blob: caccedc836dcffe1ee082c43c9b3be910975b6e4 [file] [log] [blame]
/*
* PHY support for Xenon SDHC
*
* Copyright (C) 2016 Marvell, All Rights Reserved.
*
* Author: Hu Ziji <huziji@marvell.com>
* Date: 2016-8-24
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*/
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/ktime.h>
#include <linux/of_address.h>
#include "sdhci-pltfm.h"
#include "sdhci-xenon.h"
/* Register base for eMMC PHY 5.0 Version */
#define XENON_EMMC_5_0_PHY_REG_BASE 0x0160
/* Register base for eMMC PHY 5.1 Version */
#define XENON_EMMC_PHY_REG_BASE 0x0170
#define XENON_EMMC_PHY_TIMING_ADJUST XENON_EMMC_PHY_REG_BASE
#define XENON_EMMC_5_0_PHY_TIMING_ADJUST XENON_EMMC_5_0_PHY_REG_BASE
#define XENON_TIMING_ADJUST_SLOW_MODE BIT(29)
#define XENON_TIMING_ADJUST_SDIO_MODE BIT(28)
#define XENON_SAMPL_INV_QSP_PHASE_SELECT BIT(18)
#define XENON_SAMPL_INV_QSP_PHASE_SELECT_SHIFT 18
#define XENON_PHY_INITIALIZAION BIT(31)
#define XENON_WAIT_CYCLE_BEFORE_USING_MASK 0xF
#define XENON_WAIT_CYCLE_BEFORE_USING_SHIFT 12
#define XENON_FC_SYNC_EN_DURATION_MASK 0xF
#define XENON_FC_SYNC_EN_DURATION_SHIFT 8
#define XENON_FC_SYNC_RST_EN_DURATION_MASK 0xF
#define XENON_FC_SYNC_RST_EN_DURATION_SHIFT 4
#define XENON_FC_SYNC_RST_DURATION_MASK 0xF
#define XENON_FC_SYNC_RST_DURATION_SHIFT 0
#define XENON_EMMC_PHY_FUNC_CONTROL (XENON_EMMC_PHY_REG_BASE + 0x4)
#define XENON_EMMC_5_0_PHY_FUNC_CONTROL \
(XENON_EMMC_5_0_PHY_REG_BASE + 0x4)
#define XENON_ASYNC_DDRMODE_MASK BIT(23)
#define XENON_ASYNC_DDRMODE_SHIFT 23
#define XENON_CMD_DDR_MODE BIT(16)
#define XENON_DQ_DDR_MODE_SHIFT 8
#define XENON_DQ_DDR_MODE_MASK 0xFF
#define XENON_DQ_ASYNC_MODE BIT(4)
#define XENON_EMMC_PHY_PAD_CONTROL (XENON_EMMC_PHY_REG_BASE + 0x8)
#define XENON_EMMC_5_0_PHY_PAD_CONTROL \
(XENON_EMMC_5_0_PHY_REG_BASE + 0x8)
#define XENON_REC_EN_SHIFT 24
#define XENON_REC_EN_MASK 0xF
#define XENON_FC_DQ_RECEN BIT(24)
#define XENON_FC_CMD_RECEN BIT(25)
#define XENON_FC_QSP_RECEN BIT(26)
#define XENON_FC_QSN_RECEN BIT(27)
#define XENON_OEN_QSN BIT(28)
#define XENON_AUTO_RECEN_CTRL BIT(30)
#define XENON_FC_ALL_CMOS_RECEIVER 0xF000
#define XENON_EMMC5_FC_QSP_PD BIT(18)
#define XENON_EMMC5_FC_QSP_PU BIT(22)
#define XENON_EMMC5_FC_CMD_PD BIT(17)
#define XENON_EMMC5_FC_CMD_PU BIT(21)
#define XENON_EMMC5_FC_DQ_PD BIT(16)
#define XENON_EMMC5_FC_DQ_PU BIT(20)
#define XENON_EMMC_PHY_PAD_CONTROL1 (XENON_EMMC_PHY_REG_BASE + 0xC)
#define XENON_EMMC5_1_FC_QSP_PD BIT(9)
#define XENON_EMMC5_1_FC_QSP_PU BIT(25)
#define XENON_EMMC5_1_FC_CMD_PD BIT(8)
#define XENON_EMMC5_1_FC_CMD_PU BIT(24)
#define XENON_EMMC5_1_FC_DQ_PD 0xFF
#define XENON_EMMC5_1_FC_DQ_PU (0xFF << 16)
#define XENON_EMMC_PHY_PAD_CONTROL2 (XENON_EMMC_PHY_REG_BASE + 0x10)
#define XENON_EMMC_5_0_PHY_PAD_CONTROL2 \
(XENON_EMMC_5_0_PHY_REG_BASE + 0xC)
#define XENON_ZNR_MASK 0x1F
#define XENON_ZNR_SHIFT 8
#define XENON_ZPR_MASK 0x1F
/* Preferred ZNR and ZPR value vary between different boards.
