| /* SPDX-License-Identifier: MIT */ |
| /* |
| * Copyright (C) 2017 Google, Inc. |
| * |
| * Authors: |
| * Sean Paul <seanpaul@chromium.org> |
| */ |
| |
| #include <drm/drmP.h> |
| #include <drm/drm_hdcp.h> |
| #include <linux/i2c.h> |
| #include <linux/random.h> |
| |
| #include "intel_drv.h" |
| #include "i915_reg.h" |
| |
| #define KEY_LOAD_TRIES 5 |
| |
| static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *intel_dig_port, |
| const struct intel_hdcp_shim *shim) |
| { |
| int ret, read_ret; |
| bool ksv_ready; |
| |
| /* Poll for ksv list ready (spec says max time allowed is 5s) */ |
| ret = __wait_for(read_ret = shim->read_ksv_ready(intel_dig_port, |
| &ksv_ready), |
| read_ret || ksv_ready, 5 * 1000 * 1000, 1000, |
| 100 * 1000); |
| if (ret) |
| return ret; |
| if (read_ret) |
| return read_ret; |
| if (!ksv_ready) |
| return -ETIMEDOUT; |
| |
| return 0; |
| } |
| |
| static bool hdcp_key_loadable(struct drm_i915_private *dev_priv) |
| { |
| struct i915_power_domains *power_domains = &dev_priv->power_domains; |
| struct i915_power_well *power_well; |
| enum i915_power_well_id id; |
| bool enabled = false; |
| |
| /* |
| * On HSW and BDW, Display HW loads the Key as soon as Display resumes. |
| * On all BXT+, SW can load the keys only when the PW#1 is turned on. |
| */ |
| if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) |
| id = HSW_DISP_PW_GLOBAL; |
| else |
| id = SKL_DISP_PW_1; |
| |
| mutex_lock(&power_domains->lock); |
| |
| /* PG1 (power well #1) needs to be enabled */ |
| for_each_power_well(dev_priv, power_well) { |
| if (power_well->id == id) { |
| enabled = power_well->ops->is_enabled(dev_priv, |
| power_well); |
| break; |
| } |
| } |
| mutex_unlock(&power_domains->lock); |
| |
| /* |
| * Another req for hdcp key loadability is enabled state of pll for |
| * cdclk. Without active crtc we wont land here. So we are assuming that |
| * cdclk is already on. |
| */ |
| |
| return enabled; |
| } |
| |
| static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv) |
| { |
| I915_WRITE(HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER); |
| I915_WRITE(HDCP_KEY_STATUS, HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | |
| HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE); |
| } |
| |
| static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv) |
| { |
| int ret; |
| u32 val; |
| |
| val = I915_READ(HDCP_KEY_STATUS); |
| if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS)) |
| return 0; |
| |
| /* |
| * On HSW and BDW HW loads the HDCP1.4 Key when Display comes |
| * out of reset. So if Key is not already loaded, its an error state. |
| */ |
| if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) |
| if (!(I915_READ(HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE)) |
| return -ENXIO; |
| |
| /* |
| * Initiate loading the HDCP key from fuses. |
| * |
| * BXT+ platforms, HDCP key needs to be loaded by SW. Only SKL and KBL |
| * differ in the key load trigger process from other platforms. |
| */ |
| if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) { |
| mutex_lock(&dev_priv->pcu_lock); |
| ret = sandybridge_pcode_write(dev_priv, |
| SKL_PCODE_LOAD_HDCP_KEYS, 1); |
| mutex_unlock(&dev_priv->pcu_lock); |
| if (ret) { |
| DRM_ERROR("Failed to initiate HDCP key load (%d)\n", |
| ret); |
| return ret; |
| } |
| } else { |
