| /* | 
 |  *    Disk Array driver for HP Smart Array SAS controllers | 
 |  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P. | 
 |  * | 
 |  *    This program is free software; you can redistribute it and/or modify | 
 |  *    it under the terms of the GNU General Public License as published by | 
 |  *    the Free Software Foundation; version 2 of the License. | 
 |  * | 
 |  *    This program is distributed in the hope that it will be useful, | 
 |  *    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
 |  *    NON INFRINGEMENT.  See the GNU General Public License for more details. | 
 |  * | 
 |  *    You should have received a copy of the GNU General Public License | 
 |  *    along with this program; if not, write to the Free Software | 
 |  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  * | 
 |  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/types.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/init.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/smp_lock.h> | 
 | #include <linux/compat.h> | 
 | #include <linux/blktrace_api.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/io.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <scsi/scsi.h> | 
 | #include <scsi/scsi_cmnd.h> | 
 | #include <scsi/scsi_device.h> | 
 | #include <scsi/scsi_host.h> | 
 | #include <linux/cciss_ioctl.h> | 
 | #include <linux/string.h> | 
 | #include <linux/bitmap.h> | 
 | #include <asm/atomic.h> | 
 | #include <linux/kthread.h> | 
 | #include "hpsa_cmd.h" | 
 | #include "hpsa.h" | 
 |  | 
 | /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */ | 
 | #define HPSA_DRIVER_VERSION "2.0.1-3" | 
 | #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" | 
 |  | 
 | /* How long to wait (in milliseconds) for board to go into simple mode */ | 
 | #define MAX_CONFIG_WAIT 30000 | 
 | #define MAX_IOCTL_CONFIG_WAIT 1000 | 
 |  | 
 | /*define how many times we will try a command because of bus resets */ | 
 | #define MAX_CMD_RETRIES 3 | 
 |  | 
 | /* Embedded module documentation macros - see modules.h */ | 
 | MODULE_AUTHOR("Hewlett-Packard Company"); | 
 | MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ | 
 | 	HPSA_DRIVER_VERSION); | 
 | MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); | 
 | MODULE_VERSION(HPSA_DRIVER_VERSION); | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 | static int hpsa_allow_any; | 
 | module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); | 
 | MODULE_PARM_DESC(hpsa_allow_any, | 
 | 		"Allow hpsa driver to access unknown HP Smart Array hardware"); | 
 |  | 
 | /* define the PCI info for the cards we can control */ | 
 | static const struct pci_device_id hpsa_pci_device_id[] = { | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233}, | 
 | #define PCI_DEVICE_ID_HP_CISSF 0x333f | 
 | 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x333F}, | 
 | 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID, | 
 | 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, | 
 | 	{0,} | 
 | }; | 
 |  | 
 | MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); | 
 |  | 
 | /*  board_id = Subsystem Device ID & Vendor ID | 
 |  *  product = Marketing Name for the board | 
 |  *  access = Address of the struct of function pointers | 
 |  */ | 
 | static struct board_type products[] = { | 
 | 	{0x3241103C, "Smart Array P212", &SA5_access}, | 
 | 	{0x3243103C, "Smart Array P410", &SA5_access}, | 
 | 	{0x3245103C, "Smart Array P410i", &SA5_access}, | 
 | 	{0x3247103C, "Smart Array P411", &SA5_access}, | 
 | 	{0x3249103C, "Smart Array P812", &SA5_access}, | 
 | 	{0x324a103C, "Smart Array P712m", &SA5_access}, | 
 | 	{0x324b103C, "Smart Array P711m", &SA5_access}, | 
 | 	{0x3233103C, "StorageWorks P1210m", &SA5_access}, | 
 | 	{0x333F103C, "StorageWorks P1210m", &SA5_access}, | 
 | 	{0xFFFF103C, "Unknown Smart Array", &SA5_access}, | 
 | }; | 
 |  | 
 | static int number_of_controllers; | 
 |  | 
 | static irqreturn_t do_hpsa_intr(int irq, void *dev_id); | 
 | static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg); | 
 | static void start_io(struct ctlr_info *h); | 
 |  | 
 | #ifdef CONFIG_COMPAT | 
 | static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg); | 
 | #endif | 
 |  | 
 | static void cmd_free(struct ctlr_info *h, struct CommandList *c); | 
 | static void cmd_special_free(struct ctlr_info *h, struct CommandList *c); | 
 | static struct CommandList *cmd_alloc(struct ctlr_info *h); | 
 | static struct CommandList *cmd_special_alloc(struct ctlr_info *h); | 
 | static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, | 
 | 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, | 
 | 	int cmd_type); | 
 |  | 
 | static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd, | 
 | 		void (*done)(struct scsi_cmnd *)); | 
 | static void hpsa_scan_start(struct Scsi_Host *); | 
 | static int hpsa_scan_finished(struct Scsi_Host *sh, | 
 | 	unsigned long elapsed_time); | 
 |  | 
 | static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); | 
 | static int hpsa_slave_alloc(struct scsi_device *sdev); | 
 | static void hpsa_slave_destroy(struct scsi_device *sdev); | 
 |  | 
 | static ssize_t raid_level_show(struct device *dev, | 
 | 	struct device_attribute *attr, char *buf); | 
 | static ssize_t lunid_show(struct device *dev, | 
 | 	struct device_attribute *attr, char *buf); | 
 | static ssize_t unique_id_show(struct device *dev, | 
 | 	struct device_attribute *attr, char *buf); | 
 | static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno); | 
 | static ssize_t host_store_rescan(struct device *dev, | 
 | 	 struct device_attribute *attr, const char *buf, size_t count); | 
 | static int check_for_unit_attention(struct ctlr_info *h, | 
 | 	struct CommandList *c); | 
 | static void check_ioctl_unit_attention(struct ctlr_info *h, | 
 | 	struct CommandList *c); | 
 | /* performant mode helper functions */ | 
 | static void calc_bucket_map(int *bucket, int num_buckets, | 
 | 	int nsgs, int *bucket_map); | 
 | static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); | 
 | static inline u32 next_command(struct ctlr_info *h); | 
 |  | 
 | static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); | 
 | static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); | 
 | static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); | 
 | static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); | 
 |  | 
 | static struct device_attribute *hpsa_sdev_attrs[] = { | 
 | 	&dev_attr_raid_level, | 
 | 	&dev_attr_lunid, | 
 | 	&dev_attr_unique_id, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static struct device_attribute *hpsa_shost_attrs[] = { | 
 | 	&dev_attr_rescan, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static struct scsi_host_template hpsa_driver_template = { | 
 | 	.module			= THIS_MODULE, | 
 | 	.name			= "hpsa", | 
 | 	.proc_name		= "hpsa", | 
 | 	.queuecommand		= hpsa_scsi_queue_command, | 
 | 	.scan_start		= hpsa_scan_start, | 
 | 	.scan_finished		= hpsa_scan_finished, | 
 | 	.this_id		= -1, | 
 | 	.sg_tablesize		= MAXSGENTRIES, | 
 | 	.use_clustering		= ENABLE_CLUSTERING, | 
 | 	.eh_device_reset_handler = hpsa_eh_device_reset_handler, | 
 | 	.ioctl			= hpsa_ioctl, | 
 | 	.slave_alloc		= hpsa_slave_alloc, | 
 | 	.slave_destroy		= hpsa_slave_destroy, | 
 | #ifdef CONFIG_COMPAT | 
 | 	.compat_ioctl		= hpsa_compat_ioctl, | 
 | #endif | 
 | 	.sdev_attrs = hpsa_sdev_attrs, | 
 | 	.shost_attrs = hpsa_shost_attrs, | 
 | }; | 
 |  | 
 | static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) | 
 | { | 
 | 	unsigned long *priv = shost_priv(sdev->host); | 
 | 	return (struct ctlr_info *) *priv; | 
 | } | 
 |  | 
 | static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) | 
 | { | 
 | 	unsigned long *priv = shost_priv(sh); | 
 | 	return (struct ctlr_info *) *priv; | 
 | } | 
 |  | 
 | static struct task_struct *hpsa_scan_thread; | 
 | static DEFINE_MUTEX(hpsa_scan_mutex); | 
 | static LIST_HEAD(hpsa_scan_q); | 
 | static int hpsa_scan_func(void *data); | 
 |  | 
 | /** | 
 |  * add_to_scan_list() - add controller to rescan queue | 
 |  * @h:		      Pointer to the controller. | 
 |  * | 
 |  * Adds the controller to the rescan queue if not already on the queue. | 
 |  * | 
 |  * returns 1 if added to the queue, 0 if skipped (could be on the | 
 |  * queue already, or the controller could be initializing or shutting | 
 |  * down). | 
 |  **/ | 
 | static int add_to_scan_list(struct ctlr_info *h) | 
 | { | 
 | 	struct ctlr_info *test_h; | 
 | 	int found = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (h->busy_initializing) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * If we don't get the lock, it means the driver is unloading | 
 | 	 * and there's no point in scheduling a new scan. | 
 | 	 */ | 
 | 	if (!mutex_trylock(&h->busy_shutting_down)) | 
 | 		return 0; | 
 |  | 
 | 	mutex_lock(&hpsa_scan_mutex); | 
 | 	list_for_each_entry(test_h, &hpsa_scan_q, scan_list) { | 
 | 		if (test_h == h) { | 
 | 			found = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (!found && !h->busy_scanning) { | 
 | 		INIT_COMPLETION(h->scan_wait); | 
 | 		list_add_tail(&h->scan_list, &hpsa_scan_q); | 
 | 		ret = 1; | 
 | 	} | 
 | 	mutex_unlock(&hpsa_scan_mutex); | 
 | 	mutex_unlock(&h->busy_shutting_down); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * remove_from_scan_list() - remove controller from rescan queue | 
 |  * @h:			   Pointer to the controller. | 
 |  * | 
 |  * Removes the controller from the rescan queue if present. Blocks if | 
 |  * the controller is currently conducting a rescan.  The controller | 
 |  * can be in one of three states: | 
 |  * 1. Doesn't need a scan | 
 |  * 2. On the scan list, but not scanning yet (we remove it) | 
 |  * 3. Busy scanning (and not on the list). In this case we want to wait for | 
 |  *    the scan to complete to make sure the scanning thread for this | 
 |  *    controller is completely idle. | 
 |  **/ | 
 | static void remove_from_scan_list(struct ctlr_info *h) | 
 | { | 
 | 	struct ctlr_info *test_h, *tmp_h; | 
 |  | 
 | 	mutex_lock(&hpsa_scan_mutex); | 
 | 	list_for_each_entry_safe(test_h, tmp_h, &hpsa_scan_q, scan_list) { | 
 | 		if (test_h == h) { /* state 2. */ | 
 | 			list_del(&h->scan_list); | 
 | 			complete_all(&h->scan_wait); | 
 | 			mutex_unlock(&hpsa_scan_mutex); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	if (h->busy_scanning) { /* state 3. */ | 
 | 		mutex_unlock(&hpsa_scan_mutex); | 
 | 		wait_for_completion(&h->scan_wait); | 
 | 	} else { /* state 1, nothing to do. */ | 
 | 		mutex_unlock(&hpsa_scan_mutex); | 
 | 	} | 
 | } | 
 |  | 
 | /* hpsa_scan_func() - kernel thread used to rescan controllers | 
 |  * @data:	 Ignored. | 
 |  * | 
 |  * A kernel thread used scan for drive topology changes on | 
 |  * controllers. The thread processes only one controller at a time | 
 |  * using a queue.  Controllers are added to the queue using | 
 |  * add_to_scan_list() and removed from the queue either after done | 
 |  * processing or using remove_from_scan_list(). | 
 |  * | 
 |  * returns 0. | 
 |  **/ | 
 | static int hpsa_scan_func(__attribute__((unused)) void *data) | 
 | { | 
 | 	struct ctlr_info *h; | 
 | 	int host_no; | 
 |  | 
 | 	while (1) { | 
 | 		set_current_state(TASK_INTERRUPTIBLE); | 
 | 		schedule(); | 
 | 		if (kthread_should_stop()) | 
 | 			break; | 
 |  | 
 | 		while (1) { | 
 | 			mutex_lock(&hpsa_scan_mutex); | 
 | 			if (list_empty(&hpsa_scan_q)) { | 
 | 				mutex_unlock(&hpsa_scan_mutex); | 
 | 				break; | 
 | 			} | 
 | 			h = list_entry(hpsa_scan_q.next, struct ctlr_info, | 
 | 					scan_list); | 
 | 			list_del(&h->scan_list); | 
 | 			h->busy_scanning = 1; | 
 | 			mutex_unlock(&hpsa_scan_mutex); | 
 | 			host_no = h->scsi_host ?  h->scsi_host->host_no : -1; | 
 | 			hpsa_scan_start(h->scsi_host); | 
 | 			complete_all(&h->scan_wait); | 
 | 			mutex_lock(&hpsa_scan_mutex); | 
 | 			h->busy_scanning = 0; | 
 | 			mutex_unlock(&hpsa_scan_mutex); | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_for_unit_attention(struct ctlr_info *h, | 
 | 	struct CommandList *c) | 
 | { | 
 | 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) | 
 | 		return 0; | 
 |  | 
 | 	switch (c->err_info->SenseInfo[12]) { | 
 | 	case STATE_CHANGED: | 
 | 		dev_warn(&h->pdev->dev, "hpsa%d: a state change " | 
 | 			"detected, command retried\n", h->ctlr); | 
 | 		break; | 
 | 	case LUN_FAILED: | 
 | 		dev_warn(&h->pdev->dev, "hpsa%d: LUN failure " | 
 | 			"detected, action required\n", h->ctlr); | 
 | 		break; | 
 | 	case REPORT_LUNS_CHANGED: | 
 | 		dev_warn(&h->pdev->dev, "hpsa%d: report LUN data " | 
 | 			"changed\n", h->ctlr); | 
 | 	/* | 
 | 	 * Here, we could call add_to_scan_list and wake up the scan thread, | 
 | 	 * except that it's quite likely that we will get more than one | 
 | 	 * REPORT_LUNS_CHANGED condition in quick succession, which means | 
 | 	 * that those which occur after the first one will likely happen | 
 | 	 * *during* the hpsa_scan_thread's rescan.  And the rescan code is not | 
 | 	 * robust enough to restart in the middle, undoing what it has already | 
 | 	 * done, and it's not clear that it's even possible to do this, since | 
 | 	 * part of what it does is notify the SCSI mid layer, which starts | 
 | 	 * doing it's own i/o to read partition tables and so on, and the | 
 | 	 * driver doesn't have visibility to know what might need undoing. | 
 | 	 * In any event, if possible, it is horribly complicated to get right | 
 | 	 * so we just don't do it for now. | 
 | 	 * | 
 | 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012. | 
 | 	 */ | 
 | 		break; | 
 | 	case POWER_OR_RESET: | 
 | 		dev_warn(&h->pdev->dev, "hpsa%d: a power on " | 
 | 			"or device reset detected\n", h->ctlr); | 
 | 		break; | 
 | 	case UNIT_ATTENTION_CLEARED: | 
 | 		dev_warn(&h->pdev->dev, "hpsa%d: unit attention " | 
 | 		    "cleared by another initiator\n", h->ctlr); | 
 | 		break; | 
 | 	default: | 
 | 		dev_warn(&h->pdev->dev, "hpsa%d: unknown " | 
 | 			"unit attention detected\n", h->ctlr); | 
 | 		break; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static ssize_t host_store_rescan(struct device *dev, | 
 | 				 struct device_attribute *attr, | 
 | 				 const char *buf, size_t count) | 
 | { | 
 | 	struct ctlr_info *h; | 
 | 	struct Scsi_Host *shost = class_to_shost(dev); | 
 | 	h = shost_to_hba(shost); | 
 | 	if (add_to_scan_list(h)) { | 
 | 		wake_up_process(hpsa_scan_thread); | 
 | 		wait_for_completion_interruptible(&h->scan_wait); | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 | /* Enqueuing and dequeuing functions for cmdlists. */ | 
 | static inline void addQ(struct hlist_head *list, struct CommandList *c) | 
 | { | 
 | 	hlist_add_head(&c->list, list); | 
 | } | 
 |  | 
 | static inline u32 next_command(struct ctlr_info *h) | 
 | { | 
 | 	u32 a; | 
 |  | 
 | 	if (unlikely(h->transMethod != CFGTBL_Trans_Performant)) | 
 | 		return h->access.command_completed(h); | 
 |  | 
 | 	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) { | 
 | 		a = *(h->reply_pool_head); /* Next cmd in ring buffer */ | 
 | 		(h->reply_pool_head)++; | 
 | 		h->commands_outstanding--; | 
 | 	} else { | 
 | 		a = FIFO_EMPTY; | 
 | 	} | 
 | 	/* Check for wraparound */ | 
 | 	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) { | 
 | 		h->reply_pool_head = h->reply_pool; | 
 | 		h->reply_pool_wraparound ^= 1; | 
 | 	} | 
 | 	return a; | 
 | } | 
 |  | 
 | /* set_performant_mode: Modify the tag for cciss performant | 
 |  * set bit 0 for pull model, bits 3-1 for block fetch | 
 |  * register number | 
 |  */ | 
 | static void set_performant_mode(struct ctlr_info *h, struct CommandList *c) | 
 | { | 
 | 	if (likely(h->transMethod == CFGTBL_Trans_Performant)) | 
 | 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); | 
 | } | 
 |  | 
 | static void enqueue_cmd_and_start_io(struct ctlr_info *h, | 
 | 	struct CommandList *c) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	set_performant_mode(h, c); | 
 | 	spin_lock_irqsave(&h->lock, flags); | 
 | 	addQ(&h->reqQ, c); | 
 | 	h->Qdepth++; | 
 | 	start_io(h); | 
 | 	spin_unlock_irqrestore(&h->lock, flags); | 
 | } | 
 |  | 
 | static inline void removeQ(struct CommandList *c) | 
 | { | 
