | 
|  | u64 end_time; | 
|  | int type; | 
|  | int cpu; | 
|  | }; | 
|  |  | 
|  | static struct per_pid *all_data; | 
|  |  | 
|  | #define CSTATE 1 | 
|  | #define PSTATE 2 | 
|  |  | 
|  | struct power_event { | 
|  | struct power_event *next; | 
|  | int type; | 
|  | int state; | 
|  | u64 start_time; | 
|  | u64 end_time; | 
|  | int cpu; | 
|  | }; | 
|  |  | 
|  | struct wake_event { | 
|  | struct wake_event *next; | 
|  | int waker; | 
|  | int wakee; | 
|  | u64 time; | 
|  | }; | 
|  |  | 
|  | static struct power_event    *power_events; | 
|  | static struct wake_event     *wake_events; | 
|  |  | 
|  | struct sample_wrapper *all_samples; | 
|  |  | 
|  |  | 
|  | struct process_filter; | 
|  | struct process_filter { | 
|  | char			*name; | 
|  | int			pid; | 
|  | struct process_filter	*next; | 
|  | }; | 
|  |  | 
|  | static struct process_filter *process_filter; | 
|  |  | 
|  |  | 
|  | static struct per_pid *find_create_pid(int pid) | 
|  | { | 
|  | struct per_pid *cursor = all_data; | 
|  |  | 
|  | while (cursor) { | 
|  | if (cursor->pid == pid) | 
|  | return cursor; | 
|  | cursor = cursor->next; | 
|  | } | 
|  | cursor = malloc(sizeof(struct per_pid)); | 
|  | assert(cursor != NULL); | 
|  | memset(cursor, 0, sizeof(struct per_pid)); | 
|  | cursor->pid = pid; | 
|  | cursor->next = all_data; | 
|  | all_data = cursor; | 
|  | return cursor; | 
|  | } | 
|  |  | 
|  | static void pid_set_comm(int pid, char *comm) | 
|  | { | 
|  | struct per_pid *p; | 
|  | struct per_pidcomm *c; | 
|  | p = find_create_pid(pid); | 
|  | c = p->all; | 
|  | while (c) { | 
|  | if (c->comm && strcmp(c->comm, comm) == 0) { | 
|  | p->current = c; | 
|  | return; | 
|  | } | 
|  | if (!c->comm) { | 
|  | c->comm = strdup(comm); | 
|  | p->current = c; | 
|  | return; | 
|  | } | 
|  | c = c->next; | 
|  | } | 
|  | c = malloc(sizeof(struct per_pidcomm)); | 
|  | assert(c != NULL); | 
|  | memset(c, 0, sizeof(struct per_pidcomm)); | 
|  | c->comm = strdup(comm); | 
|  | p->current = c; | 
|  | c->next = p->all; | 
|  | p->all = c; | 
|  | } | 
|  |  | 
|  | static void pid_fork(int pid, int ppid, u64 timestamp) | 
|  | { | 
|  | struct per_pid *p, *pp; | 
|  | p = find_create_pid(pid); | 
|  | pp = find_create_pid(ppid); | 
|  | p->ppid = ppid; | 
|  | if (pp->current && pp->current->comm && !p->current) | 
|  | pid_set_comm(pid, pp->current->comm); | 
|  |  | 
|  | p->start_time = timestamp; | 
|  | if (p->current) { | 
|  | p->current->start_time = timestamp; | 
|  | p->current->state_since = timestamp; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pid_exit(int pid, u64 timestamp) | 
|  | { | 
|  | struct per_pid *p; | 
|  | p = find_create_pid(pid); | 
|  | p->end_time = timestamp; | 
|  | if (p->current) | 
|  | p->current->end_time = timestamp; | 
|  | } | 
|  |  | 
|  | static void | 
|  | pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end) | 
|  | { | 
|  | struct per_pid *p; | 
|  | struct per_pidcomm *c; | 
|  | struct cpu_sample *sample; | 
|  |  | 
|  | p = find_create_pid(pid); | 
|  | c = p->current; | 
|  | if (!c) { | 
|  | c = malloc(sizeof(struct per_pidcomm)); | 
|  | assert(c != NULL); | 
|  | memset(c, 0, sizeof(struct per_pidcomm)); | 
|  | p->current = c; | 
|  | c->next = p->all; | 
|  | p->all = c; | 
|  | } | 
|  |  | 
|  | sample = malloc(sizeof(struct cpu_sample)); | 
|  | assert(sample != NULL); | 
|  | memset(sample, 0, sizeof(struct cpu_sample)); | 
|  | sample->start_time = start; | 
|  | sample->end_time = end; | 
