blob: 0cc6a861bcf83ece9f4a317dd9581dd9741ecf81 [file] [log] [blame]
/* SPDX-License-Identifier: MIT */
/*
* Copyright (C) 2017 Google, Inc.
*
* Authors:
* Sean Paul <seanpaul@chromium.org>
*/
#include <drm/drmP.h>
#include <drm/drm_hdcp.h>
#include <linux/i2c.h>
#include <linux/random.h>
#include "intel_drv.h"
#include "i915_reg.h"
#define KEY_LOAD_TRIES 5
static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *intel_dig_port,
const struct intel_hdcp_shim *shim)
{
int ret, read_ret;
bool ksv_ready;
/* Poll for ksv list ready (spec says max time allowed is 5s) */
ret = __wait_for(read_ret = shim->read_ksv_ready(intel_dig_port,
&ksv_ready),
read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
100 * 1000);
if (ret)
return ret;
if (read_ret)
return read_ret;
if (!ksv_ready)
return -ETIMEDOUT;
return 0;
}
static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *power_well;
enum i915_power_well_id id;
bool enabled = false;
/*
* On HSW and BDW, Display HW loads the Key as soon as Display resumes.
* On all BXT+, SW can load the keys only when the PW#1 is turned on.
*/
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
id = HSW_DISP_PW_GLOBAL;
else
id = SKL_DISP_PW_1;
mutex_lock(&power_domains->lock);
/* PG1 (power well #1) needs to be enabled */
for_each_power_well(dev_priv, power_well) {
if (power_well->id == id) {
enabled = power_well->ops->is_enabled(dev_priv,
power_well);
break;
}
}
mutex_unlock(&power_domains->lock);
/*
* Another req for hdcp key loadability is enabled state of pll for
* cdclk. Without active crtc we wont land here. So we are assuming that
* cdclk is already on.
*/
return enabled;
}
static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
{
I915_WRITE(HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
I915_WRITE(HDCP_KEY_STATUS, HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS |
HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
}
static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
{
int ret;
u32 val;
val = I915_READ(HDCP_KEY_STATUS);
if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
return 0;
/*
* On HSW and BDW HW loads the HDCP1.4 Key when Display comes
* out of reset. So if Key is not already loaded, its an error state.
*/
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
if (!(I915_READ(HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
return -ENXIO;
/*
* Initiate loading the HDCP key from fuses.
*
* BXT+ platforms, HDCP key needs to be loaded by SW. Only SKL and KBL
* differ in the key load trigger process from other platforms.
*/
if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
mutex_lock(&dev_priv->pcu_lock);
ret = sandybridge_pcode_write(dev_priv,
SKL_PCODE_LOAD_HDCP_KEYS, 1);
mutex_unlock(&dev_priv->pcu_lock);
if (ret) {
DRM_ERROR("Failed to initiate HDCP key load (%d)\n",
ret);
return ret;
}
} else {
I915_WRITE(HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
}
/* Wait for the keys to load (500us) */
ret = __intel_wait_for_register(dev_priv, HDCP_KEY_STATUS,
HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
10, 1, &val);
if (ret)
return ret;
else if (!(val & HDCP_KEY_LOAD_STATUS))
return -ENXIO;
/* Send Aksv over to PCH display for use in authentication */
I915_WRITE(HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
return 0;
}
/* Returns updated SHA-1 index */
static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
{
I915_WRITE(HDCP_SHA_TEXT, sha_text);