 | 	if (WARN_ON(hlist_unhashed(&c->list))) | 
 | 		return; | 
 | 	hlist_del_init(&c->list); | 
 | } | 
 |  | 
 | static inline int is_hba_lunid(unsigned char scsi3addr[]) | 
 | { | 
 | 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; | 
 | } | 
 |  | 
 | static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) | 
 | { | 
 | 	return (scsi3addr[3] & 0xC0) == 0x40; | 
 | } | 
 |  | 
 | static inline int is_scsi_rev_5(struct ctlr_info *h) | 
 | { | 
 | 	if (!h->hba_inquiry_data) | 
 | 		return 0; | 
 | 	if ((h->hba_inquiry_data[2] & 0x07) == 5) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", | 
 | 	"UNKNOWN" | 
 | }; | 
 | #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1) | 
 |  | 
 | static ssize_t raid_level_show(struct device *dev, | 
 | 	     struct device_attribute *attr, char *buf) | 
 | { | 
 | 	ssize_t l = 0; | 
 | 	unsigned char rlevel; | 
 | 	struct ctlr_info *h; | 
 | 	struct scsi_device *sdev; | 
 | 	struct hpsa_scsi_dev_t *hdev; | 
 | 	unsigned long flags; | 
 |  | 
 | 	sdev = to_scsi_device(dev); | 
 | 	h = sdev_to_hba(sdev); | 
 | 	spin_lock_irqsave(&h->lock, flags); | 
 | 	hdev = sdev->hostdata; | 
 | 	if (!hdev) { | 
 | 		spin_unlock_irqrestore(&h->lock, flags); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* Is this even a logical drive? */ | 
 | 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) { | 
 | 		spin_unlock_irqrestore(&h->lock, flags); | 
 | 		l = snprintf(buf, PAGE_SIZE, "N/A\n"); | 
 | 		return l; | 
 | 	} | 
 |  | 
 | 	rlevel = hdev->raid_level; | 
 | 	spin_unlock_irqrestore(&h->lock, flags); | 
 | 	if (rlevel > RAID_UNKNOWN) | 
 | 		rlevel = RAID_UNKNOWN; | 
 | 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); | 
 | 	return l; | 
 | } | 
 |  | 
 | static ssize_t lunid_show(struct device *dev, | 
 | 	     struct device_attribute *attr, char *buf) | 
 | { | 
 | 	struct ctlr_info *h; | 
 | 	struct scsi_device *sdev; | 
 | 	struct hpsa_scsi_dev_t *hdev; | 
 | 	unsigned long flags; | 
 | 	unsigned char lunid[8]; | 
 |  | 
 | 	sdev = to_scsi_device(dev); | 
 | 	h = sdev_to_hba(sdev); | 
 | 	spin_lock_irqsave(&h->lock, flags); | 
 | 	hdev = sdev->hostdata; | 
 | 	if (!hdev) { | 
 | 		spin_unlock_irqrestore(&h->lock, flags); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); | 
 | 	spin_unlock_irqrestore(&h->lock, flags); | 
 | 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", | 
 | 		lunid[0], lunid[1], lunid[2], lunid[3], | 
 | 		lunid[4], lunid[5], lunid[6], lunid[7]); | 
 | } | 
 |  | 
 | static ssize_t unique_id_show(struct device *dev, | 
 | 	     struct device_attribute *attr, char *buf) | 
 | { | 
 | 	struct ctlr_info *h; | 
 | 	struct scsi_device *sdev; | 
 | 	struct hpsa_scsi_dev_t *hdev; | 
 | 	unsigned long flags; | 
 | 	unsigned char sn[16]; | 
 |  | 
 | 	sdev = to_scsi_device(dev); | 
 | 	h = sdev_to_hba(sdev); | 
 | 	spin_lock_irqsave(&h->lock, flags); | 
 | 	hdev = sdev->hostdata; | 
 | 	if (!hdev) { | 
 | 		spin_unlock_irqrestore(&h->lock, flags); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	memcpy(sn, hdev->device_id, sizeof(sn)); | 
 | 	spin_unlock_irqrestore(&h->lock, flags); | 
 | 	return snprintf(buf, 16 * 2 + 2, | 
 | 			"%02X%02X%02X%02X%02X%02X%02X%02X" | 
 | 			"%02X%02X%02X%02X%02X%02X%02X%02X\n", | 
 | 			sn[0], sn[1], sn[2], sn[3], | 
 | 			sn[4], sn[5], sn[6], sn[7], | 
 | 			sn[8], sn[9], sn[10], sn[11], | 
 | 			sn[12], sn[13], sn[14], sn[15]); | 
 | } | 
 |  | 
 | static int hpsa_find_target_lun(struct ctlr_info *h, | 
 | 	unsigned char scsi3addr[], int bus, int *target, int *lun) | 
 | { | 
 | 	/* finds an unused bus, target, lun for a new physical device | 
 | 	 * assumes h->devlock is held | 
 | 	 */ | 
 | 	int i, found = 0; | 
 | 	DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA); | 
 |  | 
 | 	memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3); | 
 |  | 
 | 	for (i = 0; i < h->ndevices; i++) { | 
 | 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1) | 
 | 			set_bit(h->dev[i]->target, lun_taken); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) { | 
 | 		if (!test_bit(i, lun_taken)) { | 
 | 			/* *bus = 1; */ | 
 | 			*target = i; | 
 | 			*lun = 0; | 
 | 			found = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return !found; | 
 | } | 
 |  | 
 | /* Add an entry into h->dev[] array. */ | 
 | static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno, | 
 | 		struct hpsa_scsi_dev_t *device, | 
 | 		struct hpsa_scsi_dev_t *added[], int *nadded) | 
 | { | 
 | 	/* assumes h->devlock is held */ | 
 | 	int n = h->ndevices; | 
 | 	int i; | 
 | 	unsigned char addr1[8], addr2[8]; | 
 | 	struct hpsa_scsi_dev_t *sd; | 
 |  | 
 | 	if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) { | 
 | 		dev_err(&h->pdev->dev, "too many devices, some will be " | 
 | 			"inaccessible.\n"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	/* physical devices do not have lun or target assigned until now. */ | 
 | 	if (device->lun != -1) | 
 | 		/* Logical device, lun is already assigned. */ | 
 | 		goto lun_assigned; | 
 |  | 
 | 	/* If this device a non-zero lun of a multi-lun device | 
 | 	 * byte 4 of the 8-byte LUN addr will contain the logical | 
 | 	 * unit no, zero otherise. | 
 | 	 */ | 
 | 	if (device->scsi3addr[4] == 0) { | 
 | 		/* This is not a non-zero lun of a multi-lun device */ | 
 | 		if (hpsa_find_target_lun(h, device->scsi3addr, | 
 | 			device->bus, &device->target, &device->lun) != 0) | 
 | 			return -1; | 
 | 		goto lun_assigned; | 
 | 	} | 
 |  | 
 | 	/* This is a non-zero lun of a multi-lun device. | 
 | 	 * Search through our list and find the device which | 
 | 	 * has the same 8 byte LUN address, excepting byte 4. | 
 | 	 * Assign the same bus and target for this new LUN. | 
 | 	 * Use the logical unit number from the firmware. | 
 | 	 */ | 
 | 	memcpy(addr1, device->scsi3addr, 8); | 
 | 	addr1[4] = 0; | 
 | 	for (i = 0; i < n; i++) { | 
 | 		sd = h->dev[i]; | 
 | 		memcpy(addr2, sd->scsi3addr, 8); | 
 | 		addr2[4] = 0; | 
 | 		/* differ only in byte 4? */ | 
 | 		if (memcmp(addr1, addr2, 8) == 0) { | 
 | 			device->bus = sd->bus; | 
 | 			device->target = sd->target; | 
 | 			device->lun = device->scsi3addr[4]; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (device->lun == -1) { | 
 | 		dev_warn(&h->pdev->dev, "physical device with no LUN=0," | 
 | 			" suspect firmware bug or unsupported hardware " | 
 | 			"configuration.\n"); | 
 | 			return -1; | 
 | 	} | 
 |  | 
 | lun_assigned: | 
 |  | 
 | 	h->dev[n] = device; | 
 | 	h->ndevices++; | 
 | 	added[*nadded] = device; | 
 | 	(*nadded)++; | 
 |  | 
 | 	/* initially, (before registering with scsi layer) we don't | 
 | 	 * know our hostno and we don't want to print anything first | 
 | 	 * time anyway (the scsi layer's inquiries will show that info) | 
 | 	 */ | 
 | 	/* if (hostno != -1) */ | 
 | 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n", | 
 | 			scsi_device_type(device->devtype), hostno, | 
 | 			device->bus, device->target, device->lun); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Replace an entry from h->dev[] array. */ | 
 | static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno, | 
 | 	int entry, struct hpsa_scsi_dev_t *new_entry, | 
 | 	struct hpsa_scsi_dev_t *added[], int *nadded, | 
 | 	struct hpsa_scsi_dev_t *removed[], int *nremoved) | 
 | { | 
 | 	/* assumes h->devlock is held */ | 
 | 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA); | 
 | 	removed[*nremoved] = h->dev[entry]; | 
 | 	(*nremoved)++; | 
 | 	h->dev[entry] = new_entry; | 
 | 	added[*nadded] = new_entry; | 
 | 	(*nadded)++; | 
 | 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n", | 
 | 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus, | 
 | 			new_entry->target, new_entry->lun); | 
 | } | 
 |  | 
 | /* Remove an entry from h->dev[] array. */ | 
 | static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry, | 
 | 	struct hpsa_scsi_dev_t *removed[], int *nremoved) | 
 | { | 
 | 	/* assumes h->devlock is held */ | 
 | 	int i; | 
 | 	struct hpsa_scsi_dev_t *sd; | 
 |  | 
 | 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA); | 
 |  | 
 | 	sd = h->dev[entry]; | 
 | 	removed[*nremoved] = h->dev[entry]; | 
 | 	(*nremoved)++; | 
 |  | 
 | 	for (i = entry; i < h->ndevices-1; i++) | 
 | 		h->dev[i] = h->dev[i+1]; | 
 | 	h->ndevices--; | 
 | 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n", | 
 | 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target, | 
 | 		sd->lun); | 
 | } | 
 |  | 
 | #define SCSI3ADDR_EQ(a, b) ( \ | 
 | 	(a)[7] == (b)[7] && \ | 
 | 	(a)[6] == (b)[6] && \ | 
 | 	(a)[5] == (b)[5] && \ | 
 | 	(a)[4] == (b)[4] && \ | 
 | 	(a)[3] == (b)[3] && \ | 
 | 	(a)[2] == (b)[2] && \ | 
 | 	(a)[1] == (b)[1] && \ | 
 | 	(a)[0] == (b)[0]) | 
 |  | 
 | static void fixup_botched_add(struct ctlr_info *h, | 
 | 	struct hpsa_scsi_dev_t *added) | 
 | { | 
 | 	/* called when scsi_add_device fails in order to re-adjust | 
 | 	 * h->dev[] to match the mid layer's view. | 
 | 	 */ | 
 | 	unsigned long flags; | 
 | 	int i, j; | 
 |  | 
 | 	spin_lock_irqsave(&h->lock, flags); | 
 | 	for (i = 0; i < h->ndevices; i++) { | 
 | 		if (h->dev[i] == added) { | 
 | 			for (j = i; j < h->ndevices-1; j++) | 
 | 				h->dev[j] = h->dev[j+1]; | 
 | 			h->ndevices--; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&h->lock, flags); | 
 | 	kfree(added); | 
 | } | 
 |  | 
 | static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, | 
 | 	struct hpsa_scsi_dev_t *dev2) | 
 | { | 
 | 	if ((is_logical_dev_addr_mode(dev1->scsi3addr) || | 
 | 		(dev1->lun != -1 && dev2->lun != -1)) && | 
 | 		dev1->devtype != 0x0C) | 
 | 		return (memcmp(dev1, dev2, sizeof(*dev1)) == 0); | 
 |  | 
 | 	/* we compare everything except lun and target as these | 
 | 	 * are not yet assigned.  Compare parts likely | 
 | 	 * to differ first | 
 | 	 */ | 
 | 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr, | 
 | 		sizeof(dev1->scsi3addr)) != 0) | 
 | 		return 0; | 
 | 	if (memcmp(dev1->device_id, dev2->device_id, | 
 | 		sizeof(dev1->device_id)) != 0) | 
 | 		return 0; | 
 | 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) | 
 | 		return 0; | 
 | 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) | 
 | 		return 0; | 
 | 	if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0) | 
 | 		return 0; | 
 | 	if (dev1->devtype != dev2->devtype) | 
 | 		return 0; | 
 | 	if (dev1->raid_level != dev2->raid_level) | 
 | 		return 0; | 
 | 	if (dev1->bus != dev2->bus) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* Find needle in haystack.  If exact match found, return DEVICE_SAME, | 
 |  * and return needle location in *index.  If scsi3addr matches, but not | 
 |  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle | 
 |  * location in *index.  If needle not found, return DEVICE_NOT_FOUND. | 
 |  */ | 
 | static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, | 
 | 	struct hpsa_scsi_dev_t *haystack[], int haystack_size, | 
 | 	int *index) | 
 | { | 
 | 	int i; | 
 | #define DEVICE_NOT_FOUND 0 | 
 | #define DEVICE_CHANGED 1 | 
 | #define DEVICE_SAME 2 | 
 | 	for (i = 0; i < haystack_size; i++) { | 
 | 		if (haystack[i] == NULL) /* previously removed. */ | 
 | 			continue; | 
 | 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { | 
 | 			*index = i; | 
 | 			if (device_is_the_same(needle, haystack[i])) | 
 | 				return DEVICE_SAME; | 
 | 			else | 
 | 				return DEVICE_CHANGED; | 
 | 		} | 
 | 	} | 
 | 	*index = -1; | 
 | 	return DEVICE_NOT_FOUND; | 
 | } | 
 |  | 
 | static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno, | 
 | 	struct hpsa_scsi_dev_t *sd[], int nsds) | 
 | { | 
 | 	/* sd contains scsi3 addresses and devtypes, and inquiry | 
 | 	 * data.  This function takes what's in sd to be the current | 
 | 	 * reality and updates h->dev[] to reflect that reality. | 
 | 	 */ | 
 | 	int i, entry, device_change, changes = 0; | 
 | 	struct hpsa_scsi_dev_t *csd; | 
 | 	unsigned long flags; | 
 | 	struct hpsa_scsi_dev_t **added, **removed; | 
 | 	int nadded, nremoved; | 
 | 	struct Scsi_Host *sh = NULL; | 
 |  | 
 | 	added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA, | 
 | 		GFP_KERNEL); | 
 | 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA, | 
 | 		GFP_KERNEL); | 
 |  | 
 | 	if (!added || !removed) { | 
 | 		dev_warn(&h->pdev->dev, "out of memory in " | 
 | 			"adjust_hpsa_scsi_table\n"); | 
 | 		goto free_and_out; | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&h->devlock, flags); | 
 |  | 
 | 	/* find any devices in h->dev[] that are not in | 
 | 	 * sd[] and remove them from h->dev[], and for any | 
 | 	 * devices which have changed, remove the old device | 
 | 	 * info and add the new device info. | 
 | 	 */ | 
 | 	i = 0; | 
 | 	nremoved = 0; | 
 | 	nadded = 0; | 
 | 	while (i < h->ndevices) { | 
 | 		csd = h->dev[i]; | 
 | 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); | 
 | 		if (device_change == DEVICE_NOT_FOUND) { | 
 | 			changes++; | 
 | 			hpsa_scsi_remove_entry(h, hostno, i, | 
 | 				removed, &nremoved); | 
 | 			continue; /* remove ^^^, hence i not incremented */ | 
 | 		} else if (device_change == DEVICE_CHANGED) { | 
 | 			changes++; | 
 | 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry], | 
 | 				added, &nadded, removed, &nremoved); | 
 | 			/* Set it to NULL to prevent it from being freed | 
 | 			 * at the bottom of hpsa_update_scsi_devices() | 
 | 			 */ | 
 | 			sd[entry] = NULL; | 
 | 		} | 
 | 		i++; | 
 | 	} | 
 |  | 
 | 	/* Now, make sure every device listed in sd[] is also | 
 | 	 * listed in h->dev[], adding them if they aren't found | 
 | 	 */ | 
 |  | 
 | 	for (i = 0; i < nsds; i++) { | 
 | 		if (!sd[i]) /* if already added above. */ | 
 | 			continue; | 
 | 		device_change = hpsa_scsi_find_entry(sd[i], h->dev, | 
 | 					h->ndevices, &entry); | 
 | 		if (device_change == DEVICE_NOT_FOUND) { | 
 | 			changes++; | 
 | 			if (hpsa_scsi_add_entry(h, hostno, sd[i], | 
 | 				added, &nadded) != 0) | 
 | 				break; | 
 | 			sd[i] = NULL; /* prevent from being freed later. */ | 
 | 		} else if (device_change == DEVICE_CHANGED) { | 
 | 			/* should never happen... */ | 
 | 			changes++; | 
 | 			dev_warn(&h->pdev->dev, | 
 | 				"device unexpectedly changed.\n"); | 
 | 			/* but if it does happen, we just ignore that device */ | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&h->devlock, flags); | 
 |  | 
 | 	/* Don't notify scsi mid layer of any changes the first time through | 
 | 	 * (or if there are no changes) scsi_scan_host will do it later the | 
 | 	 * first time through. | 
 | 	 */ | 
 | 	if (hostno == -1 || !changes) | 
 | 		goto free_and_out; | 
 |  | 
 | 	sh = h->scsi_host; | 
 | 	/* Notify scsi mid layer of any removed devices */ | 
 | 	for (i = 0; i < nremoved; i++) { | 
 | 		struct scsi_device *sdev = | 
 | 			scsi_device_lookup(sh, removed[i]->bus, | 
 | 				removed[i]->target, removed[i]->lun); | 
 | 		if (sdev != NULL) { | 
 | 			scsi_remove_device(sdev); | 
 | 			scsi_device_put(sdev); | 
 | 		} else { | 
 | 			/* We don't expect to get here. | 
 | 			 * future cmds to this device will get selection | 
 | 			 * timeout as if the device was gone. | 
 | 			 */ | 
 | 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d " | 
 | 				" for removal.", hostno, removed[i]->bus, | 
 | 				removed[i]->target, removed[i]->lun); | 
 | 		} | 
 | 		kfree(removed[i]); | 
 | 		removed[i] = NULL; | 
 | 	} | 
 |  | 
 | 	/* Notify scsi mid layer of any added devices */ | 
 | 	for (i = 0; i < nadded; i++) { | 
 | 		if (scsi_add_device(sh, added[i]->bus, | 
 | 			added[i]->target, added[i]->lun) == 0) | 
 | 			continue; | 
 | 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, " | 
 | 			"device not added.\n", hostno, added[i]->bus, | 
 | 			added[i]->target, added[i]->lun); | 
 | 		/* now we have to remove it from h->dev, | 
 | 		 * since it didn't get added to scsi mid layer | 
 | 		 */ | 
 | 		fixup_botched_add(h, added[i]); | 
 | 	} | 
 |  | 
 | free_and_out: | 
 | 	kfree(added); | 
 | 	kfree(removed); | 
 | } | 
 |  | 
 | /* | 
 |  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t * | 
 |  * Assume's h->devlock is held. | 
 |  */ | 
 | static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, | 
 | 	int bus, int target, int lun) | 
 | { | 
 | 	int i; | 