|  | sample->type = type; | 
|  | sample->next = c->samples; | 
|  | sample->cpu = cpu; | 
|  | c->samples = sample; | 
|  |  | 
|  | if (sample->type == TYPE_RUNNING && end > start && start > 0) { | 
|  | c->total_time += (end-start); | 
|  | p->total_time += (end-start); | 
|  | } | 
|  |  | 
|  | if (c->start_time == 0 || c->start_time > start) | 
|  | c->start_time = start; | 
|  | if (p->start_time == 0 || p->start_time > start) | 
|  | p->start_time = start; | 
|  |  | 
|  | if (cpu > numcpus) | 
|  | numcpus = cpu; | 
|  | } | 
|  |  | 
|  | #define MAX_CPUS 4096 | 
|  |  | 
|  | static u64 cpus_cstate_start_times[MAX_CPUS]; | 
|  | static int cpus_cstate_state[MAX_CPUS]; | 
|  | static u64 cpus_pstate_start_times[MAX_CPUS]; | 
|  | static u64 cpus_pstate_state[MAX_CPUS]; | 
|  |  | 
|  | static int process_comm_event(event_t *event, struct perf_session *session __used) | 
|  | { | 
|  | pid_set_comm(event->comm.tid, event->comm.comm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int process_fork_event(event_t *event, struct perf_session *session __used) | 
|  | { | 
|  | pid_fork(event->fork.pid, event->fork.ppid, event->fork.time); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int process_exit_event(event_t *event, struct perf_session *session __used) | 
|  | { | 
|  | pid_exit(event->fork.pid, event->fork.time); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct trace_entry { | 
|  | unsigned short		type; | 
|  | unsigned char		flags; | 
|  | unsigned char		preempt_count; | 
|  | int			pid; | 
|  | int			lock_depth; | 
|  | }; | 
|  |  | 
|  | struct power_entry { | 
|  | struct trace_entry te; | 
|  | s64	type; | 
|  | s64	value; | 
|  | }; | 
|  |  | 
|  | #define TASK_COMM_LEN 16 | 
|  | struct wakeup_entry { | 
|  | struct trace_entry te; | 
|  | char comm[TASK_COMM_LEN]; | 
|  | int   pid; | 
|  | int   prio; | 
|  | int   success; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * trace_flag_type is an enumeration that holds different | 
|  | * states when a trace occurs. These are: | 
|  | *  IRQS_OFF            - interrupts were disabled | 
|  | *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags | 
|  | *  NEED_RESCED         - reschedule is requested | 
|  | *  HARDIRQ             - inside an interrupt handler | 
|  | *  SOFTIRQ             - inside a softirq handler | 
|  | */ | 
|  | enum trace_flag_type { | 
|  | TRACE_FLAG_IRQS_OFF		= 0x01, | 
|  | TRACE_FLAG_IRQS_NOSUPPORT	= 0x02, | 
|  | TRACE_FLAG_NEED_RESCHED		= 0x04, | 
|  | TRACE_FLAG_HARDIRQ		= 0x08, | 
|  | TRACE_FLAG_SOFTIRQ		= 0x10, | 
|  | }; | 
|  |  | 
|  |  | 
|  |  | 
|  | struct sched_switch { | 
|  | struct trace_entry te; | 
|  | char prev_comm[TASK_COMM_LEN]; | 
|  | int  prev_pid; | 
|  | int  prev_prio; | 
|  | long prev_state; /* Arjan weeps. */ | 
|  | char next_comm[TASK_COMM_LEN]; | 
|  | int  next_pid; | 
|  | int  next_prio; | 
|  | }; | 
|  |  | 
|  | static void c_state_start(int cpu, u64 timestamp, int state) | 
|  | { | 
|  | cpus_cstate_start_times[cpu] = timestamp; | 
|  | cpus_cstate_state[cpu] = state; | 
|  | } | 
|  |  | 
|  | static void c_state_end(int cpu, u64 timestamp) | 
|  | { | 
|  | struct power_event *pwr; | 
|  | pwr = malloc(sizeof(struct power_event)); | 
|  | if (!pwr) | 
|  | return; | 
|  | memset(pwr, 0, sizeof(struct power_event)); | 
|  |  | 
|  | pwr->state = cpus_cstate_state[cpu]; | 
|  | pwr->start_time = cpus_cstate_start_times[cpu]; | 
|  | pwr->end_time = timestamp; | 
|  | pwr->cpu = cpu; | 