if (intel_wait_for_register(dev_priv, HDCP_REP_CTL,
HDCP_SHA1_READY, HDCP_SHA1_READY, 1)) {
DRM_ERROR("Timed out waiting for SHA1 ready\n");
return -ETIMEDOUT;
}
return 0;
}
static
u32 intel_hdcp_get_repeater_ctl(struct intel_digital_port *intel_dig_port)
{
enum port port = intel_dig_port->base.port;
switch (port) {
case PORT_A:
return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
case PORT_B:
return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
case PORT_C:
return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
case PORT_D:
return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
case PORT_E:
return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
default:
break;
}
DRM_ERROR("Unknown port %d\n", port);
return -EINVAL;
}
static
bool intel_hdcp_is_ksv_valid(u8 *ksv)
{
int i, ones = 0;
/* KSV has 20 1's and 20 0's */
for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
ones += hweight8(ksv[i]);
if (ones != 20)
return false;
return true;
}
static
int intel_hdcp_validate_v_prime(struct intel_digital_port *intel_dig_port,
const struct intel_hdcp_shim *shim,
u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
{
struct drm_i915_private *dev_priv;
u32 vprime, sha_text, sha_leftovers, rep_ctl;
int ret, i, j, sha_idx;
dev_priv = intel_dig_port->base.base.dev->dev_private;
/* Process V' values from the receiver */
for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
ret = shim->read_v_prime_part(intel_dig_port, i, &vprime);
if (ret)
return ret;
I915_WRITE(HDCP_SHA_V_PRIME(i), vprime);
}
/*
* We need to write the concatenation of all device KSVs, BINFO (DP) ||
* BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
* stream is written via the HDCP_SHA_TEXT register in 32-bit
* increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
* index will keep track of our progress through the 64 bytes as well as
* helping us work the 40-bit KSVs through our 32-bit register.
*
* NOTE: data passed via HDCP_SHA_TEXT should be big-endian
*/
sha_idx = 0;
sha_text = 0;
sha_leftovers = 0;
rep_ctl = intel_hdcp_get_repeater_ctl(intel_dig_port);
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
for (i = 0; i < num_downstream; i++) {
unsigned int sha_empty;
u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
/* Fill up the empty slots in sha_text and write it out */
sha_empty = sizeof(sha_text) - sha_leftovers;
for (j = 0; j < sha_empty; j++)
sha_text |= ksv[j] << ((sizeof(sha_text) - j - 1) * 8);
ret = intel_write_sha_text(dev_priv, sha_text);
if (ret < 0)
return ret;
/* Programming guide writes this every 64 bytes */
sha_idx += sizeof(sha_text);
if (!(sha_idx % 64))
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
/* Store the leftover bytes from the ksv in sha_text */
sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
sha_text = 0;
for (j = 0; j < sha_leftovers; j++)
sha_text |= ksv[sha_empty + j] <<
((sizeof(sha_text) - j - 1) * 8);
/*
* If we still have room in sha_text for more data, continue.
* Otherwise, write it out immediately.
*/
if (sizeof(sha_text) > sha_leftovers)
continue;
ret = intel_write_sha_text(dev_priv, sha_text);
if (ret < 0)
return ret;
sha_leftovers = 0;
sha_text = 0;
sha_idx += sizeof(sha_text);
}
/*
* We need to write BINFO/BSTATUS, and M0 now. Depending on how many
* bytes are leftover from the last ksv, we might be able to fit them
* all in sha_text (first 2 cases), or we might need to split them up
* into 2 writes (last 2 cases).