| I915_WRITE(HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER); |
| } |
| |
| /* Wait for the keys to load (500us) */ |
| ret = __intel_wait_for_register(dev_priv, HDCP_KEY_STATUS, |
| HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE, |
| 10, 1, &val); |
| if (ret) |
| return ret; |
| else if (!(val & HDCP_KEY_LOAD_STATUS)) |
| return -ENXIO; |
| |
| /* Send Aksv over to PCH display for use in authentication */ |
| I915_WRITE(HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER); |
| |
| return 0; |
| } |
| |
| /* Returns updated SHA-1 index */ |
| static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text) |
| { |
| I915_WRITE(HDCP_SHA_TEXT, sha_text); |
| if (intel_wait_for_register(dev_priv, HDCP_REP_CTL, |
| HDCP_SHA1_READY, HDCP_SHA1_READY, 1)) { |
| DRM_ERROR("Timed out waiting for SHA1 ready\n"); |
| return -ETIMEDOUT; |
| } |
| return 0; |
| } |
| |
| static |
| u32 intel_hdcp_get_repeater_ctl(struct intel_digital_port *intel_dig_port) |
| { |
| enum port port = intel_dig_port->base.port; |
| switch (port) { |
| case PORT_A: |
| return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0; |
| case PORT_B: |
| return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0; |
| case PORT_C: |
| return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0; |
| case PORT_D: |
| return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0; |
| case PORT_E: |
| return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0; |
| default: |
| break; |
| } |
| DRM_ERROR("Unknown port %d\n", port); |
| return -EINVAL; |
| } |
| |
| static |
| bool intel_hdcp_is_ksv_valid(u8 *ksv) |
| { |
| int i, ones = 0; |
| /* KSV has 20 1's and 20 0's */ |
| for (i = 0; i < DRM_HDCP_KSV_LEN; i++) |
| ones += hweight8(ksv[i]); |
| if (ones != 20) |
| return false; |
| return true; |
| } |
| |
| static |
| int intel_hdcp_validate_v_prime(struct intel_digital_port *intel_dig_port, |
| const struct intel_hdcp_shim *shim, |
| u8 *ksv_fifo, u8 num_downstream, u8 *bstatus) |
| { |
| struct drm_i915_private *dev_priv; |
| u32 vprime, sha_text, sha_leftovers, rep_ctl; |
| int ret, i, j, sha_idx; |
| |
| dev_priv = intel_dig_port->base.base.dev->dev_private; |
| |
| /* Process V' values from the receiver */ |
| for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) { |
| ret = shim->read_v_prime_part(intel_dig_port, i, &vprime); |
| if (ret) |
| return ret; |
| I915_WRITE(HDCP_SHA_V_PRIME(i), vprime); |
| } |
| |
| /* |
| * We need to write the concatenation of all device KSVs, BINFO (DP) || |
| * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte |
| * stream is written via the HDCP_SHA_TEXT register in 32-bit |
| * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This |
| * index will keep track of our progress through the 64 bytes as well as |
| * helping us work the 40-bit KSVs through our 32-bit register. |
| * |
| * NOTE: data passed via HDCP_SHA_TEXT should be big-endian |
| */ |
| sha_idx = 0; |
| sha_text = 0; |
| sha_leftovers = 0; |
| rep_ctl = intel_hdcp_get_repeater_ctl(intel_dig_port); |
| I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); |
| for (i = 0; i < num_downstream; i++) { |
| unsigned int sha_empty; |
| u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN]; |
| |
| /* Fill up the empty slots in sha_text and write it out */ |
| sha_empty = sizeof(sha_text) - sha_leftovers; |