|  | pwr->type = CSTATE; | 
|  | pwr->next = power_events; | 
|  |  | 
|  | power_events = pwr; | 
|  | } | 
|  |  | 
|  | static void p_state_change(int cpu, u64 timestamp, u64 new_freq) | 
|  | { | 
|  | struct power_event *pwr; | 
|  | pwr = malloc(sizeof(struct power_event)); | 
|  |  | 
|  | if (new_freq > 8000000) /* detect invalid data */ | 
|  | return; | 
|  |  | 
|  | if (!pwr) | 
|  | return; | 
|  | memset(pwr, 0, sizeof(struct power_event)); | 
|  |  | 
|  | pwr->state = cpus_pstate_state[cpu]; | 
|  | pwr->start_time = cpus_pstate_start_times[cpu]; | 
|  | pwr->end_time = timestamp; | 
|  | pwr->cpu = cpu; | 
|  | pwr->type = PSTATE; | 
|  | pwr->next = power_events; | 
|  |  | 
|  | if (!pwr->start_time) | 
|  | pwr->start_time = first_time; | 
|  |  | 
|  | power_events = pwr; | 
|  |  | 
|  | cpus_pstate_state[cpu] = new_freq; | 
|  | cpus_pstate_start_times[cpu] = timestamp; | 
|  |  | 
|  | if ((u64)new_freq > max_freq) | 
|  | max_freq = new_freq; | 
|  |  | 
|  | if (new_freq < min_freq || min_freq == 0) | 
|  | min_freq = new_freq; | 
|  |  | 
|  | if (new_freq == max_freq - 1000) | 
|  | turbo_frequency = max_freq; | 
|  | } | 
|  |  | 
|  | static void | 
|  | sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te) | 
|  | { | 
|  | struct wake_event *we; | 
|  | struct per_pid *p; | 
|  | struct wakeup_entry *wake = (void *)te; | 
|  |  | 
|  | we = malloc(sizeof(struct wake_event)); | 
|  | if (!we) | 
|  | return; | 
|  |  | 
|  | memset(we, 0, sizeof(struct wake_event)); | 
|  | we->time = timestamp; | 
|  | we->waker = pid; | 
|  |  | 
|  | if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ)) | 
|  | we->waker = -1; | 
|  |  | 
|  | we->wakee = wake->pid; | 
|  | we->next = wake_events; | 
|  | wake_events = we; | 
|  | p = find_create_pid(we->wakee); | 
|  |  | 
|  | if (p && p->current && p->current->state == TYPE_NONE) { | 
|  | p->current->state_since = timestamp; | 
|  | p->current->state = TYPE_WAITING; | 
|  | } | 
|  | if (p && p->current && p->current->state == TYPE_BLOCKED) { | 
|  | pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp); | 
|  | p->current->state_since = timestamp; | 
|  | p->current->state = TYPE_WAITING; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te) | 
|  | { | 
|  | struct per_pid *p = NULL, *prev_p; | 
|  | struct sched_switch *sw = (void *)te; | 
|  |  | 
|  |  | 
|  | prev_p = find_create_pid(sw->prev_pid); | 
|  |  | 
|  | p = find_create_pid(sw->next_pid); | 
|  |  | 
|  | if (prev_p->current && prev_p->current->state != TYPE_NONE) | 
|  | pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp); | 
|  | if (p && p->current) { | 
|  | if (p->current->state != TYPE_NONE) | 
|  | pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp); | 
|  |  | 
|  | p->current->state_since = timestamp; | 
|  | p->current->state = TYPE_RUNNING; | 
|  | } | 
|  |  | 
|  | if (prev_p->current) { | 
|  | prev_p->current->state = TYPE_NONE; | 
|  | prev_p->current->state_since = timestamp; | 
|  | if (sw->prev_state & 2) | 
|  | prev_p->current->state = TYPE_BLOCKED; | 
|  | if (sw->prev_state == 0) | 
|  | prev_p->current->state = TYPE_WAITING; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static int process_sample_event(event_t *event, struct perf_session *session) | 
|  | { | 
|  | struct sample_data data; | 
|  | struct trace_entry *te; | 
|  |  | 
|  | memset(&data, 0, sizeof(data)); | 
|  |  | 
|  | event__parse_sample(event, session->sample_type, &data); | 
|  |  | 
