blob: 86c699c14f849aca6b5f21caab966b4432ddbc05 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2017 Marvell
*
* Antoine Tenart <antoine.tenart@free-electrons.com>
*/
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/firmware.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/workqueue.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>
#include "safexcel.h"
static u32 max_rings = EIP197_MAX_RINGS;
module_param(max_rings, uint, 0644);
MODULE_PARM_DESC(max_rings, "Maximum number of rings to use.");
static void eip197_trc_cache_init(struct safexcel_crypto_priv *priv)
{
u32 val, htable_offset;
int i, cs_rc_max, cs_ht_wc, cs_trc_rec_wc, cs_trc_lg_rec_wc;
if (priv->version == EIP197B) {
cs_rc_max = EIP197B_CS_RC_MAX;
cs_ht_wc = EIP197B_CS_HT_WC;
cs_trc_rec_wc = EIP197B_CS_TRC_REC_WC;
cs_trc_lg_rec_wc = EIP197B_CS_TRC_LG_REC_WC;
} else {
cs_rc_max = EIP197D_CS_RC_MAX;
cs_ht_wc = EIP197D_CS_HT_WC;
cs_trc_rec_wc = EIP197D_CS_TRC_REC_WC;
cs_trc_lg_rec_wc = EIP197D_CS_TRC_LG_REC_WC;
}
/* Enable the record cache memory access */
val = readl(priv->base + EIP197_CS_RAM_CTRL);
val &= ~EIP197_TRC_ENABLE_MASK;
val |= EIP197_TRC_ENABLE_0;
writel(val, priv->base + EIP197_CS_RAM_CTRL);
/* Clear all ECC errors */
writel(0, priv->base + EIP197_TRC_ECCCTRL);
/*
* Make sure the cache memory is accessible by taking record cache into
* reset.
*/
val = readl(priv->base + EIP197_TRC_PARAMS);
val |= EIP197_TRC_PARAMS_SW_RESET;
val &= ~EIP197_TRC_PARAMS_DATA_ACCESS;
writel(val, priv->base + EIP197_TRC_PARAMS);
/* Clear all records */
for (i = 0; i < cs_rc_max; i++) {
u32 val, offset = EIP197_CLASSIFICATION_RAMS + i * EIP197_CS_RC_SIZE;
writel(EIP197_CS_RC_NEXT(EIP197_RC_NULL) |
EIP197_CS_RC_PREV(EIP197_RC_NULL),
priv->base + offset);
val = EIP197_CS_RC_NEXT(i+1) | EIP197_CS_RC_PREV(i-1);
if (i == 0)
val |= EIP197_CS_RC_PREV(EIP197_RC_NULL);
else if (i == cs_rc_max - 1)
val |= EIP197_CS_RC_NEXT(EIP197_RC_NULL);
writel(val, priv->base + offset + sizeof(u32));
}
/* Clear the hash table entries */
htable_offset = cs_rc_max * EIP197_CS_RC_SIZE;
for (i = 0; i < cs_ht_wc; i++)
writel(GENMASK(29, 0),
priv->base + EIP197_CLASSIFICATION_RAMS + htable_offset + i * sizeof(u32));
/* Disable the record cache memory access */
val = readl(priv->base + EIP197_CS_RAM_CTRL);
val &= ~EIP197_TRC_ENABLE_MASK;
writel(val, priv->base + EIP197_CS_RAM_CTRL);
/* Write head and tail pointers of the record free chain */
val = EIP197_TRC_FREECHAIN_HEAD_PTR(0) |
EIP197_TRC_FREECHAIN_TAIL_PTR(cs_rc_max - 1);
writel(val, priv->base + EIP197_TRC_FREECHAIN);
/* Configure the record cache #1 */
val = EIP197_TRC_PARAMS2_RC_SZ_SMALL(cs_trc_rec_wc) |
EIP197_TRC_PARAMS2_HTABLE_PTR(cs_rc_max);
writel(val, priv->base + EIP197_TRC_PARAMS2);
/* Configure the record cache #2 */
val = EIP197_TRC_PARAMS_RC_SZ_LARGE(cs_trc_lg_rec_wc) |
EIP197_TRC_PARAMS_BLK_TIMER_SPEED(1) |
EIP197_TRC_PARAMS_HTABLE_SZ(2);
writel(val, priv->base + EIP197_TRC_PARAMS);
}
static void eip197_write_firmware(struct safexcel_crypto_priv *priv,
const struct firmware *fw, int pe, u32 ctrl,
u32 prog_en)
{
const u32 *data = (const u32 *)fw->data;
u32 val;
int i;
/* Reset the engine to make its program memory accessible */
writel(EIP197_PE_ICE_x_CTRL_SW_RESET |
EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR |
EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR,
EIP197_PE(priv) + ctrl);
/* Enable access to the program memory */
writel(prog_en, EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe));
/* Write the firmware */
for (i = 0; i < fw->size / sizeof(u32); i++)
writel(be32_to_cpu(data[i]),
priv->base + EIP197_CLASSIFICATION_RAMS + i * sizeof(u32));
/* Disable access to the program memory */
writel(0, EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe));
/* Release engine from reset */
val = readl(EIP197_PE(priv) + ctrl);
val &= ~EIP197_PE_ICE_x_CTRL_SW_RESET;
writel(val, EIP197_PE(priv) + ctrl);
}
static int eip197_load_firmwares(struct safexcel_crypto_priv *priv)
{
const char *fw_name[] = {"ifpp.bin", "ipue.bin"};
const struct firmware *fw[FW_NB];
char fw_path[31], *dir = NULL;
int i, j, ret = 0, pe;
u32 val;
switch (priv->version) {
case EIP197B:
dir = "eip197b";
break;
case EIP197D:
dir = "eip197d";
break;
default:
/* No firmware is required */
return 0;
}
for (i = 0; i < FW_NB; i++) {
snprintf(fw_path, 31, "inside-secure/%s/%s", dir, fw_name[i]);
ret = request_firmware(&fw[i], fw_path, priv->dev);
if (ret) {
if (priv->version != EIP197B)
goto release_fw;
/* Fallback to the old firmware location for the
* EIP197b.