| for (j = 0; j < sha_empty; j++) |
| sha_text |= ksv[j] << ((sizeof(sha_text) - j - 1) * 8); |
| |
| ret = intel_write_sha_text(dev_priv, sha_text); |
| if (ret < 0) |
| return ret; |
| |
| /* Programming guide writes this every 64 bytes */ |
| sha_idx += sizeof(sha_text); |
| if (!(sha_idx % 64)) |
| I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); |
| |
| /* Store the leftover bytes from the ksv in sha_text */ |
| sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty; |
| sha_text = 0; |
| for (j = 0; j < sha_leftovers; j++) |
| sha_text |= ksv[sha_empty + j] << |
| ((sizeof(sha_text) - j - 1) * 8); |
| |
| /* |
| * If we still have room in sha_text for more data, continue. |
| * Otherwise, write it out immediately. |
| */ |
| if (sizeof(sha_text) > sha_leftovers) |
| continue; |
| |
| ret = intel_write_sha_text(dev_priv, sha_text); |
| if (ret < 0) |
| return ret; |
| sha_leftovers = 0; |
| sha_text = 0; |
| sha_idx += sizeof(sha_text); |
| } |
| |
| /* |
| * We need to write BINFO/BSTATUS, and M0 now. Depending on how many |
| * bytes are leftover from the last ksv, we might be able to fit them |
| * all in sha_text (first 2 cases), or we might need to split them up |
| * into 2 writes (last 2 cases). |
| */ |
| if (sha_leftovers == 0) { |
| /* Write 16 bits of text, 16 bits of M0 */ |
| I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16); |
| ret = intel_write_sha_text(dev_priv, |
| bstatus[0] << 8 | bstatus[1]); |
| if (ret < 0) |
| return ret; |
| sha_idx += sizeof(sha_text); |
| |
| /* Write 32 bits of M0 */ |
| I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0); |
| ret = intel_write_sha_text(dev_priv, 0); |
| if (ret < 0) |
| return ret; |
| sha_idx += sizeof(sha_text); |
| |
| /* Write 16 bits of M0 */ |
| I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16); |
| ret = intel_write_sha_text(dev_priv, 0); |
| if (ret < 0) |
| return ret; |
| sha_idx += sizeof(sha_text); |
| |
| } else if (sha_leftovers == 1) { |
| /* Write 24 bits of text, 8 bits of M0 */ |
| I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24); |
| sha_text |= bstatus[0] << 16 | bstatus[1] << 8; |
| /* Only 24-bits of data, must be in the LSB */ |
| sha_text = (sha_text & 0xffffff00) >> 8; |
| ret = intel_write_sha_text(dev_priv, sha_text); |
| if (ret < 0) |
| return ret; |
| sha_idx += sizeof(sha_text); |
| |
| /* Write 32 bits of M0 */ |
| I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0); |
| ret = intel_write_sha_text(dev_priv, 0); |
| if (ret < 0) |
| return ret; |
| sha_idx += sizeof(sha_text); |
| |
| /* Write 24 bits of M0 */ |
| I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8); |
| ret = intel_write_sha_text(dev_priv, 0); |
| if (ret < 0) |
| return ret; |
| sha_idx += sizeof(sha_text); |
| |
| } else if (sha_leftovers == 2) { |
| /* Write 32 bits of text */ |
| I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); |
| sha_text |= bstatus[0] << 24 | bstatus[1] << 16; |
| ret = intel_write_sha_text(dev_priv, sha_text); |
| if (ret < 0) |
| return ret; |
| sha_idx += sizeof(sha_text); |
| |
| /* Write 64 bits of M0 */ |
| I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0); |
| for (i = 0; i < 2; i++) { |
| ret = intel_write_sha_text(dev_priv, 0); |
| if (ret < 0) |
| return ret; |
| sha_idx += sizeof(sha_text); |
| } |
| } else if (sha_leftovers == 3) { |