|  | if (session->sample_type & PERF_SAMPLE_TIME) { | 
|  | if (!first_time || first_time > data.time) | 
|  | first_time = data.time; | 
|  | if (last_time < data.time) | 
|  | last_time = data.time; | 
|  | } | 
|  |  | 
|  | te = (void *)data.raw_data; | 
|  | if (session->sample_type & PERF_SAMPLE_RAW && data.raw_size > 0) { | 
|  | char *event_str; | 
|  | struct power_entry *pe; | 
|  |  | 
|  | pe = (void *)te; | 
|  |  | 
|  | event_str = perf_header__find_event(te->type); | 
|  |  | 
|  | if (!event_str) | 
|  | return 0; | 
|  |  | 
|  | if (strcmp(event_str, "power:power_start") == 0) | 
|  | c_state_start(data.cpu, data.time, pe->value); | 
|  |  | 
|  | if (strcmp(event_str, "power:power_end") == 0) | 
|  | c_state_end(data.cpu, data.time); | 
|  |  | 
|  | if (strcmp(event_str, "power:power_frequency") == 0) | 
|  | p_state_change(data.cpu, data.time, pe->value); | 
|  |  | 
|  | if (strcmp(event_str, "sched:sched_wakeup") == 0) | 
|  | sched_wakeup(data.cpu, data.time, data.pid, te); | 
|  |  | 
|  | if (strcmp(event_str, "sched:sched_switch") == 0) | 
|  | sched_switch(data.cpu, data.time, te); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After the last sample we need to wrap up the current C/P state | 
|  | * and close out each CPU for these. | 
|  | */ | 
|  | static void end_sample_processing(void) | 
|  | { | 
|  | u64 cpu; | 
|  | struct power_event *pwr; | 
|  |  | 
|  | for (cpu = 0; cpu <= numcpus; cpu++) { | 
|  | pwr = malloc(sizeof(struct power_event)); | 
|  | if (!pwr) | 
|  | return; | 
|  | memset(pwr, 0, sizeof(struct power_event)); | 
|  |  | 
|  | /* C state */ | 
|  | #if 0 | 
|  | pwr->state = cpus_cstate_state[cpu]; | 
|  | pwr->start_time = cpus_cstate_start_times[cpu]; | 
|  | pwr->end_time = last_time; | 
|  | pwr->cpu = cpu; | 
|  | pwr->type = CSTATE; | 
|  | pwr->next = power_events; | 
|  |  | 
|  | power_events = pwr; | 
|  | #endif | 
|  | /* P state */ | 
|  |  | 
|  | pwr = malloc(sizeof(struct power_event)); | 
|  | if (!pwr) | 
|  | return; | 
|  | memset(pwr, 0, sizeof(struct power_event)); | 
|  |  | 
|  | pwr->state = cpus_pstate_state[cpu]; | 
|  | pwr->start_time = cpus_pstate_start_times[cpu]; | 
|  | pwr->end_time = last_time; | 
|  | pwr->cpu = cpu; | 
|  | pwr->type = PSTATE; | 
|  | pwr->next = power_events; | 
|  |  | 
|  | if (!pwr->start_time) | 
|  | pwr->start_time = first_time; | 
|  | if (!pwr->state) | 
|  | pwr->state = min_freq; | 
|  | power_events = pwr; | 
|  | } | 
|  | } | 
|  |  | 
|  | static u64 sample_time(event_t *event, const struct perf_session *session) | 
|  | { | 
|  | int cursor; | 
|  |  | 
|  | cursor = 0; | 
|  | if (session->sample_type & PERF_SAMPLE_IP) | 
|  | cursor++; | 
|  | if (session->sample_type & PERF_SAMPLE_TID) | 
|  | cursor++; | 
|  | if (session->sample_type & PERF_SAMPLE_TIME) | 
|  | return event->sample.array[cursor]; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * We first queue all events, sorted backwards by insertion. | 
|  | * The order will get flipped later. | 
|  | */ | 
|  | static int queue_sample_event(event_t *event, struct perf_session *session) | 
|  | { | 
|  | struct sample_wrapper *copy, *prev; | 
|  | int size; | 
|  |  | 
|  | size = event->sample.header.size + sizeof(struct sample_wrapper) + 8; | 
|  |  | 
|  | copy = malloc(size); | 
|  | if (!copy) | 
|  | return 1; | 
|  |  | 
|  | memset(copy, 0, size); | 
|  |  | 
|  | copy->next = NULL; | 
|  | copy->timestamp = sample_time(event, session); | 
|  |  | 
|  | memcpy(©->data, event, event->sample.header.size); | 
