| /* |
| * SuperH FLCTL nand controller |
| * |
| * Copyright (c) 2008 Renesas Solutions Corp. |
| * Copyright (c) 2008 Atom Create Engineering Co., Ltd. |
| * |
| * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 of the License. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/completion.h> |
| #include <linux/delay.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/sh_dma.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/mtd/sh_flctl.h> |
| |
| static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| if (section) |
| return -ERANGE; |
| |
| oobregion->offset = 0; |
| oobregion->length = chip->ecc.bytes; |
| |
| return 0; |
| } |
| |
| static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| if (section) |
| return -ERANGE; |
| |
| oobregion->offset = 12; |
| oobregion->length = 4; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = { |
| .ecc = flctl_4secc_ooblayout_sp_ecc, |
| .free = flctl_4secc_ooblayout_sp_free, |
| }; |
| |
| static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| if (section >= chip->ecc.steps) |
| return -ERANGE; |
| |
| oobregion->offset = (section * 16) + 6; |
| oobregion->length = chip->ecc.bytes; |
| |
| return 0; |
| } |
| |
| static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| if (section >= chip->ecc.steps) |
| return -ERANGE; |
| |
| oobregion->offset = section * 16; |
| oobregion->length = 6; |
| |
| if (!section) { |
| oobregion->offset += 2; |
| oobregion->length -= 2; |
| } |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = { |
| .ecc = flctl_4secc_ooblayout_lp_ecc, |
| .free = flctl_4secc_ooblayout_lp_free, |
| }; |
| |
| static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; |
| |
| static struct nand_bbt_descr flctl_4secc_smallpage = { |
| .options = NAND_BBT_SCAN2NDPAGE, |
| .offs = 11, |
| .len = 1, |
| .pattern = scan_ff_pattern, |
| }; |
| |
| static struct nand_bbt_descr flctl_4secc_largepage = { |
| .options = NAND_BBT_SCAN2NDPAGE, |
| .offs = 0, |
| .len = 2, |
| .pattern = scan_ff_pattern, |
| }; |
| |
| static void empty_fifo(struct sh_flctl *flctl) |
| { |
| writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl)); |
| writel(flctl->flintdmacr_base, FLINTDMACR(flctl)); |
| } |
| |
| static void start_translation(struct sh_flctl *flctl) |
| { |
| writeb(TRSTRT, FLTRCR(flctl)); |
| } |
| |
| static void timeout_error(struct sh_flctl *flctl, const char *str) |
| { |
| dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str); |
| } |
| |
| static void wait_completion(struct sh_flctl *flctl) |
| { |
| uint32_t timeout = LOOP_TIMEOUT_MAX; |
| |
| while (timeout--) { |
| if (readb(FLTRCR(flctl)) & TREND) { |
| writeb(0x0, FLTRCR(flctl)); |
| return; |
| } |
| udelay(1); |
| } |
| |
| timeout_error(flctl, __func__); |
| writeb(0x0, FLTRCR(flctl)); |
| } |
| |
| static void flctl_dma_complete(void *param) |
| { |
| struct sh_flctl *flctl = param; |
| |
| complete(&flctl->dma_complete); |
| } |
| |
| static void flctl_release_dma(struct sh_flctl *flctl) |
| { |
| if (flctl->chan_fifo0_rx) { |
| dma_release_channel(flctl->chan_fifo0_rx); |
| flctl->chan_fifo0_rx = NULL; |
| } |
| if (flctl->chan_fifo0_tx) { |
| dma_release_channel(flctl->chan_fifo0_tx); |
| flctl->chan_fifo0_tx = NULL; |
| } |
| } |
| |
| static void flctl_setup_dma(struct sh_flctl *flctl) |
| { |
| dma_cap_mask_t mask; |
| struct dma_slave_config cfg; |
| struct platform_device *pdev = flctl->pdev; |
| struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev); |
| int ret; |
| |
| if (!pdata) |
| return; |
| |
| if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0) |
| return; |
| |
| /* We can only either use DMA for both Tx and Rx or not use it at all */ |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| |
| flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter, |
| (void *)(uintptr_t)pdata->slave_id_fifo0_tx); |
| dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__, |
| flctl->chan_fifo0_tx); |
| |