* The specific ZNR and ZPR value should be defined here
* according to board actual timing.
*/
#define XENON_ZNR_DEF_VALUE 0xF
#define XENON_ZPR_DEF_VALUE 0xF
#define XENON_EMMC_PHY_DLL_CONTROL (XENON_EMMC_PHY_REG_BASE + 0x14)
#define XENON_EMMC_5_0_PHY_DLL_CONTROL \
(XENON_EMMC_5_0_PHY_REG_BASE + 0x10)
#define XENON_DLL_ENABLE BIT(31)
#define XENON_DLL_UPDATE_STROBE_5_0 BIT(30)
#define XENON_DLL_REFCLK_SEL BIT(30)
#define XENON_DLL_UPDATE BIT(23)
#define XENON_DLL_PHSEL1_SHIFT 24
#define XENON_DLL_PHSEL0_SHIFT 16
#define XENON_DLL_PHASE_MASK 0x3F
#define XENON_DLL_PHASE_90_DEGREE 0x1F
#define XENON_DLL_FAST_LOCK BIT(5)
#define XENON_DLL_GAIN2X BIT(3)
#define XENON_DLL_BYPASS_EN BIT(0)
#define XENON_EMMC_5_0_PHY_LOGIC_TIMING_ADJUST \
(XENON_EMMC_5_0_PHY_REG_BASE + 0x14)
#define XENON_EMMC_5_0_PHY_LOGIC_TIMING_VALUE 0x5A54
#define XENON_EMMC_PHY_LOGIC_TIMING_ADJUST (XENON_EMMC_PHY_REG_BASE + 0x18)
#define XENON_LOGIC_TIMING_VALUE 0x00AA8977
/*
* List offset of PHY registers and some special register values
* in eMMC PHY 5.0 or eMMC PHY 5.1
*/
struct xenon_emmc_phy_regs {
/* Offset of Timing Adjust register */
u16 timing_adj;
/* Offset of Func Control register */
u16 func_ctrl;
/* Offset of Pad Control register */
u16 pad_ctrl;
/* Offset of Pad Control register 2 */
u16 pad_ctrl2;
/* Offset of DLL Control register */
u16 dll_ctrl;
/* Offset of Logic Timing Adjust register */
u16 logic_timing_adj;
/* DLL Update Enable bit */
u32 dll_update;
/* value in Logic Timing Adjustment register */
u32 logic_timing_val;
};
static const char * const phy_types[] = {
"emmc 5.0 phy",
"emmc 5.1 phy"
};
enum xenon_phy_type_enum {
EMMC_5_0_PHY,
EMMC_5_1_PHY,
NR_PHY_TYPES
};
enum soc_pad_ctrl_type {
SOC_PAD_SD,
SOC_PAD_FIXED_1_8V,
};
struct soc_pad_ctrl {
/* Register address of SoC PHY PAD ctrl */
void __iomem *reg;
/* SoC PHY PAD ctrl type */
enum soc_pad_ctrl_type pad_type;
/* SoC specific operation to set SoC PHY PAD */
void (*set_soc_pad)(struct sdhci_host *host,
unsigned char signal_voltage);
};
static struct xenon_emmc_phy_regs xenon_emmc_5_0_phy_regs = {
.timing_adj = XENON_EMMC_5_0_PHY_TIMING_ADJUST,
.func_ctrl = XENON_EMMC_5_0_PHY_FUNC_CONTROL,
.pad_ctrl = XENON_EMMC_5_0_PHY_PAD_CONTROL,
.pad_ctrl2 = XENON_EMMC_5_0_PHY_PAD_CONTROL2,
.dll_ctrl = XENON_EMMC_5_0_PHY_DLL_CONTROL,
.logic_timing_adj = XENON_EMMC_5_0_PHY_LOGIC_TIMING_ADJUST,
.dll_update = XENON_DLL_UPDATE_STROBE_5_0,
.logic_timing_val = XENON_EMMC_5_0_PHY_LOGIC_TIMING_VALUE,
};
static struct xenon_emmc_phy_regs xenon_emmc_5_1_phy_regs = {
.timing_adj = XENON_EMMC_PHY_TIMING_ADJUST,
.func_ctrl = XENON_EMMC_PHY_FUNC_CONTROL,
.pad_ctrl = XENON_EMMC_PHY_PAD_CONTROL,
.pad_ctrl2 = XENON_EMMC_PHY_PAD_CONTROL2,
.dll_ctrl = XENON_EMMC_PHY_DLL_CONTROL,
.logic_timing_adj = XENON_EMMC_PHY_LOGIC_TIMING_ADJUST,
.dll_update = XENON_DLL_UPDATE,
.logic_timing_val = XENON_LOGIC_TIMING_VALUE,
};
/*
* eMMC PHY configuration and operations
*/