| /* Write 32 bits of text */ |
| I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); |
| sha_text |= bstatus[0] << 24; |
| ret = intel_write_sha_text(dev_priv, sha_text); |
| if (ret < 0) |
| return ret; |
| sha_idx += sizeof(sha_text); |
| |
| /* Write 8 bits of text, 24 bits of M0 */ |
| I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8); |
| ret = intel_write_sha_text(dev_priv, bstatus[1]); |
| if (ret < 0) |
| return ret; |
| sha_idx += sizeof(sha_text); |
| |
| /* Write 32 bits of M0 */ |
| I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0); |
| ret = intel_write_sha_text(dev_priv, 0); |
| if (ret < 0) |
| return ret; |
| sha_idx += sizeof(sha_text); |
| |
| /* Write 8 bits of M0 */ |
| I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24); |
| ret = intel_write_sha_text(dev_priv, 0); |
| if (ret < 0) |
| return ret; |
| sha_idx += sizeof(sha_text); |
| } else { |
| DRM_DEBUG_KMS("Invalid number of leftovers %d\n", |
| sha_leftovers); |
| return -EINVAL; |
| } |
| |
| I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); |
| /* Fill up to 64-4 bytes with zeros (leave the last write for length) */ |
| while ((sha_idx % 64) < (64 - sizeof(sha_text))) { |
| ret = intel_write_sha_text(dev_priv, 0); |
| if (ret < 0) |
| return ret; |
| sha_idx += sizeof(sha_text); |
| } |
| |
| /* |
| * Last write gets the length of the concatenation in bits. That is: |
| * - 5 bytes per device |
| * - 10 bytes for BINFO/BSTATUS(2), M0(8) |
| */ |
| sha_text = (num_downstream * 5 + 10) * 8; |
| ret = intel_write_sha_text(dev_priv, sha_text); |
| if (ret < 0) |
| return ret; |
| |
| /* Tell the HW we're done with the hash and wait for it to ACK */ |
| I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_COMPLETE_HASH); |
| if (intel_wait_for_register(dev_priv, HDCP_REP_CTL, |
| HDCP_SHA1_COMPLETE, |
| HDCP_SHA1_COMPLETE, 1)) { |
| DRM_DEBUG_KMS("Timed out waiting for SHA1 complete\n"); |
| return -ETIMEDOUT; |
| } |
| if (!(I915_READ(HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) { |
| DRM_DEBUG_KMS("SHA-1 mismatch, HDCP failed\n"); |
| return -ENXIO; |
| } |
| |
| return 0; |
| } |
| |
| /* Implements Part 2 of the HDCP authorization procedure */ |
| static |
| int intel_hdcp_auth_downstream(struct intel_digital_port *intel_dig_port, |
| const struct intel_hdcp_shim *shim) |
| { |
| u8 bstatus[2], num_downstream, *ksv_fifo; |
| int ret, i, tries = 3; |
| |
| ret = intel_hdcp_poll_ksv_fifo(intel_dig_port, shim); |
| if (ret) { |
| DRM_ERROR("KSV list failed to become ready (%d)\n", ret); |
| return ret; |
| } |
| |
| ret = shim->read_bstatus(intel_dig_port, bstatus); |
| if (ret) |
| return ret; |
| |
| if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) || |
| DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) { |
| DRM_ERROR("Max Topology Limit Exceeded\n"); |
| return -EPERM; |
| } |
| |
| /* |
| * When repeater reports 0 device count, HDCP1.4 spec allows disabling |
| * the HDCP encryption. That implies that repeater can't have its own |
| * display. As there is no consumption of encrypted content in the |
| * repeater with 0 downstream devices, we are failing the |
| * authentication. |
| */ |
| num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]); |
| if (num_downstream == 0) |
| return -EINVAL; |
| |
| ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL); |
| if (!ksv_fifo) |
