| /* | 
 |  *	Definitions for the 'struct sk_buff' memory handlers. | 
 |  * | 
 |  *	Authors: | 
 |  *		Alan Cox, <gw4pts@gw4pts.ampr.org> | 
 |  *		Florian La Roche, <rzsfl@rz.uni-sb.de> | 
 |  * | 
 |  *	This program is free software; you can redistribute it and/or | 
 |  *	modify it under the terms of the GNU General Public License | 
 |  *	as published by the Free Software Foundation; either version | 
 |  *	2 of the License, or (at your option) any later version. | 
 |  */ | 
 |  | 
 | #ifndef _LINUX_SKBUFF_H | 
 | #define _LINUX_SKBUFF_H | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/kmemcheck.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/time.h> | 
 | #include <linux/cache.h> | 
 |  | 
 | #include <asm/atomic.h> | 
 | #include <asm/types.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/net.h> | 
 | #include <linux/textsearch.h> | 
 | #include <net/checksum.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/dmaengine.h> | 
 | #include <linux/hrtimer.h> | 
 |  | 
 | /* Don't change this without changing skb_csum_unnecessary! */ | 
 | #define CHECKSUM_NONE 0 | 
 | #define CHECKSUM_UNNECESSARY 1 | 
 | #define CHECKSUM_COMPLETE 2 | 
 | #define CHECKSUM_PARTIAL 3 | 
 |  | 
 | #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \ | 
 | 				 ~(SMP_CACHE_BYTES - 1)) | 
 | #define SKB_WITH_OVERHEAD(X)	\ | 
 | 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) | 
 | #define SKB_MAX_ORDER(X, ORDER) \ | 
 | 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) | 
 | #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0)) | 
 | #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2)) | 
 |  | 
 | /* A. Checksumming of received packets by device. | 
 |  * | 
 |  *	NONE: device failed to checksum this packet. | 
 |  *		skb->csum is undefined. | 
 |  * | 
 |  *	UNNECESSARY: device parsed packet and wouldbe verified checksum. | 
 |  *		skb->csum is undefined. | 
 |  *	      It is bad option, but, unfortunately, many of vendors do this. | 
 |  *	      Apparently with secret goal to sell you new device, when you | 
 |  *	      will add new protocol to your host. F.e. IPv6. 8) | 
 |  * | 
 |  *	COMPLETE: the most generic way. Device supplied checksum of _all_ | 
 |  *	    the packet as seen by netif_rx in skb->csum. | 
 |  *	    NOTE: Even if device supports only some protocols, but | 
 |  *	    is able to produce some skb->csum, it MUST use COMPLETE, | 
 |  *	    not UNNECESSARY. | 
 |  * | 
 |  *	PARTIAL: identical to the case for output below.  This may occur | 
 |  *	    on a packet received directly from another Linux OS, e.g., | 
 |  *	    a virtualised Linux kernel on the same host.  The packet can | 
 |  *	    be treated in the same way as UNNECESSARY except that on | 
 |  *	    output (i.e., forwarding) the checksum must be filled in | 
 |  *	    by the OS or the hardware. | 
 |  * | 
 |  * B. Checksumming on output. | 
 |  * | 
 |  *	NONE: skb is checksummed by protocol or csum is not required. | 
 |  * | 
 |  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit | 
 |  *	from skb->csum_start to the end and to record the checksum | 
 |  *	at skb->csum_start + skb->csum_offset. | 
 |  * | 
 |  *	Device must show its capabilities in dev->features, set | 
 |  *	at device setup time. | 
 |  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum | 
 |  *			  everything. | 
 |  *	NETIF_F_NO_CSUM - loopback or reliable single hop media. | 
 |  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only | 
 |  *			  TCP/UDP over IPv4. Sigh. Vendors like this | 
 |  *			  way by an unknown reason. Though, see comment above | 
 |  *			  about CHECKSUM_UNNECESSARY. 8) | 
 |  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. | 
 |  * | 
 |  *	Any questions? No questions, good. 		--ANK | 
 |  */ | 
 |  | 
 | struct net_device; | 
 | struct scatterlist; | 
 | struct pipe_inode_info; | 
 |  | 
 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) | 
 | struct nf_conntrack { | 
 | 	atomic_t use; | 
 | }; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_BRIDGE_NETFILTER | 
 | struct nf_bridge_info { | 
 | 	atomic_t use; | 
 | 	struct net_device *physindev; | 
 | 	struct net_device *physoutdev; | 
 | 	unsigned int mask; | 
 | 	unsigned long data[32 / sizeof(unsigned long)]; | 
 | }; | 
 | #endif | 
 |  | 
 | struct sk_buff_head { | 
 | 	/* These two members must be first. */ | 
 | 	struct sk_buff	*next; | 
 | 	struct sk_buff	*prev; | 
 |  | 
 | 	__u32		qlen; | 
 | 	spinlock_t	lock; | 
 | }; | 
 |  | 
 | struct sk_buff; | 
 |  | 
 | /* To allow 64K frame to be packed as single skb without frag_list. Since | 
 |  * GRO uses frags we allocate at least 16 regardless of page size. | 
 |  */ | 
 | #if (65536/PAGE_SIZE + 2) < 16 | 
 | #define MAX_SKB_FRAGS 16 | 
 | #else | 
 | #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) | 
 | #endif | 
 |  | 
 | typedef struct skb_frag_struct skb_frag_t; | 
 |  | 
 | struct skb_frag_struct { | 
 | 	struct page *page; | 
 | #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) | 
 | 	__u32 page_offset; | 
 | 	__u32 size; | 
 | #else | 
 | 	__u16 page_offset; | 
 | 	__u16 size; | 
 | #endif | 
 | }; | 
 |  | 
 | #define HAVE_HW_TIME_STAMP | 
 |  | 
 | /** | 
 |  * struct skb_shared_hwtstamps - hardware time stamps | 
 |  * @hwtstamp:	hardware time stamp transformed into duration | 
 |  *		since arbitrary point in time | 
 |  * @syststamp:	hwtstamp transformed to system time base | 
 |  * | 
 |  * Software time stamps generated by ktime_get_real() are stored in | 
 |  * skb->tstamp. The relation between the different kinds of time | 
 |  * stamps is as follows: | 
 |  * | 
 |  * syststamp and tstamp can be compared against each other in | 
 |  * arbitrary combinations.  The accuracy of a | 
 |  * syststamp/tstamp/"syststamp from other device" comparison is | 
 |  * limited by the accuracy of the transformation into system time | 
 |  * base. This depends on the device driver and its underlying | 
 |  * hardware. | 
 |  * | 
 |  * hwtstamps can only be compared against other hwtstamps from | 
 |  * the same device. | 
 |  * | 
 |  * This structure is attached to packets as part of the | 
 |  * &skb_shared_info. Use skb_hwtstamps() to get a pointer. | 
 |  */ | 
 | struct skb_shared_hwtstamps { | 
 | 	ktime_t	hwtstamp; | 
 | 	ktime_t	syststamp; | 
 | }; | 
 |  | 
 | /* Definitions for tx_flags in struct skb_shared_info */ | 
 | enum { | 
 | 	/* generate hardware time stamp */ | 
 | 	SKBTX_HW_TSTAMP = 1 << 0, | 
 |  | 
 | 	/* generate software time stamp */ | 
 | 	SKBTX_SW_TSTAMP = 1 << 1, | 
 |  | 
 | 	/* device driver is going to provide hardware time stamp */ | 
 | 	SKBTX_IN_PROGRESS = 1 << 2, | 
 |  | 
 | 	/* ensure the originating sk reference is available on driver level */ | 
 | 	SKBTX_DRV_NEEDS_SK_REF = 1 << 3, | 
 | }; | 
 |  | 
 | /* This data is invariant across clones and lives at | 
 |  * the end of the header data, ie. at skb->end. | 
 |  */ | 
 | struct skb_shared_info { | 
 | 	unsigned short	nr_frags; | 
 | 	unsigned short	gso_size; | 
 | 	/* Warning: this field is not always filled in (UFO)! */ | 
 | 	unsigned short	gso_segs; | 
 | 	unsigned short  gso_type; | 
 | 	__be32          ip6_frag_id; | 
 | 	__u8		tx_flags; | 
 | 	struct sk_buff	*frag_list; | 
 | 	struct skb_shared_hwtstamps hwtstamps; | 
 |  | 
 | 	/* | 
 | 	 * Warning : all fields before dataref are cleared in __alloc_skb() | 
 | 	 */ | 
 | 	atomic_t	dataref; | 
 |  | 
 | 	/* Intermediate layers must ensure that destructor_arg | 
 | 	 * remains valid until skb destructor */ | 
 | 	void *		destructor_arg; | 
 | 	/* must be last field, see pskb_expand_head() */ | 
 | 	skb_frag_t	frags[MAX_SKB_FRAGS]; | 
 | }; | 
 |  | 
 | /* We divide dataref into two halves.  The higher 16 bits hold references | 
 |  * to the payload part of skb->data.  The lower 16 bits hold references to | 
 |  * the entire skb->data.  A clone of a headerless skb holds the length of | 
 |  * the header in skb->hdr_len. | 
 |  * | 
 |  * All users must obey the rule that the skb->data reference count must be | 
 |  * greater than or equal to the payload reference count. | 
 |  * | 
 |  * Holding a reference to the payload part means that the user does not | 
 |  * care about modifications to the header part of skb->data. | 
 |  */ | 
 | #define SKB_DATAREF_SHIFT 16 | 
 | #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) | 
 |  | 
 |  | 
 | enum { | 
 | 	SKB_FCLONE_UNAVAILABLE, | 
 | 	SKB_FCLONE_ORIG, | 
 | 	SKB_FCLONE_CLONE, | 
 | }; | 
 |  | 
 | enum { | 
 | 	SKB_GSO_TCPV4 = 1 << 0, | 
 | 	SKB_GSO_UDP = 1 << 1, | 
 |  | 
 | 	/* This indicates the skb is from an untrusted source. */ | 
 | 	SKB_GSO_DODGY = 1 << 2, | 
 |  | 
 | 	/* This indicates the tcp segment has CWR set. */ | 
 | 	SKB_GSO_TCP_ECN = 1 << 3, | 
 |  | 
 | 	SKB_GSO_TCPV6 = 1 << 4, | 
 |  | 
 | 	SKB_GSO_FCOE = 1 << 5, | 
 | }; | 
 |  | 
 | #if BITS_PER_LONG > 32 | 
 | #define NET_SKBUFF_DATA_USES_OFFSET 1 | 
 | #endif | 
 |  | 
 | #ifdef NET_SKBUFF_DATA_USES_OFFSET | 
 | typedef unsigned int sk_buff_data_t; | 
 | #else | 
 | typedef unsigned char *sk_buff_data_t; | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \ | 
 |     defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE) | 
 | #define NET_SKBUFF_NF_DEFRAG_NEEDED 1 | 
 | #endif | 
 |  | 
 | /**  | 
 |  *	struct sk_buff - socket buffer | 
 |  *	@next: Next buffer in list | 
 |  *	@prev: Previous buffer in list | 