 | 	struct hpsa_scsi_dev_t *sd; | 
 |  | 
 | 	for (i = 0; i < h->ndevices; i++) { | 
 | 		sd = h->dev[i]; | 
 | 		if (sd->bus == bus && sd->target == target && sd->lun == lun) | 
 | 			return sd; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* link sdev->hostdata to our per-device structure. */ | 
 | static int hpsa_slave_alloc(struct scsi_device *sdev) | 
 | { | 
 | 	struct hpsa_scsi_dev_t *sd; | 
 | 	unsigned long flags; | 
 | 	struct ctlr_info *h; | 
 |  | 
 | 	h = sdev_to_hba(sdev); | 
 | 	spin_lock_irqsave(&h->devlock, flags); | 
 | 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), | 
 | 		sdev_id(sdev), sdev->lun); | 
 | 	if (sd != NULL) | 
 | 		sdev->hostdata = sd; | 
 | 	spin_unlock_irqrestore(&h->devlock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void hpsa_slave_destroy(struct scsi_device *sdev) | 
 | { | 
 | 	/* nothing to do. */ | 
 | } | 
 |  | 
 | static void hpsa_scsi_setup(struct ctlr_info *h) | 
 | { | 
 | 	h->ndevices = 0; | 
 | 	h->scsi_host = NULL; | 
 | 	spin_lock_init(&h->devlock); | 
 | } | 
 |  | 
 | static void complete_scsi_command(struct CommandList *cp, | 
 | 	int timeout, u32 tag) | 
 | { | 
 | 	struct scsi_cmnd *cmd; | 
 | 	struct ctlr_info *h; | 
 | 	struct ErrorInfo *ei; | 
 |  | 
 | 	unsigned char sense_key; | 
 | 	unsigned char asc;      /* additional sense code */ | 
 | 	unsigned char ascq;     /* additional sense code qualifier */ | 
 |  | 
 | 	ei = cp->err_info; | 
 | 	cmd = (struct scsi_cmnd *) cp->scsi_cmd; | 
 | 	h = cp->h; | 
 |  | 
 | 	scsi_dma_unmap(cmd); /* undo the DMA mappings */ | 
 |  | 
 | 	cmd->result = (DID_OK << 16); 		/* host byte */ | 
 | 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */ | 
 | 	cmd->result |= (ei->ScsiStatus << 1); | 
 |  | 
 | 	/* copy the sense data whether we need to or not. */ | 
 | 	memcpy(cmd->sense_buffer, ei->SenseInfo, | 
 | 		ei->SenseLen > SCSI_SENSE_BUFFERSIZE ? | 
 | 			SCSI_SENSE_BUFFERSIZE : | 
 | 			ei->SenseLen); | 
 | 	scsi_set_resid(cmd, ei->ResidualCnt); | 
 |  | 
 | 	if (ei->CommandStatus == 0) { | 
 | 		cmd->scsi_done(cmd); | 
 | 		cmd_free(h, cp); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* an error has occurred */ | 
 | 	switch (ei->CommandStatus) { | 
 |  | 
 | 	case CMD_TARGET_STATUS: | 
 | 		if (ei->ScsiStatus) { | 
 | 			/* Get sense key */ | 
 | 			sense_key = 0xf & ei->SenseInfo[2]; | 
 | 			/* Get additional sense code */ | 
 | 			asc = ei->SenseInfo[12]; | 
 | 			/* Get addition sense code qualifier */ | 
 | 			ascq = ei->SenseInfo[13]; | 
 | 		} | 
 |  | 
 | 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { | 
 | 			if (check_for_unit_attention(h, cp)) { | 
 | 				cmd->result = DID_SOFT_ERROR << 16; | 
 | 				break; | 
 | 			} | 
 | 			if (sense_key == ILLEGAL_REQUEST) { | 
 | 				/* | 
 | 				 * SCSI REPORT_LUNS is commonly unsupported on | 
 | 				 * Smart Array.  Suppress noisy complaint. | 
 | 				 */ | 
 | 				if (cp->Request.CDB[0] == REPORT_LUNS) | 
 | 					break; | 
 |  | 
 | 				/* If ASC/ASCQ indicate Logical Unit | 
 | 				 * Not Supported condition, | 
 | 				 */ | 
 | 				if ((asc == 0x25) && (ascq == 0x0)) { | 
 | 					dev_warn(&h->pdev->dev, "cp %p " | 
 | 						"has check condition\n", cp); | 
 | 					break; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if (sense_key == NOT_READY) { | 
 | 				/* If Sense is Not Ready, Logical Unit | 
 | 				 * Not ready, Manual Intervention | 
 | 				 * required | 
 | 				 */ | 
 | 				if ((asc == 0x04) && (ascq == 0x03)) { | 
 | 					dev_warn(&h->pdev->dev, "cp %p " | 
 | 						"has check condition: unit " | 
 | 						"not ready, manual " | 
 | 						"intervention required\n", cp); | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 			if (sense_key == ABORTED_COMMAND) { | 
 | 				/* Aborted command is retryable */ | 
 | 				dev_warn(&h->pdev->dev, "cp %p " | 
 | 					"has check condition: aborted command: " | 
 | 					"ASC: 0x%x, ASCQ: 0x%x\n", | 
 | 					cp, asc, ascq); | 
 | 				cmd->result = DID_SOFT_ERROR << 16; | 
 | 				break; | 
 | 			} | 
 | 			/* Must be some other type of check condition */ | 
 | 			dev_warn(&h->pdev->dev, "cp %p has check condition: " | 
 | 					"unknown type: " | 
 | 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " | 
 | 					"Returning result: 0x%x, " | 
 | 					"cmd=[%02x %02x %02x %02x %02x " | 
 | 					"%02x %02x %02x %02x %02x %02x " | 
 | 					"%02x %02x %02x %02x %02x]\n", | 
 | 					cp, sense_key, asc, ascq, | 
 | 					cmd->result, | 
 | 					cmd->cmnd[0], cmd->cmnd[1], | 
 | 					cmd->cmnd[2], cmd->cmnd[3], | 
 | 					cmd->cmnd[4], cmd->cmnd[5], | 
 | 					cmd->cmnd[6], cmd->cmnd[7], | 
 | 					cmd->cmnd[8], cmd->cmnd[9], | 
 | 					cmd->cmnd[10], cmd->cmnd[11], | 
 | 					cmd->cmnd[12], cmd->cmnd[13], | 
 | 					cmd->cmnd[14], cmd->cmnd[15]); | 
 | 			break; | 
 | 		} | 
 |  | 
 |  | 
 | 		/* Problem was not a check condition | 
 | 		 * Pass it up to the upper layers... | 
 | 		 */ | 
 | 		if (ei->ScsiStatus) { | 
 | 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x " | 
 | 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " | 
 | 				"Returning result: 0x%x\n", | 
 | 				cp, ei->ScsiStatus, | 
 | 				sense_key, asc, ascq, | 
 | 				cmd->result); | 
 | 		} else {  /* scsi status is zero??? How??? */ | 
 | 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " | 
 | 				"Returning no connection.\n", cp), | 
 |  | 
 | 			/* Ordinarily, this case should never happen, | 
 | 			 * but there is a bug in some released firmware | 
 | 			 * revisions that allows it to happen if, for | 
 | 			 * example, a 4100 backplane loses power and | 
 | 			 * the tape drive is in it.  We assume that | 
 | 			 * it's a fatal error of some kind because we | 
 | 			 * can't show that it wasn't. We will make it | 
 | 			 * look like selection timeout since that is | 
 | 			 * the most common reason for this to occur, | 
 | 			 * and it's severe enough. | 
 | 			 */ | 
 |  | 
 | 			cmd->result = DID_NO_CONNECT << 16; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ | 
 | 		break; | 
 | 	case CMD_DATA_OVERRUN: | 
 | 		dev_warn(&h->pdev->dev, "cp %p has" | 
 | 			" completed with data overrun " | 
 | 			"reported\n", cp); | 
 | 		break; | 
 | 	case CMD_INVALID: { | 
 | 		/* print_bytes(cp, sizeof(*cp), 1, 0); | 
 | 		print_cmd(cp); */ | 
 | 		/* We get CMD_INVALID if you address a non-existent device | 
 | 		 * instead of a selection timeout (no response).  You will | 
 | 		 * see this if you yank out a drive, then try to access it. | 
 | 		 * This is kind of a shame because it means that any other | 
 | 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a | 
 | 		 * missing target. */ | 
 | 		cmd->result = DID_NO_CONNECT << 16; | 
 | 	} | 
 | 		break; | 
 | 	case CMD_PROTOCOL_ERR: | 
 | 		dev_warn(&h->pdev->dev, "cp %p has " | 
 | 			"protocol error \n", cp); | 
 | 		break; | 
 | 	case CMD_HARDWARE_ERR: | 
 | 		cmd->result = DID_ERROR << 16; | 
 | 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp); | 
 | 		break; | 
 | 	case CMD_CONNECTION_LOST: | 
 | 		cmd->result = DID_ERROR << 16; | 
 | 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp); | 
 | 		break; | 
 | 	case CMD_ABORTED: | 
 | 		cmd->result = DID_ABORT << 16; | 
 | 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n", | 
 | 				cp, ei->ScsiStatus); | 
 | 		break; | 
 | 	case CMD_ABORT_FAILED: | 
 | 		cmd->result = DID_ERROR << 16; | 
 | 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp); | 
 | 		break; | 
 | 	case CMD_UNSOLICITED_ABORT: | 
 | 		cmd->result = DID_RESET << 16; | 
 | 		dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited " | 
 | 			"abort\n", cp); | 
 | 		break; | 
 | 	case CMD_TIMEOUT: | 
 | 		cmd->result = DID_TIME_OUT << 16; | 
 | 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp); | 
 | 		break; | 
 | 	default: | 
 | 		cmd->result = DID_ERROR << 16; | 
 | 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", | 
 | 				cp, ei->CommandStatus); | 
 | 	} | 
 | 	cmd->scsi_done(cmd); | 
 | 	cmd_free(h, cp); | 
 | } | 
 |  | 
 | static int hpsa_scsi_detect(struct ctlr_info *h) | 
 | { | 
 | 	struct Scsi_Host *sh; | 
 | 	int error; | 
 |  | 
 | 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); | 
 | 	if (sh == NULL) | 
 | 		goto fail; | 
 |  | 
 | 	sh->io_port = 0; | 
 | 	sh->n_io_port = 0; | 
 | 	sh->this_id = -1; | 
 | 	sh->max_channel = 3; | 
 | 	sh->max_cmd_len = MAX_COMMAND_SIZE; | 
 | 	sh->max_lun = HPSA_MAX_LUN; | 
 | 	sh->max_id = HPSA_MAX_LUN; | 
 | 	sh->can_queue = h->nr_cmds; | 
 | 	sh->cmd_per_lun = h->nr_cmds; | 
 | 	h->scsi_host = sh; | 
 | 	sh->hostdata[0] = (unsigned long) h; | 
 | 	sh->irq = h->intr[PERF_MODE_INT]; | 
 | 	sh->unique_id = sh->irq; | 
 | 	error = scsi_add_host(sh, &h->pdev->dev); | 
 | 	if (error) | 
 | 		goto fail_host_put; | 
 | 	scsi_scan_host(sh); | 
 | 	return 0; | 
 |  | 
 |  fail_host_put: | 
 | 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host" | 
 | 		" failed for controller %d\n", h->ctlr); | 
 | 	scsi_host_put(sh); | 
 | 	return error; | 
 |  fail: | 
 | 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc" | 
 | 		" failed for controller %d\n", h->ctlr); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void hpsa_pci_unmap(struct pci_dev *pdev, | 
 | 	struct CommandList *c, int sg_used, int data_direction) | 
 | { | 
 | 	int i; | 
 | 	union u64bit addr64; | 
 |  | 
 | 	for (i = 0; i < sg_used; i++) { | 
 | 		addr64.val32.lower = c->SG[i].Addr.lower; | 
 | 		addr64.val32.upper = c->SG[i].Addr.upper; | 
 | 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len, | 
 | 			data_direction); | 
 | 	} | 
 | } | 
 |  | 
 | static void hpsa_map_one(struct pci_dev *pdev, | 
 | 		struct CommandList *cp, | 
 | 		unsigned char *buf, | 
 | 		size_t buflen, | 
 | 		int data_direction) | 
 | { | 
 | 	u64 addr64; | 
 |  | 
 | 	if (buflen == 0 || data_direction == PCI_DMA_NONE) { | 
 | 		cp->Header.SGList = 0; | 
 | 		cp->Header.SGTotal = 0; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction); | 
 | 	cp->SG[0].Addr.lower = | 
 | 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF); | 
 | 	cp->SG[0].Addr.upper = | 
 | 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF); | 
 | 	cp->SG[0].Len = buflen; | 
 | 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */ | 
 | 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */ | 
 | } | 
 |  | 
 | static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, | 
 | 	struct CommandList *c) | 
 | { | 
 | 	DECLARE_COMPLETION_ONSTACK(wait); | 
 |  | 
 | 	c->waiting = &wait; | 
 | 	enqueue_cmd_and_start_io(h, c); | 
 | 	wait_for_completion(&wait); | 
 | } | 
 |  | 
 | static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, | 
 | 	struct CommandList *c, int data_direction) | 
 | { | 
 | 	int retry_count = 0; | 
 |  | 
 | 	do { | 
 | 		memset(c->err_info, 0, sizeof(c->err_info)); | 
 | 		hpsa_scsi_do_simple_cmd_core(h, c); | 
 | 		retry_count++; | 
 | 	} while (check_for_unit_attention(h, c) && retry_count <= 3); | 
 | 	hpsa_pci_unmap(h->pdev, c, 1, data_direction); | 
 | } | 
 |  | 
 | static void hpsa_scsi_interpret_error(struct CommandList *cp) | 
 | { | 
 | 	struct ErrorInfo *ei; | 
 | 	struct device *d = &cp->h->pdev->dev; | 
 |  | 
 | 	ei = cp->err_info; | 
 | 	switch (ei->CommandStatus) { | 
 | 	case CMD_TARGET_STATUS: | 
 | 		dev_warn(d, "cmd %p has completed with errors\n", cp); | 
 | 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp, | 
 | 				ei->ScsiStatus); | 
 | 		if (ei->ScsiStatus == 0) | 
 | 			dev_warn(d, "SCSI status is abnormally zero.  " | 
 | 			"(probably indicates selection timeout " | 
 | 			"reported incorrectly due to a known " | 
 | 			"firmware bug, circa July, 2001.)\n"); | 
 | 		break; | 
 | 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ | 
 | 			dev_info(d, "UNDERRUN\n"); | 
 | 		break; | 
 | 	case CMD_DATA_OVERRUN: | 
 | 		dev_warn(d, "cp %p has completed with data overrun\n", cp); | 
 | 		break; | 
 | 	case CMD_INVALID: { | 
 | 		/* controller unfortunately reports SCSI passthru's | 
 | 		 * to non-existent targets as invalid commands. | 
 | 		 */ | 
 | 		dev_warn(d, "cp %p is reported invalid (probably means " | 
 | 			"target device no longer present)\n", cp); | 
 | 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0); | 
 | 		print_cmd(cp);  */ | 
 | 		} | 
 | 		break; | 
 | 	case CMD_PROTOCOL_ERR: | 
 | 		dev_warn(d, "cp %p has protocol error \n", cp); | 
 | 		break; | 
 | 	case CMD_HARDWARE_ERR: | 
 | 		/* cmd->result = DID_ERROR << 16; */ | 
 | 		dev_warn(d, "cp %p had hardware error\n", cp); | 
 | 		break; | 
 | 	case CMD_CONNECTION_LOST: | 
 | 		dev_warn(d, "cp %p had connection lost\n", cp); | 
 | 		break; | 
 | 	case CMD_ABORTED: | 
 | 		dev_warn(d, "cp %p was aborted\n", cp); | 
 | 		break; | 
 | 	case CMD_ABORT_FAILED: | 
 | 		dev_warn(d, "cp %p reports abort failed\n", cp); | 
 | 		break; | 
 | 	case CMD_UNSOLICITED_ABORT: | 
 | 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp); | 
 | 		break; | 
 | 	case CMD_TIMEOUT: | 
 | 		dev_warn(d, "cp %p timed out\n", cp); | 
 | 		break; | 
 | 	default: | 
 | 		dev_warn(d, "cp %p returned unknown status %x\n", cp, | 
 | 				ei->CommandStatus); | 
 | 	} | 
 | } | 
 |  | 
 | static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, | 
 | 			unsigned char page, unsigned char *buf, | 
 | 			unsigned char bufsize) | 
 | { | 
 | 	int rc = IO_OK; | 
 | 	struct CommandList *c; | 
 | 	struct ErrorInfo *ei; | 
 |  | 
 | 	c = cmd_special_alloc(h); | 
 |  | 
 | 	if (c == NULL) {			/* trouble... */ | 
 | 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD); | 
 | 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); | 
 | 	ei = c->err_info; | 
 | 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { | 
 | 		hpsa_scsi_interpret_error(c); | 
 | 		rc = -1; | 
 | 	} | 
 | 	cmd_special_free(h, c); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr) | 
 | { | 
 | 	int rc = IO_OK; | 
 | 	struct CommandList *c; | 
 | 	struct ErrorInfo *ei; | 
 |  | 
 | 	c = cmd_special_alloc(h); | 
 |  | 
 | 	if (c == NULL) {			/* trouble... */ | 
 | 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG); | 
 | 	hpsa_scsi_do_simple_cmd_core(h, c); | 
 | 	/* no unmap needed here because no data xfer. */ | 
 |  | 
 | 	ei = c->err_info; | 
 | 	if (ei->CommandStatus != 0) { | 
 | 		hpsa_scsi_interpret_error(c); | 
 | 		rc = -1; | 
 | 	} | 
 | 	cmd_special_free(h, c); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void hpsa_get_raid_level(struct ctlr_info *h, | 
 | 	unsigned char *scsi3addr, unsigned char *raid_level) | 
 | { | 
 | 	int rc; | 
 | 	unsigned char *buf; | 
 |  | 
 | 	*raid_level = RAID_UNKNOWN; | 
 | 	buf = kzalloc(64, GFP_KERNEL); | 
 | 	if (!buf) | 
 | 		return; | 
 | 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64); | 
 | 	if (rc == 0) | 
 | 		*raid_level = buf[8]; | 
 | 	if (*raid_level > RAID_UNKNOWN) | 
 | 		*raid_level = RAID_UNKNOWN; | 
 | 	kfree(buf); | 
 | 	return; | 
 | } | 
 |  | 
 | /* Get the device id from inquiry page 0x83 */ | 
 | static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, | 
 | 	unsigned char *device_id, int buflen) | 
 | { | 
 | 	int rc; | 
 | 	unsigned char *buf; | 
 |  | 
 | 	if (buflen > 16) | 
 | 		buflen = 16; | 
 | 	buf = kzalloc(64, GFP_KERNEL); | 
 | 	if (!buf) | 
 | 		return -1; | 
 | 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64); | 
 | 	if (rc == 0) | 
 | 		memcpy(device_id, &buf[8], buflen); | 
 | 	kfree(buf); | 
 | 	return rc != 0; | 
 | } | 
 |  | 
 | static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, | 
 | 		struct ReportLUNdata *buf, int bufsize, | 
 | 		int extended_response) | 
 | { | 
 | 	int rc = IO_OK; | 
 | 	struct CommandList *c; | 
 | 	unsigned char scsi3addr[8]; | 
 | 	struct ErrorInfo *ei; | 
 |  | 
 | 	c = cmd_special_alloc(h); | 
 | 	if (c == NULL) {			/* trouble... */ | 
 | 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); | 
 | 		return -1; | 
 | 	} | 
 | 	/* address the controller */ | 
 | 	memset(scsi3addr, 0, sizeof(scsi3addr)); | 
 | 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, | 
 | 		buf, bufsize, 0, scsi3addr, TYPE_CMD); | 
 | 	if (extended_response) | 
 | 		c->Request.CDB[1] = extended_response; | 
 | 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); | 
 | 	ei = c->err_info; | 
 | 	if (ei->CommandStatus != 0 && | 