| return -ENOMEM; |
| |
| ret = shim->read_ksv_fifo(intel_dig_port, num_downstream, ksv_fifo); |
| if (ret) |
| goto err; |
| |
| /* |
| * When V prime mismatches, DP Spec mandates re-read of |
| * V prime atleast twice. |
| */ |
| for (i = 0; i < tries; i++) { |
| ret = intel_hdcp_validate_v_prime(intel_dig_port, shim, |
| ksv_fifo, num_downstream, |
| bstatus); |
| if (!ret) |
| break; |
| } |
| |
| if (i == tries) { |
| DRM_ERROR("V Prime validation failed.(%d)\n", ret); |
| goto err; |
| } |
| |
| DRM_DEBUG_KMS("HDCP is enabled (%d downstream devices)\n", |
| num_downstream); |
| ret = 0; |
| err: |
| kfree(ksv_fifo); |
| return ret; |
| } |
| |
| /* Implements Part 1 of the HDCP authorization procedure */ |
| static int intel_hdcp_auth(struct intel_digital_port *intel_dig_port, |
| const struct intel_hdcp_shim *shim) |
| { |
| struct drm_i915_private *dev_priv; |
| enum port port; |
| unsigned long r0_prime_gen_start; |
| int ret, i, tries = 2; |
| union { |
| u32 reg[2]; |
| u8 shim[DRM_HDCP_AN_LEN]; |
| } an; |
| union { |
| u32 reg[2]; |
| u8 shim[DRM_HDCP_KSV_LEN]; |
| } bksv; |
| union { |
| u32 reg; |
| u8 shim[DRM_HDCP_RI_LEN]; |
| } ri; |
| bool repeater_present, hdcp_capable; |
| |
| dev_priv = intel_dig_port->base.base.dev->dev_private; |
| |
| port = intel_dig_port->base.port; |
| |
| /* |
| * Detects whether the display is HDCP capable. Although we check for |
| * valid Bksv below, the HDCP over DP spec requires that we check |
| * whether the display supports HDCP before we write An. For HDMI |
| * displays, this is not necessary. |
| */ |
| if (shim->hdcp_capable) { |
| ret = shim->hdcp_capable(intel_dig_port, &hdcp_capable); |
| if (ret) |
| return ret; |
| if (!hdcp_capable) { |
| DRM_ERROR("Panel is not HDCP capable\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /* Initialize An with 2 random values and acquire it */ |
| for (i = 0; i < 2; i++) |
| I915_WRITE(PORT_HDCP_ANINIT(port), get_random_u32()); |
| I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_CAPTURE_AN); |
| |
| /* Wait for An to be acquired */ |
| if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port), |
| HDCP_STATUS_AN_READY, |
| HDCP_STATUS_AN_READY, 1)) { |
| DRM_ERROR("Timed out waiting for An\n"); |
| return -ETIMEDOUT; |
| } |
| |
| an.reg[0] = I915_READ(PORT_HDCP_ANLO(port)); |
| an.reg[1] = I915_READ(PORT_HDCP_ANHI(port)); |
| ret = shim->write_an_aksv(intel_dig_port, an.shim); |
| if (ret) |
| return ret; |
| |
| r0_prime_gen_start = jiffies; |
| |
| memset(&bksv, 0, sizeof(bksv)); |
| |
| /* HDCP spec states that we must retry the bksv if it is invalid */ |
| for (i = 0; i < tries; i++) { |
| ret = shim->read_bksv(intel_dig_port, bksv.shim); |
| if (ret) |
| return ret; |
| if (intel_hdcp_is_ksv_valid(bksv.shim)) |
| break; |
| } |
| if (i == tries) { |
| DRM_ERROR("HDCP failed, Bksv is invalid\n"); |
| return -ENODEV; |
| } |
| |
| I915_WRITE(PORT_HDCP_BKSVLO(port), bksv.reg[0]); |
| I915_WRITE(PORT_HDCP_BKSVHI(port), bksv.reg[1]); |
| |
| ret = shim->repeater_present(intel_dig_port, &repeater_present); |
| if (ret) |
| return ret; |
| if (repeater_present) |
| I915_WRITE(HDCP_REP_CTL, |
| intel_hdcp_get_repeater_ctl(intel_dig_port)); |
| |
| ret = shim->toggle_signalling(intel_dig_port, true); |
| if (ret) |
| return ret; |
| |
| I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_AUTH_AND_ENC); |