 |  *	@sk: Socket we are owned by | 
 |  *	@tstamp: Time we arrived | 
 |  *	@dev: Device we arrived on/are leaving by | 
 |  *	@transport_header: Transport layer header | 
 |  *	@network_header: Network layer header | 
 |  *	@mac_header: Link layer header | 
 |  *	@_skb_refdst: destination entry (with norefcount bit) | 
 |  *	@sp: the security path, used for xfrm | 
 |  *	@cb: Control buffer. Free for use by every layer. Put private vars here | 
 |  *	@len: Length of actual data | 
 |  *	@data_len: Data length | 
 |  *	@mac_len: Length of link layer header | 
 |  *	@hdr_len: writable header length of cloned skb | 
 |  *	@csum: Checksum (must include start/offset pair) | 
 |  *	@csum_start: Offset from skb->head where checksumming should start | 
 |  *	@csum_offset: Offset from csum_start where checksum should be stored | 
 |  *	@local_df: allow local fragmentation | 
 |  *	@cloned: Head may be cloned (check refcnt to be sure) | 
 |  *	@nohdr: Payload reference only, must not modify header | 
 |  *	@pkt_type: Packet class | 
 |  *	@fclone: skbuff clone status | 
 |  *	@ip_summed: Driver fed us an IP checksum | 
 |  *	@priority: Packet queueing priority | 
 |  *	@users: User count - see {datagram,tcp}.c | 
 |  *	@protocol: Packet protocol from driver | 
 |  *	@truesize: Buffer size  | 
 |  *	@head: Head of buffer | 
 |  *	@data: Data head pointer | 
 |  *	@tail: Tail pointer | 
 |  *	@end: End pointer | 
 |  *	@destructor: Destruct function | 
 |  *	@mark: Generic packet mark | 
 |  *	@nfct: Associated connection, if any | 
 |  *	@ipvs_property: skbuff is owned by ipvs | 
 |  *	@peeked: this packet has been seen already, so stats have been | 
 |  *		done for it, don't do them again | 
 |  *	@nf_trace: netfilter packet trace flag | 
 |  *	@nfctinfo: Relationship of this skb to the connection | 
 |  *	@nfct_reasm: netfilter conntrack re-assembly pointer | 
 |  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c | 
 |  *	@skb_iif: ifindex of device we arrived on | 
 |  *	@rxhash: the packet hash computed on receive | 
 |  *	@queue_mapping: Queue mapping for multiqueue devices | 
 |  *	@tc_index: Traffic control index | 
 |  *	@tc_verd: traffic control verdict | 
 |  *	@ndisc_nodetype: router type (from link layer) | 
 |  *	@dma_cookie: a cookie to one of several possible DMA operations | 
 |  *		done by skb DMA functions | 
 |  *	@secmark: security marking | 
 |  *	@vlan_tci: vlan tag control information | 
 |  */ | 
 |  | 
 | struct sk_buff { | 
 | 	/* These two members must be first. */ | 
 | 	struct sk_buff		*next; | 
 | 	struct sk_buff		*prev; | 
 |  | 
 | 	ktime_t			tstamp; | 
 |  | 
 | 	struct sock		*sk; | 
 | 	struct net_device	*dev; | 
 |  | 
 | 	/* | 
 | 	 * This is the control buffer. It is free to use for every | 
 | 	 * layer. Please put your private variables there. If you | 
 | 	 * want to keep them across layers you have to do a skb_clone() | 
 | 	 * first. This is owned by whoever has the skb queued ATM. | 
 | 	 */ | 
 | 	char			cb[48] __aligned(8); | 
 |  | 
 | 	unsigned long		_skb_refdst; | 
 | #ifdef CONFIG_XFRM | 
 | 	struct	sec_path	*sp; | 
 | #endif | 
 | 	unsigned int		len, | 
 | 				data_len; | 
 | 	__u16			mac_len, | 
 | 				hdr_len; | 
 | 	union { | 
 | 		__wsum		csum; | 
 | 		struct { | 
 | 			__u16	csum_start; | 
 | 			__u16	csum_offset; | 
 | 		}; | 
 | 	}; | 
 | 	__u32			priority; | 
 | 	kmemcheck_bitfield_begin(flags1); | 
 | 	__u8			local_df:1, | 
 | 				cloned:1, | 
 | 				ip_summed:2, | 
 | 				nohdr:1, | 
 | 				nfctinfo:3; | 
 | 	__u8			pkt_type:3, | 
 | 				fclone:2, | 
 | 				ipvs_property:1, | 
 | 				peeked:1, | 
 | 				nf_trace:1; | 
 | 	kmemcheck_bitfield_end(flags1); | 
 | 	__be16			protocol; | 
 |  | 
 | 	void			(*destructor)(struct sk_buff *skb); | 
 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) | 
 | 	struct nf_conntrack	*nfct; | 
 | #endif | 
 | #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED | 
 | 	struct sk_buff		*nfct_reasm; | 
 | #endif | 
 | #ifdef CONFIG_BRIDGE_NETFILTER | 
 | 	struct nf_bridge_info	*nf_bridge; | 
 | #endif | 
 |  | 
 | 	int			skb_iif; | 
 | #ifdef CONFIG_NET_SCHED | 
 | 	__u16			tc_index;	/* traffic control index */ | 
 | #ifdef CONFIG_NET_CLS_ACT | 
 | 	__u16			tc_verd;	/* traffic control verdict */ | 
 | #endif | 
 | #endif | 
 |  | 
 | 	__u32			rxhash; | 
 |  | 
 | 	kmemcheck_bitfield_begin(flags2); | 
 | 	__u16			queue_mapping:16; | 
 | #ifdef CONFIG_IPV6_NDISC_NODETYPE | 
 | 	__u8			ndisc_nodetype:2; | 
 | #endif | 
 | 	__u8			ooo_okay:1; | 
 | 	kmemcheck_bitfield_end(flags2); | 
 |  | 
 | 	/* 0/13 bit hole */ | 
 |  | 
 | #ifdef CONFIG_NET_DMA | 
 | 	dma_cookie_t		dma_cookie; | 
 | #endif | 
 | #ifdef CONFIG_NETWORK_SECMARK | 
 | 	__u32			secmark; | 
 | #endif | 
 | 	union { | 
 | 		__u32		mark; | 
 | 		__u32		dropcount; | 
 | 	}; | 
 |  | 
 | 	__u16			vlan_tci; | 
 |  | 
 | 	sk_buff_data_t		transport_header; | 
 | 	sk_buff_data_t		network_header; | 
 | 	sk_buff_data_t		mac_header; | 
 | 	/* These elements must be at the end, see alloc_skb() for details.  */ | 
 | 	sk_buff_data_t		tail; | 
 | 	sk_buff_data_t		end; | 
 | 	unsigned char		*head, | 
 | 				*data; | 
 | 	unsigned int		truesize; | 
 | 	atomic_t		users; | 
 | }; | 
 |  | 
 | #ifdef __KERNEL__ | 
 | /* | 
 |  *	Handling routines are only of interest to the kernel | 
 |  */ | 
 | #include <linux/slab.h> | 
 |  | 
 | #include <asm/system.h> | 
 |  | 
 | /* | 
 |  * skb might have a dst pointer attached, refcounted or not. | 
 |  * _skb_refdst low order bit is set if refcount was _not_ taken | 
 |  */ | 
 | #define SKB_DST_NOREF	1UL | 
 | #define SKB_DST_PTRMASK	~(SKB_DST_NOREF) | 
 |  | 
 | /** | 
 |  * skb_dst - returns skb dst_entry | 
 |  * @skb: buffer | 
 |  * | 
 |  * Returns skb dst_entry, regardless of reference taken or not. | 
 |  */ | 
 | static inline struct dst_entry *skb_dst(const struct sk_buff *skb) | 
 | { | 
 | 	/* If refdst was not refcounted, check we still are in a  | 
 | 	 * rcu_read_lock section | 
 | 	 */ | 
 | 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && | 
 | 		!rcu_read_lock_held() && | 
 | 		!rcu_read_lock_bh_held()); | 
 | 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); | 
 | } | 
 |  | 
 | /** | 
 |  * skb_dst_set - sets skb dst | 
 |  * @skb: buffer | 
 |  * @dst: dst entry | 
 |  * | 
 |  * Sets skb dst, assuming a reference was taken on dst and should | 
 |  * be released by skb_dst_drop() | 
 |  */ | 
 | static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) | 
 | { | 
 | 	skb->_skb_refdst = (unsigned long)dst; | 
 | } | 
 |  | 
 | extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst); | 
 |  | 
 | /** | 
 |  * skb_dst_is_noref - Test if skb dst isn't refcounted | 
 |  * @skb: buffer | 
 |  */ | 
 | static inline bool skb_dst_is_noref(const struct sk_buff *skb) | 
 | { | 
 | 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); | 
 | } | 
 |  | 
 | static inline struct rtable *skb_rtable(const struct sk_buff *skb) | 
 | { | 
 | 	return (struct rtable *)skb_dst(skb); | 
 | } | 
 |  | 
 | extern void kfree_skb(struct sk_buff *skb); | 
 | extern void consume_skb(struct sk_buff *skb); | 
 | extern void	       __kfree_skb(struct sk_buff *skb); | 
 | extern struct sk_buff *__alloc_skb(unsigned int size, | 
 | 				   gfp_t priority, int fclone, int node); | 
 | static inline struct sk_buff *alloc_skb(unsigned int size, | 
 | 					gfp_t priority) | 
 | { | 
 | 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE); | 
 | } | 
 |  | 
 | static inline struct sk_buff *alloc_skb_fclone(unsigned int size, | 
 | 					       gfp_t priority) | 
 | { | 
 | 	return __alloc_skb(size, priority, 1, NUMA_NO_NODE); | 
 | } | 
 |  | 
 | extern bool skb_recycle_check(struct sk_buff *skb, int skb_size); | 
 |  | 
 | extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); | 
 | extern struct sk_buff *skb_clone(struct sk_buff *skb, | 
 | 				 gfp_t priority); | 
 | extern struct sk_buff *skb_copy(const struct sk_buff *skb, | 
 | 				gfp_t priority); | 
 | extern struct sk_buff *pskb_copy(struct sk_buff *skb, | 
 | 				 gfp_t gfp_mask); | 
 | extern int	       pskb_expand_head(struct sk_buff *skb, | 
 | 					int nhead, int ntail, | 
 | 					gfp_t gfp_mask); | 
 | extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, | 
 | 					    unsigned int headroom); | 
 | extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, | 
 | 				       int newheadroom, int newtailroom, | 
 | 				       gfp_t priority); | 
 | extern int	       skb_to_sgvec(struct sk_buff *skb, | 
 | 				    struct scatterlist *sg, int offset, | 
 | 				    int len); | 
 | extern int	       skb_cow_data(struct sk_buff *skb, int tailbits, | 
 | 				    struct sk_buff **trailer); | 
 | extern int	       skb_pad(struct sk_buff *skb, int pad); | 
 | #define dev_kfree_skb(a)	consume_skb(a) | 
 |  | 
 | extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, | 
 | 			int getfrag(void *from, char *to, int offset, | 
 | 			int len,int odd, struct sk_buff *skb), | 
 | 			void *from, int length); | 
 |  | 
 | struct skb_seq_state { | 
 | 	__u32		lower_offset; | 
 | 	__u32		upper_offset; | 
 | 	__u32		frag_idx; | 
 | 	__u32		stepped_offset; | 
 | 	struct sk_buff	*root_skb; | 
 | 	struct sk_buff	*cur_skb; | 
 | 	__u8		*frag_data; | 
 | }; | 
 |  | 
 | extern void	      skb_prepare_seq_read(struct sk_buff *skb, | 
 | 					   unsigned int from, unsigned int to, | 
 | 					   struct skb_seq_state *st); | 
 | extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data, | 
 | 				   struct skb_seq_state *st); | 
 | extern void	      skb_abort_seq_read(struct skb_seq_state *st); | 
 |  | 
 | extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from, | 
 | 				    unsigned int to, struct ts_config *config, | 
 | 				    struct ts_state *state); | 
 |  | 
 | extern __u32 __skb_get_rxhash(struct sk_buff *skb); | 
 | static inline __u32 skb_get_rxhash(struct sk_buff *skb) | 
 | { | 
 | 	if (!skb->rxhash) | 
 | 		skb->rxhash = __skb_get_rxhash(skb); | 
 |  | 
 | 	return skb->rxhash; | 
 | } | 
 |  | 
 | #ifdef NET_SKBUFF_DATA_USES_OFFSET | 
 | static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->head + skb->end; | 
 | } | 
 | #else | 
 | static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->end; | 
 | } | 
 | #endif | 
 |  | 
 | /* Internal */ | 
 | #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB))) | 
 |  | 
 | static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) | 
 | { | 
 | 	return &skb_shinfo(skb)->hwtstamps; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_queue_empty - check if a queue is empty | 
 |  *	@list: queue head | 
 |  * | 
 |  *	Returns true if the queue is empty, false otherwise. | 
 |  */ | 
 | static inline int skb_queue_empty(const struct sk_buff_head *list) | 
 | { | 
 | 	return list->next == (struct sk_buff *)list; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_queue_is_last - check if skb is the last entry in the queue | 
 |  *	@list: queue head | 
 |  *	@skb: buffer | 
 |  * | 
 |  *	Returns true if @skb is the last buffer on the list. | 
 |  */ | 
 | static inline bool skb_queue_is_last(const struct sk_buff_head *list, | 
 | 				     const struct sk_buff *skb) | 
 | { | 
 | 	return skb->next == (struct sk_buff *)list; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_queue_is_first - check if skb is the first entry in the queue | 
 |  *	@list: queue head | 
 |  *	@skb: buffer | 
 |  * | 
 |  *	Returns true if @skb is the first buffer on the list. | 
 |  */ | 
 | static inline bool skb_queue_is_first(const struct sk_buff_head *list, | 
 | 				      const struct sk_buff *skb) | 
 | { | 
 | 	return skb->prev == (struct sk_buff *)list; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_queue_next - return the next packet in the queue | 
 |  *	@list: queue head | 
 |  *	@skb: current buffer | 
 |  * | 
 |  *	Return the next packet in @list after @skb.  It is only valid to | 
 |  *	call this if skb_queue_is_last() evaluates to false. | 
 |  */ | 
 | static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, | 
 | 					     const struct sk_buff *skb) | 
 | { | 
 | 	/* This BUG_ON may seem severe, but if we just return then we | 
 | 	 * are going to dereference garbage. | 
 | 	 */ | 
 | 	BUG_ON(skb_queue_is_last(list, skb)); | 
 | 	return skb->next; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_queue_prev - return the prev packet in the queue | 
 |  *	@list: queue head | 
 |  *	@skb: current buffer | 
 |  * | 
 |  *	Return the prev packet in @list before @skb.  It is only valid to | 
 |  *	call this if skb_queue_is_first() evaluates to false. | 
 |  */ | 
 | static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, | 
 | 					     const struct sk_buff *skb) | 
 | { | 
 | 	/* This BUG_ON may seem severe, but if we just return then we | 
 | 	 * are going to dereference garbage. | 
 | 	 */ | 
 | 	BUG_ON(skb_queue_is_first(list, skb)); | 
 | 	return skb->prev; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_get - reference buffer | 
 |  *	@skb: buffer to reference | 
 |  * | 
 |  *	Makes another reference to a socket buffer and returns a pointer | 
 |  *	to the buffer. | 
 |  */ | 
 | static inline struct sk_buff *skb_get(struct sk_buff *skb) | 
 | { | 
 | 	atomic_inc(&skb->users); | 
 | 	return skb; | 
 | } | 
 |  | 
 | /* | 
 |  * If users == 1, we are the only owner and are can avoid redundant | 
 |  * atomic change. | 
 |  */ | 
 |  | 
 | /** | 
 |  *	skb_cloned - is the buffer a clone | 
 |  *	@skb: buffer to check | 
 |  * | 
 |  *	Returns true if the buffer was generated with skb_clone() and is | 
 |  *	one of multiple shared copies of the buffer. Cloned buffers are | 
 |  *	shared data so must not be written to under normal circumstances. | 
 |  */ | 
 | static inline int skb_cloned(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->cloned && | 
 | 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_header_cloned - is the header a clone | 
 |  *	@skb: buffer to check | 
 |  * | 
 |  *	Returns true if modifying the header part of the buffer requires | 
 |  *	the data to be copied. | 
 |  */ | 
 | static inline int skb_header_cloned(const struct sk_buff *skb) | 
 | { | 
 | 	int dataref; | 
 |  | 
 | 	if (!skb->cloned) | 
 | 		return 0; | 
 |  | 
 | 	dataref = atomic_read(&skb_shinfo(skb)->dataref); | 
 | 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); | 
 | 	return dataref != 1; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_header_release - release reference to header | 
 |  *	@skb: buffer to operate on | 
 |  * | 
 |  *	Drop a reference to the header part of the buffer.  This is done | 
 |  *	by acquiring a payload reference.  You must not read from the header | 
 |  *	part of skb->data after this. | 
 |  */ | 
 | static inline void skb_header_release(struct sk_buff *skb) | 
 | { | 
 | 	BUG_ON(skb->nohdr); | 
 | 	skb->nohdr = 1; | 
 | 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_shared - is the buffer shared | 
 |  *	@skb: buffer to check | 
 |  * | 
 |  *	Returns true if more than one person has a reference to this | 
 |  *	buffer. | 
 |  */ | 
 | static inline int skb_shared(const struct sk_buff *skb) | 
 | { | 
 | 	return atomic_read(&skb->users) != 1; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_share_check - check if buffer is shared and if so clone it | 
 |  *	@skb: buffer to check | 
 |  *	@pri: priority for memory allocation | 
 |  * | 
 |  *	If the buffer is shared the buffer is cloned and the old copy | 
 |  *	drops a reference. A new clone with a single reference is returned. | 
 |  *	If the buffer is not shared the original buffer is returned. When | 
 |  *	being called from interrupt status or with spinlocks held pri must | 
 |  *	be GFP_ATOMIC. | 
 |  * | 
 |  *	NULL is returned on a memory allocation failure. | 
 |  */ | 
 | static inline struct sk_buff *skb_share_check(struct sk_buff *skb, | 
 | 					      gfp_t pri) | 
 | { | 
 | 	might_sleep_if(pri & __GFP_WAIT); | 
 | 	if (skb_shared(skb)) { | 
 | 		struct sk_buff *nskb = skb_clone(skb, pri); | 
 | 		kfree_skb(skb); | 
 | 		skb = nskb; | 
 | 	} | 
 | 	return skb; | 
 | } | 
 |  | 
 | /* | 
 |  *	Copy shared buffers into a new sk_buff. We effectively do COW on | 
 |  *	packets to handle cases where we have a local reader and forward | 
 |  *	and a couple of other messy ones. The normal one is tcpdumping | 
 |  *	a packet thats being forwarded. | 
 |  */ | 
 |  | 
 | /** | 
 |  *	skb_unshare - make a copy of a shared buffer | 
 |  *	@skb: buffer to check | 
 |  *	@pri: priority for memory allocation | 
 |  * | 
 |  *	If the socket buffer is a clone then this function creates a new | 
 |  *	copy of the data, drops a reference count on the old copy and returns | 
 |  *	the new copy with the reference count at 1. If the buffer is not a clone | 
 |  *	the original buffer is returned. When called with a spinlock held or | 
 |  *	from interrupt state @pri must be %GFP_ATOMIC | 
 |  * | 
 |  *	%NULL is returned on a memory allocation failure. | 
 |  */ | 
 | static inline struct sk_buff *skb_unshare(struct sk_buff *skb, | 
 | 					  gfp_t pri) | 
 | { | 
 | 	might_sleep_if(pri & __GFP_WAIT); | 
 | 	if (skb_cloned(skb)) { | 
 | 		struct sk_buff *nskb = skb_copy(skb, pri); | 
 | 		kfree_skb(skb);	/* Free our shared copy */ | 
 | 		skb = nskb; | 
 | 	} | 
 | 	return skb; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_peek - peek at the head of an &sk_buff_head | 
 |  *	@list_: list to peek at | 
 |  * | 
 |  *	Peek an &sk_buff. Unlike most other operations you _MUST_ | 
 |  *	be careful with this one. A peek leaves the buffer on the | 
 |  *	list and someone else may run off with it. You must hold | 
 |  *	the appropriate locks or have a private queue to do this. | 
 |  * | 
 |  *	Returns %NULL for an empty list or a pointer to the head element. | 
 |  *	The reference count is not incremented and the reference is therefore | 
 |  *	volatile. Use with caution. | 
 |  */ | 
 | static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) | 
 | { | 
 | 	struct sk_buff *list = ((struct sk_buff *)list_)->next; | 
 | 	if (list == (struct sk_buff *)list_) | 
 | 		list = NULL; | 
 | 	return list; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_peek_tail - peek at the tail of an &sk_buff_head | 
 |  *	@list_: list to peek at | 
 |  * | 
 |  *	Peek an &sk_buff. Unlike most other operations you _MUST_ | 
 |  *	be careful with this one. A peek leaves the buffer on the | 
 |  *	list and someone else may run off with it. You must hold | 
 |  *	the appropriate locks or have a private queue to do this. | 
 |  * | 
 |  *	Returns %NULL for an empty list or a pointer to the tail element. | 
 |  *	The reference count is not incremented and the reference is therefore | 
 |  *	volatile. Use with caution. | 
 |  */ | 
 | static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) | 
 | { | 