| if (!flctl->chan_fifo0_tx) |
| return; |
| |
| memset(&cfg, 0, sizeof(cfg)); |
| cfg.direction = DMA_MEM_TO_DEV; |
| cfg.dst_addr = flctl->fifo; |
| cfg.src_addr = 0; |
| ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg); |
| if (ret < 0) |
| goto err; |
| |
| flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter, |
| (void *)(uintptr_t)pdata->slave_id_fifo0_rx); |
| dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__, |
| flctl->chan_fifo0_rx); |
| |
| if (!flctl->chan_fifo0_rx) |
| goto err; |
| |
| cfg.direction = DMA_DEV_TO_MEM; |
| cfg.dst_addr = 0; |
| cfg.src_addr = flctl->fifo; |
| ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg); |
| if (ret < 0) |
| goto err; |
| |
| init_completion(&flctl->dma_complete); |
| |
| return; |
| |
| err: |
| flctl_release_dma(flctl); |
| } |
| |
| static void set_addr(struct mtd_info *mtd, int column, int page_addr) |
| { |
| struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| uint32_t addr = 0; |
| |
| if (column == -1) { |
| addr = page_addr; /* ERASE1 */ |
| } else if (page_addr != -1) { |
| /* SEQIN, READ0, etc.. */ |
| if (flctl->chip.options & NAND_BUSWIDTH_16) |
| column >>= 1; |
| if (flctl->page_size) { |
| addr = column & 0x0FFF; |
| addr |= (page_addr & 0xff) << 16; |
| addr |= ((page_addr >> 8) & 0xff) << 24; |
| /* big than 128MB */ |
| if (flctl->rw_ADRCNT == ADRCNT2_E) { |
| uint32_t addr2; |
| addr2 = (page_addr >> 16) & 0xff; |
| writel(addr2, FLADR2(flctl)); |
| } |
| } else { |
| addr = column; |
| addr |= (page_addr & 0xff) << 8; |
| addr |= ((page_addr >> 8) & 0xff) << 16; |
| addr |= ((page_addr >> 16) & 0xff) << 24; |
| } |
| } |
| writel(addr, FLADR(flctl)); |
| } |
| |
| static void wait_rfifo_ready(struct sh_flctl *flctl) |
| { |
| uint32_t timeout = LOOP_TIMEOUT_MAX; |
| |
| while (timeout--) { |
| uint32_t val; |
| /* check FIFO */ |
| val = readl(FLDTCNTR(flctl)) >> 16; |
| if (val & 0xFF) |
| return; |
| udelay(1); |
| } |
| timeout_error(flctl, __func__); |
| } |
| |
| static void wait_wfifo_ready(struct sh_flctl *flctl) |
| { |
| uint32_t len, timeout = LOOP_TIMEOUT_MAX; |
| |
| while (timeout--) { |
| /* check FIFO */ |
| len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF; |
| if (len >= 4) |
| return; |
| udelay(1); |
| } |
| timeout_error(flctl, __func__); |
| } |
| |
| static enum flctl_ecc_res_t wait_recfifo_ready |
| (struct sh_flctl *flctl, int sector_number) |
| { |
| uint32_t timeout = LOOP_TIMEOUT_MAX; |
| void __iomem *ecc_reg[4]; |
| int i; |
| int state = FL_SUCCESS; |
| uint32_t data, size; |
| |
| /* |
| * First this loops checks in FLDTCNTR if we are ready to read out the |
| * oob data. This is the case if either all went fine without errors or |
| * if the bottom part of the loop corrected the errors or marked them as |
| * uncorrectable and the controller is given time to push the data into |
| * the FIFO. |
| */ |
| while (timeout--) { |
| /* check if all is ok and we can read out the OOB */ |
| size = readl(FLDTCNTR(flctl)) >> 24; |
| if ((size & 0xFF) == 4) |
| return state; |
| |
| /* check if a correction code has been calculated */ |
| if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) { |
| /* |
| * either we wait for the fifo to be filled or a |
| * correction pattern is being generated |
| */ |
| udelay(1); |
| continue; |
| } |
| |
| /* check for an uncorrectable error */ |
| if (readl(FL4ECCCR(flctl)) & _4ECCFA) { |
| /* check if we face a non-empty page */ |
| for (i = 0; i < 512; i++) { |
| if (flctl->done_buff[i] != 0xff) { |
| state = FL_ERROR; /* can't correct */ |
| break; |
| } |
| } |
| |
| if (state == FL_SUCCESS) |
| dev_dbg(&flctl->pdev->dev, |
| "reading empty sector %d, ecc error ignored\n", |
| sector_number); |
| |
| writel(0, FL4ECCCR(flctl)); |
| continue; |
| } |
| |
| /* start error correction */ |
| ecc_reg[0] = FL4ECCRESULT0(flctl); |
| ecc_reg[1] = FL4ECCRESULT1(flctl); |
| ecc_reg[2] = FL4ECCRESULT2(flctl); |
| ecc_reg[3] = FL4ECCRESULT3(flctl); |