struct xenon_emmc_phy_params {
bool slow_mode;
u8 znr;
u8 zpr;
/* Nr of consecutive Sampling Points of a Valid Sampling Window */
u8 nr_tun_times;
/* Divider for calculating Tuning Step */
u8 tun_step_divider;
struct soc_pad_ctrl pad_ctrl;
};
static int xenon_alloc_emmc_phy(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_params *params;
params = devm_kzalloc(mmc_dev(host->mmc), sizeof(*params), GFP_KERNEL);
if (!params)
return -ENOMEM;
priv->phy_params = params;
if (priv->phy_type == EMMC_5_0_PHY)
priv->emmc_phy_regs = &xenon_emmc_5_0_phy_regs;
else
priv->emmc_phy_regs = &xenon_emmc_5_1_phy_regs;
return 0;
}
/*
* eMMC 5.0/5.1 PHY init/re-init.
* eMMC PHY init should be executed after:
* 1. SDCLK frequency changes.
* 2. SDCLK is stopped and re-enabled.
* 3. config in emmc_phy_regs->timing_adj and emmc_phy_regs->func_ctrl
* are changed
*/
static int xenon_emmc_phy_init(struct sdhci_host *host)
{
u32 reg;
u32 wait, clock;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_regs *phy_regs = priv->emmc_phy_regs;
reg = sdhci_readl(host, phy_regs->timing_adj);
reg |= XENON_PHY_INITIALIZAION;
sdhci_writel(host, reg, phy_regs->timing_adj);
/* Add duration of FC_SYNC_RST */
wait = ((reg >> XENON_FC_SYNC_RST_DURATION_SHIFT) &
XENON_FC_SYNC_RST_DURATION_MASK);
/* Add interval between FC_SYNC_EN and FC_SYNC_RST */
wait += ((reg >> XENON_FC_SYNC_RST_EN_DURATION_SHIFT) &
XENON_FC_SYNC_RST_EN_DURATION_MASK);
/* Add duration of asserting FC_SYNC_EN */
wait += ((reg >> XENON_FC_SYNC_EN_DURATION_SHIFT) &
XENON_FC_SYNC_EN_DURATION_MASK);
/* Add duration of waiting for PHY */
wait += ((reg >> XENON_WAIT_CYCLE_BEFORE_USING_SHIFT) &
XENON_WAIT_CYCLE_BEFORE_USING_MASK);
/* 4 additional bus clock and 4 AXI bus clock are required */
wait += 8;
wait <<= 20;
clock = host->clock;
if (!clock)
/* Use the possibly slowest bus frequency value */
clock = XENON_LOWEST_SDCLK_FREQ;
/* get the wait time */
wait /= clock;
wait++;
/* wait for host eMMC PHY init completes */
udelay(wait);
reg = sdhci_readl(host, phy_regs->timing_adj);
reg &= XENON_PHY_INITIALIZAION;
if (reg) {
dev_err(mmc_dev(host->mmc), "eMMC PHY init cannot complete after %d us\n",
wait);
return -ETIMEDOUT;
}
return 0;
}
#define ARMADA_3700_SOC_PAD_1_8V 0x1
#define ARMADA_3700_SOC_PAD_3_3V 0x0
static void armada_3700_soc_pad_voltage_set(struct sdhci_host *host,
unsigned char signal_voltage)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_params *params = priv->phy_params;
if (params->pad_ctrl.pad_type == SOC_PAD_FIXED_1_8V) {
writel(ARMADA_3700_SOC_PAD_1_8V, params->pad_ctrl.reg);
} else if (params->pad_ctrl.pad_type == SOC_PAD_SD) {
if (signal_voltage == MMC_SIGNAL_VOLTAGE_180)
writel(ARMADA_3700_SOC_PAD_1_8V, params->pad_ctrl.reg);
else if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
writel(ARMADA_3700_SOC_PAD_3_3V, params->pad_ctrl.reg);
}
}
/*
* Set SoC PHY voltage PAD control register,
* according to the operation voltage on PAD.