 | 	struct sk_buff *list = ((struct sk_buff *)list_)->prev; | 
 | 	if (list == (struct sk_buff *)list_) | 
 | 		list = NULL; | 
 | 	return list; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_queue_len	- get queue length | 
 |  *	@list_: list to measure | 
 |  * | 
 |  *	Return the length of an &sk_buff queue. | 
 |  */ | 
 | static inline __u32 skb_queue_len(const struct sk_buff_head *list_) | 
 | { | 
 | 	return list_->qlen; | 
 | } | 
 |  | 
 | /** | 
 |  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head | 
 |  *	@list: queue to initialize | 
 |  * | 
 |  *	This initializes only the list and queue length aspects of | 
 |  *	an sk_buff_head object.  This allows to initialize the list | 
 |  *	aspects of an sk_buff_head without reinitializing things like | 
 |  *	the spinlock.  It can also be used for on-stack sk_buff_head | 
 |  *	objects where the spinlock is known to not be used. | 
 |  */ | 
 | static inline void __skb_queue_head_init(struct sk_buff_head *list) | 
 | { | 
 | 	list->prev = list->next = (struct sk_buff *)list; | 
 | 	list->qlen = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This function creates a split out lock class for each invocation; | 
 |  * this is needed for now since a whole lot of users of the skb-queue | 
 |  * infrastructure in drivers have different locking usage (in hardirq) | 
 |  * than the networking core (in softirq only). In the long run either the | 
 |  * network layer or drivers should need annotation to consolidate the | 
 |  * main types of usage into 3 classes. | 
 |  */ | 
 | static inline void skb_queue_head_init(struct sk_buff_head *list) | 
 | { | 
 | 	spin_lock_init(&list->lock); | 
 | 	__skb_queue_head_init(list); | 
 | } | 
 |  | 
 | static inline void skb_queue_head_init_class(struct sk_buff_head *list, | 
 | 		struct lock_class_key *class) | 
 | { | 
 | 	skb_queue_head_init(list); | 
 | 	lockdep_set_class(&list->lock, class); | 
 | } | 
 |  | 
 | /* | 
 |  *	Insert an sk_buff on a list. | 
 |  * | 
 |  *	The "__skb_xxxx()" functions are the non-atomic ones that | 
 |  *	can only be called with interrupts disabled. | 
 |  */ | 
 | extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); | 
 | static inline void __skb_insert(struct sk_buff *newsk, | 
 | 				struct sk_buff *prev, struct sk_buff *next, | 
 | 				struct sk_buff_head *list) | 
 | { | 
 | 	newsk->next = next; | 
 | 	newsk->prev = prev; | 
 | 	next->prev  = prev->next = newsk; | 
 | 	list->qlen++; | 
 | } | 
 |  | 
 | static inline void __skb_queue_splice(const struct sk_buff_head *list, | 
 | 				      struct sk_buff *prev, | 
 | 				      struct sk_buff *next) | 
 | { | 
 | 	struct sk_buff *first = list->next; | 
 | 	struct sk_buff *last = list->prev; | 
 |  | 
 | 	first->prev = prev; | 
 | 	prev->next = first; | 
 |  | 
 | 	last->next = next; | 
 | 	next->prev = last; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_queue_splice - join two skb lists, this is designed for stacks | 
 |  *	@list: the new list to add | 
 |  *	@head: the place to add it in the first list | 
 |  */ | 
 | static inline void skb_queue_splice(const struct sk_buff_head *list, | 
 | 				    struct sk_buff_head *head) | 
 | { | 
 | 	if (!skb_queue_empty(list)) { | 
 | 		__skb_queue_splice(list, (struct sk_buff *) head, head->next); | 
 | 		head->qlen += list->qlen; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_queue_splice - join two skb lists and reinitialise the emptied list | 
 |  *	@list: the new list to add | 
 |  *	@head: the place to add it in the first list | 
 |  * | 
 |  *	The list at @list is reinitialised | 
 |  */ | 
 | static inline void skb_queue_splice_init(struct sk_buff_head *list, | 
 | 					 struct sk_buff_head *head) | 
 | { | 
 | 	if (!skb_queue_empty(list)) { | 
 | 		__skb_queue_splice(list, (struct sk_buff *) head, head->next); | 
 | 		head->qlen += list->qlen; | 
 | 		__skb_queue_head_init(list); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_queue_splice_tail - join two skb lists, each list being a queue | 
 |  *	@list: the new list to add | 
 |  *	@head: the place to add it in the first list | 
 |  */ | 
 | static inline void skb_queue_splice_tail(const struct sk_buff_head *list, | 
 | 					 struct sk_buff_head *head) | 
 | { | 
 | 	if (!skb_queue_empty(list)) { | 
 | 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head); | 
 | 		head->qlen += list->qlen; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list | 
 |  *	@list: the new list to add | 
 |  *	@head: the place to add it in the first list | 
 |  * | 
 |  *	Each of the lists is a queue. | 
 |  *	The list at @list is reinitialised | 
 |  */ | 
 | static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, | 
 | 					      struct sk_buff_head *head) | 
 | { | 
 | 	if (!skb_queue_empty(list)) { | 
 | 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head); | 
 | 		head->qlen += list->qlen; | 
 | 		__skb_queue_head_init(list); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	__skb_queue_after - queue a buffer at the list head | 
 |  *	@list: list to use | 
 |  *	@prev: place after this buffer | 
 |  *	@newsk: buffer to queue | 
 |  * | 
 |  *	Queue a buffer int the middle of a list. This function takes no locks | 
 |  *	and you must therefore hold required locks before calling it. | 
 |  * | 
 |  *	A buffer cannot be placed on two lists at the same time. | 
 |  */ | 
 | static inline void __skb_queue_after(struct sk_buff_head *list, | 
 | 				     struct sk_buff *prev, | 
 | 				     struct sk_buff *newsk) | 
 | { | 
 | 	__skb_insert(newsk, prev, prev->next, list); | 
 | } | 
 |  | 
 | extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, | 
 | 		       struct sk_buff_head *list); | 
 |  | 
 | static inline void __skb_queue_before(struct sk_buff_head *list, | 
 | 				      struct sk_buff *next, | 
 | 				      struct sk_buff *newsk) | 
 | { | 
 | 	__skb_insert(newsk, next->prev, next, list); | 
 | } | 
 |  | 
 | /** | 
 |  *	__skb_queue_head - queue a buffer at the list head | 
 |  *	@list: list to use | 
 |  *	@newsk: buffer to queue | 
 |  * | 
 |  *	Queue a buffer at the start of a list. This function takes no locks | 
 |  *	and you must therefore hold required locks before calling it. | 
 |  * | 
 |  *	A buffer cannot be placed on two lists at the same time. | 
 |  */ | 
 | extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); | 
 | static inline void __skb_queue_head(struct sk_buff_head *list, | 
 | 				    struct sk_buff *newsk) | 
 | { | 
 | 	__skb_queue_after(list, (struct sk_buff *)list, newsk); | 
 | } | 
 |  | 
 | /** | 
 |  *	__skb_queue_tail - queue a buffer at the list tail | 
 |  *	@list: list to use | 
 |  *	@newsk: buffer to queue | 
 |  * | 
 |  *	Queue a buffer at the end of a list. This function takes no locks | 
 |  *	and you must therefore hold required locks before calling it. | 
 |  * | 
 |  *	A buffer cannot be placed on two lists at the same time. | 
 |  */ | 
 | extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); | 
 | static inline void __skb_queue_tail(struct sk_buff_head *list, | 
 | 				   struct sk_buff *newsk) | 
 | { | 
 | 	__skb_queue_before(list, (struct sk_buff *)list, newsk); | 
 | } | 
 |  | 
 | /* | 
 |  * remove sk_buff from list. _Must_ be called atomically, and with | 
 |  * the list known.. | 
 |  */ | 
 | extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); | 
 | static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) | 
 | { | 
 | 	struct sk_buff *next, *prev; | 
 |  | 
 | 	list->qlen--; | 
 | 	next	   = skb->next; | 
 | 	prev	   = skb->prev; | 
 | 	skb->next  = skb->prev = NULL; | 
 | 	next->prev = prev; | 
 | 	prev->next = next; | 
 | } | 
 |  | 
 | /** | 
 |  *	__skb_dequeue - remove from the head of the queue | 
 |  *	@list: list to dequeue from | 
 |  * | 
 |  *	Remove the head of the list. This function does not take any locks | 
 |  *	so must be used with appropriate locks held only. The head item is | 
 |  *	returned or %NULL if the list is empty. | 
 |  */ | 
 | extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); | 
 | static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) | 
 | { | 
 | 	struct sk_buff *skb = skb_peek(list); | 
 | 	if (skb) | 
 | 		__skb_unlink(skb, list); | 
 | 	return skb; | 
 | } | 
 |  | 
 | /** | 
 |  *	__skb_dequeue_tail - remove from the tail of the queue | 
 |  *	@list: list to dequeue from | 
 |  * | 
 |  *	Remove the tail of the list. This function does not take any locks | 
 |  *	so must be used with appropriate locks held only. The tail item is | 
 |  *	returned or %NULL if the list is empty. | 
 |  */ | 
 | extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); | 
 | static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) | 
 | { | 
 | 	struct sk_buff *skb = skb_peek_tail(list); | 
 | 	if (skb) | 
 | 		__skb_unlink(skb, list); | 
 | 	return skb; | 
 | } | 
 |  | 
 |  | 
 | static inline int skb_is_nonlinear(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->data_len; | 
 | } | 
 |  | 
 | static inline unsigned int skb_headlen(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->len - skb->data_len; | 
 | } | 
 |  | 
 | static inline int skb_pagelen(const struct sk_buff *skb) | 
 | { | 
 | 	int i, len = 0; | 
 |  | 
 | 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) | 
 | 		len += skb_shinfo(skb)->frags[i].size; | 
 | 	return len + skb_headlen(skb); | 
 | } | 
 |  | 
 | static inline void skb_fill_page_desc(struct sk_buff *skb, int i, | 