|  |  | 
|  | /* insert in the right place in the list */ | 
|  |  | 
|  | if (!all_samples) { | 
|  | /* first sample ever */ | 
|  | all_samples = copy; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (all_samples->timestamp < copy->timestamp) { | 
|  | /* insert at the head of the list */ | 
|  | copy->next = all_samples; | 
|  | all_samples = copy; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | prev = all_samples; | 
|  | while (prev->next) { | 
|  | if (prev->next->timestamp < copy->timestamp) { | 
|  | copy->next = prev->next; | 
|  | prev->next = copy; | 
|  | return 0; | 
|  | } | 
|  | prev = prev->next; | 
|  | } | 
|  | /* insert at the end of the list */ | 
|  | prev->next = copy; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sort_queued_samples(void) | 
|  | { | 
|  | struct sample_wrapper *cursor, *next; | 
|  |  | 
|  | cursor = all_samples; | 
|  | all_samples = NULL; | 
|  |  | 
|  | while (cursor) { | 
|  | next = cursor->next; | 
|  | cursor->next = all_samples; | 
|  | all_samples = cursor; | 
|  | cursor = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sort the pid datastructure | 
|  | */ | 
|  | static void sort_pids(void) | 
|  | { | 
|  | struct per_pid *new_list, *p, *cursor, *prev; | 
|  | /* sort by ppid first, then by pid, lowest to highest */ | 
|  |  | 
|  | new_list = NULL; | 
|  |  | 
|  | while (all_data) { | 
|  | p = all_data; | 
|  | all_data = p->next; | 
|  | p->next = NULL; | 
|  |  | 
|  | if (new_list == NULL) { | 
|  | new_list = p; | 
|  | p->next = NULL; | 
|  | continue; | 
|  | } | 
|  | prev = NULL; | 
|  | cursor = new_list; | 
|  | while (cursor) { | 
|  | if (cursor->ppid > p->ppid || | 
|  | (cursor->ppid == p->ppid && cursor->pid > p->pid)) { | 
|  | /* must insert before */ | 
|  | if (prev) { | 
|  | p->next = prev->next; | 
|  | prev->next = p; | 
|  | cursor = NULL; | 
|  | continue; | 
|  | } else { | 
|  | p->next = new_list; | 
|  | new_list = p; | 
|  | cursor = NULL; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | prev = cursor; | 
|  | cursor = cursor->next; | 
|  | if (!cursor) | 
|  | prev->next = p; | 
|  | } | 
|  | } | 
|  | all_data = new_list; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void draw_c_p_states(void) | 
|  | { | 
|  | struct power_event *pwr; | 
|  | pwr = power_events; | 
|  |  | 
|  | /* | 
|  | * two pass drawing so that the P state bars are on top of the C state blocks | 
|  | */ | 
|  | while (pwr) { | 
|  | if (pwr->type == CSTATE) | 
|  | svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); | 
|  | pwr = pwr->next; | 
|  | } | 
|  |  | 
|  | pwr = power_events; | 
|  | while (pwr) { | 
|  | if (pwr->type == PSTATE) { | 
|  | if (!pwr->state) | 
|  | pwr->state = min_freq; | 
|  | svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); | 
|  | } | 
|  | pwr = pwr->next; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void draw_wakeups(void) | 
|  | { | 
|  | struct wake_event *we; | 
|  | struct per_pid *p; | 
|  | struct per_pidcomm *c; | 
|  |  | 
|  | we = wake_events; | 
|  | while (we) { | 
|  | int from = 0, to = 0; | 
|  | char *task_from = NULL, *task_to = NULL; | 
|  |  | 
|  | /* locate the column of the waker and wakee */ | 
|  | p = all_data; | 
|  | while (p) { | 
|  | if (p->pid == we->waker || p->pid == we->wakee) { | 
|  | c = p->all; | 
|  | while (c) { | 
|  | if (c->Y && c->start_time <= we->time && c->end_time >= we->time) { | 
|  | if (p->pid == we->waker && !from) { | 
|  | from = c->Y; | 