*/
ret = request_firmware(&fw[i], fw_name[i], priv->dev);
if (ret) {
dev_err(priv->dev,
"Failed to request firmware %s (%d)\n",
fw_name[i], ret);
goto release_fw;
}
}
}
for (pe = 0; pe < priv->config.pes; pe++) {
/* Clear the scratchpad memory */
val = readl(EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe));
val |= EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_TIMER |
EIP197_PE_ICE_SCRATCH_CTRL_TIMER_EN |
EIP197_PE_ICE_SCRATCH_CTRL_SCRATCH_ACCESS |
EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_ACCESS;
writel(val, EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe));
memset_io(EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_RAM(pe), 0,
EIP197_NUM_OF_SCRATCH_BLOCKS * sizeof(u32));
eip197_write_firmware(priv, fw[FW_IFPP], pe,
EIP197_PE_ICE_FPP_CTRL(pe),
EIP197_PE_ICE_RAM_CTRL_FPP_PROG_EN);
eip197_write_firmware(priv, fw[FW_IPUE], pe,
EIP197_PE_ICE_PUE_CTRL(pe),
EIP197_PE_ICE_RAM_CTRL_PUE_PROG_EN);
}
release_fw:
for (j = 0; j < i; j++)
release_firmware(fw[j]);
return ret;
}
static int safexcel_hw_setup_cdesc_rings(struct safexcel_crypto_priv *priv)
{
u32 hdw, cd_size_rnd, val;
int i;
hdw = readl(EIP197_HIA_AIC_G(priv) + EIP197_HIA_OPTIONS);
hdw &= GENMASK(27, 25);
hdw >>= 25;
cd_size_rnd = (priv->config.cd_size + (BIT(hdw) - 1)) >> hdw;
for (i = 0; i < priv->config.rings; i++) {
/* ring base address */
writel(lower_32_bits(priv->ring[i].cdr.base_dma),
EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
writel(upper_32_bits(priv->ring[i].cdr.base_dma),
EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
writel(EIP197_xDR_DESC_MODE_64BIT | (priv->config.cd_offset << 16) |
priv->config.cd_size,
EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE);
writel(((EIP197_FETCH_COUNT * (cd_size_rnd << hdw)) << 16) |
(EIP197_FETCH_COUNT * priv->config.cd_offset),
EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG);
/* Configure DMA tx control */
val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS);
val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS);
writel(val, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DMA_CFG);
/* clear any pending interrupt */
writel(GENMASK(5, 0),
EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT);
}
return 0;
}
static int safexcel_hw_setup_rdesc_rings(struct safexcel_crypto_priv *priv)
{
u32 hdw, rd_size_rnd, val;
int i;
hdw = readl(EIP197_HIA_AIC_G(priv) + EIP197_HIA_OPTIONS);
hdw &= GENMASK(27, 25);
hdw >>= 25;
rd_size_rnd = (priv->config.rd_size + (BIT(hdw) - 1)) >> hdw;
for (i = 0; i < priv->config.rings; i++) {
/* ring base address */
writel(lower_32_bits(priv->ring[i].rdr.base_dma),
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
writel(upper_32_bits(priv->ring[i].rdr.base_dma),
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
writel(EIP197_xDR_DESC_MODE_64BIT | (priv->config.rd_offset << 16) |
priv->config.rd_size,
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE);
writel(((EIP197_FETCH_COUNT * (rd_size_rnd << hdw)) << 16) |
(EIP197_FETCH_COUNT * priv->config.rd_offset),
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG);
/* Configure DMA tx control */
val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS);
val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS);
val |= EIP197_HIA_xDR_WR_RES_BUF | EIP197_HIA_xDR_WR_CTRL_BUF;
writel(val,
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DMA_CFG);
/* clear any pending interrupt */
writel(GENMASK(7, 0),
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT);
/* enable ring interrupt */
val = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i));
val |= EIP197_RDR_IRQ(i);
writel(val, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i));
}
return 0;
}
static int safexcel_hw_init(struct safexcel_crypto_priv *priv)
{
u32 version, val;
int i, ret, pe;
/* Determine endianess and configure byte swap */
version = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_VERSION);
val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
if ((version & 0xffff) == EIP197_HIA_VERSION_BE)
val |= EIP197_MST_CTRL_BYTE_SWAP;
else if (((version >> 16) & 0xffff) == EIP197_HIA_VERSION_LE)
val |= (EIP197_MST_CTRL_NO_BYTE_SWAP >> 24);
/* For EIP197 set maximum number of TX commands to 2^5 = 32 */
if (priv->version == EIP197B || priv->version == EIP197D)
val |= EIP197_MST_CTRL_TX_MAX_CMD(5);
writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
/* Configure wr/rd cache values */
writel(EIP197_MST_CTRL_RD_CACHE(RD_CACHE_4BITS) |
EIP197_MST_CTRL_WD_CACHE(WR_CACHE_4BITS),
EIP197_HIA_GEN_CFG(priv) + EIP197_MST_CTRL);
/* Interrupts reset */
/* Disable all global interrupts */
writel(0, EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ENABLE_CTRL);
/* Clear any pending interrupt */
writel(GENMASK(31, 0), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK);
/* Processing Engine configuration */
for (pe = 0; pe < priv->config.pes; pe++) {
/* Data Fetch Engine configuration */
/* Reset all DFE threads */
writel(EIP197_DxE_THR_CTRL_RESET_PE,
EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));
if (priv->version == EIP197B || priv->version == EIP197D) {
/* Reset HIA input interface arbiter */
writel(EIP197_HIA_RA_PE_CTRL_RESET,
EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe));
}
/* DMA transfer size to use */
val = EIP197_HIA_DFE_CFG_DIS_DEBUG;
val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(6) |
EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(9);
val |= EIP197_HIA_DxE_CFG_MIN_CTRL_SIZE(6) |
EIP197_HIA_DxE_CFG_MAX_CTRL_SIZE(7);
val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(RD_CACHE_3BITS);
val |= EIP197_HIA_DxE_CFG_CTRL_CACHE_CTRL(RD_CACHE_3BITS);
writel(val, EIP197_HIA_DFE(priv) + EIP197_HIA_DFE_CFG(pe));
/* Leave the DFE threads reset state */
writel(0, EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));
/* Configure the processing engine thresholds */
writel(EIP197_PE_IN_xBUF_THRES_MIN(6) |
EIP197_PE_IN_xBUF_THRES_MAX(9),
EIP197_PE(priv) + EIP197_PE_IN_DBUF_THRES(pe));
writel(EIP197_PE_IN_xBUF_THRES_MIN(6) |
EIP197_PE_IN_xBUF_THRES_MAX(7),
EIP197_PE(priv) + EIP197_PE_IN_TBUF_THRES(pe));
if (priv->version == EIP197B || priv->version == EIP197D) {
/* enable HIA input interface arbiter and rings */
writel(EIP197_HIA_RA_PE_CTRL_EN |
GENMASK(priv->config.rings - 1, 0),
EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe));
}
/* Data Store Engine configuration */
/* Reset all DSE threads */
writel(EIP197_DxE_THR_CTRL_RESET_PE,
EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));
/* Wait for all DSE threads to complete */
while ((readl(EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_STAT(pe)) &
GENMASK(15, 12)) != GENMASK(15, 12))
;
/* DMA transfer size to use */
val = EIP197_HIA_DSE_CFG_DIS_DEBUG;
val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(7) |
EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(8);
val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(WR_CACHE_3BITS);
val |= EIP197_HIA_DSE_CFG_ALWAYS_BUFFERABLE;
/* FIXME: instability issues can occur for EIP97 but disabling it impact
* performances.