| |
| for (i = 0; i < 3; i++) { |
| uint8_t org; |
| unsigned int index; |
| |
| data = readl(ecc_reg[i]); |
| |
| if (flctl->page_size) |
| index = (512 * sector_number) + |
| (data >> 16); |
| else |
| index = data >> 16; |
| |
| org = flctl->done_buff[index]; |
| flctl->done_buff[index] = org ^ (data & 0xFF); |
| } |
| state = FL_REPAIRABLE; |
| writel(0, FL4ECCCR(flctl)); |
| } |
| |
| timeout_error(flctl, __func__); |
| return FL_TIMEOUT; /* timeout */ |
| } |
| |
| static void wait_wecfifo_ready(struct sh_flctl *flctl) |
| { |
| uint32_t timeout = LOOP_TIMEOUT_MAX; |
| uint32_t len; |
| |
| while (timeout--) { |
| /* check FLECFIFO */ |
| len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF; |
| if (len >= 4) |
| return; |
| udelay(1); |
| } |
| timeout_error(flctl, __func__); |
| } |
| |
| static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf, |
| int len, enum dma_data_direction dir) |
| { |
| struct dma_async_tx_descriptor *desc = NULL; |
| struct dma_chan *chan; |
| enum dma_transfer_direction tr_dir; |
| dma_addr_t dma_addr; |
| dma_cookie_t cookie; |
| uint32_t reg; |
| int ret; |
| |
| if (dir == DMA_FROM_DEVICE) { |
| chan = flctl->chan_fifo0_rx; |
| tr_dir = DMA_DEV_TO_MEM; |
| } else { |
| chan = flctl->chan_fifo0_tx; |
| tr_dir = DMA_MEM_TO_DEV; |
| } |
| |
| dma_addr = dma_map_single(chan->device->dev, buf, len, dir); |
| |
| if (!dma_mapping_error(chan->device->dev, dma_addr)) |
| desc = dmaengine_prep_slave_single(chan, dma_addr, len, |
| tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| |
| if (desc) { |
| reg = readl(FLINTDMACR(flctl)); |
| reg |= DREQ0EN; |
| writel(reg, FLINTDMACR(flctl)); |
| |
| desc->callback = flctl_dma_complete; |
| desc->callback_param = flctl; |
| cookie = dmaengine_submit(desc); |
| if (dma_submit_error(cookie)) { |
| ret = dma_submit_error(cookie); |
| dev_warn(&flctl->pdev->dev, |
| "DMA submit failed, falling back to PIO\n"); |
| goto out; |
| } |
| |
| dma_async_issue_pending(chan); |
| } else { |
| /* DMA failed, fall back to PIO */ |
| flctl_release_dma(flctl); |
| dev_warn(&flctl->pdev->dev, |
| "DMA failed, falling back to PIO\n"); |
| ret = -EIO; |
| goto out; |
| } |
| |
| ret = |
| wait_for_completion_timeout(&flctl->dma_complete, |
| msecs_to_jiffies(3000)); |
| |
| if (ret <= 0) { |
| dmaengine_terminate_all(chan); |
| dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n"); |
| } |
| |
| out: |
| reg = readl(FLINTDMACR(flctl)); |
| reg &= ~DREQ0EN; |
| writel(reg, FLINTDMACR(flctl)); |
| |
| dma_unmap_single(chan->device->dev, dma_addr, len, dir); |
| |
| /* ret > 0 is success */ |
| return ret; |
| } |
| |
| static void read_datareg(struct sh_flctl *flctl, int offset) |
| { |
| unsigned long data; |
| unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; |
| |
| wait_completion(flctl); |
| |
| data = readl(FLDATAR(flctl)); |
| *buf = le32_to_cpu(data); |
| } |
| |
| static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset) |
| { |
| int i, len_4align; |
| unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; |
| |
| len_4align = (rlen + 3) / 4; |
| |
| /* initiate DMA transfer */ |
| if (flctl->chan_fifo0_rx && rlen >= 32 && |
| flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_FROM_DEVICE) > 0) |
| goto convert; /* DMA success */ |
| |
| /* do polling transfer */ |
| for (i = 0; i < len_4align; i++) { |
| wait_rfifo_ready(flctl); |
| buf[i] = readl(FLDTFIFO(flctl)); |
| } |
| |
| convert: |
| for (i = 0; i < len_4align; i++) |
| buf[i] = be32_to_cpu(buf[i]); |
| } |
| |
| static enum flctl_ecc_res_t read_ecfiforeg |
| (struct sh_flctl *flctl, uint8_t *buff, int sector) |
| { |
| int i; |
| enum flctl_ecc_res_t res; |
| unsigned long *ecc_buf = (unsigned long *)buff; |
| |
| res = wait_recfifo_ready(flctl , sector); |
| |
| if (res != FL_ERROR) { |
| for (i = 0; i < 4; i++) { |
| ecc_buf[i] = readl(FLECFIFO(flctl)); |
| ecc_buf[i] = be32_to_cpu(ecc_buf[i]); |
| } |
| } |
| |