|  | task_from = strdup(c->comm); | 
|  | } | 
|  | if (p->pid == we->wakee && !to) { | 
|  | to = c->Y; | 
|  | task_to = strdup(c->comm); | 
|  | } | 
|  | } | 
|  | c = c->next; | 
|  | } | 
|  | c = p->all; | 
|  | while (c) { | 
|  | if (p->pid == we->waker && !from) { | 
|  | from = c->Y; | 
|  | task_from = strdup(c->comm); | 
|  | } | 
|  | if (p->pid == we->wakee && !to) { | 
|  | to = c->Y; | 
|  | task_to = strdup(c->comm); | 
|  | } | 
|  | c = c->next; | 
|  | } | 
|  | } | 
|  | p = p->next; | 
|  | } | 
|  |  | 
|  | if (!task_from) { | 
|  | task_from = malloc(40); | 
|  | sprintf(task_from, "[%i]", we->waker); | 
|  | } | 
|  | if (!task_to) { | 
|  | task_to = malloc(40); | 
|  | sprintf(task_to, "[%i]", we->wakee); | 
|  | } | 
|  |  | 
|  | if (we->waker == -1) | 
|  | svg_interrupt(we->time, to); | 
|  | else if (from && to && abs(from - to) == 1) | 
|  | svg_wakeline(we->time, from, to); | 
|  | else | 
|  | svg_partial_wakeline(we->time, from, task_from, to, task_to); | 
|  | we = we->next; | 
|  |  | 
|  | free(task_from); | 
|  | free(task_to); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void draw_cpu_usage(void) | 
|  | { | 
|  | struct per_pid *p; | 
|  | struct per_pidcomm *c; | 
|  | struct cpu_sample *sample; | 
|  | p = all_data; | 
|  | while (p) { | 
|  | c = p->all; | 
|  | while (c) { | 
|  | sample = c->samples; | 
|  | while (sample) { | 
|  | if (sample->type == TYPE_RUNNING) | 
|  | svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm); | 
|  |  | 
|  | sample = sample->next; | 
|  | } | 
|  | c = c->next; | 
|  | } | 
|  | p = p->next; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void draw_process_bars(void) | 
|  | { | 
|  | struct per_pid *p; | 
|  | struct per_pidcomm *c; | 
|  | struct cpu_sample *sample; | 
|  | int Y = 0; | 
|  |  | 
|  | Y = 2 * numcpus + 2; | 
|  |  | 
|  | p = all_data; | 
|  | while (p) { | 
|  | c = p->all; | 
|  | while (c) { | 
|  | if (!c->display) { | 
|  | c->Y = 0; | 
|  | c = c->next; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | svg_box(Y, c->start_time, c->end_time, "process"); | 
|  | sample = c->samples; | 
|  | while (sample) { | 
|  | if (sample->type == TYPE_RUNNING) | 
|  | svg_sample(Y, sample->cpu, sample->start_time, sample->end_time); | 
|  | if (sample->type == TYPE_BLOCKED) | 
|  | svg_box(Y, sample->start_time, sample->end_time, "blocked"); | 
|  | if (sample->type == TYPE_WAITING) | 
|  | svg_waiting(Y, sample->start_time, sample->end_time); | 
|  | sample = sample->next; | 
|  | } | 
|  |  | 
|  | if (c->comm) { | 
|  | char comm[256]; | 
|  | if (c->total_time > 5000000000) /* 5 seconds */ | 
|  | sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0); | 
|  | else | 
|  | sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0); | 
|  |  | 
|  | svg_text(Y, c->start_time, comm); | 
|  | } | 
|  | c->Y = Y; | 
|  | Y++; | 
|  | c = c->next; | 
|  | } | 
|  | p = p->next; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void add_process_filter(const char *string) | 
|  | { | 
|  | struct process_filter *filt; | 
|  | int pid; | 
|  |  | 
|  | pid = strtoull(string, NULL, 10); | 
|  | filt = malloc(sizeof(struct process_filter)); | 
|  | if (!filt) | 
|  | return; | 
|  |  | 
|  | filt->name = strdup(string); | 
|  | filt->pid  = pid; | 
|  | filt->next = process_filter; | 
|  |  | 
|  | process_filter = filt; | 
|  | } | 
|  |  | 
|  | static int passes_filter(struct per_pid *p, struct per_pidcomm *c) | 
|  | { | 
|  | struct process_filter *filt; | 