*/
if (priv->version == EIP197B || priv->version == EIP197D)
val |= EIP197_HIA_DSE_CFG_EN_SINGLE_WR;
writel(val, EIP197_HIA_DSE(priv) + EIP197_HIA_DSE_CFG(pe));
/* Leave the DSE threads reset state */
writel(0, EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));
/* Configure the procesing engine thresholds */
writel(EIP197_PE_OUT_DBUF_THRES_MIN(7) |
EIP197_PE_OUT_DBUF_THRES_MAX(8),
EIP197_PE(priv) + EIP197_PE_OUT_DBUF_THRES(pe));
/* Processing Engine configuration */
/* H/W capabilities selection */
val = EIP197_FUNCTION_RSVD;
val |= EIP197_PROTOCOL_ENCRYPT_ONLY | EIP197_PROTOCOL_HASH_ONLY;
val |= EIP197_PROTOCOL_ENCRYPT_HASH | EIP197_PROTOCOL_HASH_DECRYPT;
val |= EIP197_ALG_DES_ECB | EIP197_ALG_DES_CBC;
val |= EIP197_ALG_3DES_ECB | EIP197_ALG_3DES_CBC;
val |= EIP197_ALG_AES_ECB | EIP197_ALG_AES_CBC;
val |= EIP197_ALG_MD5 | EIP197_ALG_HMAC_MD5;
val |= EIP197_ALG_SHA1 | EIP197_ALG_HMAC_SHA1;
val |= EIP197_ALG_SHA2 | EIP197_ALG_HMAC_SHA2;
writel(val, EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION_EN(pe));
}
/* Command Descriptor Rings prepare */
for (i = 0; i < priv->config.rings; i++) {
/* Clear interrupts for this ring */
writel(GENMASK(31, 0),
EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CLR(i));
/* Disable external triggering */
writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG);
/* Clear the pending prepared counter */
writel(EIP197_xDR_PREP_CLR_COUNT,
EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT);
/* Clear the pending processed counter */
writel(EIP197_xDR_PROC_CLR_COUNT,
EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT);
writel(0,
EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR);
writel(0,
EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR);
writel((EIP197_DEFAULT_RING_SIZE * priv->config.cd_offset) << 2,
EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_SIZE);
}
/* Result Descriptor Ring prepare */
for (i = 0; i < priv->config.rings; i++) {
/* Disable external triggering*/
writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG);
/* Clear the pending prepared counter */
writel(EIP197_xDR_PREP_CLR_COUNT,
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT);
/* Clear the pending processed counter */
writel(EIP197_xDR_PROC_CLR_COUNT,
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT);
writel(0,
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR);
writel(0,
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR);
/* Ring size */
writel((EIP197_DEFAULT_RING_SIZE * priv->config.rd_offset) << 2,
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_SIZE);
}
for (pe = 0; pe < priv->config.pes; pe++) {
/* Enable command descriptor rings */
writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0),
EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));
/* Enable result descriptor rings */
writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0),
EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));
}
/* Clear any HIA interrupt */
writel(GENMASK(30, 20), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK);
if (priv->version == EIP197B || priv->version == EIP197D) {
eip197_trc_cache_init(priv);
ret = eip197_load_firmwares(priv);
if (ret)
return ret;
}
safexcel_hw_setup_cdesc_rings(priv);
safexcel_hw_setup_rdesc_rings(priv);
return 0;
}
/* Called with ring's lock taken */
static void safexcel_try_push_requests(struct safexcel_crypto_priv *priv,
int ring)
{
int coal = min_t(int, priv->ring[ring].requests, EIP197_MAX_BATCH_SZ);
if (!coal)
return;
/* Configure when we want an interrupt */
writel(EIP197_HIA_RDR_THRESH_PKT_MODE |
EIP197_HIA_RDR_THRESH_PROC_PKT(coal),
EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_THRESH);
}
void safexcel_dequeue(struct safexcel_crypto_priv *priv, int ring)
{
struct crypto_async_request *req, *backlog;
struct safexcel_context *ctx;
int ret, nreq = 0, cdesc = 0, rdesc = 0, commands, results;
/* If a request wasn't properly dequeued because of a lack of resources,
* proceeded it first,
*/
req = priv->ring[ring].req;
backlog = priv->ring[ring].backlog;
if (req)
goto handle_req;
while (true) {
spin_lock_bh(&priv->ring[ring].queue_lock);
backlog = crypto_get_backlog(&priv->ring[ring].queue);
req = crypto_dequeue_request(&priv->ring[ring].queue);
spin_unlock_bh(&priv->ring[ring].queue_lock);
if (!req) {
priv->ring[ring].req = NULL;
priv->ring[ring].backlog = NULL;
goto finalize;
}
handle_req:
ctx = crypto_tfm_ctx(req->tfm);
ret = ctx->send(req, ring, &commands, &results);
if (ret)
goto request_failed;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
/* In case the send() helper did not issue any command to push
* to the engine because the input data was cached, continue to
* dequeue other requests as this is valid and not an error.
*/
if (!commands && !results)
continue;
cdesc += commands;
rdesc += results;
nreq++;
}
request_failed:
/* Not enough resources to handle all the requests. Bail out and save
* the request and the backlog for the next dequeue call (per-ring).