 | 				      struct page *page, int off, int size) | 
 | { | 
 | 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
 |  | 
 | 	frag->page		  = page; | 
 | 	frag->page_offset	  = off; | 
 | 	frag->size		  = size; | 
 | 	skb_shinfo(skb)->nr_frags = i + 1; | 
 | } | 
 |  | 
 | extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, | 
 | 			    int off, int size); | 
 |  | 
 | #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags) | 
 | #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb)) | 
 | #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb)) | 
 |  | 
 | #ifdef NET_SKBUFF_DATA_USES_OFFSET | 
 | static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->head + skb->tail; | 
 | } | 
 |  | 
 | static inline void skb_reset_tail_pointer(struct sk_buff *skb) | 
 | { | 
 | 	skb->tail = skb->data - skb->head; | 
 | } | 
 |  | 
 | static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) | 
 | { | 
 | 	skb_reset_tail_pointer(skb); | 
 | 	skb->tail += offset; | 
 | } | 
 | #else /* NET_SKBUFF_DATA_USES_OFFSET */ | 
 | static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->tail; | 
 | } | 
 |  | 
 | static inline void skb_reset_tail_pointer(struct sk_buff *skb) | 
 | { | 
 | 	skb->tail = skb->data; | 
 | } | 
 |  | 
 | static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) | 
 | { | 
 | 	skb->tail = skb->data + offset; | 
 | } | 
 |  | 
 | #endif /* NET_SKBUFF_DATA_USES_OFFSET */ | 
 |  | 
 | /* | 
 |  *	Add data to an sk_buff | 
 |  */ | 
 | extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); | 
 | static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) | 
 | { | 
 | 	unsigned char *tmp = skb_tail_pointer(skb); | 
 | 	SKB_LINEAR_ASSERT(skb); | 
 | 	skb->tail += len; | 
 | 	skb->len  += len; | 
 | 	return tmp; | 
 | } | 
 |  | 
 | extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); | 
 | static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) | 
 | { | 
 | 	skb->data -= len; | 
 | 	skb->len  += len; | 
 | 	return skb->data; | 
 | } | 
 |  | 
 | extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); | 
 | static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) | 
 | { | 
 | 	skb->len -= len; | 
 | 	BUG_ON(skb->len < skb->data_len); | 
 | 	return skb->data += len; | 
 | } | 
 |  | 
 | static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) | 
 | { | 
 | 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); | 
 | } | 
 |  | 
 | extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); | 
 |  | 
 | static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) | 
 | { | 
 | 	if (len > skb_headlen(skb) && | 
 | 	    !__pskb_pull_tail(skb, len - skb_headlen(skb))) | 
 | 		return NULL; | 
 | 	skb->len -= len; | 
 | 	return skb->data += len; | 
 | } | 
 |  | 
 | static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) | 
 | { | 
 | 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); | 
 | } | 
 |  | 
 | static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) | 
 | { | 
 | 	if (likely(len <= skb_headlen(skb))) | 
 | 		return 1; | 
 | 	if (unlikely(len > skb->len)) | 
 | 		return 0; | 
 | 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_headroom - bytes at buffer head | 
 |  *	@skb: buffer to check | 
 |  * | 
 |  *	Return the number of bytes of free space at the head of an &sk_buff. | 
 |  */ | 
 | static inline unsigned int skb_headroom(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->data - skb->head; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_tailroom - bytes at buffer end | 
 |  *	@skb: buffer to check | 
 |  * | 
 |  *	Return the number of bytes of free space at the tail of an sk_buff | 
 |  */ | 
 | static inline int skb_tailroom(const struct sk_buff *skb) | 
 | { | 
 | 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_reserve - adjust headroom | 
 |  *	@skb: buffer to alter | 
 |  *	@len: bytes to move | 
 |  * | 
 |  *	Increase the headroom of an empty &sk_buff by reducing the tail | 
 |  *	room. This is only allowed for an empty buffer. | 
 |  */ | 
 | static inline void skb_reserve(struct sk_buff *skb, int len) | 
 | { | 
 | 	skb->data += len; | 
 | 	skb->tail += len; | 
 | } | 
 |  | 
 | #ifdef NET_SKBUFF_DATA_USES_OFFSET | 
 | static inline unsigned char *skb_transport_header(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->head + skb->transport_header; | 
 | } | 
 |  | 
 | static inline void skb_reset_transport_header(struct sk_buff *skb) | 
 | { | 
 | 	skb->transport_header = skb->data - skb->head; | 
 | } | 
 |  | 
 | static inline void skb_set_transport_header(struct sk_buff *skb, | 
 | 					    const int offset) | 
 | { | 
 | 	skb_reset_transport_header(skb); | 
 | 	skb->transport_header += offset; | 
 | } | 
 |  | 
 | static inline unsigned char *skb_network_header(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->head + skb->network_header; | 
 | } | 
 |  | 
 | static inline void skb_reset_network_header(struct sk_buff *skb) | 
 | { | 
 | 	skb->network_header = skb->data - skb->head; | 
 | } | 
 |  | 
 | static inline void skb_set_network_header(struct sk_buff *skb, const int offset) | 
 | { | 
 | 	skb_reset_network_header(skb); | 
 | 	skb->network_header += offset; | 
 | } | 
 |  | 
 | static inline unsigned char *skb_mac_header(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->head + skb->mac_header; | 
 | } | 
 |  | 
 | static inline int skb_mac_header_was_set(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->mac_header != ~0U; | 
 | } | 
 |  | 
 | static inline void skb_reset_mac_header(struct sk_buff *skb) | 
 | { | 
 | 	skb->mac_header = skb->data - skb->head; | 
 | } | 
 |  | 
 | static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) | 
 | { | 
 | 	skb_reset_mac_header(skb); | 
 | 	skb->mac_header += offset; | 
 | } | 
 |  | 
 | #else /* NET_SKBUFF_DATA_USES_OFFSET */ | 
 |  | 
 | static inline unsigned char *skb_transport_header(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->transport_header; | 
 | } | 
 |  | 
 | static inline void skb_reset_transport_header(struct sk_buff *skb) | 
 | { | 
 | 	skb->transport_header = skb->data; | 
 | } | 
 |  | 
 | static inline void skb_set_transport_header(struct sk_buff *skb, | 
 | 					    const int offset) | 
 | { | 
 | 	skb->transport_header = skb->data + offset; | 
 | } | 
 |  | 
 | static inline unsigned char *skb_network_header(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->network_header; | 
 | } | 
 |  | 
 | static inline void skb_reset_network_header(struct sk_buff *skb) | 
 | { | 
 | 	skb->network_header = skb->data; | 
 | } | 
 |  | 
 | static inline void skb_set_network_header(struct sk_buff *skb, const int offset) | 
 | { | 
 | 	skb->network_header = skb->data + offset; | 
 | } | 
 |  | 
 | static inline unsigned char *skb_mac_header(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->mac_header; | 
 | } | 
 |  | 
 | static inline int skb_mac_header_was_set(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->mac_header != NULL; | 
 | } | 
 |  | 
 | static inline void skb_reset_mac_header(struct sk_buff *skb) | 
 | { | 
 | 	skb->mac_header = skb->data; | 
 | } | 
 |  | 
 | static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) | 
 | { | 
 | 	skb->mac_header = skb->data + offset; | 
 | } | 
 | #endif /* NET_SKBUFF_DATA_USES_OFFSET */ | 
 |  | 
 | static inline int skb_checksum_start_offset(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->csum_start - skb_headroom(skb); | 
 | } | 
 |  | 
 | static inline int skb_transport_offset(const struct sk_buff *skb) | 
 | { | 
 | 	return skb_transport_header(skb) - skb->data; | 
 | } | 
 |  | 
 | static inline u32 skb_network_header_len(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->transport_header - skb->network_header; | 
 | } | 
 |  | 
 | static inline int skb_network_offset(const struct sk_buff *skb) | 
 | { | 
 | 	return skb_network_header(skb) - skb->data; | 
 | } | 
 |  | 
 | static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) | 
 | { | 
 | 	return pskb_may_pull(skb, skb_network_offset(skb) + len); | 
 | } | 
 |  | 
 | /* | 
 |  * CPUs often take a performance hit when accessing unaligned memory | 
 |  * locations. The actual performance hit varies, it can be small if the | 
 |  * hardware handles it or large if we have to take an exception and fix it | 
 |  * in software. | 
 |  * | 
 |  * Since an ethernet header is 14 bytes network drivers often end up with | 
 |  * the IP header at an unaligned offset. The IP header can be aligned by | 
 |  * shifting the start of the packet by 2 bytes. Drivers should do this | 
 |  * with: | 
 |  * | 
 |  * skb_reserve(skb, NET_IP_ALIGN); | 
 |  * | 
 |  * The downside to this alignment of the IP header is that the DMA is now | 
 |  * unaligned. On some architectures the cost of an unaligned DMA is high | 
 |  * and this cost outweighs the gains made by aligning the IP header. | 
 |  * | 
 |  * Since this trade off varies between architectures, we allow NET_IP_ALIGN | 
 |  * to be overridden. | 
 |  */ | 
 | #ifndef NET_IP_ALIGN | 
 | #define NET_IP_ALIGN	2 | 
 | #endif | 
 |  | 
 | /* | 
 |  * The networking layer reserves some headroom in skb data (via | 
 |  * dev_alloc_skb). This is used to avoid having to reallocate skb data when | 
 |  * the header has to grow. In the default case, if the header has to grow | 
 |  * 32 bytes or less we avoid the reallocation. | 
 |  * | 
 |  * Unfortunately this headroom changes the DMA alignment of the resulting | 