| return res; |
| } |
| |
| static void write_fiforeg(struct sh_flctl *flctl, int rlen, |
| unsigned int offset) |
| { |
| int i, len_4align; |
| unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; |
| |
| len_4align = (rlen + 3) / 4; |
| for (i = 0; i < len_4align; i++) { |
| wait_wfifo_ready(flctl); |
| writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl)); |
| } |
| } |
| |
| static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen, |
| unsigned int offset) |
| { |
| int i, len_4align; |
| unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; |
| |
| len_4align = (rlen + 3) / 4; |
| |
| for (i = 0; i < len_4align; i++) |
| buf[i] = cpu_to_be32(buf[i]); |
| |
| /* initiate DMA transfer */ |
| if (flctl->chan_fifo0_tx && rlen >= 32 && |
| flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_TO_DEVICE) > 0) |
| return; /* DMA success */ |
| |
| /* do polling transfer */ |
| for (i = 0; i < len_4align; i++) { |
| wait_wecfifo_ready(flctl); |
| writel(buf[i], FLECFIFO(flctl)); |
| } |
| } |
| |
| static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val) |
| { |
| struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT; |
| uint32_t flcmdcr_val, addr_len_bytes = 0; |
| |
| /* Set SNAND bit if page size is 2048byte */ |
| if (flctl->page_size) |
| flcmncr_val |= SNAND_E; |
| else |
| flcmncr_val &= ~SNAND_E; |
| |
| /* default FLCMDCR val */ |
| flcmdcr_val = DOCMD1_E | DOADR_E; |
| |
| /* Set for FLCMDCR */ |
| switch (cmd) { |
| case NAND_CMD_ERASE1: |
| addr_len_bytes = flctl->erase_ADRCNT; |
| flcmdcr_val |= DOCMD2_E; |
| break; |
| case NAND_CMD_READ0: |
| case NAND_CMD_READOOB: |
| case NAND_CMD_RNDOUT: |
| addr_len_bytes = flctl->rw_ADRCNT; |
| flcmdcr_val |= CDSRC_E; |
| if (flctl->chip.options & NAND_BUSWIDTH_16) |
| flcmncr_val |= SEL_16BIT; |
| break; |
| case NAND_CMD_SEQIN: |
| /* This case is that cmd is READ0 or READ1 or READ00 */ |
| flcmdcr_val &= ~DOADR_E; /* ONLY execute 1st cmd */ |
| break; |
| case NAND_CMD_PAGEPROG: |
| addr_len_bytes = flctl->rw_ADRCNT; |
| flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW; |
| if (flctl->chip.options & NAND_BUSWIDTH_16) |
| flcmncr_val |= SEL_16BIT; |
| break; |
| case NAND_CMD_READID: |
| flcmncr_val &= ~SNAND_E; |
| flcmdcr_val |= CDSRC_E; |
| addr_len_bytes = ADRCNT_1; |
| break; |
| case NAND_CMD_STATUS: |
| case NAND_CMD_RESET: |
| flcmncr_val &= ~SNAND_E; |
| flcmdcr_val &= ~(DOADR_E | DOSR_E); |
| break; |
| default: |
| break; |
| } |
| |
| /* Set address bytes parameter */ |
| flcmdcr_val |= addr_len_bytes; |
| |
| /* Now actually write */ |
| writel(flcmncr_val, FLCMNCR(flctl)); |
| writel(flcmdcr_val, FLCMDCR(flctl)); |
| writel(flcmcdr_val, FLCMCDR(flctl)); |
| } |
| |
| static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int oob_required, int page) |
| { |
| nand_read_page_op(chip, page, 0, buf, mtd->writesize); |
| if (oob_required) |
| chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| return 0; |
| } |
| |
| static int flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, |
| const uint8_t *buf, int oob_required, |
| int page) |
| { |
| nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); |
| chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| return nand_prog_page_end_op(chip); |
| } |
| |
| static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr) |
| { |
| struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| int sector, page_sectors; |
| enum flctl_ecc_res_t ecc_result; |
| |
| page_sectors = flctl->page_size ? 4 : 1; |
| |
| set_cmd_regs(mtd, NAND_CMD_READ0, |
| (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); |
| |
| writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT, |
| FLCMNCR(flctl)); |
| writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl)); |
| writel(page_addr << 2, FLADR(flctl)); |
| |
| empty_fifo(flctl); |
| start_translation(flctl); |
| |
| for (sector = 0; sector < page_sectors; sector++) { |