 | 	    ei->CommandStatus != CMD_DATA_UNDERRUN) { | 
 | 		hpsa_scsi_interpret_error(c); | 
 | 		rc = -1; | 
 | 	} | 
 | 	cmd_special_free(h, c); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, | 
 | 		struct ReportLUNdata *buf, | 
 | 		int bufsize, int extended_response) | 
 | { | 
 | 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response); | 
 | } | 
 |  | 
 | static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, | 
 | 		struct ReportLUNdata *buf, int bufsize) | 
 | { | 
 | 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); | 
 | } | 
 |  | 
 | static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, | 
 | 	int bus, int target, int lun) | 
 | { | 
 | 	device->bus = bus; | 
 | 	device->target = target; | 
 | 	device->lun = lun; | 
 | } | 
 |  | 
 | static int hpsa_update_device_info(struct ctlr_info *h, | 
 | 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device) | 
 | { | 
 | #define OBDR_TAPE_INQ_SIZE 49 | 
 | 	unsigned char *inq_buff; | 
 |  | 
 | 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); | 
 | 	if (!inq_buff) | 
 | 		goto bail_out; | 
 |  | 
 | 	/* Do an inquiry to the device to see what it is. */ | 
 | 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, | 
 | 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { | 
 | 		/* Inquiry failed (msg printed already) */ | 
 | 		dev_err(&h->pdev->dev, | 
 | 			"hpsa_update_device_info: inquiry failed\n"); | 
 | 		goto bail_out; | 
 | 	} | 
 |  | 
 | 	/* As a side effect, record the firmware version number | 
 | 	 * if we happen to be talking to the RAID controller. | 
 | 	 */ | 
 | 	if (is_hba_lunid(scsi3addr)) | 
 | 		memcpy(h->firm_ver, &inq_buff[32], 4); | 
 |  | 
 | 	this_device->devtype = (inq_buff[0] & 0x1f); | 
 | 	memcpy(this_device->scsi3addr, scsi3addr, 8); | 
 | 	memcpy(this_device->vendor, &inq_buff[8], | 
 | 		sizeof(this_device->vendor)); | 
 | 	memcpy(this_device->model, &inq_buff[16], | 
 | 		sizeof(this_device->model)); | 
 | 	memcpy(this_device->revision, &inq_buff[32], | 
 | 		sizeof(this_device->revision)); | 
 | 	memset(this_device->device_id, 0, | 
 | 		sizeof(this_device->device_id)); | 
 | 	hpsa_get_device_id(h, scsi3addr, this_device->device_id, | 
 | 		sizeof(this_device->device_id)); | 
 |  | 
 | 	if (this_device->devtype == TYPE_DISK && | 
 | 		is_logical_dev_addr_mode(scsi3addr)) | 
 | 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); | 
 | 	else | 
 | 		this_device->raid_level = RAID_UNKNOWN; | 
 |  | 
 | 	kfree(inq_buff); | 
 | 	return 0; | 
 |  | 
 | bail_out: | 
 | 	kfree(inq_buff); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static unsigned char *msa2xxx_model[] = { | 
 | 	"MSA2012", | 
 | 	"MSA2024", | 
 | 	"MSA2312", | 
 | 	"MSA2324", | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; msa2xxx_model[i]; i++) | 
 | 		if (strncmp(device->model, msa2xxx_model[i], | 
 | 			strlen(msa2xxx_model[i])) == 0) | 
 | 			return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Helper function to assign bus, target, lun mapping of devices. | 
 |  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical | 
 |  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3. | 
 |  * Logical drive target and lun are assigned at this time, but | 
 |  * physical device lun and target assignment are deferred (assigned | 
 |  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) | 
 |  */ | 
 | static void figure_bus_target_lun(struct ctlr_info *h, | 
 | 	u8 *lunaddrbytes, int *bus, int *target, int *lun, | 
 | 	struct hpsa_scsi_dev_t *device) | 
 | { | 
 | 	u32 lunid; | 
 |  | 
 | 	if (is_logical_dev_addr_mode(lunaddrbytes)) { | 
 | 		/* logical device */ | 
 | 		if (unlikely(is_scsi_rev_5(h))) { | 
 | 			/* p1210m, logical drives lun assignments | 
 | 			 * match SCSI REPORT LUNS data. | 
 | 			 */ | 
 | 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); | 
 | 			*bus = 0; | 
 | 			*target = 0; | 
 | 			*lun = (lunid & 0x3fff) + 1; | 
 | 		} else { | 
 | 			/* not p1210m... */ | 
 | 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); | 
 | 			if (is_msa2xxx(h, device)) { | 
 | 				/* msa2xxx way, put logicals on bus 1 | 
 | 				 * and match target/lun numbers box | 
 | 				 * reports. | 
 | 				 */ | 
 | 				*bus = 1; | 
 | 				*target = (lunid >> 16) & 0x3fff; | 
 | 				*lun = lunid & 0x00ff; | 
 | 			} else { | 
 | 				/* Traditional smart array way. */ | 
 | 				*bus = 0; | 
 | 				*lun = 0; | 
 | 				*target = lunid & 0x3fff; | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		/* physical device */ | 
 | 		if (is_hba_lunid(lunaddrbytes)) | 
 | 			if (unlikely(is_scsi_rev_5(h))) { | 
 | 				*bus = 0; /* put p1210m ctlr at 0,0,0 */ | 
 | 				*target = 0; | 
 | 				*lun = 0; | 
 | 				return; | 
 | 			} else | 
 | 				*bus = 3; /* traditional smartarray */ | 
 | 		else | 
 | 			*bus = 2; /* physical disk */ | 
 | 		*target = -1; | 
 | 		*lun = -1; /* we will fill these in later. */ | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * If there is no lun 0 on a target, linux won't find any devices. | 
 |  * For the MSA2xxx boxes, we have to manually detect the enclosure | 
 |  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report | 
 |  * it for some reason.  *tmpdevice is the target we're adding, | 
 |  * this_device is a pointer into the current element of currentsd[] | 
 |  * that we're building up in update_scsi_devices(), below. | 
 |  * lunzerobits is a bitmap that tracks which targets already have a | 
 |  * lun 0 assigned. | 
 |  * Returns 1 if an enclosure was added, 0 if not. | 
 |  */ | 
 | static int add_msa2xxx_enclosure_device(struct ctlr_info *h, | 
 | 	struct hpsa_scsi_dev_t *tmpdevice, | 
 | 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes, | 
 | 	int bus, int target, int lun, unsigned long lunzerobits[], | 
 | 	int *nmsa2xxx_enclosures) | 
 | { | 
 | 	unsigned char scsi3addr[8]; | 
 |  | 
 | 	if (test_bit(target, lunzerobits)) | 
 | 		return 0; /* There is already a lun 0 on this target. */ | 
 |  | 
 | 	if (!is_logical_dev_addr_mode(lunaddrbytes)) | 
 | 		return 0; /* It's the logical targets that may lack lun 0. */ | 
 |  | 
 | 	if (!is_msa2xxx(h, tmpdevice)) | 
 | 		return 0; /* It's only the MSA2xxx that have this problem. */ | 
 |  | 
 | 	if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */ | 
 | 		return 0; | 
 |  | 
 | 	if (is_hba_lunid(scsi3addr)) | 
 | 		return 0; /* Don't add the RAID controller here. */ | 
 |  | 
 | 	if (is_scsi_rev_5(h)) | 
 | 		return 0; /* p1210m doesn't need to do this. */ | 
 |  | 
 | #define MAX_MSA2XXX_ENCLOSURES 32 | 
 | 	if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) { | 
 | 		dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX " | 
 | 			"enclosures exceeded.  Check your hardware " | 
 | 			"configuration."); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	memset(scsi3addr, 0, 8); | 
 | 	scsi3addr[3] = target; | 
 | 	if (hpsa_update_device_info(h, scsi3addr, this_device)) | 
 | 		return 0; | 
 | 	(*nmsa2xxx_enclosures)++; | 
 | 	hpsa_set_bus_target_lun(this_device, bus, target, 0); | 
 | 	set_bit(target, lunzerobits); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev, | 
 |  * logdev.  The number of luns in physdev and logdev are returned in | 
 |  * *nphysicals and *nlogicals, respectively. | 
 |  * Returns 0 on success, -1 otherwise. | 
 |  */ | 
 | static int hpsa_gather_lun_info(struct ctlr_info *h, | 
 | 	int reportlunsize, | 
 | 	struct ReportLUNdata *physdev, u32 *nphysicals, | 
 | 	struct ReportLUNdata *logdev, u32 *nlogicals) | 
 | { | 
 | 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) { | 
 | 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); | 
 | 		return -1; | 
 | 	} | 
 | 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8; | 
 | 	if (*nphysicals > HPSA_MAX_PHYS_LUN) { | 
 | 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded." | 
 | 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, | 
 | 			*nphysicals - HPSA_MAX_PHYS_LUN); | 
 | 		*nphysicals = HPSA_MAX_PHYS_LUN; | 
 | 	} | 
 | 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) { | 
 | 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); | 
 | 		return -1; | 
 | 	} | 
 | 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; | 
 | 	/* Reject Logicals in excess of our max capability. */ | 
 | 	if (*nlogicals > HPSA_MAX_LUN) { | 
 | 		dev_warn(&h->pdev->dev, | 
 | 			"maximum logical LUNs (%d) exceeded.  " | 
 | 			"%d LUNs ignored.\n", HPSA_MAX_LUN, | 
 | 			*nlogicals - HPSA_MAX_LUN); | 
 | 			*nlogicals = HPSA_MAX_LUN; | 
 | 	} | 
 | 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { | 
 | 		dev_warn(&h->pdev->dev, | 
 | 			"maximum logical + physical LUNs (%d) exceeded. " | 
 | 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, | 
 | 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); | 
 | 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i, | 
 | 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list, | 
 | 	struct ReportLUNdata *logdev_list) | 
 | { | 
 | 	/* Helper function, figure out where the LUN ID info is coming from | 
 | 	 * given index i, lists of physical and logical devices, where in | 
 | 	 * the list the raid controller is supposed to appear (first or last) | 
 | 	 */ | 
 |  | 
 | 	int logicals_start = nphysicals + (raid_ctlr_position == 0); | 
 | 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); | 
 |  | 
 | 	if (i == raid_ctlr_position) | 
 | 		return RAID_CTLR_LUNID; | 
 |  | 
 | 	if (i < logicals_start) | 
 | 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0]; | 
 |  | 
 | 	if (i < last_device) | 
 | 		return &logdev_list->LUN[i - nphysicals - | 
 | 			(raid_ctlr_position == 0)][0]; | 
 | 	BUG(); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno) | 
 | { | 
 | 	/* the idea here is we could get notified | 
 | 	 * that some devices have changed, so we do a report | 
 | 	 * physical luns and report logical luns cmd, and adjust | 
 | 	 * our list of devices accordingly. | 
 | 	 * | 
 | 	 * The scsi3addr's of devices won't change so long as the | 
 | 	 * adapter is not reset.  That means we can rescan and | 
 | 	 * tell which devices we already know about, vs. new | 
 | 	 * devices, vs.  disappearing devices. | 
 | 	 */ | 
 | 	struct ReportLUNdata *physdev_list = NULL; | 
 | 	struct ReportLUNdata *logdev_list = NULL; | 
 | 	unsigned char *inq_buff = NULL; | 
 | 	u32 nphysicals = 0; | 
 | 	u32 nlogicals = 0; | 
 | 	u32 ndev_allocated = 0; | 
 | 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; | 
 | 	int ncurrent = 0; | 
 | 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8; | 
 | 	int i, nmsa2xxx_enclosures, ndevs_to_allocate; | 
 | 	int bus, target, lun; | 
 | 	int raid_ctlr_position; | 
 | 	DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR); | 
 |  | 
 | 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA, | 
 | 		GFP_KERNEL); | 
 | 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL); | 
 | 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL); | 
 | 	inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); | 
 | 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); | 
 |  | 
 | 	if (!currentsd || !physdev_list || !logdev_list || | 
 | 		!inq_buff || !tmpdevice) { | 
 | 		dev_err(&h->pdev->dev, "out of memory\n"); | 
 | 		goto out; | 
 | 	} | 
 | 	memset(lunzerobits, 0, sizeof(lunzerobits)); | 
 |  | 
 | 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals, | 
 | 			logdev_list, &nlogicals)) | 
 | 		goto out; | 
 |  | 
 | 	/* We might see up to 32 MSA2xxx enclosures, actually 8 of them | 
 | 	 * but each of them 4 times through different paths.  The plus 1 | 
 | 	 * is for the RAID controller. | 
 | 	 */ | 
 | 	ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1; | 
 |  | 
 | 	/* Allocate the per device structures */ | 
 | 	for (i = 0; i < ndevs_to_allocate; i++) { | 
 | 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); | 
 | 		if (!currentsd[i]) { | 
 | 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n", | 
 | 				__FILE__, __LINE__); | 
 | 			goto out; | 
 | 		} | 
 | 		ndev_allocated++; | 
 | 	} | 
 |  | 
 | 	if (unlikely(is_scsi_rev_5(h))) | 
 | 		raid_ctlr_position = 0; | 
 | 	else | 
 | 		raid_ctlr_position = nphysicals + nlogicals; | 
 |  | 
 | 	/* adjust our table of devices */ | 
 | 	nmsa2xxx_enclosures = 0; | 
 | 	for (i = 0; i < nphysicals + nlogicals + 1; i++) { | 
 | 		u8 *lunaddrbytes; | 
 |  | 
 | 		/* Figure out where the LUN ID info is coming from */ | 
 | 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, | 
 | 			i, nphysicals, nlogicals, physdev_list, logdev_list); | 
 | 		/* skip masked physical devices. */ | 
 | 		if (lunaddrbytes[3] & 0xC0 && | 
 | 			i < nphysicals + (raid_ctlr_position == 0)) | 
 | 			continue; | 
 |  | 
 | 		/* Get device type, vendor, model, device id */ | 
 | 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice)) | 
 | 			continue; /* skip it if we can't talk to it. */ | 
 | 		figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun, | 
 | 			tmpdevice); | 
 | 		this_device = currentsd[ncurrent]; | 
 |  | 
 | 		/* | 
 | 		 * For the msa2xxx boxes, we have to insert a LUN 0 which | 
 | 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there | 
 | 		 * is nonetheless an enclosure device there.  We have to | 
 | 		 * present that otherwise linux won't find anything if | 
 | 		 * there is no lun 0. | 
 | 		 */ | 
 | 		if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device, | 
 | 				lunaddrbytes, bus, target, lun, lunzerobits, | 
 | 				&nmsa2xxx_enclosures)) { | 
 | 			ncurrent++; | 
 | 			this_device = currentsd[ncurrent]; | 
 | 		} | 
 |  | 
 | 		*this_device = *tmpdevice; | 
 | 		hpsa_set_bus_target_lun(this_device, bus, target, lun); | 
 |  | 
 | 		switch (this_device->devtype) { | 
 | 		case TYPE_ROM: { | 
 | 			/* We don't *really* support actual CD-ROM devices, | 
 | 			 * just "One Button Disaster Recovery" tape drive | 
 | 			 * which temporarily pretends to be a CD-ROM drive. | 
 | 			 * So we check that the device is really an OBDR tape | 
 | 			 * device by checking for "$DR-10" in bytes 43-48 of | 
 | 			 * the inquiry data. | 
 | 			 */ | 
 | 				char obdr_sig[7]; | 
 | #define OBDR_TAPE_SIG "$DR-10" | 
 | 				strncpy(obdr_sig, &inq_buff[43], 6); | 
 | 				obdr_sig[6] = '\0'; | 
 | 				if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0) | 
 | 					/* Not OBDR device, ignore it. */ | 
 | 					break; | 
 | 			} | 
 | 			ncurrent++; | 
 | 			break; | 
 | 		case TYPE_DISK: | 
 | 			if (i < nphysicals) | 
 | 				break; | 
 | 			ncurrent++; | 
 | 			break; | 
 | 		case TYPE_TAPE: | 
 | 		case TYPE_MEDIUM_CHANGER: | 
 | 			ncurrent++; | 
 | 			break; | 
 | 		case TYPE_RAID: | 
 | 			/* Only present the Smartarray HBA as a RAID controller. | 
 | 			 * If it's a RAID controller other than the HBA itself | 
 | 			 * (an external RAID controller, MSA500 or similar) | 
 | 			 * don't present it. | 
 | 			 */ | 
 | 			if (!is_hba_lunid(lunaddrbytes)) | 
 | 				break; | 
 | 			ncurrent++; | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 		if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA) | 
 | 			break; | 
 | 	} | 
 | 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent); | 
 | out: | 
 | 	kfree(tmpdevice); | 
 | 	for (i = 0; i < ndev_allocated; i++) | 
 | 		kfree(currentsd[i]); | 
 | 	kfree(currentsd); | 
 | 	kfree(inq_buff); | 
 | 	kfree(physdev_list); | 
 | 	kfree(logdev_list); | 
 | } | 
 |  | 
 | /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci | 
 |  * dma mapping  and fills in the scatter gather entries of the | 
 |  * hpsa command, cp. | 
 |  */ | 
 | static int hpsa_scatter_gather(struct pci_dev *pdev, | 
 | 		struct CommandList *cp, | 
 | 		struct scsi_cmnd *cmd) | 
 | { | 
 | 	unsigned int len; | 
 | 	struct scatterlist *sg; | 
 | 	u64 addr64; | 
 | 	int use_sg, i; | 
 |  | 
 | 	BUG_ON(scsi_sg_count(cmd) > MAXSGENTRIES); | 
 |  | 
 | 	use_sg = scsi_dma_map(cmd); | 
 | 	if (use_sg < 0) | 
 | 		return use_sg; | 
 |  | 
 | 	if (!use_sg) | 
 | 		goto sglist_finished; | 
 |  | 
 | 	scsi_for_each_sg(cmd, sg, use_sg, i) { | 
 | 		addr64 = (u64) sg_dma_address(sg); | 
 | 		len  = sg_dma_len(sg); | 
 | 		cp->SG[i].Addr.lower = | 
 | 			(u32) (addr64 & (u64) 0x00000000FFFFFFFF); | 
 | 		cp->SG[i].Addr.upper = | 