* The detailed operation depends on SoC implementation.
*/
static void xenon_emmc_phy_set_soc_pad(struct sdhci_host *host,
unsigned char signal_voltage)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_params *params = priv->phy_params;
if (!params->pad_ctrl.reg)
return;
if (params->pad_ctrl.set_soc_pad)
params->pad_ctrl.set_soc_pad(host, signal_voltage);
}
/*
* Enable eMMC PHY HW DLL
* DLL should be enabled and stable before HS200/SDR104 tuning,
* and before HS400 data strobe setting.
*/
static int xenon_emmc_phy_enable_dll(struct sdhci_host *host)
{
u32 reg;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_regs *phy_regs = priv->emmc_phy_regs;
ktime_t timeout;
if (WARN_ON(host->clock <= MMC_HIGH_52_MAX_DTR))
return -EINVAL;
reg = sdhci_readl(host, phy_regs->dll_ctrl);
if (reg & XENON_DLL_ENABLE)
return 0;
/* Enable DLL */
reg = sdhci_readl(host, phy_regs->dll_ctrl);
reg |= (XENON_DLL_ENABLE | XENON_DLL_FAST_LOCK);
/*
* Set Phase as 90 degree, which is most common value.
* Might set another value if necessary.
* The granularity is 1 degree.
*/
reg &= ~((XENON_DLL_PHASE_MASK << XENON_DLL_PHSEL0_SHIFT) |
(XENON_DLL_PHASE_MASK << XENON_DLL_PHSEL1_SHIFT));
reg |= ((XENON_DLL_PHASE_90_DEGREE << XENON_DLL_PHSEL0_SHIFT) |
(XENON_DLL_PHASE_90_DEGREE << XENON_DLL_PHSEL1_SHIFT));
reg &= ~XENON_DLL_BYPASS_EN;
reg |= phy_regs->dll_update;
if (priv->phy_type == EMMC_5_1_PHY)
reg &= ~XENON_DLL_REFCLK_SEL;
sdhci_writel(host, reg, phy_regs->dll_ctrl);
/* Wait max 32 ms */
timeout = ktime_add_ms(ktime_get(), 32);
while (1) {
bool timedout = ktime_after(ktime_get(), timeout);
if (sdhci_readw(host, XENON_SLOT_EXT_PRESENT_STATE) &
XENON_DLL_LOCK_STATE)
break;
if (timedout) {
dev_err(mmc_dev(host->mmc), "Wait for DLL Lock time-out\n");
return -ETIMEDOUT;
}
udelay(100);
}
return 0;
}
/*
* Config to eMMC PHY to prepare for tuning.