*/
if (sha_leftovers == 0) {
/* Write 16 bits of text, 16 bits of M0 */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
ret = intel_write_sha_text(dev_priv,
bstatus[0] << 8 | bstatus[1]);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 32 bits of M0 */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 16 bits of M0 */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
} else if (sha_leftovers == 1) {
/* Write 24 bits of text, 8 bits of M0 */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
/* Only 24-bits of data, must be in the LSB */
sha_text = (sha_text & 0xffffff00) >> 8;
ret = intel_write_sha_text(dev_priv, sha_text);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 32 bits of M0 */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 24 bits of M0 */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
} else if (sha_leftovers == 2) {
/* Write 32 bits of text */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
sha_text |= bstatus[0] << 24 | bstatus[1] << 16;
ret = intel_write_sha_text(dev_priv, sha_text);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 64 bits of M0 */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
for (i = 0; i < 2; i++) {
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
}
} else if (sha_leftovers == 3) {
/* Write 32 bits of text */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
sha_text |= bstatus[0] << 24;
ret = intel_write_sha_text(dev_priv, sha_text);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 8 bits of text, 24 bits of M0 */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
ret = intel_write_sha_text(dev_priv, bstatus[1]);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 32 bits of M0 */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 8 bits of M0 */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
} else {
DRM_DEBUG_KMS("Invalid number of leftovers %d\n",
sha_leftovers);
return -EINVAL;
}
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
}
/*
* Last write gets the length of the concatenation in bits. That is:
* - 5 bytes per device
* - 10 bytes for BINFO/BSTATUS(2), M0(8)
*/
sha_text = (num_downstream * 5 + 10) * 8;
ret = intel_write_sha_text(dev_priv, sha_text);
if (ret < 0)
return ret;
/* Tell the HW we're done with the hash and wait for it to ACK */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_COMPLETE_HASH);
if (intel_wait_for_register(dev_priv, HDCP_REP_CTL,
HDCP_SHA1_COMPLETE,
HDCP_SHA1_COMPLETE, 1)) {
DRM_DEBUG_KMS("Timed out waiting for SHA1 complete\n");
return -ETIMEDOUT;
}
if (!(I915_READ(HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
DRM_DEBUG_KMS("SHA-1 mismatch, HDCP failed\n");
return -ENXIO;
}
return 0;
}
/* Implements Part 2 of the HDCP authorization procedure */
static
int intel_hdcp_auth_downstream(struct intel_digital_port *intel_dig_port,
const struct intel_hdcp_shim *shim)
{
u8 bstatus[2], num_downstream, *ksv_fifo;
int ret, i, tries = 3;
ret = intel_hdcp_poll_ksv_fifo(intel_dig_port, shim);
if (ret) {
DRM_ERROR("KSV list failed to become ready (%d)\n", ret);
return ret;
}
ret = shim->read_bstatus(intel_dig_port, bstatus);
if (ret)
return ret;
if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
DRM_ERROR("Max Topology Limit Exceeded\n");
return -EPERM;
}
/*
* When repeater reports 0 device count, HDCP1.4 spec allows disabling
* the HDCP encryption. That implies that repeater can't have its own
* display. As there is no consumption of encrypted content in the
* repeater with 0 downstream devices, we are failing the
* authentication.
*/
num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
if (num_downstream == 0)
return -EINVAL;
ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
if (!ksv_fifo)
return -ENOMEM;
ret = shim->read_ksv_fifo(intel_dig_port, num_downstream, ksv_fifo);
if (ret)
goto err;
/*
* When V prime mismatches, DP Spec mandates re-read of
* V prime atleast twice.
*/
for (i = 0; i < tries; i++) {
ret = intel_hdcp_validate_v_prime(intel_dig_port, shim,
ksv_fifo, num_downstream,
bstatus);
if (!ret)
break;
}
if (i == tries) {
DRM_ERROR("V Prime validation failed.(%d)\n", ret);
goto err;
}
DRM_DEBUG_KMS("HDCP is enabled (%d downstream devices)\n",
num_downstream);
ret = 0;
err:
kfree(ksv_fifo);
return ret;
}
/* Implements Part 1 of the HDCP authorization procedure */
static int intel_hdcp_auth(struct intel_digital_port *intel_dig_port,
const struct intel_hdcp_shim *shim)
{
struct drm_i915_private *dev_priv;
enum port port;
unsigned long r0_prime_gen_start;
int ret, i, tries = 2;
union {
u32 reg[2];
u8 shim[DRM_HDCP_AN_LEN];
} an;
union {
u32 reg[2];
u8 shim[DRM_HDCP_KSV_LEN];
} bksv;
union {
u32 reg;
u8 shim[DRM_HDCP_RI_LEN];
} ri;
bool repeater_present, hdcp_capable;
dev_priv = intel_dig_port->base.base.dev->dev_private;
port = intel_dig_port->base.port;
/*
* Detects whether the display is HDCP capable. Although we check for
* valid Bksv below, the HDCP over DP spec requires that we check
* whether the display supports HDCP before we write An. For HDMI
* displays, this is not necessary.