 | 			(u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF); | 
 | 		cp->SG[i].Len = len; | 
 | 		cp->SG[i].Ext = 0;  /* we are not chaining */ | 
 | 	} | 
 |  | 
 | sglist_finished: | 
 |  | 
 | 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */ | 
 | 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */ | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd, | 
 | 	void (*done)(struct scsi_cmnd *)) | 
 | { | 
 | 	struct ctlr_info *h; | 
 | 	struct hpsa_scsi_dev_t *dev; | 
 | 	unsigned char scsi3addr[8]; | 
 | 	struct CommandList *c; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* Get the ptr to our adapter structure out of cmd->host. */ | 
 | 	h = sdev_to_hba(cmd->device); | 
 | 	dev = cmd->device->hostdata; | 
 | 	if (!dev) { | 
 | 		cmd->result = DID_NO_CONNECT << 16; | 
 | 		done(cmd); | 
 | 		return 0; | 
 | 	} | 
 | 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); | 
 |  | 
 | 	/* Need a lock as this is being allocated from the pool */ | 
 | 	spin_lock_irqsave(&h->lock, flags); | 
 | 	c = cmd_alloc(h); | 
 | 	spin_unlock_irqrestore(&h->lock, flags); | 
 | 	if (c == NULL) {			/* trouble... */ | 
 | 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n"); | 
 | 		return SCSI_MLQUEUE_HOST_BUSY; | 
 | 	} | 
 |  | 
 | 	/* Fill in the command list header */ | 
 |  | 
 | 	cmd->scsi_done = done;    /* save this for use by completion code */ | 
 |  | 
 | 	/* save c in case we have to abort it  */ | 
 | 	cmd->host_scribble = (unsigned char *) c; | 
 |  | 
 | 	c->cmd_type = CMD_SCSI; | 
 | 	c->scsi_cmd = cmd; | 
 | 	c->Header.ReplyQueue = 0;  /* unused in simple mode */ | 
 | 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); | 
 | 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT); | 
 | 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT; | 
 |  | 
 | 	/* Fill in the request block... */ | 
 |  | 
 | 	c->Request.Timeout = 0; | 
 | 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); | 
 | 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); | 
 | 	c->Request.CDBLen = cmd->cmd_len; | 
 | 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); | 
 | 	c->Request.Type.Type = TYPE_CMD; | 
 | 	c->Request.Type.Attribute = ATTR_SIMPLE; | 
 | 	switch (cmd->sc_data_direction) { | 
 | 	case DMA_TO_DEVICE: | 
 | 		c->Request.Type.Direction = XFER_WRITE; | 
 | 		break; | 
 | 	case DMA_FROM_DEVICE: | 
 | 		c->Request.Type.Direction = XFER_READ; | 
 | 		break; | 
 | 	case DMA_NONE: | 
 | 		c->Request.Type.Direction = XFER_NONE; | 
 | 		break; | 
 | 	case DMA_BIDIRECTIONAL: | 
 | 		/* This can happen if a buggy application does a scsi passthru | 
 | 		 * and sets both inlen and outlen to non-zero. ( see | 
 | 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) | 
 | 		 */ | 
 |  | 
 | 		c->Request.Type.Direction = XFER_RSVD; | 
 | 		/* This is technically wrong, and hpsa controllers should | 
 | 		 * reject it with CMD_INVALID, which is the most correct | 
 | 		 * response, but non-fibre backends appear to let it | 
 | 		 * slide by, and give the same results as if this field | 
 | 		 * were set correctly.  Either way is acceptable for | 
 | 		 * our purposes here. | 
 | 		 */ | 
 |  | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		dev_err(&h->pdev->dev, "unknown data direction: %d\n", | 
 | 			cmd->sc_data_direction); | 
 | 		BUG(); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (hpsa_scatter_gather(h->pdev, c, cmd) < 0) { /* Fill SG list */ | 
 | 		cmd_free(h, c); | 
 | 		return SCSI_MLQUEUE_HOST_BUSY; | 
 | 	} | 
 | 	enqueue_cmd_and_start_io(h, c); | 
 | 	/* the cmd'll come back via intr handler in complete_scsi_command()  */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void hpsa_scan_start(struct Scsi_Host *sh) | 
 | { | 
 | 	struct ctlr_info *h = shost_to_hba(sh); | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* wait until any scan already in progress is finished. */ | 
 | 	while (1) { | 
 | 		spin_lock_irqsave(&h->scan_lock, flags); | 
 | 		if (h->scan_finished) | 
 | 			break; | 
 | 		spin_unlock_irqrestore(&h->scan_lock, flags); | 
 | 		wait_event(h->scan_wait_queue, h->scan_finished); | 
 | 		/* Note: We don't need to worry about a race between this | 
 | 		 * thread and driver unload because the midlayer will | 
 | 		 * have incremented the reference count, so unload won't | 
 | 		 * happen if we're in here. | 
 | 		 */ | 
 | 	} | 
 | 	h->scan_finished = 0; /* mark scan as in progress */ | 
 | 	spin_unlock_irqrestore(&h->scan_lock, flags); | 
 |  | 
 | 	hpsa_update_scsi_devices(h, h->scsi_host->host_no); | 
 |  | 
 | 	spin_lock_irqsave(&h->scan_lock, flags); | 
 | 	h->scan_finished = 1; /* mark scan as finished. */ | 
 | 	wake_up_all(&h->scan_wait_queue); | 
 | 	spin_unlock_irqrestore(&h->scan_lock, flags); | 
 | } | 
 |  | 
 | static int hpsa_scan_finished(struct Scsi_Host *sh, | 
 | 	unsigned long elapsed_time) | 
 | { | 
 | 	struct ctlr_info *h = shost_to_hba(sh); | 
 | 	unsigned long flags; | 
 | 	int finished; | 
 |  | 
 | 	spin_lock_irqsave(&h->scan_lock, flags); | 
 | 	finished = h->scan_finished; | 
 | 	spin_unlock_irqrestore(&h->scan_lock, flags); | 
 | 	return finished; | 
 | } | 
 |  | 
 | static void hpsa_unregister_scsi(struct ctlr_info *h) | 
 | { | 
 | 	/* we are being forcibly unloaded, and may not refuse. */ | 
 | 	scsi_remove_host(h->scsi_host); | 
 | 	scsi_host_put(h->scsi_host); | 
 | 	h->scsi_host = NULL; | 
 | } | 
 |  | 
 | static int hpsa_register_scsi(struct ctlr_info *h) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	rc = hpsa_scsi_detect(h); | 
 | 	if (rc != 0) | 
 | 		dev_err(&h->pdev->dev, "hpsa_register_scsi: failed" | 
 | 			" hpsa_scsi_detect(), rc is %d\n", rc); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int wait_for_device_to_become_ready(struct ctlr_info *h, | 
 | 	unsigned char lunaddr[]) | 
 | { | 
 | 	int rc = 0; | 
 | 	int count = 0; | 
 | 	int waittime = 1; /* seconds */ | 
 | 	struct CommandList *c; | 
 |  | 
 | 	c = cmd_special_alloc(h); | 
 | 	if (!c) { | 
 | 		dev_warn(&h->pdev->dev, "out of memory in " | 
 | 			"wait_for_device_to_become_ready.\n"); | 
 | 		return IO_ERROR; | 
 | 	} | 
 |  | 
 | 	/* Send test unit ready until device ready, or give up. */ | 
 | 	while (count < HPSA_TUR_RETRY_LIMIT) { | 
 |  | 
 | 		/* Wait for a bit.  do this first, because if we send | 
 | 		 * the TUR right away, the reset will just abort it. | 
 | 		 */ | 
 | 		msleep(1000 * waittime); | 
 | 		count++; | 
 |  | 
 | 		/* Increase wait time with each try, up to a point. */ | 
 | 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) | 
 | 			waittime = waittime * 2; | 
 |  | 
 | 		/* Send the Test Unit Ready */ | 
 | 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD); | 
 | 		hpsa_scsi_do_simple_cmd_core(h, c); | 
 | 		/* no unmap needed here because no data xfer. */ | 
 |  | 
 | 		if (c->err_info->CommandStatus == CMD_SUCCESS) | 
 | 			break; | 
 |  | 
 | 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS && | 
 | 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && | 
 | 			(c->err_info->SenseInfo[2] == NO_SENSE || | 
 | 			c->err_info->SenseInfo[2] == UNIT_ATTENTION)) | 
 | 			break; | 
 |  | 
 | 		dev_warn(&h->pdev->dev, "waiting %d secs " | 
 | 			"for device to become ready.\n", waittime); | 
 | 		rc = 1; /* device not ready. */ | 
 | 	} | 
 |  | 
 | 	if (rc) | 
 | 		dev_warn(&h->pdev->dev, "giving up on device.\n"); | 
 | 	else | 
 | 		dev_warn(&h->pdev->dev, "device is ready.\n"); | 
 |  | 
 | 	cmd_special_free(h, c); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* Need at least one of these error handlers to keep ../scsi/hosts.c from | 
 |  * complaining.  Doing a host- or bus-reset can't do anything good here. | 
 |  */ | 
 | static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) | 
 | { | 
 | 	int rc; | 
 | 	struct ctlr_info *h; | 
 | 	struct hpsa_scsi_dev_t *dev; | 
 |  | 
 | 	/* find the controller to which the command to be aborted was sent */ | 
 | 	h = sdev_to_hba(scsicmd->device); | 
 | 	if (h == NULL) /* paranoia */ | 
 | 		return FAILED; | 
 | 	dev = scsicmd->device->hostdata; | 
 | 	if (!dev) { | 
 | 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: " | 
 | 			"device lookup failed.\n"); | 
 | 		return FAILED; | 
 | 	} | 
 | 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n", | 
 | 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun); | 
 | 	/* send a reset to the SCSI LUN which the command was sent to */ | 
 | 	rc = hpsa_send_reset(h, dev->scsi3addr); | 
 | 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0) | 
 | 		return SUCCESS; | 
 |  | 
 | 	dev_warn(&h->pdev->dev, "resetting device failed.\n"); | 
 | 	return FAILED; | 
 | } | 
 |  | 
 | /* | 
 |  * For operations that cannot sleep, a command block is allocated at init, | 
 |  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track | 
 |  * which ones are free or in use.  Lock must be held when calling this. | 
 |  * cmd_free() is the complement. | 
 |  */ | 
 | static struct CommandList *cmd_alloc(struct ctlr_info *h) | 
 | { | 
 | 	struct CommandList *c; | 
 | 	int i; | 
 | 	union u64bit temp64; | 
 | 	dma_addr_t cmd_dma_handle, err_dma_handle; | 
 |  | 
 | 	do { | 
 | 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); | 
 | 		if (i == h->nr_cmds) | 
 | 			return NULL; | 
 | 	} while (test_and_set_bit | 
 | 		 (i & (BITS_PER_LONG - 1), | 
 | 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0); | 
 | 	c = h->cmd_pool + i; | 
 | 	memset(c, 0, sizeof(*c)); | 
 | 	cmd_dma_handle = h->cmd_pool_dhandle | 
 | 	    + i * sizeof(*c); | 
 | 	c->err_info = h->errinfo_pool + i; | 
 | 	memset(c->err_info, 0, sizeof(*c->err_info)); | 
 | 	err_dma_handle = h->errinfo_pool_dhandle | 
 | 	    + i * sizeof(*c->err_info); | 
 | 	h->nr_allocs++; | 
 |  | 
 | 	c->cmdindex = i; | 
 |  | 
 | 	INIT_HLIST_NODE(&c->list); | 
 | 	c->busaddr = (u32) cmd_dma_handle; | 
 | 	temp64.val = (u64) err_dma_handle; | 
 | 	c->ErrDesc.Addr.lower = temp64.val32.lower; | 
 | 	c->ErrDesc.Addr.upper = temp64.val32.upper; | 
 | 	c->ErrDesc.Len = sizeof(*c->err_info); | 
 |  | 
 | 	c->h = h; | 
 | 	return c; | 
 | } | 
 |  | 
 | /* For operations that can wait for kmalloc to possibly sleep, | 
 |  * this routine can be called. Lock need not be held to call | 
 |  * cmd_special_alloc. cmd_special_free() is the complement. | 
 |  */ | 
 | static struct CommandList *cmd_special_alloc(struct ctlr_info *h) | 
 | { | 
 | 	struct CommandList *c; | 
 | 	union u64bit temp64; | 
 | 	dma_addr_t cmd_dma_handle, err_dma_handle; | 
 |  | 
 | 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle); | 
 | 	if (c == NULL) | 
 | 		return NULL; | 
 | 	memset(c, 0, sizeof(*c)); | 
 |  | 
 | 	c->cmdindex = -1; | 
 |  | 
 | 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info), | 
 | 		    &err_dma_handle); | 
 |  | 
 | 	if (c->err_info == NULL) { | 
 | 		pci_free_consistent(h->pdev, | 
 | 			sizeof(*c), c, cmd_dma_handle); | 
 | 		return NULL; | 
 | 	} | 
 | 	memset(c->err_info, 0, sizeof(*c->err_info)); | 
 |  | 
 | 	INIT_HLIST_NODE(&c->list); | 
 | 	c->busaddr = (u32) cmd_dma_handle; | 
 | 	temp64.val = (u64) err_dma_handle; | 
 | 	c->ErrDesc.Addr.lower = temp64.val32.lower; | 
 | 	c->ErrDesc.Addr.upper = temp64.val32.upper; | 
 | 	c->ErrDesc.Len = sizeof(*c->err_info); | 
 |  | 
 | 	c->h = h; | 
 | 	return c; | 
 | } | 
 |  | 
 | static void cmd_free(struct ctlr_info *h, struct CommandList *c) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	i = c - h->cmd_pool; | 
 | 	clear_bit(i & (BITS_PER_LONG - 1), | 
 | 		  h->cmd_pool_bits + (i / BITS_PER_LONG)); | 
 | 	h->nr_frees++; | 
 | } | 
 |  | 
 | static void cmd_special_free(struct ctlr_info *h, struct CommandList *c) | 
 | { | 
 | 	union u64bit temp64; | 
 |  | 
 | 	temp64.val32.lower = c->ErrDesc.Addr.lower; | 
 | 	temp64.val32.upper = c->ErrDesc.Addr.upper; | 
 | 	pci_free_consistent(h->pdev, sizeof(*c->err_info), | 
 | 			    c->err_info, (dma_addr_t) temp64.val); | 
 | 	pci_free_consistent(h->pdev, sizeof(*c), | 
 | 			    c, (dma_addr_t) c->busaddr); | 
 | } | 
 |  | 
 | #ifdef CONFIG_COMPAT | 
 |  | 
 | static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg) | 
 | { | 
 | 	IOCTL32_Command_struct __user *arg32 = | 
 | 	    (IOCTL32_Command_struct __user *) arg; | 
 | 	IOCTL_Command_struct arg64; | 
 | 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); | 
 | 	int err; | 
 | 	u32 cp; | 
 |  | 
 | 	err = 0; | 
 | 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, | 
 | 			   sizeof(arg64.LUN_info)); | 
 | 	err |= copy_from_user(&arg64.Request, &arg32->Request, | 
 | 			   sizeof(arg64.Request)); | 
 | 	err |= copy_from_user(&arg64.error_info, &arg32->error_info, | 
 | 			   sizeof(arg64.error_info)); | 
 | 	err |= get_user(arg64.buf_size, &arg32->buf_size); | 
 | 	err |= get_user(cp, &arg32->buf); | 
 | 	arg64.buf = compat_ptr(cp); | 
 | 	err |= copy_to_user(p, &arg64, sizeof(arg64)); | 
 |  | 
 | 	if (err) | 
 | 		return -EFAULT; | 
 |  | 
 | 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p); | 
 | 	if (err) | 
 | 		return err; | 
 | 	err |= copy_in_user(&arg32->error_info, &p->error_info, | 
 | 			 sizeof(arg32->error_info)); | 
 | 	if (err) | 
 | 		return -EFAULT; | 
 | 	return err; | 
 | } | 
 |  | 
 | static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, | 
 | 	int cmd, void *arg) | 
 | { | 
 | 	BIG_IOCTL32_Command_struct __user *arg32 = | 
 | 	    (BIG_IOCTL32_Command_struct __user *) arg; | 
 | 	BIG_IOCTL_Command_struct arg64; | 
 | 	BIG_IOCTL_Command_struct __user *p = | 
 | 	    compat_alloc_user_space(sizeof(arg64)); | 
 | 	int err; | 
 | 	u32 cp; | 
 |  | 
 | 	err = 0; | 
 | 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, | 
 | 			   sizeof(arg64.LUN_info)); | 
 | 	err |= copy_from_user(&arg64.Request, &arg32->Request, | 
 | 			   sizeof(arg64.Request)); | 
 | 	err |= copy_from_user(&arg64.error_info, &arg32->error_info, | 
 | 			   sizeof(arg64.error_info)); | 
 | 	err |= get_user(arg64.buf_size, &arg32->buf_size); | 
 | 	err |= get_user(arg64.malloc_size, &arg32->malloc_size); | 
 | 	err |= get_user(cp, &arg32->buf); | 
 | 	arg64.buf = compat_ptr(cp); | 
 | 	err |= copy_to_user(p, &arg64, sizeof(arg64)); | 
 |  | 
 | 	if (err) | 
 | 		return -EFAULT; | 
 |  | 
 | 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p); | 
 | 	if (err) | 
 | 		return err; | 
 | 	err |= copy_in_user(&arg32->error_info, &p->error_info, | 
 | 			 sizeof(arg32->error_info)); | 
 | 	if (err) | 
 | 		return -EFAULT; | 
 | 	return err; | 
 | } | 
 |  | 
 | static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg) | 
 | { | 
 | 	switch (cmd) { | 
 | 	case CCISS_GETPCIINFO: | 
 | 	case CCISS_GETINTINFO: | 
 | 	case CCISS_SETINTINFO: | 
 | 	case CCISS_GETNODENAME: | 
 | 	case CCISS_SETNODENAME: | 
 | 	case CCISS_GETHEARTBEAT: | 
 | 	case CCISS_GETBUSTYPES: | 
 | 	case CCISS_GETFIRMVER: | 
 | 	case CCISS_GETDRIVVER: | 
 | 	case CCISS_REVALIDVOLS: | 
 | 	case CCISS_DEREGDISK: | 
 | 	case CCISS_REGNEWDISK: | 
 | 	case CCISS_REGNEWD: | 
 | 	case CCISS_RESCANDISK: | 
 | 	case CCISS_GETLUNINFO: | 
 | 		return hpsa_ioctl(dev, cmd, arg); | 
 |  | 
 | 	case CCISS_PASSTHRU32: | 
 | 		return hpsa_ioctl32_passthru(dev, cmd, arg); | 
 | 	case CCISS_BIG_PASSTHRU32: | 
 | 		return hpsa_ioctl32_big_passthru(dev, cmd, arg); | 
 |  | 
 | 	default: | 
 | 		return -ENOIOCTLCMD; | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) | 
 | { | 
 | 	struct hpsa_pci_info pciinfo; | 
 |  | 
 | 	if (!argp) | 
 | 		return -EINVAL; | 
 | 	pciinfo.domain = pci_domain_nr(h->pdev->bus); | 
 | 	pciinfo.bus = h->pdev->bus->number; | 
 | 	pciinfo.dev_fn = h->pdev->devfn; | 
 | 	pciinfo.board_id = h->board_id; | 
 | 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) | 
 | 		return -EFAULT; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) | 
 | { | 
 | 	DriverVer_type DriverVer; | 
 | 	unsigned char vmaj, vmin, vsubmin; | 
 | 	int rc; | 
 |  | 
 | 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", | 
 | 		&vmaj, &vmin, &vsubmin); | 
 | 	if (rc != 3) { | 
 | 		dev_info(&h->pdev->dev, "driver version string '%s' " | 
 | 			"unrecognized.", HPSA_DRIVER_VERSION); | 
 | 		vmaj = 0; | 
 | 		vmin = 0; | 
 | 		vsubmin = 0; | 
 | 	} | 
 | 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; | 
 | 	if (!argp) | 
 | 		return -EINVAL; | 