* Enable HW DLL and set the TUNING_STEP
*/
static int xenon_emmc_phy_config_tuning(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_params *params = priv->phy_params;
u32 reg, tuning_step;
int ret;
if (host->clock <= MMC_HIGH_52_MAX_DTR)
return -EINVAL;
ret = xenon_emmc_phy_enable_dll(host);
if (ret)
return ret;
/* Achieve TUNING_STEP with HW DLL help */
reg = sdhci_readl(host, XENON_SLOT_DLL_CUR_DLY_VAL);
tuning_step = reg / params->tun_step_divider;
if (unlikely(tuning_step > XENON_TUNING_STEP_MASK)) {
dev_warn(mmc_dev(host->mmc),
"HS200 TUNING_STEP %d is larger than MAX value\n",
tuning_step);
tuning_step = XENON_TUNING_STEP_MASK;
}
/* Set TUNING_STEP for later tuning */
reg = sdhci_readl(host, XENON_SLOT_OP_STATUS_CTRL);
reg &= ~(XENON_TUN_CONSECUTIVE_TIMES_MASK <<
XENON_TUN_CONSECUTIVE_TIMES_SHIFT);
reg |= (params->nr_tun_times << XENON_TUN_CONSECUTIVE_TIMES_SHIFT);
reg &= ~(XENON_TUNING_STEP_MASK << XENON_TUNING_STEP_SHIFT);
reg |= (tuning_step << XENON_TUNING_STEP_SHIFT);
sdhci_writel(host, reg, XENON_SLOT_OP_STATUS_CTRL);
return 0;
}
static void xenon_emmc_phy_disable_strobe(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
u32 reg;
/* Disable both SDHC Data Strobe and Enhanced Strobe */
reg = sdhci_readl(host, XENON_SLOT_EMMC_CTRL);
reg &= ~(XENON_ENABLE_DATA_STROBE | XENON_ENABLE_RESP_STROBE);
sdhci_writel(host, reg, XENON_SLOT_EMMC_CTRL);
/* Clear Strobe line Pull down or Pull up */
if (priv->phy_type == EMMC_5_0_PHY) {
reg = sdhci_readl(host, XENON_EMMC_5_0_PHY_PAD_CONTROL);
reg &= ~(XENON_EMMC5_FC_QSP_PD | XENON_EMMC5_FC_QSP_PU);
sdhci_writel(host, reg, XENON_EMMC_5_0_PHY_PAD_CONTROL);
} else {
reg = sdhci_readl(host, XENON_EMMC_PHY_PAD_CONTROL1);
reg &= ~(XENON_EMMC5_1_FC_QSP_PD | XENON_EMMC5_1_FC_QSP_PU);
sdhci_writel(host, reg, XENON_EMMC_PHY_PAD_CONTROL1);
}
}
/* Set HS400 Data Strobe and Enhanced Strobe */
static void xenon_emmc_phy_strobe_delay_adj(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
u32 reg;
if (WARN_ON(host->timing != MMC_TIMING_MMC_HS400))
return;
if (host->clock <= MMC_HIGH_52_MAX_DTR)
return;
dev_dbg(mmc_dev(host->mmc), "starts HS400 strobe delay adjustment\n");
xenon_emmc_phy_enable_dll(host);
/* Enable SDHC Data Strobe */
reg = sdhci_readl(host, XENON_SLOT_EMMC_CTRL);
reg |= XENON_ENABLE_DATA_STROBE;
/*
* Enable SDHC Enhanced Strobe if supported
* Xenon Enhanced Strobe should be enabled only when
* 1. card is in HS400 mode and
* 2. SDCLK is higher than 52MHz
* 3. DLL is enabled
*/
if (host->mmc->ios.enhanced_strobe)
reg |= XENON_ENABLE_RESP_STROBE;
sdhci_writel(host, reg, XENON_SLOT_EMMC_CTRL);
/* Set Data Strobe Pull down */
if (priv->phy_type == EMMC_5_0_PHY) {
reg = sdhci_readl(host, XENON_EMMC_5_0_PHY_PAD_CONTROL);
reg |= XENON_EMMC5_FC_QSP_PD;
reg &= ~XENON_EMMC5_FC_QSP_PU;
sdhci_writel(host, reg, XENON_EMMC_5_0_PHY_PAD_CONTROL);
} else {
reg = sdhci_readl(host, XENON_EMMC_PHY_PAD_CONTROL1);
reg |= XENON_EMMC5_1_FC_QSP_PD;
reg &= ~XENON_EMMC5_1_FC_QSP_PU;
sdhci_writel(host, reg, XENON_EMMC_PHY_PAD_CONTROL1);
}
}
/*
* If eMMC PHY Slow Mode is required in lower speed mode (SDCLK < 55MHz)
* in SDR mode, enable Slow Mode to bypass eMMC PHY.
* SDIO slower SDR mode also requires Slow Mode.
*
* If Slow Mode is enabled, return true.
* Otherwise, return false.