*/
priv->ring[ring].req = req;
priv->ring[ring].backlog = backlog;
finalize:
if (!nreq)
return;
spin_lock_bh(&priv->ring[ring].lock);
priv->ring[ring].requests += nreq;
if (!priv->ring[ring].busy) {
safexcel_try_push_requests(priv, ring);
priv->ring[ring].busy = true;
}
spin_unlock_bh(&priv->ring[ring].lock);
/* let the RDR know we have pending descriptors */
writel((rdesc * priv->config.rd_offset) << 2,
EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT);
/* let the CDR know we have pending descriptors */
writel((cdesc * priv->config.cd_offset) << 2,
EIP197_HIA_CDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT);
}
inline int safexcel_rdesc_check_errors(struct safexcel_crypto_priv *priv,
struct safexcel_result_desc *rdesc)
{
if (likely(!rdesc->result_data.error_code))
return 0;
if (rdesc->result_data.error_code & 0x407f) {
/* Fatal error (bits 0-7, 14) */
dev_err(priv->dev,
"cipher: result: result descriptor error (%d)\n",
rdesc->result_data.error_code);
return -EIO;
} else if (rdesc->result_data.error_code == BIT(9)) {
/* Authentication failed */
return -EBADMSG;
}
/* All other non-fatal errors */
return -EINVAL;
}
inline void safexcel_rdr_req_set(struct safexcel_crypto_priv *priv,
int ring,
struct safexcel_result_desc *rdesc,
struct crypto_async_request *req)
{
int i = safexcel_ring_rdr_rdesc_index(priv, ring, rdesc);
priv->ring[ring].rdr_req[i] = req;
}
inline struct crypto_async_request *
safexcel_rdr_req_get(struct safexcel_crypto_priv *priv, int ring)
{
int i = safexcel_ring_first_rdr_index(priv, ring);
return priv->ring[ring].rdr_req[i];
}
void safexcel_complete(struct safexcel_crypto_priv *priv, int ring)
{
struct safexcel_command_desc *cdesc;
/* Acknowledge the command descriptors */
do {
cdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].cdr);
if (IS_ERR(cdesc)) {
dev_err(priv->dev,
"Could not retrieve the command descriptor\n");
return;
}
} while (!cdesc->last_seg);
}
void safexcel_inv_complete(struct crypto_async_request *req, int error)
{
struct safexcel_inv_result *result = req->data;
if (error == -EINPROGRESS)
return;
result->error = error;
complete(&result->completion);
}
int safexcel_invalidate_cache(struct crypto_async_request *async,
struct safexcel_crypto_priv *priv,
dma_addr_t ctxr_dma, int ring)
{
struct safexcel_command_desc *cdesc;
struct safexcel_result_desc *rdesc;
int ret = 0;
/* Prepare command descriptor */
cdesc = safexcel_add_cdesc(priv, ring, true, true, 0, 0, 0, ctxr_dma);
if (IS_ERR(cdesc))
return PTR_ERR(cdesc);
cdesc->control_data.type = EIP197_TYPE_EXTENDED;
cdesc->control_data.options = 0;
cdesc->control_data.refresh = 0;
cdesc->control_data.control0 = CONTEXT_CONTROL_INV_TR;
/* Prepare result descriptor */
rdesc = safexcel_add_rdesc(priv, ring, true, true, 0, 0);
if (IS_ERR(rdesc)) {
ret = PTR_ERR(rdesc);
goto cdesc_rollback;
}
safexcel_rdr_req_set(priv, ring, rdesc, async);
return ret;
cdesc_rollback:
safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
return ret;
}
static inline void safexcel_handle_result_descriptor(struct safexcel_crypto_priv *priv,
int ring)
{
struct crypto_async_request *req;
struct safexcel_context *ctx;
int ret, i, nreq, ndesc, tot_descs, handled = 0;
bool should_complete;
handle_results:
tot_descs = 0;
nreq = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT);
nreq >>= EIP197_xDR_PROC_xD_PKT_OFFSET;
nreq &= EIP197_xDR_PROC_xD_PKT_MASK;
if (!nreq)
goto requests_left;
for (i = 0; i < nreq; i++) {
req = safexcel_rdr_req_get(priv, ring);
ctx = crypto_tfm_ctx(req->tfm);
ndesc = ctx->handle_result(priv, ring, req,
&should_complete, &ret);
if (ndesc < 0) {
dev_err(priv->dev, "failed to handle result (%d)", ndesc);
goto acknowledge;
}
if (should_complete) {
local_bh_disable();
req->complete(req, ret);
local_bh_enable();
}
tot_descs += ndesc;
handled++;
}
acknowledge:
if (i) {
writel(EIP197_xDR_PROC_xD_PKT(i) |
EIP197_xDR_PROC_xD_COUNT(tot_descs * priv->config.rd_offset),
EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT);
}
/* If the number of requests overflowed the counter, try to proceed more
* requests.