|  | if (!process_filter) | 
|  | return 1; | 
|  |  | 
|  | filt = process_filter; | 
|  | while (filt) { | 
|  | if (filt->pid && p->pid == filt->pid) | 
|  | return 1; | 
|  | if (strcmp(filt->name, c->comm) == 0) | 
|  | return 1; | 
|  | filt = filt->next; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int determine_display_tasks_filtered(void) | 
|  | { | 
|  | struct per_pid *p; | 
|  | struct per_pidcomm *c; | 
|  | int count = 0; | 
|  |  | 
|  | p = all_data; | 
|  | while (p) { | 
|  | p->display = 0; | 
|  | if (p->start_time == 1) | 
|  | p->start_time = first_time; | 
|  |  | 
|  | /* no exit marker, task kept running to the end */ | 
|  | if (p->end_time == 0) | 
|  | p->end_time = last_time; | 
|  |  | 
|  | c = p->all; | 
|  |  | 
|  | while (c) { | 
|  | c->display = 0; | 
|  |  | 
|  | if (c->start_time == 1) | 
|  | c->start_time = first_time; | 
|  |  | 
|  | if (passes_filter(p, c)) { | 
|  | c->display = 1; | 
|  | p->display = 1; | 
|  | count++; | 
|  | } | 
|  |  | 
|  | if (c->end_time == 0) | 
|  | c->end_time = last_time; | 
|  |  | 
|  | c = c->next; | 
|  | } | 
|  | p = p->next; | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int determine_display_tasks(u64 threshold) | 
|  | { | 
|  | struct per_pid *p; | 
|  | struct per_pidcomm *c; | 
|  | int count = 0; | 
|  |  | 
|  | if (process_filter) | 
|  | return determine_display_tasks_filtered(); | 
|  |  | 
|  | p = all_data; | 
|  | while (p) { | 
|  | p->display = 0; | 
|  | if (p->start_time == 1) | 
|  | p->start_time = first_time; | 
|  |  | 
|  | /* no exit marker, task kept running to the end */ | 
|  | if (p->end_time == 0) | 
|  | p->end_time = last_time; | 
|  | if (p->total_time >= threshold && !power_only) | 
|  | p->display = 1; | 
|  |  | 
|  | c = p->all; | 
|  |  | 
|  | while (c) { | 
|  | c->display = 0; | 
|  |  | 
|  | if (c->start_time == 1) | 
|  | c->start_time = first_time; | 
|  |  | 
|  | if (c->total_time >= threshold && !power_only) { | 
|  | c->display = 1; | 
|  | count++; | 
|  | } | 
|  |  | 
|  | if (c->end_time == 0) | 
|  | c->end_time = last_time; | 
|  |  | 
|  | c = c->next; | 
|  | } | 
|  | p = p->next; | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | #define TIME_THRESH 10000000 | 
|  |  | 
|  | static void write_svg_file(const char *filename) | 
|  | { | 
|  | u64 i; | 
|  | int count; | 
|  |  | 
|  | numcpus++; | 
|  |  | 
|  |  | 
|  | count = determine_display_tasks(TIME_THRESH); | 
|  |  | 
|  | /* We'd like to show at least 15 tasks; be less picky if we have fewer */ | 
|  | if (count < 15) | 
|  | count = determine_display_tasks(TIME_THRESH / 10); | 
|  |  | 
|  | open_svg(filename, numcpus, count, first_time, last_time); | 
|  |  | 
|  | svg_time_grid(); | 
|  | svg_legenda(); | 
|  |  | 
|  | for (i = 0; i < numcpus; i++) | 
|  | svg_cpu_box(i, max_freq, turbo_frequency); | 
|  |  | 
|  | draw_cpu_usage(); | 
|  | draw_process_bars(); | 
|  | draw_c_p_states(); | 
|  | draw_wakeups(); | 
|  |  | 
|  | svg_close(); | 
|  | } | 
|  |  | 
|  | static void process_samples(struct perf_session *session) | 
|  | { | 
|  | struct sample_wrapper *cursor; | 
|  | event_t *event; | 
|  |  | 
|  | sort_queued_samples(); | 
|  |  | 
|  | cursor = all_samples; | 
|  | while (cursor) { | 
|  | event = (void *)&cursor->data; | 
|  | cursor = cursor->next; | 
|  | process_sample_event(event, session); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int sample_type_check(struct perf_session *session) | 
|  | { | 