*/
static bool xenon_emmc_phy_slow_mode(struct sdhci_host *host,
unsigned char timing)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_params *params = priv->phy_params;
struct xenon_emmc_phy_regs *phy_regs = priv->emmc_phy_regs;
u32 reg;
int ret;
if (host->clock > MMC_HIGH_52_MAX_DTR)
return false;
reg = sdhci_readl(host, phy_regs->timing_adj);
/* When in slower SDR mode, enable Slow Mode for SDIO
* or when Slow Mode flag is set
*/
switch (timing) {
case MMC_TIMING_LEGACY:
/*
* If Slow Mode is required, enable Slow Mode by default
* in early init phase to avoid any potential issue.
*/
if (params->slow_mode) {
reg |= XENON_TIMING_ADJUST_SLOW_MODE;
ret = true;
} else {
reg &= ~XENON_TIMING_ADJUST_SLOW_MODE;
ret = false;
}
break;
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_SDR12:
case MMC_TIMING_SD_HS:
case MMC_TIMING_MMC_HS:
if ((priv->init_card_type == MMC_TYPE_SDIO) ||
params->slow_mode) {
reg |= XENON_TIMING_ADJUST_SLOW_MODE;
ret = true;
break;
}
/* else: fall through */
default:
reg &= ~XENON_TIMING_ADJUST_SLOW_MODE;
ret = false;
}
sdhci_writel(host, reg, phy_regs->timing_adj);
return ret;
}
/*
* Set-up eMMC 5.0/5.1 PHY.
* Specific configuration depends on the current speed mode in use.
*/
static void xenon_emmc_phy_set(struct sdhci_host *host,
unsigned char timing)
{
u32 reg;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_params *params = priv->phy_params;
struct xenon_emmc_phy_regs *phy_regs = priv->emmc_phy_regs;
dev_dbg(mmc_dev(host->mmc), "eMMC PHY setting starts\n");
/* Setup pad, set bit[28] and bits[26:24] */
reg = sdhci_readl(host, phy_regs->pad_ctrl);
reg |= (XENON_FC_DQ_RECEN | XENON_FC_CMD_RECEN |
XENON_FC_QSP_RECEN | XENON_OEN_QSN);
/* All FC_XX_RECEIVCE should be set as CMOS Type */
reg |= XENON_FC_ALL_CMOS_RECEIVER;
sdhci_writel(host, reg, phy_regs->pad_ctrl);
/* Set CMD and DQ Pull Up */
if (priv->phy_type == EMMC_5_0_PHY) {
reg = sdhci_readl(host, XENON_EMMC_5_0_PHY_PAD_CONTROL);
reg |= (XENON_EMMC5_FC_CMD_PU | XENON_EMMC5_FC_DQ_PU);
reg &= ~(XENON_EMMC5_FC_CMD_PD | XENON_EMMC5_FC_DQ_PD);
sdhci_writel(host, reg, XENON_EMMC_5_0_PHY_PAD_CONTROL);
} else {
reg = sdhci_readl(host, XENON_EMMC_PHY_PAD_CONTROL1);
reg |= (XENON_EMMC5_1_FC_CMD_PU | XENON_EMMC5_1_FC_DQ_PU);
reg &= ~(XENON_EMMC5_1_FC_CMD_PD | XENON_EMMC5_1_FC_DQ_PD);
sdhci_writel(host, reg, XENON_EMMC_PHY_PAD_CONTROL1);
}
if (timing == MMC_TIMING_LEGACY) {
xenon_emmc_phy_slow_mode(host, timing);
goto phy_init;
}
/*
* If SDIO card, set SDIO Mode
* Otherwise, clear SDIO Mode
*/
reg = sdhci_readl(host, phy_regs->timing_adj);
if (priv->init_card_type == MMC_TYPE_SDIO)
reg |= XENON_TIMING_ADJUST_SDIO_MODE;
else
reg &= ~XENON_TIMING_ADJUST_SDIO_MODE;
sdhci_writel(host, reg, phy_regs->timing_adj);
if (xenon_emmc_phy_slow_mode(host, timing))
goto phy_init;
/*
* Set preferred ZNR and ZPR value
* The ZNR and ZPR value vary between different boards.
* Define them both in sdhci-xenon-emmc-phy.h.