| |
| /* Wait for R0 ready */ |
| if (wait_for(I915_READ(PORT_HDCP_STATUS(port)) & |
| (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) { |
| DRM_ERROR("Timed out waiting for R0 ready\n"); |
| return -ETIMEDOUT; |
| } |
| |
| /* |
| * Wait for R0' to become available. The spec says 100ms from Aksv, but |
| * some monitors can take longer than this. We'll set the timeout at |
| * 300ms just to be sure. |
| * |
| * On DP, there's an R0_READY bit available but no such bit |
| * exists on HDMI. Since the upper-bound is the same, we'll just do |
| * the stupid thing instead of polling on one and not the other. |
| */ |
| wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300); |
| |
| tries = 3; |
| |
| /* |
| * DP HDCP Spec mandates the two more reattempt to read R0, incase |
| * of R0 mismatch. |
| */ |
| for (i = 0; i < tries; i++) { |
| ri.reg = 0; |
| ret = shim->read_ri_prime(intel_dig_port, ri.shim); |
| if (ret) |
| return ret; |
| I915_WRITE(PORT_HDCP_RPRIME(port), ri.reg); |
| |
| /* Wait for Ri prime match */ |
| if (!wait_for(I915_READ(PORT_HDCP_STATUS(port)) & |
| (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) |
| break; |
| } |
| |
| if (i == tries) { |
| DRM_ERROR("Timed out waiting for Ri prime match (%x)\n", |
| I915_READ(PORT_HDCP_STATUS(port))); |
| return -ETIMEDOUT; |
| } |
| |
| /* Wait for encryption confirmation */ |
| if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port), |
| HDCP_STATUS_ENC, HDCP_STATUS_ENC, 20)) { |
| DRM_ERROR("Timed out waiting for encryption\n"); |
| return -ETIMEDOUT; |
| } |
| |
| /* |
| * XXX: If we have MST-connected devices, we need to enable encryption |
| * on those as well. |
| */ |
| |
| if (repeater_present) |
| return intel_hdcp_auth_downstream(intel_dig_port, shim); |
| |
| DRM_DEBUG_KMS("HDCP is enabled (no repeater present)\n"); |
| return 0; |
| } |
| |
| static |
| struct intel_digital_port *conn_to_dig_port(struct intel_connector *connector) |
| { |
| return enc_to_dig_port(&intel_attached_encoder(&connector->base)->base); |
| } |
| |
| static int _intel_hdcp_disable(struct intel_connector *connector) |
| { |
| struct drm_i915_private *dev_priv = connector->base.dev->dev_private; |
| struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector); |
| enum port port = intel_dig_port->base.port; |
| int ret; |
| |
| DRM_DEBUG_KMS("[%s:%d] HDCP is being disabled...\n", |
| connector->base.name, connector->base.base.id); |
| |
| I915_WRITE(PORT_HDCP_CONF(port), 0); |
| if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port), ~0, 0, |
| 20)) { |
| DRM_ERROR("Failed to disable HDCP, timeout clearing status\n"); |
| return -ETIMEDOUT; |
| } |
| |
| ret = connector->hdcp_shim->toggle_signalling(intel_dig_port, false); |
| if (ret) { |
| DRM_ERROR("Failed to disable HDCP signalling\n"); |
| return ret; |
| } |
| |
| DRM_DEBUG_KMS("HDCP is disabled\n"); |
| return 0; |
| } |
| |
| static int _intel_hdcp_enable(struct intel_connector *connector) |
| { |
| struct drm_i915_private *dev_priv = connector->base.dev->dev_private; |
| int i, ret, tries = 3; |
| |
| DRM_DEBUG_KMS("[%s:%d] HDCP is being enabled...\n", |
| connector->base.name, connector->base.base.id); |
| |
| if (!hdcp_key_loadable(dev_priv)) { |
| DRM_ERROR("HDCP key Load is not possible\n"); |
| return -ENXIO; |
| } |
| |
| for (i = 0; i < KEY_LOAD_TRIES; i++) { |