 |  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive | 
 |  * on some architectures. An architecture can override this value, | 
 |  * perhaps setting it to a cacheline in size (since that will maintain | 
 |  * cacheline alignment of the DMA). It must be a power of 2. | 
 |  * | 
 |  * Various parts of the networking layer expect at least 32 bytes of | 
 |  * headroom, you should not reduce this. | 
 |  * | 
 |  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) | 
 |  * to reduce average number of cache lines per packet. | 
 |  * get_rps_cpus() for example only access one 64 bytes aligned block : | 
 |  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) | 
 |  */ | 
 | #ifndef NET_SKB_PAD | 
 | #define NET_SKB_PAD	max(32, L1_CACHE_BYTES) | 
 | #endif | 
 |  | 
 | extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); | 
 |  | 
 | static inline void __skb_trim(struct sk_buff *skb, unsigned int len) | 
 | { | 
 | 	if (unlikely(skb->data_len)) { | 
 | 		WARN_ON(1); | 
 | 		return; | 
 | 	} | 
 | 	skb->len = len; | 
 | 	skb_set_tail_pointer(skb, len); | 
 | } | 
 |  | 
 | extern void skb_trim(struct sk_buff *skb, unsigned int len); | 
 |  | 
 | static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) | 
 | { | 
 | 	if (skb->data_len) | 
 | 		return ___pskb_trim(skb, len); | 
 | 	__skb_trim(skb, len); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int pskb_trim(struct sk_buff *skb, unsigned int len) | 
 | { | 
 | 	return (len < skb->len) ? __pskb_trim(skb, len) : 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer | 
 |  *	@skb: buffer to alter | 
 |  *	@len: new length | 
 |  * | 
 |  *	This is identical to pskb_trim except that the caller knows that | 
 |  *	the skb is not cloned so we should never get an error due to out- | 
 |  *	of-memory. | 
 |  */ | 
 | static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) | 
 | { | 
 | 	int err = pskb_trim(skb, len); | 
 | 	BUG_ON(err); | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_orphan - orphan a buffer | 
 |  *	@skb: buffer to orphan | 
 |  * | 
 |  *	If a buffer currently has an owner then we call the owner's | 
 |  *	destructor function and make the @skb unowned. The buffer continues | 
 |  *	to exist but is no longer charged to its former owner. | 
 |  */ | 
 | static inline void skb_orphan(struct sk_buff *skb) | 
 | { | 
 | 	if (skb->destructor) | 
 | 		skb->destructor(skb); | 
 | 	skb->destructor = NULL; | 
 | 	skb->sk		= NULL; | 
 | } | 
 |  | 
 | /** | 
 |  *	__skb_queue_purge - empty a list | 
 |  *	@list: list to empty | 
 |  * | 
 |  *	Delete all buffers on an &sk_buff list. Each buffer is removed from | 
 |  *	the list and one reference dropped. This function does not take the | 
 |  *	list lock and the caller must hold the relevant locks to use it. | 
 |  */ | 
 | extern void skb_queue_purge(struct sk_buff_head *list); | 
 | static inline void __skb_queue_purge(struct sk_buff_head *list) | 
 | { | 
 | 	struct sk_buff *skb; | 
 | 	while ((skb = __skb_dequeue(list)) != NULL) | 
 | 		kfree_skb(skb); | 
 | } | 
 |  | 
 | /** | 
 |  *	__dev_alloc_skb - allocate an skbuff for receiving | 
 |  *	@length: length to allocate | 
 |  *	@gfp_mask: get_free_pages mask, passed to alloc_skb | 
 |  * | 
 |  *	Allocate a new &sk_buff and assign it a usage count of one. The | 
 |  *	buffer has unspecified headroom built in. Users should allocate | 
 |  *	the headroom they think they need without accounting for the | 
 |  *	built in space. The built in space is used for optimisations. | 
 |  * | 
 |  *	%NULL is returned if there is no free memory. | 
 |  */ | 
 | static inline struct sk_buff *__dev_alloc_skb(unsigned int length, | 
 | 					      gfp_t gfp_mask) | 
 | { | 
 | 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); | 
 | 	if (likely(skb)) | 
 | 		skb_reserve(skb, NET_SKB_PAD); | 
 | 	return skb; | 
 | } | 
 |  | 
 | extern struct sk_buff *dev_alloc_skb(unsigned int length); | 
 |  | 
 | extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, | 
 | 		unsigned int length, gfp_t gfp_mask); | 
 |  | 
 | /** | 
 |  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device | 
 |  *	@dev: network device to receive on | 
 |  *	@length: length to allocate | 
 |  * | 
 |  *	Allocate a new &sk_buff and assign it a usage count of one. The | 
 |  *	buffer has unspecified headroom built in. Users should allocate | 
 |  *	the headroom they think they need without accounting for the | 
 |  *	built in space. The built in space is used for optimisations. | 
 |  * | 
 |  *	%NULL is returned if there is no free memory. Although this function | 
 |  *	allocates memory it can be called from an interrupt. | 
 |  */ | 
 | static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, | 
 | 		unsigned int length) | 
 | { | 
 | 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC); | 
 | } | 
 |  | 
 | static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, | 
 | 		unsigned int length) | 
 | { | 
 | 	struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN); | 
 |  | 
 | 	if (NET_IP_ALIGN && skb) | 
 | 		skb_reserve(skb, NET_IP_ALIGN); | 
 | 	return skb; | 
 | } | 
 |  | 
 | /** | 
 |  *	__netdev_alloc_page - allocate a page for ps-rx on a specific device | 
 |  *	@dev: network device to receive on | 
 |  *	@gfp_mask: alloc_pages_node mask | 
 |  * | 
 |  * 	Allocate a new page. dev currently unused. | 
 |  * | 
 |  * 	%NULL is returned if there is no free memory. | 
 |  */ | 
 | static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask) | 
 | { | 
 | 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0); | 
 | } | 
 |  | 
 | /** | 
 |  *	netdev_alloc_page - allocate a page for ps-rx on a specific device | 
 |  *	@dev: network device to receive on | 
 |  * | 
 |  * 	Allocate a new page. dev currently unused. | 
 |  * | 
 |  * 	%NULL is returned if there is no free memory. | 
 |  */ | 
 | static inline struct page *netdev_alloc_page(struct net_device *dev) | 
 | { | 
 | 	return __netdev_alloc_page(dev, GFP_ATOMIC); | 
 | } | 
 |  | 
 | static inline void netdev_free_page(struct net_device *dev, struct page *page) | 
 | { | 
 | 	__free_page(page); | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_clone_writable - is the header of a clone writable | 
 |  *	@skb: buffer to check | 
 |  *	@len: length up to which to write | 
 |  * | 
 |  *	Returns true if modifying the header part of the cloned buffer | 
 |  *	does not requires the data to be copied. | 
 |  */ | 
 | static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) | 
 | { | 
 | 	return !skb_header_cloned(skb) && | 
 | 	       skb_headroom(skb) + len <= skb->hdr_len; | 
 | } | 
 |  | 
 | static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, | 
 | 			    int cloned) | 
 | { | 
 | 	int delta = 0; | 
 |  | 
 | 	if (headroom < NET_SKB_PAD) | 
 | 		headroom = NET_SKB_PAD; | 
 | 	if (headroom > skb_headroom(skb)) | 
 | 		delta = headroom - skb_headroom(skb); | 
 |  | 
 | 	if (delta || cloned) | 
 | 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, | 
 | 					GFP_ATOMIC); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_cow - copy header of skb when it is required | 
 |  *	@skb: buffer to cow | 
 |  *	@headroom: needed headroom | 
 |  * | 
 |  *	If the skb passed lacks sufficient headroom or its data part | 
 |  *	is shared, data is reallocated. If reallocation fails, an error | 
 |  *	is returned and original skb is not changed. | 
 |  * | 
 |  *	The result is skb with writable area skb->head...skb->tail | 
 |  *	and at least @headroom of space at head. | 
 |  */ | 
 | static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) | 
 | { | 
 | 	return __skb_cow(skb, headroom, skb_cloned(skb)); | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_cow_head - skb_cow but only making the head writable | 
 |  *	@skb: buffer to cow | 
 |  *	@headroom: needed headroom | 
 |  * | 
 |  *	This function is identical to skb_cow except that we replace the | 
 |  *	skb_cloned check by skb_header_cloned.  It should be used when | 
 |  *	you only need to push on some header and do not need to modify | 
 |  *	the data. | 
 |  */ | 
 | static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) | 
 | { | 
 | 	return __skb_cow(skb, headroom, skb_header_cloned(skb)); | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_padto	- pad an skbuff up to a minimal size | 
 |  *	@skb: buffer to pad | 
 |  *	@len: minimal length | 
 |  * | 
 |  *	Pads up a buffer to ensure the trailing bytes exist and are | 
 |  *	blanked. If the buffer already contains sufficient data it | 
 |  *	is untouched. Otherwise it is extended. Returns zero on | 
 |  *	success. The skb is freed on error. | 
 |  */ | 
 |   | 
 | static inline int skb_padto(struct sk_buff *skb, unsigned int len) | 
 | { | 
 | 	unsigned int size = skb->len; | 
 | 	if (likely(size >= len)) | 
 | 		return 0; | 
 | 	return skb_pad(skb, len - size); | 
 | } | 
 |  | 
 | static inline int skb_add_data(struct sk_buff *skb, | 
 | 			       char __user *from, int copy) | 
 | { | 
 | 	const int off = skb->len; | 
 |  | 
 | 	if (skb->ip_summed == CHECKSUM_NONE) { | 
 | 		int err = 0; | 
 | 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), | 
 | 							    copy, 0, &err); | 
 | 		if (!err) { | 
 | 			skb->csum = csum_block_add(skb->csum, csum, off); | 
 | 			return 0; | 
 | 		} | 
 | 	} else if (!copy_from_user(skb_put(skb, copy), from, copy)) | 