| read_fiforeg(flctl, 512, 512 * sector); |
| |
| ecc_result = read_ecfiforeg(flctl, |
| &flctl->done_buff[mtd->writesize + 16 * sector], |
| sector); |
| |
| switch (ecc_result) { |
| case FL_REPAIRABLE: |
| dev_info(&flctl->pdev->dev, |
| "applied ecc on page 0x%x", page_addr); |
| mtd->ecc_stats.corrected++; |
| break; |
| case FL_ERROR: |
| dev_warn(&flctl->pdev->dev, |
| "page 0x%x contains corrupted data\n", |
| page_addr); |
| mtd->ecc_stats.failed++; |
| break; |
| default: |
| ; |
| } |
| } |
| |
| wait_completion(flctl); |
| |
| writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT), |
| FLCMNCR(flctl)); |
| } |
| |
| static void execmd_read_oob(struct mtd_info *mtd, int page_addr) |
| { |
| struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| int page_sectors = flctl->page_size ? 4 : 1; |
| int i; |
| |
| set_cmd_regs(mtd, NAND_CMD_READ0, |
| (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); |
| |
| empty_fifo(flctl); |
| |
| for (i = 0; i < page_sectors; i++) { |
| set_addr(mtd, (512 + 16) * i + 512 , page_addr); |
| writel(16, FLDTCNTR(flctl)); |
| |
| start_translation(flctl); |
| read_fiforeg(flctl, 16, 16 * i); |
| wait_completion(flctl); |
| } |
| } |
| |
| static void execmd_write_page_sector(struct mtd_info *mtd) |
| { |
| struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| int page_addr = flctl->seqin_page_addr; |
| int sector, page_sectors; |
| |
| page_sectors = flctl->page_size ? 4 : 1; |
| |
| set_cmd_regs(mtd, NAND_CMD_PAGEPROG, |
| (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); |
| |
| empty_fifo(flctl); |
| writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl)); |
| writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl)); |
| writel(page_addr << 2, FLADR(flctl)); |
| start_translation(flctl); |
| |
| for (sector = 0; sector < page_sectors; sector++) { |
| write_fiforeg(flctl, 512, 512 * sector); |
| write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector); |
| } |
| |
| wait_completion(flctl); |
| writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl)); |
| } |
| |
| static void execmd_write_oob(struct mtd_info *mtd) |
| { |
| struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| int page_addr = flctl->seqin_page_addr; |
| int sector, page_sectors; |
| |
| page_sectors = flctl->page_size ? 4 : 1; |
| |
| set_cmd_regs(mtd, NAND_CMD_PAGEPROG, |
| (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); |
| |
| for (sector = 0; sector < page_sectors; sector++) { |
| empty_fifo(flctl); |
| set_addr(mtd, sector * 528 + 512, page_addr); |
| writel(16, FLDTCNTR(flctl)); /* set read size */ |
| |
| start_translation(flctl); |
| write_fiforeg(flctl, 16, 16 * sector); |
| wait_completion(flctl); |
| } |
| } |
| |
| static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command, |
| int column, int page_addr) |
| { |
| struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| uint32_t read_cmd = 0; |
| |
| pm_runtime_get_sync(&flctl->pdev->dev); |
| |
| flctl->read_bytes = 0; |
| if (command != NAND_CMD_PAGEPROG) |
| flctl->index = 0; |
| |
| switch (command) { |
| case NAND_CMD_READ1: |
| case NAND_CMD_READ0: |
| if (flctl->hwecc) { |
| /* read page with hwecc */ |
| execmd_read_page_sector(mtd, page_addr); |
| break; |
| } |
| if (flctl->page_size) |
| set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8) |
| | command); |
| else |
| set_cmd_regs(mtd, command, command); |
| |
| set_addr(mtd, 0, page_addr); |
| |
| flctl->read_bytes = mtd->writesize + mtd->oobsize; |
| if (flctl->chip.options & NAND_BUSWIDTH_16) |
| column >>= 1; |
| flctl->index += column; |
| goto read_normal_exit; |
| |
| case NAND_CMD_READOOB: |
| if (flctl->hwecc) { |
| /* read page with hwecc */ |
| execmd_read_oob(mtd, page_addr); |
| break; |
| } |
| |
| if (flctl->page_size) { |
| set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8) |
| | NAND_CMD_READ0); |
| set_addr(mtd, mtd->writesize, page_addr); |
| } else { |
| set_cmd_regs(mtd, command, command); |