| ret = intel_hdcp_load_keys(dev_priv); |
| if (!ret) |
| break; |
| intel_hdcp_clear_keys(dev_priv); |
| } |
| if (ret) { |
| DRM_ERROR("Could not load HDCP keys, (%d)\n", ret); |
| return ret; |
| } |
| |
| /* Incase of authentication failures, HDCP spec expects reauth. */ |
| for (i = 0; i < tries; i++) { |
| ret = intel_hdcp_auth(conn_to_dig_port(connector), |
| connector->hdcp_shim); |
| if (!ret) |
| return 0; |
| |
| DRM_DEBUG_KMS("HDCP Auth failure (%d)\n", ret); |
| |
| /* Ensuring HDCP encryption and signalling are stopped. */ |
| _intel_hdcp_disable(connector); |
| } |
| |
| DRM_ERROR("HDCP authentication failed (%d tries/%d)\n", tries, ret); |
| return ret; |
| } |
| |
| static void intel_hdcp_check_work(struct work_struct *work) |
| { |
| struct intel_connector *connector = container_of(to_delayed_work(work), |
| struct intel_connector, |
| hdcp_check_work); |
| if (!intel_hdcp_check_link(connector)) |
| schedule_delayed_work(&connector->hdcp_check_work, |
| DRM_HDCP_CHECK_PERIOD_MS); |
| } |
| |
| static void intel_hdcp_prop_work(struct work_struct *work) |
| { |
| struct intel_connector *connector = container_of(work, |
| struct intel_connector, |
| hdcp_prop_work); |
| struct drm_device *dev = connector->base.dev; |
| struct drm_connector_state *state; |
| |
| drm_modeset_lock(&dev->mode_config.connection_mutex, NULL); |
| mutex_lock(&connector->hdcp_mutex); |
| |
| /* |
| * This worker is only used to flip between ENABLED/DESIRED. Either of |
| * those to UNDESIRED is handled by core. If hdcp_value == UNDESIRED, |
| * we're running just after hdcp has been disabled, so just exit |
| */ |
| if (connector->hdcp_value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) { |
| state = connector->base.state; |
| state->content_protection = connector->hdcp_value; |
| } |
| |
| mutex_unlock(&connector->hdcp_mutex); |
| drm_modeset_unlock(&dev->mode_config.connection_mutex); |
| } |
| |
| bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port) |
| { |
| /* PORT E doesn't have HDCP, and PORT F is disabled */ |
| return ((INTEL_GEN(dev_priv) >= 8 || IS_HASWELL(dev_priv)) && |
| !IS_CHERRYVIEW(dev_priv) && port < PORT_E); |
| } |
| |
| int intel_hdcp_init(struct intel_connector *connector, |
| const struct intel_hdcp_shim *hdcp_shim) |
| { |
| int ret; |
| |
| ret = drm_connector_attach_content_protection_property( |
| &connector->base); |
| if (ret) |
| return ret; |
| |
| connector->hdcp_shim = hdcp_shim; |
| mutex_init(&connector->hdcp_mutex); |
| INIT_DELAYED_WORK(&connector->hdcp_check_work, intel_hdcp_check_work); |
| INIT_WORK(&connector->hdcp_prop_work, intel_hdcp_prop_work); |
| return 0; |
| } |
| |
| int intel_hdcp_enable(struct intel_connector *connector) |
| { |
| int ret; |
| |
| if (!connector->hdcp_shim) |
| return -ENOENT; |
| |
| mutex_lock(&connector->hdcp_mutex); |
| |
| ret = _intel_hdcp_enable(connector); |
| if (ret) |
| goto out; |
| |
| connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_ENABLED; |
| schedule_work(&connector->hdcp_prop_work); |
| schedule_delayed_work(&connector->hdcp_check_work, |
| DRM_HDCP_CHECK_PERIOD_MS); |
| out: |
| mutex_unlock(&connector->hdcp_mutex); |
| return ret; |
| } |
| |
| int intel_hdcp_disable(struct intel_connector *connector) |
| { |
| int ret = 0; |
| |
| if (!connector->hdcp_shim) |
| return -ENOENT; |
| |