*/
if (nreq == EIP197_xDR_PROC_xD_PKT_MASK)
goto handle_results;
requests_left:
spin_lock_bh(&priv->ring[ring].lock);
priv->ring[ring].requests -= handled;
safexcel_try_push_requests(priv, ring);
if (!priv->ring[ring].requests)
priv->ring[ring].busy = false;
spin_unlock_bh(&priv->ring[ring].lock);
}
static void safexcel_dequeue_work(struct work_struct *work)
{
struct safexcel_work_data *data =
container_of(work, struct safexcel_work_data, work);
safexcel_dequeue(data->priv, data->ring);
}
struct safexcel_ring_irq_data {
struct safexcel_crypto_priv *priv;
int ring;
};
static irqreturn_t safexcel_irq_ring(int irq, void *data)
{
struct safexcel_ring_irq_data *irq_data = data;
struct safexcel_crypto_priv *priv = irq_data->priv;
int ring = irq_data->ring, rc = IRQ_NONE;
u32 status, stat;
status = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLED_STAT(ring));
if (!status)
return rc;
/* RDR interrupts */
if (status & EIP197_RDR_IRQ(ring)) {
stat = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT);
if (unlikely(stat & EIP197_xDR_ERR)) {
/*
* Fatal error, the RDR is unusable and must be
* reinitialized. This should not happen under
* normal circumstances.
*/
dev_err(priv->dev, "RDR: fatal error.");
} else if (likely(stat & EIP197_xDR_THRESH)) {
rc = IRQ_WAKE_THREAD;
}
/* ACK the interrupts */
writel(stat & 0xff,
EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT);
}
/* ACK the interrupts */
writel(status, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ACK(ring));
return rc;
}
static irqreturn_t safexcel_irq_ring_thread(int irq, void *data)
{
struct safexcel_ring_irq_data *irq_data = data;
struct safexcel_crypto_priv *priv = irq_data->priv;
int ring = irq_data->ring;
safexcel_handle_result_descriptor(priv, ring);
queue_work(priv->ring[ring].workqueue,
&priv->ring[ring].work_data.work);
return IRQ_HANDLED;
}
static int safexcel_request_ring_irq(struct platform_device *pdev, const char *name,
irq_handler_t handler,
irq_handler_t threaded_handler,
struct safexcel_ring_irq_data *ring_irq_priv)
{
int ret, irq = platform_get_irq_byname(pdev, name);
if (irq < 0) {
dev_err(&pdev->dev, "unable to get IRQ '%s'\n", name);
return irq;
}
ret = devm_request_threaded_irq(&pdev->dev, irq, handler,
threaded_handler, IRQF_ONESHOT,
dev_name(&pdev->dev), ring_irq_priv);
if (ret) {
dev_err(&pdev->dev, "unable to request IRQ %d\n", irq);
return ret;
}
return irq;
}
static struct safexcel_alg_template *safexcel_algs[] = {
&safexcel_alg_ecb_des,
&safexcel_alg_cbc_des,
&safexcel_alg_ecb_des3_ede,
&safexcel_alg_cbc_des3_ede,
&safexcel_alg_ecb_aes,
&safexcel_alg_cbc_aes,
&safexcel_alg_md5,
&safexcel_alg_sha1,
&safexcel_alg_sha224,
&safexcel_alg_sha256,
&safexcel_alg_sha384,
&safexcel_alg_sha512,
&safexcel_alg_hmac_md5,
&safexcel_alg_hmac_sha1,
&safexcel_alg_hmac_sha224,
&safexcel_alg_hmac_sha256,
&safexcel_alg_hmac_sha384,
&safexcel_alg_hmac_sha512,
&safexcel_alg_authenc_hmac_sha1_cbc_aes,
&safexcel_alg_authenc_hmac_sha224_cbc_aes,
&safexcel_alg_authenc_hmac_sha256_cbc_aes,
&safexcel_alg_authenc_hmac_sha384_cbc_aes,
&safexcel_alg_authenc_hmac_sha512_cbc_aes,
};
static int safexcel_register_algorithms(struct safexcel_crypto_priv *priv)
{
int i, j, ret = 0;
for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) {
safexcel_algs[i]->priv = priv;
if (!(safexcel_algs[i]->engines & priv->version))
continue;
if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
ret = crypto_register_skcipher(&safexcel_algs[i]->alg.skcipher);
else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD)
ret = crypto_register_aead(&safexcel_algs[i]->alg.aead);
else
ret = crypto_register_ahash(&safexcel_algs[i]->alg.ahash);
if (ret)
goto fail;
}
return 0;
fail:
for (j = 0; j < i; j++) {
if (!(safexcel_algs[j]->engines & priv->version))
continue;
if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
crypto_unregister_skcipher(&safexcel_algs[j]->alg.skcipher);