| set_addr(mtd, 0, page_addr); |
| } |
| flctl->read_bytes = mtd->oobsize; |
| goto read_normal_exit; |
| |
| case NAND_CMD_RNDOUT: |
| if (flctl->hwecc) |
| break; |
| |
| if (flctl->page_size) |
| set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8) |
| | command); |
| else |
| set_cmd_regs(mtd, command, command); |
| |
| set_addr(mtd, column, 0); |
| |
| flctl->read_bytes = mtd->writesize + mtd->oobsize - column; |
| goto read_normal_exit; |
| |
| case NAND_CMD_READID: |
| set_cmd_regs(mtd, command, command); |
| |
| /* READID is always performed using an 8-bit bus */ |
| if (flctl->chip.options & NAND_BUSWIDTH_16) |
| column <<= 1; |
| set_addr(mtd, column, 0); |
| |
| flctl->read_bytes = 8; |
| writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ |
| empty_fifo(flctl); |
| start_translation(flctl); |
| read_fiforeg(flctl, flctl->read_bytes, 0); |
| wait_completion(flctl); |
| break; |
| |
| case NAND_CMD_ERASE1: |
| flctl->erase1_page_addr = page_addr; |
| break; |
| |
| case NAND_CMD_ERASE2: |
| set_cmd_regs(mtd, NAND_CMD_ERASE1, |
| (command << 8) | NAND_CMD_ERASE1); |
| set_addr(mtd, -1, flctl->erase1_page_addr); |
| start_translation(flctl); |
| wait_completion(flctl); |
| break; |
| |
| case NAND_CMD_SEQIN: |
| if (!flctl->page_size) { |
| /* output read command */ |
| if (column >= mtd->writesize) { |
| column -= mtd->writesize; |
| read_cmd = NAND_CMD_READOOB; |
| } else if (column < 256) { |
| read_cmd = NAND_CMD_READ0; |
| } else { |
| column -= 256; |
| read_cmd = NAND_CMD_READ1; |
| } |
| } |
| flctl->seqin_column = column; |
| flctl->seqin_page_addr = page_addr; |
| flctl->seqin_read_cmd = read_cmd; |
| break; |
| |
| case NAND_CMD_PAGEPROG: |
| empty_fifo(flctl); |
| if (!flctl->page_size) { |
| set_cmd_regs(mtd, NAND_CMD_SEQIN, |
| flctl->seqin_read_cmd); |
| set_addr(mtd, -1, -1); |
| writel(0, FLDTCNTR(flctl)); /* set 0 size */ |
| start_translation(flctl); |
| wait_completion(flctl); |
| } |
| if (flctl->hwecc) { |
| /* write page with hwecc */ |
| if (flctl->seqin_column == mtd->writesize) |
| execmd_write_oob(mtd); |
| else if (!flctl->seqin_column) |
| execmd_write_page_sector(mtd); |
| else |
| pr_err("Invalid address !?\n"); |
| break; |
| } |
| set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN); |
| set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr); |
| writel(flctl->index, FLDTCNTR(flctl)); /* set write size */ |
| start_translation(flctl); |
| write_fiforeg(flctl, flctl->index, 0); |
| wait_completion(flctl); |
| break; |
| |
| case NAND_CMD_STATUS: |
| set_cmd_regs(mtd, command, command); |
| set_addr(mtd, -1, -1); |
| |
| flctl->read_bytes = 1; |
| writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ |
| start_translation(flctl); |
| read_datareg(flctl, 0); /* read and end */ |
| break; |
| |
| case NAND_CMD_RESET: |
| set_cmd_regs(mtd, command, command); |
| set_addr(mtd, -1, -1); |
| |
| writel(0, FLDTCNTR(flctl)); /* set 0 size */ |
| start_translation(flctl); |
| wait_completion(flctl); |
| break; |
| |
| default: |
| break; |
| } |
| goto runtime_exit; |
| |
| read_normal_exit: |
| writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ |
| empty_fifo(flctl); |
| start_translation(flctl); |
| read_fiforeg(flctl, flctl->read_bytes, 0); |
| wait_completion(flctl); |
| runtime_exit: |
| pm_runtime_put_sync(&flctl->pdev->dev); |
| return; |
| } |
| |
| static void flctl_select_chip(struct mtd_info *mtd, int chipnr) |
| { |
| struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| int ret; |
| |
| switch (chipnr) { |
| case -1: |
| flctl->flcmncr_base &= ~CE0_ENABLE; |
| |
| pm_runtime_get_sync(&flctl->pdev->dev); |
| writel(flctl->flcmncr_base, FLCMNCR(flctl)); |
| |
| if (flctl->qos_request) { |
| dev_pm_qos_remove_request(&flctl->pm_qos); |
| flctl->qos_request = 0; |
| } |
| |
| pm_runtime_put_sync(&flctl->pdev->dev); |
| break; |
| case 0: |
| flctl->flcmncr_base |= CE0_ENABLE; |
| |
| if (!flctl->qos_request) { |