*/
if (shim->hdcp_capable) {
ret = shim->hdcp_capable(intel_dig_port, &hdcp_capable);
if (ret)
return ret;
if (!hdcp_capable) {
DRM_ERROR("Panel is not HDCP capable\n");
return -EINVAL;
}
}
/* Initialize An with 2 random values and acquire it */
for (i = 0; i < 2; i++)
I915_WRITE(PORT_HDCP_ANINIT(port), get_random_u32());
I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_CAPTURE_AN);
/* Wait for An to be acquired */
if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port),
HDCP_STATUS_AN_READY,
HDCP_STATUS_AN_READY, 1)) {
DRM_ERROR("Timed out waiting for An\n");
return -ETIMEDOUT;
}
an.reg[0] = I915_READ(PORT_HDCP_ANLO(port));
an.reg[1] = I915_READ(PORT_HDCP_ANHI(port));
ret = shim->write_an_aksv(intel_dig_port, an.shim);
if (ret)
return ret;
r0_prime_gen_start = jiffies;
memset(&bksv, 0, sizeof(bksv));
/* HDCP spec states that we must retry the bksv if it is invalid */
for (i = 0; i < tries; i++) {
ret = shim->read_bksv(intel_dig_port, bksv.shim);
if (ret)
return ret;
if (intel_hdcp_is_ksv_valid(bksv.shim))
break;
}
if (i == tries) {
DRM_ERROR("HDCP failed, Bksv is invalid\n");
return -ENODEV;
}
I915_WRITE(PORT_HDCP_BKSVLO(port), bksv.reg[0]);
I915_WRITE(PORT_HDCP_BKSVHI(port), bksv.reg[1]);
ret = shim->repeater_present(intel_dig_port, &repeater_present);
if (ret)
return ret;
if (repeater_present)
I915_WRITE(HDCP_REP_CTL,
intel_hdcp_get_repeater_ctl(intel_dig_port));
ret = shim->toggle_signalling(intel_dig_port, true);
if (ret)
return ret;
I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_AUTH_AND_ENC);
/* Wait for R0 ready */
if (wait_for(I915_READ(PORT_HDCP_STATUS(port)) &
(HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
DRM_ERROR("Timed out waiting for R0 ready\n");
return -ETIMEDOUT;
}
/*
* Wait for R0' to become available. The spec says 100ms from Aksv, but
* some monitors can take longer than this. We'll set the timeout at
* 300ms just to be sure.
*
* On DP, there's an R0_READY bit available but no such bit
* exists on HDMI. Since the upper-bound is the same, we'll just do
* the stupid thing instead of polling on one and not the other.
*/
wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
tries = 3;
/*
* DP HDCP Spec mandates the two more reattempt to read R0, incase
* of R0 mismatch.
*/
for (i = 0; i < tries; i++) {
ri.reg = 0;
ret = shim->read_ri_prime(intel_dig_port, ri.shim);
if (ret)
return ret;
I915_WRITE(PORT_HDCP_RPRIME(port), ri.reg);
/* Wait for Ri prime match */
if (!wait_for(I915_READ(PORT_HDCP_STATUS(port)) &
(HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
break;
}
if (i == tries) {
DRM_ERROR("Timed out waiting for Ri prime match (%x)\n",
I915_READ(PORT_HDCP_STATUS(port)));
return -ETIMEDOUT;
}
/* Wait for encryption confirmation */
if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port),
HDCP_STATUS_ENC, HDCP_STATUS_ENC, 20)) {
DRM_ERROR("Timed out waiting for encryption\n");
return -ETIMEDOUT;
}
/*
* XXX: If we have MST-connected devices, we need to enable encryption
* on those as well.