else if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_AEAD)
crypto_unregister_aead(&safexcel_algs[j]->alg.aead);
else
crypto_unregister_ahash(&safexcel_algs[j]->alg.ahash);
}
return ret;
}
static void safexcel_unregister_algorithms(struct safexcel_crypto_priv *priv)
{
int i;
for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) {
if (!(safexcel_algs[i]->engines & priv->version))
continue;
if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
crypto_unregister_skcipher(&safexcel_algs[i]->alg.skcipher);
else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD)
crypto_unregister_aead(&safexcel_algs[i]->alg.aead);
else
crypto_unregister_ahash(&safexcel_algs[i]->alg.ahash);
}
}
static void safexcel_configure(struct safexcel_crypto_priv *priv)
{
u32 val, mask = 0;
val = readl(EIP197_HIA_AIC_G(priv) + EIP197_HIA_OPTIONS);
/* Read number of PEs from the engine */
switch (priv->version) {
case EIP197B:
case EIP197D:
mask = EIP197_N_PES_MASK;
break;
default:
mask = EIP97_N_PES_MASK;
}
priv->config.pes = (val >> EIP197_N_PES_OFFSET) & mask;
val = (val & GENMASK(27, 25)) >> 25;
mask = BIT(val) - 1;
val = readl(EIP197_HIA_AIC_G(priv) + EIP197_HIA_OPTIONS);
priv->config.rings = min_t(u32, val & GENMASK(3, 0), max_rings);
priv->config.cd_size = (sizeof(struct safexcel_command_desc) / sizeof(u32));
priv->config.cd_offset = (priv->config.cd_size + mask) & ~mask;
priv->config.rd_size = (sizeof(struct safexcel_result_desc) / sizeof(u32));
priv->config.rd_offset = (priv->config.rd_size + mask) & ~mask;
}
static void safexcel_init_register_offsets(struct safexcel_crypto_priv *priv)
{
struct safexcel_register_offsets *offsets = &priv->offsets;
switch (priv->version) {
case EIP197B:
case EIP197D:
offsets->hia_aic = EIP197_HIA_AIC_BASE;
offsets->hia_aic_g = EIP197_HIA_AIC_G_BASE;
offsets->hia_aic_r = EIP197_HIA_AIC_R_BASE;
offsets->hia_aic_xdr = EIP197_HIA_AIC_xDR_BASE;
offsets->hia_dfe = EIP197_HIA_DFE_BASE;
offsets->hia_dfe_thr = EIP197_HIA_DFE_THR_BASE;
offsets->hia_dse = EIP197_HIA_DSE_BASE;
offsets->hia_dse_thr = EIP197_HIA_DSE_THR_BASE;
offsets->hia_gen_cfg = EIP197_HIA_GEN_CFG_BASE;
offsets->pe = EIP197_PE_BASE;
break;
case EIP97IES:
offsets->hia_aic = EIP97_HIA_AIC_BASE;
offsets->hia_aic_g = EIP97_HIA_AIC_G_BASE;
offsets->hia_aic_r = EIP97_HIA_AIC_R_BASE;
offsets->hia_aic_xdr = EIP97_HIA_AIC_xDR_BASE;
offsets->hia_dfe = EIP97_HIA_DFE_BASE;
offsets->hia_dfe_thr = EIP97_HIA_DFE_THR_BASE;
offsets->hia_dse = EIP97_HIA_DSE_BASE;
offsets->hia_dse_thr = EIP97_HIA_DSE_THR_BASE;
offsets->hia_gen_cfg = EIP97_HIA_GEN_CFG_BASE;
offsets->pe = EIP97_PE_BASE;
break;
}
}
static int safexcel_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct resource *res;
struct safexcel_crypto_priv *priv;
int i, ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
priv->version = (enum safexcel_eip_version)of_device_get_match_data(dev);
if (priv->version == EIP197B || priv->version == EIP197D)
priv->flags |= EIP197_TRC_CACHE;
safexcel_init_register_offsets(priv);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->base = devm_ioremap_resource(dev, res);
if (IS_ERR(priv->base)) {
dev_err(dev, "failed to get resource\n");
return PTR_ERR(priv->base);
}
priv->clk = devm_clk_get(&pdev->dev, NULL);
ret = PTR_ERR_OR_ZERO(priv->clk);
/* The clock isn't mandatory */
if (ret != -ENOENT) {
if (ret)
return ret;
ret = clk_prepare_enable(priv->clk);
if (ret) {
dev_err(dev, "unable to enable clk (%d)\n", ret);
return ret;
}
}
priv->reg_clk = devm_clk_get(&pdev->dev, "reg");
ret = PTR_ERR_OR_ZERO(priv->reg_clk);
/* The clock isn't mandatory */
if (ret != -ENOENT) {
if (ret)
goto err_core_clk;
ret = clk_prepare_enable(priv->reg_clk);
if (ret) {
dev_err(dev, "unable to enable reg clk (%d)\n", ret);
goto err_core_clk;
}
}
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
if (ret)
goto err_reg_clk;
priv->context_pool = dmam_pool_create("safexcel-context", dev,