*/
reg = sdhci_readl(host, phy_regs->pad_ctrl2);
reg &= ~((XENON_ZNR_MASK << XENON_ZNR_SHIFT) | XENON_ZPR_MASK);
reg |= ((params->znr << XENON_ZNR_SHIFT) | params->zpr);
sdhci_writel(host, reg, phy_regs->pad_ctrl2);
/*
* When setting EMMC_PHY_FUNC_CONTROL register,
* SD clock should be disabled
*/
reg = sdhci_readl(host, SDHCI_CLOCK_CONTROL);
reg &= ~SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, reg, SDHCI_CLOCK_CONTROL);
reg = sdhci_readl(host, phy_regs->func_ctrl);
switch (timing) {
case MMC_TIMING_MMC_HS400:
reg |= (XENON_DQ_DDR_MODE_MASK << XENON_DQ_DDR_MODE_SHIFT) |
XENON_CMD_DDR_MODE;
reg &= ~XENON_DQ_ASYNC_MODE;
break;
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
reg |= (XENON_DQ_DDR_MODE_MASK << XENON_DQ_DDR_MODE_SHIFT) |
XENON_CMD_DDR_MODE | XENON_DQ_ASYNC_MODE;
break;
default:
reg &= ~((XENON_DQ_DDR_MODE_MASK << XENON_DQ_DDR_MODE_SHIFT) |
XENON_CMD_DDR_MODE);
reg |= XENON_DQ_ASYNC_MODE;
}
sdhci_writel(host, reg, phy_regs->func_ctrl);
/* Enable bus clock */
reg = sdhci_readl(host, SDHCI_CLOCK_CONTROL);
reg |= SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, reg, SDHCI_CLOCK_CONTROL);
if (timing == MMC_TIMING_MMC_HS400)
/* Hardware team recommend a value for HS400 */
sdhci_writel(host, phy_regs->logic_timing_val,
phy_regs->logic_timing_adj);
else
xenon_emmc_phy_disable_strobe(host);
phy_init:
xenon_emmc_phy_init(host);
dev_dbg(mmc_dev(host->mmc), "eMMC PHY setting completes\n");
}
static int get_dt_pad_ctrl_data(struct sdhci_host *host,
struct device_node *np,
struct xenon_emmc_phy_params *params)
{
int ret = 0;
const char *name;
struct resource iomem;
if (of_device_is_compatible(np, "marvell,armada-3700-sdhci"))
params->pad_ctrl.set_soc_pad = armada_3700_soc_pad_voltage_set;
else
return 0;
if (of_address_to_resource(np, 1, &iomem)) {
dev_err(mmc_dev(host->mmc), "Unable to find SoC PAD ctrl register address for %s\n",
np->name);
return -EINVAL;
}
params->pad_ctrl.reg = devm_ioremap_resource(mmc_dev(host->mmc),
&iomem);
if (IS_ERR(params->pad_ctrl.reg))
return PTR_ERR(params->pad_ctrl.reg);
ret = of_property_read_string(np, "marvell,pad-type", &name);
if (ret) {
dev_err(mmc_dev(host->mmc), "Unable to determine SoC PHY PAD ctrl type\n");
return ret;
}
if (!strcmp(name, "sd")) {
params->pad_ctrl.pad_type = SOC_PAD_SD;
} else if (!strcmp(name, "fixed-1-8v")) {
params->pad_ctrl.pad_type = SOC_PAD_FIXED_1_8V;
} else {
dev_err(mmc_dev(host->mmc), "Unsupported SoC PHY PAD ctrl type %s\n",
name);
return -EINVAL;
}
return ret;
}
static int xenon_emmc_phy_parse_param_dt(struct sdhci_host *host,
struct device_node *np,
struct xenon_emmc_phy_params *params)
{
u32 value;
params->slow_mode = false;
if (of_property_read_bool(np, "marvell,xenon-phy-slow-mode"))
params->slow_mode = true;
params->znr = XENON_ZNR_DEF_VALUE;
if (!of_property_read_u32(np, "marvell,xenon-phy-znr", &value))
params->znr = value & XENON_ZNR_MASK;
params->zpr = XENON_ZPR_DEF_VALUE;
if (!of_property_read_u32(np, "marvell,xenon-phy-zpr", &value))
params->zpr = value & XENON_ZPR_MASK;
params->nr_tun_times = XENON_TUN_CONSECUTIVE_TIMES;
if (!of_property_read_u32(np, "marvell,xenon-phy-nr-success-tun",
&value))
params->nr_tun_times = value & XENON_TUN_CONSECUTIVE_TIMES_MASK;
params->tun_step_divider = XENON_TUNING_STEP_DIVIDER;
if (!of_property_read_u32(np, "marvell,xenon-phy-tun-step-divider",
&value))
params->tun_step_divider = value & 0xFF;
return get_dt_pad_ctrl_data(host, np, params);
}
/* Set SoC PHY Voltage PAD */
void xenon_soc_pad_ctrl(struct sdhci_host *host,
unsigned char signal_voltage)
{
xenon_emmc_phy_set_soc_pad(host, signal_voltage);
}
/*
* Setting PHY when card is working in High Speed Mode.