 | 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) | 
 | 		return -EFAULT; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) | 
 | { | 
 | 	IOCTL_Command_struct iocommand; | 
 | 	struct CommandList *c; | 
 | 	char *buff = NULL; | 
 | 	union u64bit temp64; | 
 |  | 
 | 	if (!argp) | 
 | 		return -EINVAL; | 
 | 	if (!capable(CAP_SYS_RAWIO)) | 
 | 		return -EPERM; | 
 | 	if (copy_from_user(&iocommand, argp, sizeof(iocommand))) | 
 | 		return -EFAULT; | 
 | 	if ((iocommand.buf_size < 1) && | 
 | 	    (iocommand.Request.Type.Direction != XFER_NONE)) { | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (iocommand.buf_size > 0) { | 
 | 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL); | 
 | 		if (buff == NULL) | 
 | 			return -EFAULT; | 
 | 	} | 
 | 	if (iocommand.Request.Type.Direction == XFER_WRITE) { | 
 | 		/* Copy the data into the buffer we created */ | 
 | 		if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) { | 
 | 			kfree(buff); | 
 | 			return -EFAULT; | 
 | 		} | 
 | 	} else | 
 | 		memset(buff, 0, iocommand.buf_size); | 
 | 	c = cmd_special_alloc(h); | 
 | 	if (c == NULL) { | 
 | 		kfree(buff); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	/* Fill in the command type */ | 
 | 	c->cmd_type = CMD_IOCTL_PEND; | 
 | 	/* Fill in Command Header */ | 
 | 	c->Header.ReplyQueue = 0; /* unused in simple mode */ | 
 | 	if (iocommand.buf_size > 0) {	/* buffer to fill */ | 
 | 		c->Header.SGList = 1; | 
 | 		c->Header.SGTotal = 1; | 
 | 	} else	{ /* no buffers to fill */ | 
 | 		c->Header.SGList = 0; | 
 | 		c->Header.SGTotal = 0; | 
 | 	} | 
 | 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); | 
 | 	/* use the kernel address the cmd block for tag */ | 
 | 	c->Header.Tag.lower = c->busaddr; | 
 |  | 
 | 	/* Fill in Request block */ | 
 | 	memcpy(&c->Request, &iocommand.Request, | 
 | 		sizeof(c->Request)); | 
 |  | 
 | 	/* Fill in the scatter gather information */ | 
 | 	if (iocommand.buf_size > 0) { | 
 | 		temp64.val = pci_map_single(h->pdev, buff, | 
 | 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); | 
 | 		c->SG[0].Addr.lower = temp64.val32.lower; | 
 | 		c->SG[0].Addr.upper = temp64.val32.upper; | 
 | 		c->SG[0].Len = iocommand.buf_size; | 
 | 		c->SG[0].Ext = 0; /* we are not chaining*/ | 
 | 	} | 
 | 	hpsa_scsi_do_simple_cmd_core(h, c); | 
 | 	hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); | 
 | 	check_ioctl_unit_attention(h, c); | 
 |  | 
 | 	/* Copy the error information out */ | 
 | 	memcpy(&iocommand.error_info, c->err_info, | 
 | 		sizeof(iocommand.error_info)); | 
 | 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { | 
 | 		kfree(buff); | 
 | 		cmd_special_free(h, c); | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	if (iocommand.Request.Type.Direction == XFER_READ) { | 
 | 		/* Copy the data out of the buffer we created */ | 
 | 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { | 
 | 			kfree(buff); | 
 | 			cmd_special_free(h, c); | 
 | 			return -EFAULT; | 
 | 		} | 
 | 	} | 
 | 	kfree(buff); | 
 | 	cmd_special_free(h, c); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) | 
 | { | 
 | 	BIG_IOCTL_Command_struct *ioc; | 
 | 	struct CommandList *c; | 
 | 	unsigned char **buff = NULL; | 
 | 	int *buff_size = NULL; | 
 | 	union u64bit temp64; | 
 | 	BYTE sg_used = 0; | 
 | 	int status = 0; | 
 | 	int i; | 
 | 	u32 left; | 
 | 	u32 sz; | 
 | 	BYTE __user *data_ptr; | 
 |  | 
 | 	if (!argp) | 
 | 		return -EINVAL; | 
 | 	if (!capable(CAP_SYS_RAWIO)) | 
 | 		return -EPERM; | 
 | 	ioc = (BIG_IOCTL_Command_struct *) | 
 | 	    kmalloc(sizeof(*ioc), GFP_KERNEL); | 
 | 	if (!ioc) { | 
 | 		status = -ENOMEM; | 
 | 		goto cleanup1; | 
 | 	} | 
 | 	if (copy_from_user(ioc, argp, sizeof(*ioc))) { | 
 | 		status = -EFAULT; | 
 | 		goto cleanup1; | 
 | 	} | 
 | 	if ((ioc->buf_size < 1) && | 
 | 	    (ioc->Request.Type.Direction != XFER_NONE)) { | 
 | 		status = -EINVAL; | 
 | 		goto cleanup1; | 
 | 	} | 
 | 	/* Check kmalloc limits  using all SGs */ | 
 | 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) { | 
 | 		status = -EINVAL; | 
 | 		goto cleanup1; | 
 | 	} | 
 | 	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) { | 
 | 		status = -EINVAL; | 
 | 		goto cleanup1; | 
 | 	} | 
 | 	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL); | 
 | 	if (!buff) { | 
 | 		status = -ENOMEM; | 
 | 		goto cleanup1; | 
 | 	} | 
 | 	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL); | 
 | 	if (!buff_size) { | 
 | 		status = -ENOMEM; | 
 | 		goto cleanup1; | 
 | 	} | 
 | 	left = ioc->buf_size; | 
 | 	data_ptr = ioc->buf; | 
 | 	while (left) { | 
 | 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; | 
 | 		buff_size[sg_used] = sz; | 
 | 		buff[sg_used] = kmalloc(sz, GFP_KERNEL); | 
 | 		if (buff[sg_used] == NULL) { | 
 | 			status = -ENOMEM; | 
 | 			goto cleanup1; | 
 | 		} | 
 | 		if (ioc->Request.Type.Direction == XFER_WRITE) { | 
 | 			if (copy_from_user(buff[sg_used], data_ptr, sz)) { | 
 | 				status = -ENOMEM; | 
 | 				goto cleanup1; | 
 | 			} | 
 | 		} else | 
 | 			memset(buff[sg_used], 0, sz); | 
 | 		left -= sz; | 
 | 		data_ptr += sz; | 
 | 		sg_used++; | 
 | 	} | 
 | 	c = cmd_special_alloc(h); | 
 | 	if (c == NULL) { | 
 | 		status = -ENOMEM; | 
 | 		goto cleanup1; | 
 | 	} | 
 | 	c->cmd_type = CMD_IOCTL_PEND; | 
 | 	c->Header.ReplyQueue = 0; | 
 |  | 
 | 	if (ioc->buf_size > 0) { | 
 | 		c->Header.SGList = sg_used; | 
 | 		c->Header.SGTotal = sg_used; | 
 | 	} else { | 
 | 		c->Header.SGList = 0; | 
 | 		c->Header.SGTotal = 0; | 
 | 	} | 
 | 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); | 
 | 	c->Header.Tag.lower = c->busaddr; | 
 | 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); | 
 | 	if (ioc->buf_size > 0) { | 
 | 		int i; | 
 | 		for (i = 0; i < sg_used; i++) { | 
 | 			temp64.val = pci_map_single(h->pdev, buff[i], | 
 | 				    buff_size[i], PCI_DMA_BIDIRECTIONAL); | 
 | 			c->SG[i].Addr.lower = temp64.val32.lower; | 
 | 			c->SG[i].Addr.upper = temp64.val32.upper; | 
 | 			c->SG[i].Len = buff_size[i]; | 
 | 			/* we are not chaining */ | 
 | 			c->SG[i].Ext = 0; | 
 | 		} | 
 | 	} | 
 | 	hpsa_scsi_do_simple_cmd_core(h, c); | 
 | 	hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); | 
 | 	check_ioctl_unit_attention(h, c); | 
 | 	/* Copy the error information out */ | 
 | 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); | 
 | 	if (copy_to_user(argp, ioc, sizeof(*ioc))) { | 
 | 		cmd_special_free(h, c); | 
 | 		status = -EFAULT; | 
 | 		goto cleanup1; | 
 | 	} | 
 | 	if (ioc->Request.Type.Direction == XFER_READ) { | 
 | 		/* Copy the data out of the buffer we created */ | 
 | 		BYTE __user *ptr = ioc->buf; | 
 | 		for (i = 0; i < sg_used; i++) { | 
 | 			if (copy_to_user(ptr, buff[i], buff_size[i])) { | 
 | 				cmd_special_free(h, c); | 
 | 				status = -EFAULT; | 
 | 				goto cleanup1; | 
 | 			} | 
 | 			ptr += buff_size[i]; | 
 | 		} | 
 | 	} | 
 | 	cmd_special_free(h, c); | 
 | 	status = 0; | 
 | cleanup1: | 
 | 	if (buff) { | 
 | 		for (i = 0; i < sg_used; i++) | 
 | 			kfree(buff[i]); | 
 | 		kfree(buff); | 
 | 	} | 
 | 	kfree(buff_size); | 
 | 	kfree(ioc); | 
 | 	return status; | 
 | } | 
 |  | 
 | static void check_ioctl_unit_attention(struct ctlr_info *h, | 
 | 	struct CommandList *c) | 
 | { | 
 | 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS && | 
 | 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) | 
 | 		(void) check_for_unit_attention(h, c); | 
 | } | 
 | /* | 
 |  * ioctl | 
 |  */ | 
 | static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg) | 
 | { | 
 | 	struct ctlr_info *h; | 
 | 	void __user *argp = (void __user *)arg; | 
 |  | 
 | 	h = sdev_to_hba(dev); | 
 |  | 
 | 	switch (cmd) { | 
 | 	case CCISS_DEREGDISK: | 
 | 	case CCISS_REGNEWDISK: | 
 | 	case CCISS_REGNEWD: | 
 | 		hpsa_scan_start(h->scsi_host); | 
 | 		return 0; | 
 | 	case CCISS_GETPCIINFO: | 
 | 		return hpsa_getpciinfo_ioctl(h, argp); | 
 | 	case CCISS_GETDRIVVER: | 
 | 		return hpsa_getdrivver_ioctl(h, argp); | 
 | 	case CCISS_PASSTHRU: | 
 | 		return hpsa_passthru_ioctl(h, argp); | 
 | 	case CCISS_BIG_PASSTHRU: | 
 | 		return hpsa_big_passthru_ioctl(h, argp); | 
 | 	default: | 
 | 		return -ENOTTY; | 
 | 	} | 
 | } | 
 |  | 
 | static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, | 
 | 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, | 
 | 	int cmd_type) | 
 | { | 
 | 	int pci_dir = XFER_NONE; | 
 |  | 
 | 	c->cmd_type = CMD_IOCTL_PEND; | 
 | 	c->Header.ReplyQueue = 0; | 
 | 	if (buff != NULL && size > 0) { | 
 | 		c->Header.SGList = 1; | 
 | 		c->Header.SGTotal = 1; | 
 | 	} else { | 
 | 		c->Header.SGList = 0; | 
 | 		c->Header.SGTotal = 0; | 
 | 	} | 
 | 	c->Header.Tag.lower = c->busaddr; | 
 | 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); | 
 |  | 
 | 	c->Request.Type.Type = cmd_type; | 
 | 	if (cmd_type == TYPE_CMD) { | 
 | 		switch (cmd) { | 
 | 		case HPSA_INQUIRY: | 
 | 			/* are we trying to read a vital product page */ | 
 | 			if (page_code != 0) { | 
 | 				c->Request.CDB[1] = 0x01; | 
 | 				c->Request.CDB[2] = page_code; | 
 | 			} | 
 | 			c->Request.CDBLen = 6; | 
 | 			c->Request.Type.Attribute = ATTR_SIMPLE; | 
 | 			c->Request.Type.Direction = XFER_READ; | 
 | 			c->Request.Timeout = 0; | 
 | 			c->Request.CDB[0] = HPSA_INQUIRY; | 
 | 			c->Request.CDB[4] = size & 0xFF; | 
 | 			break; | 
 | 		case HPSA_REPORT_LOG: | 
 | 		case HPSA_REPORT_PHYS: | 
 | 			/* Talking to controller so It's a physical command | 
 | 			   mode = 00 target = 0.  Nothing to write. | 
 | 			 */ | 
 | 			c->Request.CDBLen = 12; | 
 | 			c->Request.Type.Attribute = ATTR_SIMPLE; | 
 | 			c->Request.Type.Direction = XFER_READ; | 
 | 			c->Request.Timeout = 0; | 
 | 			c->Request.CDB[0] = cmd; | 
 | 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ | 
 | 			c->Request.CDB[7] = (size >> 16) & 0xFF; | 
 | 			c->Request.CDB[8] = (size >> 8) & 0xFF; | 
 | 			c->Request.CDB[9] = size & 0xFF; | 
 | 			break; | 
 |  | 
 | 		case HPSA_READ_CAPACITY: | 
 | 			c->Request.CDBLen = 10; | 
 | 			c->Request.Type.Attribute = ATTR_SIMPLE; | 
 | 			c->Request.Type.Direction = XFER_READ; | 
 | 			c->Request.Timeout = 0; | 
 | 			c->Request.CDB[0] = cmd; | 
 | 			break; | 
 | 		case HPSA_CACHE_FLUSH: | 
 | 			c->Request.CDBLen = 12; | 
 | 			c->Request.Type.Attribute = ATTR_SIMPLE; | 
 | 			c->Request.Type.Direction = XFER_WRITE; | 
 | 			c->Request.Timeout = 0; | 
 | 			c->Request.CDB[0] = BMIC_WRITE; | 
 | 			c->Request.CDB[6] = BMIC_CACHE_FLUSH; | 
 | 			break; | 
 | 		case TEST_UNIT_READY: | 
 | 			c->Request.CDBLen = 6; | 
 | 			c->Request.Type.Attribute = ATTR_SIMPLE; | 
 | 			c->Request.Type.Direction = XFER_NONE; | 
 | 			c->Request.Timeout = 0; | 
 | 			break; | 
 | 		default: | 
 | 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); | 
 | 			BUG(); | 
 | 			return; | 
 | 		} | 
 | 	} else if (cmd_type == TYPE_MSG) { | 
 | 		switch (cmd) { | 
 |  | 
 | 		case  HPSA_DEVICE_RESET_MSG: | 
 | 			c->Request.CDBLen = 16; | 
 | 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */ | 
 | 			c->Request.Type.Attribute = ATTR_SIMPLE; | 
 | 			c->Request.Type.Direction = XFER_NONE; | 
 | 			c->Request.Timeout = 0; /* Don't time out */ | 
 | 			c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */ | 
 | 			c->Request.CDB[1] = 0x03;  /* Reset target above */ | 
 | 			/* If bytes 4-7 are zero, it means reset the */ | 
 | 			/* LunID device */ | 
 | 			c->Request.CDB[4] = 0x00; | 
 | 			c->Request.CDB[5] = 0x00; | 
 | 			c->Request.CDB[6] = 0x00; | 
 | 			c->Request.CDB[7] = 0x00; | 
 | 		break; | 
 |  | 
 | 		default: | 
 | 			dev_warn(&h->pdev->dev, "unknown message type %d\n", | 
 | 				cmd); | 
 | 			BUG(); | 
 | 		} | 
 | 	} else { | 
 | 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	switch (c->Request.Type.Direction) { | 
 | 	case XFER_READ: | 
 | 		pci_dir = PCI_DMA_FROMDEVICE; | 
 | 		break; | 
 | 	case XFER_WRITE: | 
 | 		pci_dir = PCI_DMA_TODEVICE; | 
 | 		break; | 
 | 	case XFER_NONE: | 
 | 		pci_dir = PCI_DMA_NONE; | 
 | 		break; | 
 | 	default: | 
 | 		pci_dir = PCI_DMA_BIDIRECTIONAL; | 
 | 	} | 
 |  | 
 | 	hpsa_map_one(h->pdev, c, buff, size, pci_dir); | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * Map (physical) PCI mem into (virtual) kernel space | 
 |  */ | 
 | static void __iomem *remap_pci_mem(ulong base, ulong size) | 
 | { | 
 | 	ulong page_base = ((ulong) base) & PAGE_MASK; | 
 | 	ulong page_offs = ((ulong) base) - page_base; | 
 | 	void __iomem *page_remapped = ioremap(page_base, page_offs + size); | 
 |  | 
 | 	return page_remapped ? (page_remapped + page_offs) : NULL; | 
 | } | 
 |  | 
 | /* Takes cmds off the submission queue and sends them to the hardware, | 
 |  * then puts them on the queue of cmds waiting for completion. | 
 |  */ | 
 | static void start_io(struct ctlr_info *h) | 
 | { | 
 | 	struct CommandList *c; | 
 |  | 
 | 	while (!hlist_empty(&h->reqQ)) { | 
 | 		c = hlist_entry(h->reqQ.first, struct CommandList, list); | 
 | 		/* can't do anything if fifo is full */ | 
 | 		if ((h->access.fifo_full(h))) { | 
 | 			dev_warn(&h->pdev->dev, "fifo full\n"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Get the first entry from the Request Q */ | 
 | 		removeQ(c); | 
 | 		h->Qdepth--; | 
 |  | 
 | 		/* Tell the controller execute command */ | 
 | 		h->access.submit_command(h, c); | 
 |  | 
 | 		/* Put job onto the completed Q */ | 
 | 		addQ(&h->cmpQ, c); | 
 | 	} | 
 | } | 
 |  | 
 | static inline unsigned long get_next_completion(struct ctlr_info *h) | 
 | { | 
 | 	return h->access.command_completed(h); | 
 | } | 
 |  | 
 | static inline bool interrupt_pending(struct ctlr_info *h) | 
 | { | 
 | 	return h->access.intr_pending(h); | 
 | } | 
 |  | 
 | static inline long interrupt_not_for_us(struct ctlr_info *h) | 
 | { | 
 | 	return !(h->msi_vector || h->msix_vector) && | 
 | 		((h->access.intr_pending(h) == 0) || | 
 | 		(h->interrupts_enabled == 0)); | 
 | } | 
 |  | 
 | static inline int bad_tag(struct ctlr_info *h, u32 tag_index, | 
 | 	u32 raw_tag) | 
 | { | 
 | 	if (unlikely(tag_index >= h->nr_cmds)) { | 
 | 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void finish_cmd(struct CommandList *c, u32 raw_tag) | 
 | { | 
 | 	removeQ(c); | 
 | 	if (likely(c->cmd_type == CMD_SCSI)) | 
 | 		complete_scsi_command(c, 0, raw_tag); | 
 | 	else if (c->cmd_type == CMD_IOCTL_PEND) | 
 | 		complete(c->waiting); | 
 | } | 
 |  | 
 | static inline u32 hpsa_tag_contains_index(u32 tag) | 
 | { | 
 | #define DIRECT_LOOKUP_BIT 0x10 | 
 | 	return tag & DIRECT_LOOKUP_BIT; | 
 | } | 
 |  | 
 | static inline u32 hpsa_tag_to_index(u32 tag) | 
 | { | 
 | #define DIRECT_LOOKUP_SHIFT 5 | 
 | 	return tag >> DIRECT_LOOKUP_SHIFT; | 
 | } | 
 |  | 
 | static inline u32 hpsa_tag_discard_error_bits(u32 tag) | 
 | { | 
 | #define HPSA_ERROR_BITS 0x03 | 
 | 	return tag & ~HPSA_ERROR_BITS; | 
 | } | 
 |  | 
 | /* process completion of an indexed ("direct lookup") command */ | 
 | static inline u32 process_indexed_cmd(struct ctlr_info *h, | 
 | 	u32 raw_tag) | 
 | { | 
 | 	u32 tag_index; | 
 | 	struct CommandList *c; | 
 |  | 
 | 	tag_index = hpsa_tag_to_index(raw_tag); | 
 | 	if (bad_tag(h, tag_index, raw_tag)) | 
 | 		return next_command(h); | 
 | 	c = h->cmd_pool + tag_index; | 
 | 	finish_cmd(c, raw_tag); | 
 | 	return next_command(h); | 
 | } | 
 |  | 
 | /* process completion of a non-indexed command */ | 
 | static inline u32 process_nonindexed_cmd(struct ctlr_info *h, | 
 | 	u32 raw_tag) | 
 | { | 
 | 	u32 tag; | 
 | 	struct CommandList *c = NULL; | 
 | 	struct hlist_node *tmp; | 
 |  | 
 | 	tag = hpsa_tag_discard_error_bits(raw_tag); | 
 | 	hlist_for_each_entry(c, tmp, &h->cmpQ, list) { | 
 | 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) { | 
 | 			finish_cmd(c, raw_tag); | 
 | 			return next_command(h); | 
 | 		} | 
 | 	} | 
 | 	bad_tag(h, h->nr_cmds + 1, raw_tag); | 
 | 	return next_command(h); | 
 | } | 
 |  | 
 | static irqreturn_t do_hpsa_intr(int irq, void *dev_id) | 
 | { | 
 | 	struct ctlr_info *h = dev_id; | 
 | 	unsigned long flags; | 
 | 	u32 raw_tag; | 
 |  | 
 | 	if (interrupt_not_for_us(h)) | 
 | 		return IRQ_NONE; | 
 | 	spin_lock_irqsave(&h->lock, flags); | 
 | 	raw_tag = get_next_completion(h); | 
 | 	while (raw_tag != FIFO_EMPTY) { | 