|  | if (!(session->sample_type & PERF_SAMPLE_RAW)) { | 
|  | fprintf(stderr, "No trace samples found in the file.\n" | 
|  | "Have you used 'perf timechart record' to record it?\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct perf_event_ops event_ops = { | 
|  | .process_comm_event	= process_comm_event, | 
|  | .process_fork_event	= process_fork_event, | 
|  | .process_exit_event	= process_exit_event, | 
|  | .process_sample_event	= queue_sample_event, | 
|  | .sample_type_check	= sample_type_check, | 
|  | }; | 
|  |  | 
|  | static int __cmd_timechart(void) | 
|  | { | 
|  | struct perf_session *session = perf_session__new(input_name, O_RDONLY, 0); | 
|  | int ret; | 
|  |  | 
|  | if (session == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = perf_session__process_events(session, &event_ops); | 
|  | if (ret) | 
|  | goto out_delete; | 
|  |  | 
|  | process_samples(session); | 
|  |  | 
|  | end_sample_processing(); | 
|  |  | 
|  | sort_pids(); | 
|  |  | 
|  | write_svg_file(output_name); | 
|  |  | 
|  | pr_info("Written %2.1f seconds of trace to %s.\n", | 
|  | (last_time - first_time) / 1000000000.0, output_name); | 
|  | out_delete: | 
|  | perf_session__delete(session); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const char * const timechart_usage[] = { | 
|  | "perf timechart [<options>] {record}", | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static const char *record_args[] = { | 
|  | "record", | 
|  | "-a", | 
|  | "-R", | 
|  | "-M", | 
|  | "-f", | 
|  | "-c", "1", | 
|  | "-e", "power:power_start", | 
|  | "-e", "power:power_end", | 
|  | "-e", "power:power_frequency", | 
|  | "-e", "sched:sched_wakeup", | 
|  | "-e", "sched:sched_switch", | 
|  | }; | 
|  |  | 
|  | static int __cmd_record(int argc, const char **argv) | 
|  | { | 
|  | unsigned int rec_argc, i, j; | 
|  | const char **rec_argv; | 
|  |  | 
|  | rec_argc = ARRAY_SIZE(record_args) + argc - 1; | 
|  | rec_argv = calloc(rec_argc + 1, sizeof(char *)); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(record_args); i++) | 
|  | rec_argv[i] = strdup(record_args[i]); | 
|  |  | 
|  | for (j = 1; j < (unsigned int)argc; j++, i++) | 
|  | rec_argv[i] = argv[j]; | 
|  |  | 
|  | return cmd_record(i, rec_argv, NULL); | 
|  | } | 
|  |  | 
|  | static int | 
|  | parse_process(const struct option *opt __used, const char *arg, int __used unset) | 
|  | { | 
|  | if (arg) | 
|  | add_process_filter(arg); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct option options[] = { | 
|  | OPT_STRING('i', "input", &input_name, "file", | 
|  | "input file name"), | 
|  | OPT_STRING('o', "output", &output_name, "file", | 
|  | "output file name"), | 
|  | OPT_INTEGER('w', "width", &svg_page_width, | 
|  | "page width"), | 
|  | OPT_BOOLEAN('P', "power-only", &power_only, | 
|  | "output power data only"), | 
|  | OPT_CALLBACK('p', "process", NULL, "process", | 
|  | "process selector. Pass a pid or process name.", | 
|  | parse_process), | 
|  | OPT_END() | 
|  | }; | 
|  |  | 
|  |  | 
|  | int cmd_timechart(int argc, const char **argv, const char *prefix __used) | 
|  | { | 
|  | argc = parse_options(argc, argv, options, timechart_usage, | 
|  | PARSE_OPT_STOP_AT_NON_OPTION); | 
|  |  | 
|  | symbol__init(); | 
|  |  | 
|  | if (argc && !strncmp(argv[0], "rec", 3)) | 
|  | return __cmd_record(argc, argv); | 
|  | else if (argc) | 
|  | usage_with_options(timechart_usage, options); | 
|  |  | 
|  | setup_pager(); | 
|  |  | 
|  | return __cmd_timechart(); | 
|  | } |