*/
if (repeater_present)
return intel_hdcp_auth_downstream(intel_dig_port, shim);
DRM_DEBUG_KMS("HDCP is enabled (no repeater present)\n");
return 0;
}
static
struct intel_digital_port *conn_to_dig_port(struct intel_connector *connector)
{
return enc_to_dig_port(&intel_attached_encoder(&connector->base)->base);
}
static int _intel_hdcp_disable(struct intel_connector *connector)
{
struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
enum port port = intel_dig_port->base.port;
int ret;
DRM_DEBUG_KMS("[%s:%d] HDCP is being disabled...\n",
connector->base.name, connector->base.base.id);
I915_WRITE(PORT_HDCP_CONF(port), 0);
if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port), ~0, 0,
20)) {
DRM_ERROR("Failed to disable HDCP, timeout clearing status\n");
return -ETIMEDOUT;
}
ret = connector->hdcp_shim->toggle_signalling(intel_dig_port, false);
if (ret) {
DRM_ERROR("Failed to disable HDCP signalling\n");
return ret;
}
DRM_DEBUG_KMS("HDCP is disabled\n");
return 0;
}
static int _intel_hdcp_enable(struct intel_connector *connector)
{
struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
int i, ret, tries = 3;
DRM_DEBUG_KMS("[%s:%d] HDCP is being enabled...\n",
connector->base.name, connector->base.base.id);
if (!hdcp_key_loadable(dev_priv)) {
DRM_ERROR("HDCP key Load is not possible\n");
return -ENXIO;
}
for (i = 0; i < KEY_LOAD_TRIES; i++) {
ret = intel_hdcp_load_keys(dev_priv);
if (!ret)
break;
intel_hdcp_clear_keys(dev_priv);
}
if (ret) {
DRM_ERROR("Could not load HDCP keys, (%d)\n", ret);
return ret;
}
/* Incase of authentication failures, HDCP spec expects reauth. */
for (i = 0; i < tries; i++) {
ret = intel_hdcp_auth(conn_to_dig_port(connector),
connector->hdcp_shim);
if (!ret)
return 0;
DRM_DEBUG_KMS("HDCP Auth failure (%d)\n", ret);
/* Ensuring HDCP encryption and signalling are stopped. */
_intel_hdcp_disable(connector);
}
DRM_ERROR("HDCP authentication failed (%d tries/%d)\n", tries, ret);
return ret;
}
static void intel_hdcp_check_work(struct work_struct *work)
{
struct intel_connector *connector = container_of(to_delayed_work(work),
struct intel_connector,
hdcp_check_work);
if (!intel_hdcp_check_link(connector))
schedule_delayed_work(&connector->hdcp_check_work,
DRM_HDCP_CHECK_PERIOD_MS);
}
static void intel_hdcp_prop_work(struct work_struct *work)
{
struct intel_connector *connector = container_of(work,
struct intel_connector,
hdcp_prop_work);
struct drm_device *dev = connector->base.dev;
struct drm_connector_state *state;
drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
mutex_lock(&connector->hdcp_mutex);
/*
* This worker is only used to flip between ENABLED/DESIRED. Either of
* those to UNDESIRED is handled by core. If hdcp_value == UNDESIRED,
* we're running just after hdcp has been disabled, so just exit
*/
if (connector->hdcp_value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
state = connector->base.state;
state->content_protection = connector->hdcp_value;
}
mutex_unlock(&connector->hdcp_mutex);
drm_modeset_unlock(&dev->mode_config.connection_mutex);
}
bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
{
/* PORT E doesn't have HDCP, and PORT F is disabled */
return ((INTEL_GEN(dev_priv) >= 8 || IS_HASWELL(dev_priv)) &&
!IS_CHERRYVIEW(dev_priv) && port < PORT_E);
}
int intel_hdcp_init(struct intel_connector *connector,
const struct intel_hdcp_shim *hdcp_shim)
{
int ret;
ret = drm_connector_attach_content_protection_property(
&connector->base);
if (ret)
return ret;