 | 		if (hpsa_tag_contains_index(raw_tag)) | 
 | 			raw_tag = process_indexed_cmd(h, raw_tag); | 
 | 		else | 
 | 			raw_tag = process_nonindexed_cmd(h, raw_tag); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&h->lock, flags); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* Send a message CDB to the firmwart. */ | 
 | static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode, | 
 | 						unsigned char type) | 
 | { | 
 | 	struct Command { | 
 | 		struct CommandListHeader CommandHeader; | 
 | 		struct RequestBlock Request; | 
 | 		struct ErrDescriptor ErrorDescriptor; | 
 | 	}; | 
 | 	struct Command *cmd; | 
 | 	static const size_t cmd_sz = sizeof(*cmd) + | 
 | 					sizeof(cmd->ErrorDescriptor); | 
 | 	dma_addr_t paddr64; | 
 | 	uint32_t paddr32, tag; | 
 | 	void __iomem *vaddr; | 
 | 	int i, err; | 
 |  | 
 | 	vaddr = pci_ioremap_bar(pdev, 0); | 
 | 	if (vaddr == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the | 
 | 	 * CCISS commands, so they must be allocated from the lower 4GiB of | 
 | 	 * memory. | 
 | 	 */ | 
 | 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); | 
 | 	if (err) { | 
 | 		iounmap(vaddr); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); | 
 | 	if (cmd == NULL) { | 
 | 		iounmap(vaddr); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* This must fit, because of the 32-bit consistent DMA mask.  Also, | 
 | 	 * although there's no guarantee, we assume that the address is at | 
 | 	 * least 4-byte aligned (most likely, it's page-aligned). | 
 | 	 */ | 
 | 	paddr32 = paddr64; | 
 |  | 
 | 	cmd->CommandHeader.ReplyQueue = 0; | 
 | 	cmd->CommandHeader.SGList = 0; | 
 | 	cmd->CommandHeader.SGTotal = 0; | 
 | 	cmd->CommandHeader.Tag.lower = paddr32; | 
 | 	cmd->CommandHeader.Tag.upper = 0; | 
 | 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); | 
 |  | 
 | 	cmd->Request.CDBLen = 16; | 
 | 	cmd->Request.Type.Type = TYPE_MSG; | 
 | 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; | 
 | 	cmd->Request.Type.Direction = XFER_NONE; | 
 | 	cmd->Request.Timeout = 0; /* Don't time out */ | 
 | 	cmd->Request.CDB[0] = opcode; | 
 | 	cmd->Request.CDB[1] = type; | 
 | 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ | 
 | 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd); | 
 | 	cmd->ErrorDescriptor.Addr.upper = 0; | 
 | 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo); | 
 |  | 
 | 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); | 
 |  | 
 | 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { | 
 | 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); | 
 | 		if (hpsa_tag_discard_error_bits(tag) == paddr32) | 
 | 			break; | 
 | 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); | 
 | 	} | 
 |  | 
 | 	iounmap(vaddr); | 
 |  | 
 | 	/* we leak the DMA buffer here ... no choice since the controller could | 
 | 	 *  still complete the command. | 
 | 	 */ | 
 | 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) { | 
 | 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", | 
 | 			opcode, type); | 
 | 		return -ETIMEDOUT; | 
 | 	} | 
 |  | 
 | 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64); | 
 |  | 
 | 	if (tag & HPSA_ERROR_BIT) { | 
 | 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n", | 
 | 			opcode, type); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", | 
 | 		opcode, type); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0) | 
 | #define hpsa_noop(p) hpsa_message(p, 3, 0) | 
 |  | 
 | static __devinit int hpsa_reset_msi(struct pci_dev *pdev) | 
 | { | 
 | /* the #defines are stolen from drivers/pci/msi.h. */ | 
 | #define msi_control_reg(base)		(base + PCI_MSI_FLAGS) | 
 | #define PCI_MSIX_FLAGS_ENABLE		(1 << 15) | 
 |  | 
 | 	int pos; | 
 | 	u16 control = 0; | 
 |  | 
 | 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSI); | 
 | 	if (pos) { | 
 | 		pci_read_config_word(pdev, msi_control_reg(pos), &control); | 
 | 		if (control & PCI_MSI_FLAGS_ENABLE) { | 
 | 			dev_info(&pdev->dev, "resetting MSI\n"); | 
 | 			pci_write_config_word(pdev, msi_control_reg(pos), | 
 | 					control & ~PCI_MSI_FLAGS_ENABLE); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); | 
 | 	if (pos) { | 
 | 		pci_read_config_word(pdev, msi_control_reg(pos), &control); | 
 | 		if (control & PCI_MSIX_FLAGS_ENABLE) { | 
 | 			dev_info(&pdev->dev, "resetting MSI-X\n"); | 
 | 			pci_write_config_word(pdev, msi_control_reg(pos), | 
 | 					control & ~PCI_MSIX_FLAGS_ENABLE); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* This does a hard reset of the controller using PCI power management | 
 |  * states. | 
 |  */ | 
 | static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev) | 
 | { | 
 | 	u16 pmcsr, saved_config_space[32]; | 
 | 	int i, pos; | 
 |  | 
 | 	dev_info(&pdev->dev, "using PCI PM to reset controller\n"); | 
 |  | 
 | 	/* This is very nearly the same thing as | 
 | 	 * | 
 | 	 * pci_save_state(pci_dev); | 
 | 	 * pci_set_power_state(pci_dev, PCI_D3hot); | 
 | 	 * pci_set_power_state(pci_dev, PCI_D0); | 
 | 	 * pci_restore_state(pci_dev); | 
 | 	 * | 
 | 	 * but we can't use these nice canned kernel routines on | 
 | 	 * kexec, because they also check the MSI/MSI-X state in PCI | 
 | 	 * configuration space and do the wrong thing when it is | 
 | 	 * set/cleared.  Also, the pci_save/restore_state functions | 
 | 	 * violate the ordering requirements for restoring the | 
 | 	 * configuration space from the CCISS document (see the | 
 | 	 * comment below).  So we roll our own .... | 
 | 	 */ | 
 |  | 
 | 	for (i = 0; i < 32; i++) | 
 | 		pci_read_config_word(pdev, 2*i, &saved_config_space[i]); | 
 |  | 
 | 	pos = pci_find_capability(pdev, PCI_CAP_ID_PM); | 
 | 	if (pos == 0) { | 
 | 		dev_err(&pdev->dev, | 
 | 			"hpsa_reset_controller: PCI PM not supported\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* Quoting from the Open CISS Specification: "The Power | 
 | 	 * Management Control/Status Register (CSR) controls the power | 
 | 	 * state of the device.  The normal operating state is D0, | 
 | 	 * CSR=00h.  The software off state is D3, CSR=03h.  To reset | 
 | 	 * the controller, place the interface device in D3 then to | 
 | 	 * D0, this causes a secondary PCI reset which will reset the | 
 | 	 * controller." | 
 | 	 */ | 
 |  | 
 | 	/* enter the D3hot power management state */ | 
 | 	pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); | 
 | 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK; | 
 | 	pmcsr |= PCI_D3hot; | 
 | 	pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); | 
 |  | 
 | 	msleep(500); | 
 |  | 
 | 	/* enter the D0 power management state */ | 
 | 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK; | 
 | 	pmcsr |= PCI_D0; | 
 | 	pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); | 
 |  | 
 | 	msleep(500); | 
 |  | 
 | 	/* Restore the PCI configuration space.  The Open CISS | 
 | 	 * Specification says, "Restore the PCI Configuration | 
 | 	 * Registers, offsets 00h through 60h. It is important to | 
 | 	 * restore the command register, 16-bits at offset 04h, | 
 | 	 * last. Do not restore the configuration status register, | 
 | 	 * 16-bits at offset 06h."  Note that the offset is 2*i. | 
 | 	 */ | 
 | 	for (i = 0; i < 32; i++) { | 
 | 		if (i == 2 || i == 3) | 
 | 			continue; | 
 | 		pci_write_config_word(pdev, 2*i, saved_config_space[i]); | 
 | 	} | 
 | 	wmb(); | 
 | 	pci_write_config_word(pdev, 4, saved_config_space[2]); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  *  We cannot read the structure directly, for portability we must use | 
 |  *   the io functions. | 
 |  *   This is for debug only. | 
 |  */ | 
 | #ifdef HPSA_DEBUG | 
 | static void print_cfg_table(struct device *dev, struct CfgTable *tb) | 
 | { | 
 | 	int i; | 
 | 	char temp_name[17]; | 
 |  | 
 | 	dev_info(dev, "Controller Configuration information\n"); | 
 | 	dev_info(dev, "------------------------------------\n"); | 
 | 	for (i = 0; i < 4; i++) | 
 | 		temp_name[i] = readb(&(tb->Signature[i])); | 
 | 	temp_name[4] = '\0'; | 
 | 	dev_info(dev, "   Signature = %s\n", temp_name); | 
 | 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence))); | 
 | 	dev_info(dev, "   Transport methods supported = 0x%x\n", | 
 | 	       readl(&(tb->TransportSupport))); | 
 | 	dev_info(dev, "   Transport methods active = 0x%x\n", | 
 | 	       readl(&(tb->TransportActive))); | 
 | 	dev_info(dev, "   Requested transport Method = 0x%x\n", | 
 | 	       readl(&(tb->HostWrite.TransportRequest))); | 
 | 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n", | 
 | 	       readl(&(tb->HostWrite.CoalIntDelay))); | 
 | 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n", | 
 | 	       readl(&(tb->HostWrite.CoalIntCount))); | 
 | 	dev_info(dev, "   Max outstanding commands = 0x%d\n", | 
 | 	       readl(&(tb->CmdsOutMax))); | 
 | 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes))); | 
 | 	for (i = 0; i < 16; i++) | 
 | 		temp_name[i] = readb(&(tb->ServerName[i])); | 
 | 	temp_name[16] = '\0'; | 
 | 	dev_info(dev, "   Server Name = %s\n", temp_name); | 
 | 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n", | 
 | 		readl(&(tb->HeartBeat))); | 
 | } | 
 | #endif				/* HPSA_DEBUG */ | 
 |  | 
 | static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) | 
 | { | 
 | 	int i, offset, mem_type, bar_type; | 
 |  | 
 | 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */ | 
 | 		return 0; | 
 | 	offset = 0; | 
 | 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { | 
 | 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; | 
 | 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) | 
 | 			offset += 4; | 
 | 		else { | 
 | 			mem_type = pci_resource_flags(pdev, i) & | 
 | 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK; | 
 | 			switch (mem_type) { | 
 | 			case PCI_BASE_ADDRESS_MEM_TYPE_32: | 
 | 			case PCI_BASE_ADDRESS_MEM_TYPE_1M: | 
 | 				offset += 4;	/* 32 bit */ | 
 | 				break; | 
 | 			case PCI_BASE_ADDRESS_MEM_TYPE_64: | 
 | 				offset += 8; | 
 | 				break; | 
 | 			default:	/* reserved in PCI 2.2 */ | 
 | 				dev_warn(&pdev->dev, | 
 | 				       "base address is invalid\n"); | 
 | 				return -1; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) | 
 | 			return i + 1; | 
 | 	} | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* If MSI/MSI-X is supported by the kernel we will try to enable it on | 
 |  * controllers that are capable. If not, we use IO-APIC mode. | 
 |  */ | 
 |  | 
 | static void __devinit hpsa_interrupt_mode(struct ctlr_info *h, | 
 | 					   struct pci_dev *pdev, u32 board_id) | 
 | { | 
 | #ifdef CONFIG_PCI_MSI | 
 | 	int err; | 
 | 	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1}, | 
 | 	{0, 2}, {0, 3} | 
 | 	}; | 
 |  | 
 | 	/* Some boards advertise MSI but don't really support it */ | 
 | 	if ((board_id == 0x40700E11) || | 
 | 	    (board_id == 0x40800E11) || | 
 | 	    (board_id == 0x40820E11) || (board_id == 0x40830E11)) | 
 | 		goto default_int_mode; | 
 | 	if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) { | 
 | 		dev_info(&pdev->dev, "MSIX\n"); | 
 | 		err = pci_enable_msix(pdev, hpsa_msix_entries, 4); | 
 | 		if (!err) { | 
 | 			h->intr[0] = hpsa_msix_entries[0].vector; | 
 | 			h->intr[1] = hpsa_msix_entries[1].vector; | 
 | 			h->intr[2] = hpsa_msix_entries[2].vector; | 
 | 			h->intr[3] = hpsa_msix_entries[3].vector; | 
 | 			h->msix_vector = 1; | 
 | 			return; | 
 | 		} | 
 | 		if (err > 0) { | 
 | 			dev_warn(&pdev->dev, "only %d MSI-X vectors " | 
 | 			       "available\n", err); | 
 | 			goto default_int_mode; | 
 | 		} else { | 
 | 			dev_warn(&pdev->dev, "MSI-X init failed %d\n", | 
 | 			       err); | 
 | 			goto default_int_mode; | 
 | 		} | 
 | 	} | 
 | 	if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) { | 
 | 		dev_info(&pdev->dev, "MSI\n"); | 
 | 		if (!pci_enable_msi(pdev)) | 
 | 			h->msi_vector = 1; | 
 | 		else | 
 | 			dev_warn(&pdev->dev, "MSI init failed\n"); | 
 | 	} | 
 | default_int_mode: | 
 | #endif				/* CONFIG_PCI_MSI */ | 
 | 	/* if we get here we're going to use the default interrupt mode */ | 
 | 	h->intr[PERF_MODE_INT] = pdev->irq; | 
 | } | 
 |  | 
 | static int hpsa_pci_init(struct ctlr_info *h, struct pci_dev *pdev) | 
 | { | 
 | 	ushort subsystem_vendor_id, subsystem_device_id, command; | 
 | 	u32 board_id, scratchpad = 0; | 
 | 	u64 cfg_offset; | 
 | 	u32 cfg_base_addr; | 
 | 	u64 cfg_base_addr_index; | 
 | 	u32 trans_offset; | 
 | 	int i, prod_index, err; | 
 |  | 
 | 	subsystem_vendor_id = pdev->subsystem_vendor; | 
 | 	subsystem_device_id = pdev->subsystem_device; | 
 | 	board_id = (((u32) (subsystem_device_id << 16) & 0xffff0000) | | 
 | 		    subsystem_vendor_id); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(products); i++) | 
 | 		if (board_id == products[i].board_id) | 
 | 			break; | 
 |  | 
 | 	prod_index = i; | 
 |  | 
 | 	if (prod_index == ARRAY_SIZE(products)) { | 
 | 		prod_index--; | 
 | 		if (subsystem_vendor_id != PCI_VENDOR_ID_HP || | 
 | 				!hpsa_allow_any) { | 
 | 			dev_warn(&pdev->dev, "unrecognized board ID:" | 
 | 				" 0x%08lx, ignoring.\n", | 
 | 				(unsigned long) board_id); | 
 | 			return -ENODEV; | 
 | 		} | 
 | 	} | 
 | 	/* check to see if controller has been disabled | 
 | 	 * BEFORE trying to enable it | 
 | 	 */ | 
 | 	(void)pci_read_config_word(pdev, PCI_COMMAND, &command); | 
 | 	if (!(command & 0x02)) { | 
 | 		dev_warn(&pdev->dev, "controller appears to be disabled\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	err = pci_enable_device(pdev); | 
 | 	if (err) { | 
 | 		dev_warn(&pdev->dev, "unable to enable PCI device\n"); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	err = pci_request_regions(pdev, "hpsa"); | 
 | 	if (err) { | 
 | 		dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n"); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	/* If the kernel supports MSI/MSI-X we will try to enable that, | 
 | 	 * else we use the IO-APIC interrupt assigned to us by system ROM. | 
 | 	 */ | 
 | 	hpsa_interrupt_mode(h, pdev, board_id); | 
 |  | 
 | 	/* find the memory BAR */ | 
 | 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { | 
 | 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) | 
 | 			break; | 
 | 	} | 
 | 	if (i == DEVICE_COUNT_RESOURCE) { | 
 | 		dev_warn(&pdev->dev, "no memory BAR found\n"); | 
 | 		err = -ENODEV; | 
 | 		goto err_out_free_res; | 
 | 	} | 
 |  | 
 | 	h->paddr = pci_resource_start(pdev, i); /* addressing mode bits | 
 | 						 * already removed | 
 | 						 */ | 
 |  | 
 | 	h->vaddr = remap_pci_mem(h->paddr, 0x250); | 
 |  | 
 | 	/* Wait for the board to become ready.  */ | 
 | 	for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) { | 
 | 		scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); | 
 | 		if (scratchpad == HPSA_FIRMWARE_READY) | 
 | 			break; | 
 | 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); | 
 | 	} | 
 | 	if (scratchpad != HPSA_FIRMWARE_READY) { | 
 | 		dev_warn(&pdev->dev, "board not ready, timed out.\n"); | 
 | 		err = -ENODEV; | 
 | 		goto err_out_free_res; | 
 | 	} | 
 |  | 
 | 	/* get the address index number */ | 
 | 	cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET); | 
 | 	cfg_base_addr &= (u32) 0x0000ffff; | 
 | 	cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr); | 
 | 	if (cfg_base_addr_index == -1) { | 
 | 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); | 
 | 		err = -ENODEV; | 
 | 		goto err_out_free_res; | 
 | 	} | 
 |  | 
 | 	cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET); | 
 | 	h->cfgtable = remap_pci_mem(pci_resource_start(pdev, | 
 | 			       cfg_base_addr_index) + cfg_offset, | 
 | 				sizeof(h->cfgtable)); | 
 | 	/* Find performant mode table. */ | 
 | 	trans_offset = readl(&(h->cfgtable->TransMethodOffset)); | 
 | 	h->transtable = remap_pci_mem(pci_resource_start(pdev, | 
 | 				cfg_base_addr_index)+cfg_offset+trans_offset, | 
 | 				sizeof(*h->transtable)); | 
 |  | 
 | 	h->board_id = board_id; | 
 | 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands)); | 
 | 	h->product_name = products[prod_index].product_name; | 
 | 	h->access = *(products[prod_index].access); | 
 | 	/* Allow room for some ioctls */ | 
 | 	h->nr_cmds = h->max_commands - 4; | 
 |  | 
 | 	if ((readb(&h->cfgtable->Signature[0]) != 'C') || | 