sizeof(struct safexcel_context_record),
1, 0);
if (!priv->context_pool) {
ret = -ENOMEM;
goto err_reg_clk;
}
safexcel_configure(priv);
priv->ring = devm_kcalloc(dev, priv->config.rings,
sizeof(*priv->ring),
GFP_KERNEL);
if (!priv->ring) {
ret = -ENOMEM;
goto err_reg_clk;
}
for (i = 0; i < priv->config.rings; i++) {
char irq_name[6] = {0}; /* "ringX\0" */
char wq_name[9] = {0}; /* "wq_ringX\0" */
int irq;
struct safexcel_ring_irq_data *ring_irq;
ret = safexcel_init_ring_descriptors(priv,
&priv->ring[i].cdr,
&priv->ring[i].rdr);
if (ret)
goto err_reg_clk;
priv->ring[i].rdr_req = devm_kcalloc(dev,
EIP197_DEFAULT_RING_SIZE,
sizeof(priv->ring[i].rdr_req),
GFP_KERNEL);
if (!priv->ring[i].rdr_req) {
ret = -ENOMEM;
goto err_reg_clk;
}
ring_irq = devm_kzalloc(dev, sizeof(*ring_irq), GFP_KERNEL);
if (!ring_irq) {
ret = -ENOMEM;
goto err_reg_clk;
}
ring_irq->priv = priv;
ring_irq->ring = i;
snprintf(irq_name, 6, "ring%d", i);
irq = safexcel_request_ring_irq(pdev, irq_name, safexcel_irq_ring,
safexcel_irq_ring_thread,
ring_irq);
if (irq < 0) {
ret = irq;
goto err_reg_clk;
}
priv->ring[i].work_data.priv = priv;
priv->ring[i].work_data.ring = i;
INIT_WORK(&priv->ring[i].work_data.work, safexcel_dequeue_work);
snprintf(wq_name, 9, "wq_ring%d", i);
priv->ring[i].workqueue = create_singlethread_workqueue(wq_name);
if (!priv->ring[i].workqueue) {
ret = -ENOMEM;
goto err_reg_clk;
}
priv->ring[i].requests = 0;
priv->ring[i].busy = false;
crypto_init_queue(&priv->ring[i].queue,
EIP197_DEFAULT_RING_SIZE);
spin_lock_init(&priv->ring[i].lock);
spin_lock_init(&priv->ring[i].queue_lock);
}
platform_set_drvdata(pdev, priv);
atomic_set(&priv->ring_used, 0);
ret = safexcel_hw_init(priv);
if (ret) {
dev_err(dev, "EIP h/w init failed (%d)\n", ret);
goto err_reg_clk;
}
ret = safexcel_register_algorithms(priv);
if (ret) {
dev_err(dev, "Failed to register algorithms (%d)\n", ret);
goto err_reg_clk;
}
return 0;
err_reg_clk:
clk_disable_unprepare(priv->reg_clk);
err_core_clk:
clk_disable_unprepare(priv->clk);
return ret;
}
static void safexcel_hw_reset_rings(struct safexcel_crypto_priv *priv)
{
int i;
for (i = 0; i < priv->config.rings; i++) {
/* clear any pending interrupt */
writel(GENMASK(5, 0), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT);
writel(GENMASK(7, 0), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT);
/* Reset the CDR base address */
writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
/* Reset the RDR base address */
writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
}
}
static int safexcel_remove(struct platform_device *pdev)
{
struct safexcel_crypto_priv *priv = platform_get_drvdata(pdev);
int i;
safexcel_unregister_algorithms(priv);
safexcel_hw_reset_rings(priv);
clk_disable_unprepare(priv->clk);
for (i = 0; i < priv->config.rings; i++)
destroy_workqueue(priv->ring[i].workqueue);
return 0;
}
static const struct of_device_id safexcel_of_match_table[] = {
{
.compatible = "inside-secure,safexcel-eip97ies",
.data = (void *)EIP97IES,
},
{
.compatible = "inside-secure,safexcel-eip197b",
.data = (void *)EIP197B,
},
{
.compatible = "inside-secure,safexcel-eip197d",
.data = (void *)EIP197D,
},
{
/* Deprecated. Kept for backward compatibility. */
.compatible = "inside-secure,safexcel-eip97",
.data = (void *)EIP97IES,
},
{
/* Deprecated. Kept for backward compatibility. */
.compatible = "inside-secure,safexcel-eip197",
.data = (void *)EIP197B,
},
{},
};
static struct platform_driver crypto_safexcel = {
.probe = safexcel_probe,
.remove = safexcel_remove,
.driver = {
.name = "crypto-safexcel",
.of_match_table = safexcel_of_match_table,
},
};
module_platform_driver(crypto_safexcel);
MODULE_AUTHOR("Antoine Tenart <antoine.tenart@free-electrons.com>");
MODULE_AUTHOR("Ofer Heifetz <oferh@marvell.com>");
MODULE_AUTHOR("Igal Liberman <igall@marvell.com>");
MODULE_DESCRIPTION("Support for SafeXcel cryptographic engine EIP197");
MODULE_LICENSE("GPL v2");