| ret = dev_pm_qos_add_request(&flctl->pdev->dev, |
| &flctl->pm_qos, |
| DEV_PM_QOS_RESUME_LATENCY, |
| 100); |
| if (ret < 0) |
| dev_err(&flctl->pdev->dev, |
| "PM QoS request failed: %d\n", ret); |
| flctl->qos_request = 1; |
| } |
| |
| if (flctl->holden) { |
| pm_runtime_get_sync(&flctl->pdev->dev); |
| writel(HOLDEN, FLHOLDCR(flctl)); |
| pm_runtime_put_sync(&flctl->pdev->dev); |
| } |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) |
| { |
| struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| |
| memcpy(&flctl->done_buff[flctl->index], buf, len); |
| flctl->index += len; |
| } |
| |
| static uint8_t flctl_read_byte(struct mtd_info *mtd) |
| { |
| struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| uint8_t data; |
| |
| data = flctl->done_buff[flctl->index]; |
| flctl->index++; |
| return data; |
| } |
| |
| static uint16_t flctl_read_word(struct mtd_info *mtd) |
| { |
| struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| uint16_t *buf = (uint16_t *)&flctl->done_buff[flctl->index]; |
| |
| flctl->index += 2; |
| return *buf; |
| } |
| |
| static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| |
| memcpy(buf, &flctl->done_buff[flctl->index], len); |
| flctl->index += len; |
| } |
| |
| static int flctl_chip_attach_chip(struct nand_chip *chip) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| |
| /* |
| * NAND_BUSWIDTH_16 may have been set by nand_scan_ident(). |
| * Add the SEL_16BIT flag in flctl->flcmncr_base. |
| */ |
| if (chip->options & NAND_BUSWIDTH_16) |
| flctl->flcmncr_base |= SEL_16BIT; |
| |
| if (mtd->writesize == 512) { |
| flctl->page_size = 0; |
| if (chip->chipsize > (32 << 20)) { |
| /* big than 32MB */ |
| flctl->rw_ADRCNT = ADRCNT_4; |
| flctl->erase_ADRCNT = ADRCNT_3; |
| } else if (chip->chipsize > (2 << 16)) { |
| /* big than 128KB */ |
| flctl->rw_ADRCNT = ADRCNT_3; |
| flctl->erase_ADRCNT = ADRCNT_2; |
| } else { |
| flctl->rw_ADRCNT = ADRCNT_2; |
| flctl->erase_ADRCNT = ADRCNT_1; |
| } |
| } else { |
| flctl->page_size = 1; |
| if (chip->chipsize > (128 << 20)) { |
| /* big than 128MB */ |
| flctl->rw_ADRCNT = ADRCNT2_E; |
| flctl->erase_ADRCNT = ADRCNT_3; |
| } else if (chip->chipsize > (8 << 16)) { |
| /* big than 512KB */ |
| flctl->rw_ADRCNT = ADRCNT_4; |
| flctl->erase_ADRCNT = ADRCNT_2; |
| } else { |
| flctl->rw_ADRCNT = ADRCNT_3; |
| flctl->erase_ADRCNT = ADRCNT_1; |
| } |
| } |
| |
| if (flctl->hwecc) { |
| if (mtd->writesize == 512) { |
| mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops); |
| chip->badblock_pattern = &flctl_4secc_smallpage; |
| } else { |
| mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops); |
| chip->badblock_pattern = &flctl_4secc_largepage; |
| } |
| |
| chip->ecc.size = 512; |
| chip->ecc.bytes = 10; |
| chip->ecc.strength = 4; |
| chip->ecc.read_page = flctl_read_page_hwecc; |
| chip->ecc.write_page = flctl_write_page_hwecc; |
| chip->ecc.mode = NAND_ECC_HW; |
| |
| /* 4 symbols ECC enabled */ |
| flctl->flcmncr_base |= _4ECCEN; |
| } else { |
| chip->ecc.mode = NAND_ECC_SOFT; |
| chip->ecc.algo = NAND_ECC_HAMMING; |
| } |
| |
| return 0; |
| } |
| |
| static const struct nand_controller_ops flctl_nand_controller_ops = { |
| .attach_chip = flctl_chip_attach_chip, |
| }; |
| |
| static irqreturn_t flctl_handle_flste(int irq, void *dev_id) |
| { |
| struct sh_flctl *flctl = dev_id; |
| |
| dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl))); |
| writel(flctl->flintdmacr_base, FLINTDMACR(flctl)); |
| |
| return IRQ_HANDLED; |
| } |
| |
| struct flctl_soc_config { |
| unsigned long flcmncr_val; |
| unsigned has_hwecc:1; |
| unsigned use_holden:1; |
| }; |
| |
| static struct flctl_soc_config flctl_sh7372_config = { |
| .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL, |
| .has_hwecc = 1, |
| .use_holden = 1, |
| }; |
| |
| static const struct of_device_id of_flctl_match[] = { |
| { .compatible = "renesas,shmobile-flctl-sh7372", |