 | 	    (readb(&h->cfgtable->Signature[1]) != 'I') || | 
 | 	    (readb(&h->cfgtable->Signature[2]) != 'S') || | 
 | 	    (readb(&h->cfgtable->Signature[3]) != 'S')) { | 
 | 		dev_warn(&pdev->dev, "not a valid CISS config table\n"); | 
 | 		err = -ENODEV; | 
 | 		goto err_out_free_res; | 
 | 	} | 
 | #ifdef CONFIG_X86 | 
 | 	{ | 
 | 		/* Need to enable prefetch in the SCSI core for 6400 in x86 */ | 
 | 		u32 prefetch; | 
 | 		prefetch = readl(&(h->cfgtable->SCSI_Prefetch)); | 
 | 		prefetch |= 0x100; | 
 | 		writel(prefetch, &(h->cfgtable->SCSI_Prefetch)); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* Disabling DMA prefetch for the P600 | 
 | 	 * An ASIC bug may result in a prefetch beyond | 
 | 	 * physical memory. | 
 | 	 */ | 
 | 	if (board_id == 0x3225103C) { | 
 | 		u32 dma_prefetch; | 
 | 		dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); | 
 | 		dma_prefetch |= 0x8000; | 
 | 		writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); | 
 | 	} | 
 |  | 
 | 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); | 
 | 	/* Update the field, and then ring the doorbell */ | 
 | 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); | 
 | 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); | 
 |  | 
 | 	/* under certain very rare conditions, this can take awhile. | 
 | 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right | 
 | 	 * as we enter this code.) | 
 | 	 */ | 
 | 	for (i = 0; i < MAX_CONFIG_WAIT; i++) { | 
 | 		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) | 
 | 			break; | 
 | 		/* delay and try again */ | 
 | 		msleep(10); | 
 | 	} | 
 |  | 
 | #ifdef HPSA_DEBUG | 
 | 	print_cfg_table(&pdev->dev, h->cfgtable); | 
 | #endif				/* HPSA_DEBUG */ | 
 |  | 
 | 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) { | 
 | 		dev_warn(&pdev->dev, "unable to get board into simple mode\n"); | 
 | 		err = -ENODEV; | 
 | 		goto err_out_free_res; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | err_out_free_res: | 
 | 	/* | 
 | 	 * Deliberately omit pci_disable_device(): it does something nasty to | 
 | 	 * Smart Array controllers that pci_enable_device does not undo | 
 | 	 */ | 
 | 	pci_release_regions(pdev); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void __devinit hpsa_hba_inquiry(struct ctlr_info *h) | 
 | { | 
 | 	int rc; | 
 |  | 
 | #define HBA_INQUIRY_BYTE_COUNT 64 | 
 | 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); | 
 | 	if (!h->hba_inquiry_data) | 
 | 		return; | 
 | 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, | 
 | 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); | 
 | 	if (rc != 0) { | 
 | 		kfree(h->hba_inquiry_data); | 
 | 		h->hba_inquiry_data = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static int __devinit hpsa_init_one(struct pci_dev *pdev, | 
 | 				    const struct pci_device_id *ent) | 
 | { | 
 | 	int i, rc; | 
 | 	int dac; | 
 | 	struct ctlr_info *h; | 
 |  | 
 | 	if (number_of_controllers == 0) | 
 | 		printk(KERN_INFO DRIVER_NAME "\n"); | 
 | 	if (reset_devices) { | 
 | 		/* Reset the controller with a PCI power-cycle */ | 
 | 		if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev)) | 
 | 			return -ENODEV; | 
 |  | 
 | 		/* Some devices (notably the HP Smart Array 5i Controller) | 
 | 		   need a little pause here */ | 
 | 		msleep(HPSA_POST_RESET_PAUSE_MSECS); | 
 |  | 
 | 		/* Now try to get the controller to respond to a no-op */ | 
 | 		for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { | 
 | 			if (hpsa_noop(pdev) == 0) | 
 | 				break; | 
 | 			else | 
 | 				dev_warn(&pdev->dev, "no-op failed%s\n", | 
 | 						(i < 11 ? "; re-trying" : "")); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Command structures must be aligned on a 32-byte boundary because | 
 | 	 * the 5 lower bits of the address are used by the hardware. and by | 
 | 	 * the driver.  See comments in hpsa.h for more info. | 
 | 	 */ | 
 | #define COMMANDLIST_ALIGNMENT 32 | 
 | 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); | 
 | 	h = kzalloc(sizeof(*h), GFP_KERNEL); | 
 | 	if (!h) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	h->busy_initializing = 1; | 
 | 	INIT_HLIST_HEAD(&h->cmpQ); | 
 | 	INIT_HLIST_HEAD(&h->reqQ); | 
 | 	mutex_init(&h->busy_shutting_down); | 
 | 	init_completion(&h->scan_wait); | 
 | 	rc = hpsa_pci_init(h, pdev); | 
 | 	if (rc != 0) | 
 | 		goto clean1; | 
 |  | 
 | 	sprintf(h->devname, "hpsa%d", number_of_controllers); | 
 | 	h->ctlr = number_of_controllers; | 
 | 	number_of_controllers++; | 
 | 	h->pdev = pdev; | 
 |  | 
 | 	/* configure PCI DMA stuff */ | 
 | 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); | 
 | 	if (rc == 0) { | 
 | 		dac = 1; | 
 | 	} else { | 
 | 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); | 
 | 		if (rc == 0) { | 
 | 			dac = 0; | 
 | 		} else { | 
 | 			dev_err(&pdev->dev, "no suitable DMA available\n"); | 
 | 			goto clean1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* make sure the board interrupts are off */ | 
 | 	h->access.set_intr_mask(h, HPSA_INTR_OFF); | 
 | 	rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr, | 
 | 			IRQF_DISABLED, h->devname, h); | 
 | 	if (rc) { | 
 | 		dev_err(&pdev->dev, "unable to get irq %d for %s\n", | 
 | 		       h->intr[PERF_MODE_INT], h->devname); | 
 | 		goto clean2; | 
 | 	} | 
 |  | 
 | 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n", | 
 | 	       h->devname, pdev->device, | 
 | 	       h->intr[PERF_MODE_INT], dac ? "" : " not"); | 
 |  | 
 | 	h->cmd_pool_bits = | 
 | 	    kmalloc(((h->nr_cmds + BITS_PER_LONG - | 
 | 		      1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL); | 
 | 	h->cmd_pool = pci_alloc_consistent(h->pdev, | 
 | 		    h->nr_cmds * sizeof(*h->cmd_pool), | 
 | 		    &(h->cmd_pool_dhandle)); | 
 | 	h->errinfo_pool = pci_alloc_consistent(h->pdev, | 
 | 		    h->nr_cmds * sizeof(*h->errinfo_pool), | 
 | 		    &(h->errinfo_pool_dhandle)); | 
 | 	if ((h->cmd_pool_bits == NULL) | 
 | 	    || (h->cmd_pool == NULL) | 
 | 	    || (h->errinfo_pool == NULL)) { | 
 | 		dev_err(&pdev->dev, "out of memory"); | 
 | 		rc = -ENOMEM; | 
 | 		goto clean4; | 
 | 	} | 
 | 	spin_lock_init(&h->lock); | 
 | 	spin_lock_init(&h->scan_lock); | 
 | 	init_waitqueue_head(&h->scan_wait_queue); | 
 | 	h->scan_finished = 1; /* no scan currently in progress */ | 
 |  | 
 | 	pci_set_drvdata(pdev, h); | 
 | 	memset(h->cmd_pool_bits, 0, | 
 | 	       ((h->nr_cmds + BITS_PER_LONG - | 
 | 		 1) / BITS_PER_LONG) * sizeof(unsigned long)); | 
 |  | 
 | 	hpsa_scsi_setup(h); | 
 |  | 
 | 	/* Turn the interrupts on so we can service requests */ | 
 | 	h->access.set_intr_mask(h, HPSA_INTR_ON); | 
 |  | 
 | 	hpsa_put_ctlr_into_performant_mode(h); | 
 | 	hpsa_hba_inquiry(h); | 
 | 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */ | 
 | 	h->busy_initializing = 0; | 
 | 	return 1; | 
 |  | 
 | clean4: | 
 | 	kfree(h->cmd_pool_bits); | 
 | 	if (h->cmd_pool) | 
 | 		pci_free_consistent(h->pdev, | 
 | 			    h->nr_cmds * sizeof(struct CommandList), | 
 | 			    h->cmd_pool, h->cmd_pool_dhandle); | 
 | 	if (h->errinfo_pool) | 
 | 		pci_free_consistent(h->pdev, | 
 | 			    h->nr_cmds * sizeof(struct ErrorInfo), | 
 | 			    h->errinfo_pool, | 
 | 			    h->errinfo_pool_dhandle); | 
 | 	free_irq(h->intr[PERF_MODE_INT], h); | 
 | clean2: | 
 | clean1: | 
 | 	h->busy_initializing = 0; | 
 | 	kfree(h); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void hpsa_flush_cache(struct ctlr_info *h) | 
 | { | 
 | 	char *flush_buf; | 
 | 	struct CommandList *c; | 
 |  | 
 | 	flush_buf = kzalloc(4, GFP_KERNEL); | 
 | 	if (!flush_buf) | 
 | 		return; | 
 |  | 
 | 	c = cmd_special_alloc(h); | 
 | 	if (!c) { | 
 | 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); | 
 | 		goto out_of_memory; | 
 | 	} | 
 | 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, | 
 | 		RAID_CTLR_LUNID, TYPE_CMD); | 
 | 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE); | 
 | 	if (c->err_info->CommandStatus != 0) | 
 | 		dev_warn(&h->pdev->dev, | 
 | 			"error flushing cache on controller\n"); | 
 | 	cmd_special_free(h, c); | 
 | out_of_memory: | 
 | 	kfree(flush_buf); | 
 | } | 
 |  | 
 | static void hpsa_shutdown(struct pci_dev *pdev) | 
 | { | 
 | 	struct ctlr_info *h; | 
 |  | 
 | 	h = pci_get_drvdata(pdev); | 
 | 	/* Turn board interrupts off  and send the flush cache command | 
 | 	 * sendcmd will turn off interrupt, and send the flush... | 
 | 	 * To write all data in the battery backed cache to disks | 
 | 	 */ | 
 | 	hpsa_flush_cache(h); | 
 | 	h->access.set_intr_mask(h, HPSA_INTR_OFF); | 
 | 	free_irq(h->intr[PERF_MODE_INT], h); | 
 | #ifdef CONFIG_PCI_MSI | 
 | 	if (h->msix_vector) | 
 | 		pci_disable_msix(h->pdev); | 
 | 	else if (h->msi_vector) | 
 | 		pci_disable_msi(h->pdev); | 
 | #endif				/* CONFIG_PCI_MSI */ | 
 | } | 
 |  | 
 | static void __devexit hpsa_remove_one(struct pci_dev *pdev) | 
 | { | 
 | 	struct ctlr_info *h; | 
 |  | 
 | 	if (pci_get_drvdata(pdev) == NULL) { | 
 | 		dev_err(&pdev->dev, "unable to remove device \n"); | 
 | 		return; | 
 | 	} | 
 | 	h = pci_get_drvdata(pdev); | 
 | 	mutex_lock(&h->busy_shutting_down); | 
 | 	remove_from_scan_list(h); | 
 | 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */ | 
 | 	hpsa_shutdown(pdev); | 
 | 	iounmap(h->vaddr); | 
 | 	pci_free_consistent(h->pdev, | 
 | 		h->nr_cmds * sizeof(struct CommandList), | 
 | 		h->cmd_pool, h->cmd_pool_dhandle); | 
 | 	pci_free_consistent(h->pdev, | 
 | 		h->nr_cmds * sizeof(struct ErrorInfo), | 
 | 		h->errinfo_pool, h->errinfo_pool_dhandle); | 
 | 	pci_free_consistent(h->pdev, h->reply_pool_size, | 
 | 		h->reply_pool, h->reply_pool_dhandle); | 
 | 	kfree(h->cmd_pool_bits); | 
 | 	kfree(h->blockFetchTable); | 
 | 	kfree(h->hba_inquiry_data); | 
 | 	/* | 
 | 	 * Deliberately omit pci_disable_device(): it does something nasty to | 
 | 	 * Smart Array controllers that pci_enable_device does not undo | 
 | 	 */ | 
 | 	pci_release_regions(pdev); | 
 | 	pci_set_drvdata(pdev, NULL); | 
 | 	mutex_unlock(&h->busy_shutting_down); | 
 | 	kfree(h); | 
 | } | 
 |  | 
 | static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, | 
 | 	__attribute__((unused)) pm_message_t state) | 
 | { | 
 | 	return -ENOSYS; | 
 | } | 
 |  | 
 | static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) | 
 | { | 
 | 	return -ENOSYS; | 
 | } | 
 |  | 
 | static struct pci_driver hpsa_pci_driver = { | 
 | 	.name = "hpsa", | 
 | 	.probe = hpsa_init_one, | 
 | 	.remove = __devexit_p(hpsa_remove_one), | 
 | 	.id_table = hpsa_pci_device_id,	/* id_table */ | 
 | 	.shutdown = hpsa_shutdown, | 
 | 	.suspend = hpsa_suspend, | 
 | 	.resume = hpsa_resume, | 
 | }; | 
 |  | 
 | /* Fill in bucket_map[], given nsgs (the max number of | 
 |  * scatter gather elements supported) and bucket[], | 
 |  * which is an array of 8 integers.  The bucket[] array | 
 |  * contains 8 different DMA transfer sizes (in 16 | 
 |  * byte increments) which the controller uses to fetch | 
 |  * commands.  This function fills in bucket_map[], which | 
 |  * maps a given number of scatter gather elements to one of | 
 |  * the 8 DMA transfer sizes.  The point of it is to allow the | 
 |  * controller to only do as much DMA as needed to fetch the | 
 |  * command, with the DMA transfer size encoded in the lower | 
 |  * bits of the command address. | 
 |  */ | 
 | static void  calc_bucket_map(int bucket[], int num_buckets, | 
 | 	int nsgs, int *bucket_map) | 
 | { | 
 | 	int i, j, b, size; | 
 |  | 
 | 	/* even a command with 0 SGs requires 4 blocks */ | 
 | #define MINIMUM_TRANSFER_BLOCKS 4 | 
 | #define NUM_BUCKETS 8 | 
 | 	/* Note, bucket_map must have nsgs+1 entries. */ | 
 | 	for (i = 0; i <= nsgs; i++) { | 
 | 		/* Compute size of a command with i SG entries */ | 
 | 		size = i + MINIMUM_TRANSFER_BLOCKS; | 
 | 		b = num_buckets; /* Assume the biggest bucket */ | 
 | 		/* Find the bucket that is just big enough */ | 
 | 		for (j = 0; j < 8; j++) { | 
 | 			if (bucket[j] >= size) { | 
 | 				b = j; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		/* for a command with i SG entries, use bucket b. */ | 
 | 		bucket_map[i] = b; | 
 | 	} | 
 | } | 
 |  | 
 | static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) | 
 | { | 
 | 	u32 trans_support; | 
 | 	u64 trans_offset; | 
 | 	/*  5 = 1 s/g entry or 4k | 
 | 	 *  6 = 2 s/g entry or 8k | 
 | 	 *  8 = 4 s/g entry or 16k | 
 | 	 * 10 = 6 s/g entry or 24k | 
 | 	 */ | 
 | 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, 35}; /* for scatter/gathers */ | 
 | 	int i = 0; | 
 | 	int l = 0; | 
 | 	unsigned long register_value; | 
 |  | 
 | 	trans_support = readl(&(h->cfgtable->TransportSupport)); | 
 | 	if (!(trans_support & PERFORMANT_MODE)) | 
 | 		return; | 
 |  | 
 | 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands)); | 
 | 	h->max_sg_entries = 32; | 
 | 	/* Performant mode ring buffer and supporting data structures */ | 
 | 	h->reply_pool_size = h->max_commands * sizeof(u64); | 
 | 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size, | 
 | 				&(h->reply_pool_dhandle)); | 
 |  | 
 | 	/* Need a block fetch table for performant mode */ | 
 | 	h->blockFetchTable = kmalloc(((h->max_sg_entries+1) * | 
 | 				sizeof(u32)), GFP_KERNEL); | 
 |  | 
 | 	if ((h->reply_pool == NULL) | 
 | 		|| (h->blockFetchTable == NULL)) | 
 | 		goto clean_up; | 
 |  | 
 | 	h->reply_pool_wraparound = 1; /* spec: init to 1 */ | 
 |  | 
 | 	/* Controller spec: zero out this buffer. */ | 
 | 	memset(h->reply_pool, 0, h->reply_pool_size); | 
 | 	h->reply_pool_head = h->reply_pool; | 
 |  | 
 | 	trans_offset = readl(&(h->cfgtable->TransMethodOffset)); | 
 | 	bft[7] = h->max_sg_entries + 4; | 
 | 	calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable); | 
 | 	for (i = 0; i < 8; i++) | 
 | 		writel(bft[i], &h->transtable->BlockFetch[i]); | 
 |  | 
 | 	/* size of controller ring buffer */ | 
 | 	writel(h->max_commands, &h->transtable->RepQSize); | 
 | 	writel(1, &h->transtable->RepQCount); | 
 | 	writel(0, &h->transtable->RepQCtrAddrLow32); | 
 | 	writel(0, &h->transtable->RepQCtrAddrHigh32); | 
 | 	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32); | 
 | 	writel(0, &h->transtable->RepQAddr0High32); | 
 | 	writel(CFGTBL_Trans_Performant, | 
 | 		&(h->cfgtable->HostWrite.TransportRequest)); | 
 | 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); | 
 | 	/* under certain very rare conditions, this can take awhile. | 
 | 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right | 
 | 	 * as we enter this code.) */ | 
 | 	for (l = 0; l < MAX_CONFIG_WAIT; l++) { | 
 | 		register_value = readl(h->vaddr + SA5_DOORBELL); | 
 | 		if (!(register_value & CFGTBL_ChangeReq)) | 
 | 			break; | 
 | 		/* delay and try again */ | 
 | 		set_current_state(TASK_INTERRUPTIBLE); | 
 | 		schedule_timeout(10); | 
 | 	} | 
 | 	register_value = readl(&(h->cfgtable->TransportActive)); | 
 | 	if (!(register_value & CFGTBL_Trans_Performant)) { | 
 | 		dev_warn(&h->pdev->dev, "unable to get board into" | 
 | 					" performant mode\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Change the access methods to the performant access methods */ | 
 | 	h->access = SA5_performant_access; | 
 | 	h->transMethod = CFGTBL_Trans_Performant; | 
 |  | 
 | 	return; | 
 |  | 
 | clean_up: | 
 | 	if (h->reply_pool) | 
 | 		pci_free_consistent(h->pdev, h->reply_pool_size, | 
 | 			h->reply_pool, h->reply_pool_dhandle); | 
 | 	kfree(h->blockFetchTable); | 
 | } | 
 |  | 
 | /* | 
 |  *  This is it.  Register the PCI driver information for the cards we control | 
 |  *  the OS will call our registered routines when it finds one of our cards. | 
 |  */ | 
 | static int __init hpsa_init(void) | 
 | { | 
 | 	int err; | 
 | 	/* Start the scan thread */ | 
 | 	hpsa_scan_thread = kthread_run(hpsa_scan_func, NULL, "hpsa_scan"); | 
 | 	if (IS_ERR(hpsa_scan_thread)) { | 
 | 		err = PTR_ERR(hpsa_scan_thread); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	err = pci_register_driver(&hpsa_pci_driver); | 
 | 	if (err) | 
 | 		kthread_stop(hpsa_scan_thread); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void __exit hpsa_cleanup(void) | 
 | { | 
 | 	pci_unregister_driver(&hpsa_pci_driver); | 
 | 	kthread_stop(hpsa_scan_thread); | 
 | } | 
 |  | 
 | module_init(hpsa_init); | 
 | module_exit(hpsa_cleanup); |