 | 		return 0; | 
 |  | 
 | 	__skb_trim(skb, off); | 
 | 	return -EFAULT; | 
 | } | 
 |  | 
 | static inline int skb_can_coalesce(struct sk_buff *skb, int i, | 
 | 				   struct page *page, int off) | 
 | { | 
 | 	if (i) { | 
 | 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; | 
 |  | 
 | 		return page == frag->page && | 
 | 		       off == frag->page_offset + frag->size; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int __skb_linearize(struct sk_buff *skb) | 
 | { | 
 | 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_linearize - convert paged skb to linear one | 
 |  *	@skb: buffer to linarize | 
 |  * | 
 |  *	If there is no free memory -ENOMEM is returned, otherwise zero | 
 |  *	is returned and the old skb data released. | 
 |  */ | 
 | static inline int skb_linearize(struct sk_buff *skb) | 
 | { | 
 | 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_linearize_cow - make sure skb is linear and writable | 
 |  *	@skb: buffer to process | 
 |  * | 
 |  *	If there is no free memory -ENOMEM is returned, otherwise zero | 
 |  *	is returned and the old skb data released. | 
 |  */ | 
 | static inline int skb_linearize_cow(struct sk_buff *skb) | 
 | { | 
 | 	return skb_is_nonlinear(skb) || skb_cloned(skb) ? | 
 | 	       __skb_linearize(skb) : 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_postpull_rcsum - update checksum for received skb after pull | 
 |  *	@skb: buffer to update | 
 |  *	@start: start of data before pull | 
 |  *	@len: length of data pulled | 
 |  * | 
 |  *	After doing a pull on a received packet, you need to call this to | 
 |  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to | 
 |  *	CHECKSUM_NONE so that it can be recomputed from scratch. | 
 |  */ | 
 |  | 
 | static inline void skb_postpull_rcsum(struct sk_buff *skb, | 
 | 				      const void *start, unsigned int len) | 
 | { | 
 | 	if (skb->ip_summed == CHECKSUM_COMPLETE) | 
 | 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); | 
 | } | 
 |  | 
 | unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); | 
 |  | 
 | /** | 
 |  *	pskb_trim_rcsum - trim received skb and update checksum | 
 |  *	@skb: buffer to trim | 
 |  *	@len: new length | 
 |  * | 
 |  *	This is exactly the same as pskb_trim except that it ensures the | 
 |  *	checksum of received packets are still valid after the operation. | 
 |  */ | 
 |  | 
 | static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) | 
 | { | 
 | 	if (likely(len >= skb->len)) | 
 | 		return 0; | 
 | 	if (skb->ip_summed == CHECKSUM_COMPLETE) | 
 | 		skb->ip_summed = CHECKSUM_NONE; | 
 | 	return __pskb_trim(skb, len); | 
 | } | 
 |  | 
 | #define skb_queue_walk(queue, skb) \ | 
 | 		for (skb = (queue)->next;					\ | 
 | 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\ | 
 | 		     skb = skb->next) | 
 |  | 
 | #define skb_queue_walk_safe(queue, skb, tmp)					\ | 
 | 		for (skb = (queue)->next, tmp = skb->next;			\ | 
 | 		     skb != (struct sk_buff *)(queue);				\ | 
 | 		     skb = tmp, tmp = skb->next) | 
 |  | 
 | #define skb_queue_walk_from(queue, skb)						\ | 
 | 		for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\ | 
 | 		     skb = skb->next) | 
 |  | 
 | #define skb_queue_walk_from_safe(queue, skb, tmp)				\ | 
 | 		for (tmp = skb->next;						\ | 
 | 		     skb != (struct sk_buff *)(queue);				\ | 
 | 		     skb = tmp, tmp = skb->next) | 
 |  | 
 | #define skb_queue_reverse_walk(queue, skb) \ | 
 | 		for (skb = (queue)->prev;					\ | 
 | 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\ | 
 | 		     skb = skb->prev) | 
 |  | 
 | #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\ | 
 | 		for (skb = (queue)->prev, tmp = skb->prev;			\ | 
 | 		     skb != (struct sk_buff *)(queue);				\ | 
 | 		     skb = tmp, tmp = skb->prev) | 
 |  | 
 | #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\ | 
 | 		for (tmp = skb->prev;						\ | 
 | 		     skb != (struct sk_buff *)(queue);				\ | 
 | 		     skb = tmp, tmp = skb->prev) | 
 |  | 
 | static inline bool skb_has_frag_list(const struct sk_buff *skb) | 
 | { | 
 | 	return skb_shinfo(skb)->frag_list != NULL; | 
 | } | 
 |  | 
 | static inline void skb_frag_list_init(struct sk_buff *skb) | 
 | { | 
 | 	skb_shinfo(skb)->frag_list = NULL; | 
 | } | 
 |  | 
 | static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) | 
 | { | 
 | 	frag->next = skb_shinfo(skb)->frag_list; | 
 | 	skb_shinfo(skb)->frag_list = frag; | 
 | } | 
 |  | 
 | #define skb_walk_frags(skb, iter)	\ | 
 | 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) | 
 |  | 
 | extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, | 
 | 					   int *peeked, int *err); | 
 | extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, | 
 | 					 int noblock, int *err); | 
 | extern unsigned int    datagram_poll(struct file *file, struct socket *sock, | 
 | 				     struct poll_table_struct *wait); | 
 | extern int	       skb_copy_datagram_iovec(const struct sk_buff *from, | 
 | 					       int offset, struct iovec *to, | 
 | 					       int size); | 
 | extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, | 
 | 							int hlen, | 
 | 							struct iovec *iov); | 
 | extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb, | 
 | 						    int offset, | 
 | 						    const struct iovec *from, | 
 | 						    int from_offset, | 
 | 						    int len); | 
 | extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from, | 
 | 						     int offset, | 
 | 						     const struct iovec *to, | 
 | 						     int to_offset, | 
 | 						     int size); | 
 | extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb); | 
 | extern void	       skb_free_datagram_locked(struct sock *sk, | 
 | 						struct sk_buff *skb); | 
 | extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb, | 
 | 					 unsigned int flags); | 
 | extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset, | 
 | 				    int len, __wsum csum); | 
 | extern int	       skb_copy_bits(const struct sk_buff *skb, int offset, | 
 | 				     void *to, int len); | 
 | extern int	       skb_store_bits(struct sk_buff *skb, int offset, | 
 | 				      const void *from, int len); | 
 | extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb, | 
 | 					      int offset, u8 *to, int len, | 
 | 					      __wsum csum); | 
 | extern int             skb_splice_bits(struct sk_buff *skb, | 
 | 						unsigned int offset, | 
 | 						struct pipe_inode_info *pipe, | 
 | 						unsigned int len, | 
 | 						unsigned int flags); | 
 | extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); | 
 | extern void	       skb_split(struct sk_buff *skb, | 
 | 				 struct sk_buff *skb1, const u32 len); | 
 | extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb, | 
 | 				 int shiftlen); | 
 |  | 
 | extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features); | 
 |  | 
 | static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, | 
 | 				       int len, void *buffer) | 
 | { | 
 | 	int hlen = skb_headlen(skb); | 
 |  | 
 | 	if (hlen - offset >= len) | 
 | 		return skb->data + offset; | 
 |  | 
 | 	if (skb_copy_bits(skb, offset, buffer, len) < 0) | 
 | 		return NULL; | 
 |  | 
 | 	return buffer; | 
 | } | 
 |  | 
 | static inline void skb_copy_from_linear_data(const struct sk_buff *skb, | 
 | 					     void *to, | 
 | 					     const unsigned int len) | 
 | { | 
 | 	memcpy(to, skb->data, len); | 
 | } | 
 |  | 
 | static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, | 
 | 						    const int offset, void *to, | 
 | 						    const unsigned int len) | 
 | { | 
 | 	memcpy(to, skb->data + offset, len); | 
 | } | 
 |  | 
 | static inline void skb_copy_to_linear_data(struct sk_buff *skb, | 
 | 					   const void *from, | 
 | 					   const unsigned int len) | 
 | { | 
 | 	memcpy(skb->data, from, len); | 
 | } | 
 |  | 
 | static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, | 
 | 						  const int offset, | 
 | 						  const void *from, | 
 | 						  const unsigned int len) | 
 | { | 
 | 	memcpy(skb->data + offset, from, len); | 
 | } | 
 |  | 
 | extern void skb_init(void); | 
 |  | 
 | static inline ktime_t skb_get_ktime(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->tstamp; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_get_timestamp - get timestamp from a skb | 
 |  *	@skb: skb to get stamp from | 
 |  *	@stamp: pointer to struct timeval to store stamp in | 
 |  * | 
 |  *	Timestamps are stored in the skb as offsets to a base timestamp. | 
 |  *	This function converts the offset back to a struct timeval and stores | 
 |  *	it in stamp. | 
 |  */ | 
 | static inline void skb_get_timestamp(const struct sk_buff *skb, | 
 | 				     struct timeval *stamp) | 
 | { | 
 | 	*stamp = ktime_to_timeval(skb->tstamp); | 
 | } | 
 |  | 
 | static inline void skb_get_timestampns(const struct sk_buff *skb, | 
 | 				       struct timespec *stamp) | 
 | { | 
 | 	*stamp = ktime_to_timespec(skb->tstamp); | 
 | } | 
 |  | 
 | static inline void __net_timestamp(struct sk_buff *skb) | 
 | { | 
 | 	skb->tstamp = ktime_get_real(); | 
 | } | 
 |  | 
 | static inline ktime_t net_timedelta(ktime_t t) | 
 | { | 
 | 	return ktime_sub(ktime_get_real(), t); | 
 | } | 
 |  | 
 | static inline ktime_t net_invalid_timestamp(void) | 
 | { | 
 | 	return ktime_set(0, 0); | 
 | } | 
 |  | 
 | extern void skb_timestamping_init(void); | 
 |  | 
 | #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING | 
 |  | 