| .data = &flctl_sh7372_config }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, of_flctl_match); |
| |
| static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev) |
| { |
| const struct flctl_soc_config *config; |
| struct sh_flctl_platform_data *pdata; |
| |
| config = of_device_get_match_data(dev); |
| if (!config) { |
| dev_err(dev, "%s: no OF configuration attached\n", __func__); |
| return NULL; |
| } |
| |
| pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data), |
| GFP_KERNEL); |
| if (!pdata) |
| return NULL; |
| |
| /* set SoC specific options */ |
| pdata->flcmncr_val = config->flcmncr_val; |
| pdata->has_hwecc = config->has_hwecc; |
| pdata->use_holden = config->use_holden; |
| |
| return pdata; |
| } |
| |
| static int flctl_probe(struct platform_device *pdev) |
| { |
| struct resource *res; |
| struct sh_flctl *flctl; |
| struct mtd_info *flctl_mtd; |
| struct nand_chip *nand; |
| struct sh_flctl_platform_data *pdata; |
| int ret; |
| int irq; |
| |
| flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL); |
| if (!flctl) |
| return -ENOMEM; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| flctl->reg = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(flctl->reg)) |
| return PTR_ERR(flctl->reg); |
| flctl->fifo = res->start + 0x24; /* FLDTFIFO */ |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) { |
| dev_err(&pdev->dev, "failed to get flste irq data: %d\n", irq); |
| return irq; |
| } |
| |
| ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED, |
| "flste", flctl); |
| if (ret) { |
| dev_err(&pdev->dev, "request interrupt failed.\n"); |
| return ret; |
| } |
| |
| if (pdev->dev.of_node) |
| pdata = flctl_parse_dt(&pdev->dev); |
| else |
| pdata = dev_get_platdata(&pdev->dev); |
| |
| if (!pdata) { |
| dev_err(&pdev->dev, "no setup data defined\n"); |
| return -EINVAL; |
| } |
| |
| platform_set_drvdata(pdev, flctl); |
| nand = &flctl->chip; |
| flctl_mtd = nand_to_mtd(nand); |
| nand_set_flash_node(nand, pdev->dev.of_node); |
| flctl_mtd->dev.parent = &pdev->dev; |
| flctl->pdev = pdev; |
| flctl->hwecc = pdata->has_hwecc; |
| flctl->holden = pdata->use_holden; |
| flctl->flcmncr_base = pdata->flcmncr_val; |
| flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE; |
| |
| /* Set address of hardware control function */ |
| /* 20 us command delay time */ |
| nand->chip_delay = 20; |
| |
| nand->read_byte = flctl_read_byte; |
| nand->read_word = flctl_read_word; |
| nand->write_buf = flctl_write_buf; |
| nand->read_buf = flctl_read_buf; |
| nand->select_chip = flctl_select_chip; |
| nand->cmdfunc = flctl_cmdfunc; |
| nand->set_features = nand_get_set_features_notsupp; |
| nand->get_features = nand_get_set_features_notsupp; |
| |
| if (pdata->flcmncr_val & SEL_16BIT) |
| nand->options |= NAND_BUSWIDTH_16; |
| |
| pm_runtime_enable(&pdev->dev); |
| pm_runtime_resume(&pdev->dev); |
| |
| flctl_setup_dma(flctl); |
| |
| nand->dummy_controller.ops = &flctl_nand_controller_ops; |
| ret = nand_scan(flctl_mtd, 1); |
| if (ret) |
| goto err_chip; |
| |
| ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts); |
| if (ret) |
| goto cleanup_nand; |
| |
| return 0; |
| |
| cleanup_nand: |
| nand_cleanup(nand); |
| err_chip: |
| flctl_release_dma(flctl); |
| pm_runtime_disable(&pdev->dev); |
| return ret; |
| } |
| |
| static int flctl_remove(struct platform_device *pdev) |
| { |
| struct sh_flctl *flctl = platform_get_drvdata(pdev); |
| |
| flctl_release_dma(flctl); |
| nand_release(nand_to_mtd(&flctl->chip)); |
| pm_runtime_disable(&pdev->dev); |
| |
| return 0; |
| } |
| |
| static struct platform_driver flctl_driver = { |
| .remove = flctl_remove, |
| .driver = { |
| .name = "sh_flctl", |
| .of_match_table = of_match_ptr(of_flctl_match), |
| }, |
| }; |
| |
| module_platform_driver_probe(flctl_driver, flctl_probe); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Yoshihiro Shimoda"); |
| MODULE_DESCRIPTION("SuperH FLCTL driver"); |
| MODULE_ALIAS("platform:sh_flctl"); |