connector->hdcp_shim = hdcp_shim;
mutex_init(&connector->hdcp_mutex);
INIT_DELAYED_WORK(&connector->hdcp_check_work, intel_hdcp_check_work);
INIT_WORK(&connector->hdcp_prop_work, intel_hdcp_prop_work);
return 0;
}
int intel_hdcp_enable(struct intel_connector *connector)
{
int ret;
if (!connector->hdcp_shim)
return -ENOENT;
mutex_lock(&connector->hdcp_mutex);
ret = _intel_hdcp_enable(connector);
if (ret)
goto out;
connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
schedule_work(&connector->hdcp_prop_work);
schedule_delayed_work(&connector->hdcp_check_work,
DRM_HDCP_CHECK_PERIOD_MS);
out:
mutex_unlock(&connector->hdcp_mutex);
return ret;
}
int intel_hdcp_disable(struct intel_connector *connector)
{
int ret = 0;
if (!connector->hdcp_shim)
return -ENOENT;
mutex_lock(&connector->hdcp_mutex);
if (connector->hdcp_value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_UNDESIRED;
ret = _intel_hdcp_disable(connector);
}
mutex_unlock(&connector->hdcp_mutex);
cancel_delayed_work_sync(&connector->hdcp_check_work);
return ret;
}
void intel_hdcp_atomic_check(struct drm_connector *connector,
struct drm_connector_state *old_state,
struct drm_connector_state *new_state)
{
uint64_t old_cp = old_state->content_protection;
uint64_t new_cp = new_state->content_protection;
struct drm_crtc_state *crtc_state;
if (!new_state->crtc) {
/*
* If the connector is being disabled with CP enabled, mark it
* desired so it's re-enabled when the connector is brought back
*/
if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
new_state->content_protection =
DRM_MODE_CONTENT_PROTECTION_DESIRED;
return;
}
/*
* Nothing to do if the state didn't change, or HDCP was activated since
* the last commit
*/
if (old_cp == new_cp ||
(old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED))
return;
crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
new_state->crtc);
crtc_state->mode_changed = true;
}
/* Implements Part 3 of the HDCP authorization procedure */
int intel_hdcp_check_link(struct intel_connector *connector)
{
struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
enum port port = intel_dig_port->base.port;
int ret = 0;
if (!connector->hdcp_shim)
return -ENOENT;
mutex_lock(&connector->hdcp_mutex);
if (connector->hdcp_value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
goto out;
if (!(I915_READ(PORT_HDCP_STATUS(port)) & HDCP_STATUS_ENC)) {
DRM_ERROR("%s:%d HDCP check failed: link is not encrypted,%x\n",
connector->base.name, connector->base.base.id,
I915_READ(PORT_HDCP_STATUS(port)));
ret = -ENXIO;
connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
schedule_work(&connector->hdcp_prop_work);
goto out;
}
if (connector->hdcp_shim->check_link(intel_dig_port)) {
if (connector->hdcp_value !=
DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
connector->hdcp_value =
DRM_MODE_CONTENT_PROTECTION_ENABLED;
schedule_work(&connector->hdcp_prop_work);
}
goto out;
}
DRM_DEBUG_KMS("[%s:%d] HDCP link failed, retrying authentication\n",
connector->base.name, connector->base.base.id);
ret = _intel_hdcp_disable(connector);
if (ret) {
DRM_ERROR("Failed to disable hdcp (%d)\n", ret);
connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
schedule_work(&connector->hdcp_prop_work);
goto out;
}
ret = _intel_hdcp_enable(connector);
if (ret) {
DRM_ERROR("Failed to enable hdcp (%d)\n", ret);
connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
schedule_work(&connector->hdcp_prop_work);
goto out;
}
out:
mutex_unlock(&connector->hdcp_mutex);
return ret;
}