 | extern void skb_clone_tx_timestamp(struct sk_buff *skb); | 
 | extern bool skb_defer_rx_timestamp(struct sk_buff *skb); | 
 |  | 
 | #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ | 
 |  | 
 | static inline void skb_clone_tx_timestamp(struct sk_buff *skb) | 
 | { | 
 | } | 
 |  | 
 | static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ | 
 |  | 
 | /** | 
 |  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps | 
 |  * | 
 |  * @skb: clone of the the original outgoing packet | 
 |  * @hwtstamps: hardware time stamps | 
 |  * | 
 |  */ | 
 | void skb_complete_tx_timestamp(struct sk_buff *skb, | 
 | 			       struct skb_shared_hwtstamps *hwtstamps); | 
 |  | 
 | /** | 
 |  * skb_tstamp_tx - queue clone of skb with send time stamps | 
 |  * @orig_skb:	the original outgoing packet | 
 |  * @hwtstamps:	hardware time stamps, may be NULL if not available | 
 |  * | 
 |  * If the skb has a socket associated, then this function clones the | 
 |  * skb (thus sharing the actual data and optional structures), stores | 
 |  * the optional hardware time stamping information (if non NULL) or | 
 |  * generates a software time stamp (otherwise), then queues the clone | 
 |  * to the error queue of the socket.  Errors are silently ignored. | 
 |  */ | 
 | extern void skb_tstamp_tx(struct sk_buff *orig_skb, | 
 | 			struct skb_shared_hwtstamps *hwtstamps); | 
 |  | 
 | static inline void sw_tx_timestamp(struct sk_buff *skb) | 
 | { | 
 | 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && | 
 | 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) | 
 | 		skb_tstamp_tx(skb, NULL); | 
 | } | 
 |  | 
 | /** | 
 |  * skb_tx_timestamp() - Driver hook for transmit timestamping | 
 |  * | 
 |  * Ethernet MAC Drivers should call this function in their hard_xmit() | 
 |  * function as soon as possible after giving the sk_buff to the MAC | 
 |  * hardware, but before freeing the sk_buff. | 
 |  * | 
 |  * @skb: A socket buffer. | 
 |  */ | 
 | static inline void skb_tx_timestamp(struct sk_buff *skb) | 
 | { | 
 | 	skb_clone_tx_timestamp(skb); | 
 | 	sw_tx_timestamp(skb); | 
 | } | 
 |  | 
 | extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); | 
 | extern __sum16 __skb_checksum_complete(struct sk_buff *skb); | 
 |  | 
 | static inline int skb_csum_unnecessary(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->ip_summed & CHECKSUM_UNNECESSARY; | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_checksum_complete - Calculate checksum of an entire packet | 
 |  *	@skb: packet to process | 
 |  * | 
 |  *	This function calculates the checksum over the entire packet plus | 
 |  *	the value of skb->csum.  The latter can be used to supply the | 
 |  *	checksum of a pseudo header as used by TCP/UDP.  It returns the | 
 |  *	checksum. | 
 |  * | 
 |  *	For protocols that contain complete checksums such as ICMP/TCP/UDP, | 
 |  *	this function can be used to verify that checksum on received | 
 |  *	packets.  In that case the function should return zero if the | 
 |  *	checksum is correct.  In particular, this function will return zero | 
 |  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the | 
 |  *	hardware has already verified the correctness of the checksum. | 
 |  */ | 
 | static inline __sum16 skb_checksum_complete(struct sk_buff *skb) | 
 | { | 
 | 	return skb_csum_unnecessary(skb) ? | 
 | 	       0 : __skb_checksum_complete(skb); | 
 | } | 
 |  | 
 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) | 
 | extern void nf_conntrack_destroy(struct nf_conntrack *nfct); | 
 | static inline void nf_conntrack_put(struct nf_conntrack *nfct) | 
 | { | 
 | 	if (nfct && atomic_dec_and_test(&nfct->use)) | 
 | 		nf_conntrack_destroy(nfct); | 
 | } | 
 | static inline void nf_conntrack_get(struct nf_conntrack *nfct) | 
 | { | 
 | 	if (nfct) | 
 | 		atomic_inc(&nfct->use); | 
 | } | 
 | #endif | 
 | #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED | 
 | static inline void nf_conntrack_get_reasm(struct sk_buff *skb) | 
 | { | 
 | 	if (skb) | 
 | 		atomic_inc(&skb->users); | 
 | } | 
 | static inline void nf_conntrack_put_reasm(struct sk_buff *skb) | 
 | { | 
 | 	if (skb) | 
 | 		kfree_skb(skb); | 
 | } | 
 | #endif | 
 | #ifdef CONFIG_BRIDGE_NETFILTER | 
 | static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) | 
 | { | 
 | 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) | 
 | 		kfree(nf_bridge); | 
 | } | 
 | static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) | 
 | { | 
 | 	if (nf_bridge) | 
 | 		atomic_inc(&nf_bridge->use); | 
 | } | 
 | #endif /* CONFIG_BRIDGE_NETFILTER */ | 
 | static inline void nf_reset(struct sk_buff *skb) | 
 | { | 
 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) | 
 | 	nf_conntrack_put(skb->nfct); | 
 | 	skb->nfct = NULL; | 
 | #endif | 
 | #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED | 
 | 	nf_conntrack_put_reasm(skb->nfct_reasm); | 
 | 	skb->nfct_reasm = NULL; | 
 | #endif | 
 | #ifdef CONFIG_BRIDGE_NETFILTER | 
 | 	nf_bridge_put(skb->nf_bridge); | 
 | 	skb->nf_bridge = NULL; | 
 | #endif | 
 | } | 
 |  | 
 | /* Note: This doesn't put any conntrack and bridge info in dst. */ | 
 | static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) | 
 | { | 
 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) | 
 | 	dst->nfct = src->nfct; | 
 | 	nf_conntrack_get(src->nfct); | 
 | 	dst->nfctinfo = src->nfctinfo; | 
 | #endif | 
 | #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED | 
 | 	dst->nfct_reasm = src->nfct_reasm; | 
 | 	nf_conntrack_get_reasm(src->nfct_reasm); | 
 | #endif | 
 | #ifdef CONFIG_BRIDGE_NETFILTER | 
 | 	dst->nf_bridge  = src->nf_bridge; | 
 | 	nf_bridge_get(src->nf_bridge); | 
 | #endif | 
 | } | 
 |  | 
 | static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) | 
 | { | 
 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) | 
 | 	nf_conntrack_put(dst->nfct); | 
 | #endif | 
 | #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED | 
 | 	nf_conntrack_put_reasm(dst->nfct_reasm); | 
 | #endif | 
 | #ifdef CONFIG_BRIDGE_NETFILTER | 
 | 	nf_bridge_put(dst->nf_bridge); | 
 | #endif | 
 | 	__nf_copy(dst, src); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NETWORK_SECMARK | 
 | static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) | 
 | { | 
 | 	to->secmark = from->secmark; | 
 | } | 
 |  | 
 | static inline void skb_init_secmark(struct sk_buff *skb) | 
 | { | 
 | 	skb->secmark = 0; | 
 | } | 
 | #else | 
 | static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) | 
 | { } | 
 |  | 
 | static inline void skb_init_secmark(struct sk_buff *skb) | 
 | { } | 
 | #endif | 
 |  | 
 | static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) | 
 | { | 
 | 	skb->queue_mapping = queue_mapping; | 
 | } | 
 |  | 
 | static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->queue_mapping; | 
 | } | 
 |  | 
 | static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) | 
 | { | 
 | 	to->queue_mapping = from->queue_mapping; | 
 | } | 
 |  | 
 | static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) | 
 | { | 
 | 	skb->queue_mapping = rx_queue + 1; | 
 | } | 
 |  | 
 | static inline u16 skb_get_rx_queue(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->queue_mapping - 1; | 
 | } | 
 |  | 
 | static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->queue_mapping != 0; | 
 | } | 
 |  | 
 | extern u16 __skb_tx_hash(const struct net_device *dev, | 
 | 			 const struct sk_buff *skb, | 
 | 			 unsigned int num_tx_queues); | 
 |  | 
 | #ifdef CONFIG_XFRM | 
 | static inline struct sec_path *skb_sec_path(struct sk_buff *skb) | 
 | { | 
 | 	return skb->sp; | 
 | } | 
 | #else | 
 | static inline struct sec_path *skb_sec_path(struct sk_buff *skb) | 
 | { | 
 | 	return NULL; | 
 | } | 
 | #endif | 
 |  | 
 | static inline int skb_is_gso(const struct sk_buff *skb) | 
 | { | 
 | 	return skb_shinfo(skb)->gso_size; | 
 | } | 
 |  | 
 | static inline int skb_is_gso_v6(const struct sk_buff *skb) | 
 | { | 
 | 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; | 
 | } | 
 |  | 
 | extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); | 
 |  | 
 | static inline bool skb_warn_if_lro(const struct sk_buff *skb) | 
 | { | 
 | 	/* LRO sets gso_size but not gso_type, whereas if GSO is really | 
 | 	 * wanted then gso_type will be set. */ | 
 | 	struct skb_shared_info *shinfo = skb_shinfo(skb); | 
 | 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && | 
 | 	    unlikely(shinfo->gso_type == 0)) { | 
 | 		__skb_warn_lro_forwarding(skb); | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static inline void skb_forward_csum(struct sk_buff *skb) | 
 | { | 
 | 	/* Unfortunately we don't support this one.  Any brave souls? */ | 
 | 	if (skb->ip_summed == CHECKSUM_COMPLETE) | 
 | 		skb->ip_summed = CHECKSUM_NONE; | 
 | } | 
 |  | 
 | /** | 
 |  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE | 
 |  * @skb: skb to check | 
 |  * | 
 |  * fresh skbs have their ip_summed set to CHECKSUM_NONE. | 
 |  * Instead of forcing ip_summed to CHECKSUM_NONE, we can | 
 |  * use this helper, to document places where we make this assertion. | 
 |  */ | 
 | static inline void skb_checksum_none_assert(struct sk_buff *skb) | 
 | { | 
 | #ifdef DEBUG | 
 | 	BUG_ON(skb->ip_summed != CHECKSUM_NONE); | 
 | #endif | 
 | } | 
 |  | 
 | bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); | 
 | #endif	/* __KERNEL__ */ | 
 | #endif	/* _LINUX_SKBUFF_H */ |