| mutex_lock(&connector->hdcp_mutex); |
| |
| if (connector->hdcp_value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) { |
| connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_UNDESIRED; |
| ret = _intel_hdcp_disable(connector); |
| } |
| |
| mutex_unlock(&connector->hdcp_mutex); |
| cancel_delayed_work_sync(&connector->hdcp_check_work); |
| return ret; |
| } |
| |
| void intel_hdcp_atomic_check(struct drm_connector *connector, |
| struct drm_connector_state *old_state, |
| struct drm_connector_state *new_state) |
| { |
| uint64_t old_cp = old_state->content_protection; |
| uint64_t new_cp = new_state->content_protection; |
| struct drm_crtc_state *crtc_state; |
| |
| if (!new_state->crtc) { |
| /* |
| * If the connector is being disabled with CP enabled, mark it |
| * desired so it's re-enabled when the connector is brought back |
| */ |
| if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED) |
| new_state->content_protection = |
| DRM_MODE_CONTENT_PROTECTION_DESIRED; |
| return; |
| } |
| |
| /* |
| * Nothing to do if the state didn't change, or HDCP was activated since |
| * the last commit |
| */ |
| if (old_cp == new_cp || |
| (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED && |
| new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) |
| return; |
| |
| crtc_state = drm_atomic_get_new_crtc_state(new_state->state, |
| new_state->crtc); |
| crtc_state->mode_changed = true; |
| } |
| |
| /* Implements Part 3 of the HDCP authorization procedure */ |
| int intel_hdcp_check_link(struct intel_connector *connector) |
| { |
| struct drm_i915_private *dev_priv = connector->base.dev->dev_private; |
| struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector); |
| enum port port = intel_dig_port->base.port; |
| int ret = 0; |
| |
| if (!connector->hdcp_shim) |
| return -ENOENT; |
| |
| mutex_lock(&connector->hdcp_mutex); |
| |
| if (connector->hdcp_value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED) |
| goto out; |
| |
| if (!(I915_READ(PORT_HDCP_STATUS(port)) & HDCP_STATUS_ENC)) { |
| DRM_ERROR("%s:%d HDCP check failed: link is not encrypted,%x\n", |
| connector->base.name, connector->base.base.id, |
| I915_READ(PORT_HDCP_STATUS(port))); |
| ret = -ENXIO; |
| connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_DESIRED; |
| schedule_work(&connector->hdcp_prop_work); |
| goto out; |
| } |
| |
| if (connector->hdcp_shim->check_link(intel_dig_port)) { |
| if (connector->hdcp_value != |
| DRM_MODE_CONTENT_PROTECTION_UNDESIRED) { |
| connector->hdcp_value = |
| DRM_MODE_CONTENT_PROTECTION_ENABLED; |
| schedule_work(&connector->hdcp_prop_work); |
| } |
| goto out; |
| } |
| |
| DRM_DEBUG_KMS("[%s:%d] HDCP link failed, retrying authentication\n", |
| connector->base.name, connector->base.base.id); |
| |
| ret = _intel_hdcp_disable(connector); |
| if (ret) { |
| DRM_ERROR("Failed to disable hdcp (%d)\n", ret); |
| connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_DESIRED; |
| schedule_work(&connector->hdcp_prop_work); |
| goto out; |
| } |
| |
| ret = _intel_hdcp_enable(connector); |
| if (ret) { |
| DRM_ERROR("Failed to enable hdcp (%d)\n", ret); |
| connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_DESIRED; |
| schedule_work(&connector->hdcp_prop_work); |
| goto out; |
| } |
| |
| out: |
| mutex_unlock(&connector->hdcp_mutex); |
| return ret; |
| } |