* HS400 set Data Strobe and Enhanced Strobe if it is supported.
* HS200/SDR104 set tuning config to prepare for tuning.
*/
static int xenon_hs_delay_adj(struct sdhci_host *host)
{
int ret = 0;
if (WARN_ON(host->clock <= XENON_DEFAULT_SDCLK_FREQ))
return -EINVAL;
switch (host->timing) {
case MMC_TIMING_MMC_HS400:
xenon_emmc_phy_strobe_delay_adj(host);
return 0;
case MMC_TIMING_MMC_HS200:
case MMC_TIMING_UHS_SDR104:
return xenon_emmc_phy_config_tuning(host);
case MMC_TIMING_MMC_DDR52:
case MMC_TIMING_UHS_DDR50:
/*
* DDR Mode requires driver to scan Sampling Fixed Delay Line,
* to find out a perfect operation sampling point.
* It is hard to implement such a scan in host driver
* since initiating commands by host driver is not safe.
* Thus so far just keep PHY Sampling Fixed Delay in
* default value of DDR mode.
*
* If any timing issue occurs in DDR mode on Marvell products,
* please contact maintainer for internal support in Marvell.
*/
dev_warn_once(mmc_dev(host->mmc), "Timing issue might occur in DDR mode\n");
return 0;
}
return ret;
}
/*
* Adjust PHY setting.
* PHY setting should be adjusted when SDCLK frequency, Bus Width
* or Speed Mode is changed.
* Additional config are required when card is working in High Speed mode,
* after leaving Legacy Mode.
*/
int xenon_phy_adj(struct sdhci_host *host, struct mmc_ios *ios)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
int ret = 0;
if (!host->clock) {
priv->clock = 0;
return 0;
}
/*
* The timing, frequency or bus width is changed,
* better to set eMMC PHY based on current setting
* and adjust Xenon SDHC delay.
*/
if ((host->clock == priv->clock) &&
(ios->bus_width == priv->bus_width) &&
(ios->timing == priv->timing))
return 0;
xenon_emmc_phy_set(host, ios->timing);
/* Update the record */
priv->bus_width = ios->bus_width;
priv->timing = ios->timing;
priv->clock = host->clock;
/* Legacy mode is a special case */
if (ios->timing == MMC_TIMING_LEGACY)
return 0;
if (host->clock > XENON_DEFAULT_SDCLK_FREQ)
ret = xenon_hs_delay_adj(host);
return ret;
}
static int xenon_add_phy(struct device_node *np, struct sdhci_host *host,
const char *phy_name)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
int ret;
priv->phy_type = match_string(phy_types, NR_PHY_TYPES, phy_name);
if (priv->phy_type < 0) {
dev_err(mmc_dev(host->mmc),
"Unable to determine PHY name %s. Use default eMMC 5.1 PHY\n",
phy_name);
priv->phy_type = EMMC_5_1_PHY;
}
ret = xenon_alloc_emmc_phy(host);
if (ret)
return ret;
return xenon_emmc_phy_parse_param_dt(host, np, priv->phy_params);
}
int xenon_phy_parse_dt(struct device_node *np, struct sdhci_host *host)
{
const char *phy_type = NULL;
if (!of_property_read_string(np, "marvell,xenon-phy-type", &phy_type))
return xenon_add_phy(np, host, phy_type);
return xenon_add_phy(np, host, "emmc 5.1 phy");
}