blob: 00c833cd2b3ae3bed0784399b19d1e5d5853c39a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */
/* Intel(R) Ethernet Connection E800 Series Linux Driver */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "ice.h"
#define DRV_VERSION "0.7.1-k"
#define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
const char ice_drv_ver[] = DRV_VERSION;
static const char ice_driver_string[] = DRV_SUMMARY;
static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION(DRV_SUMMARY);
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
static int debug = -1;
module_param(debug, int, 0644);
#ifndef CONFIG_DYNAMIC_DEBUG
MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
#else
MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
#endif /* !CONFIG_DYNAMIC_DEBUG */
static struct workqueue_struct *ice_wq;
static const struct net_device_ops ice_netdev_ops;
static void ice_pf_dis_all_vsi(struct ice_pf *pf);
static void ice_rebuild(struct ice_pf *pf);
static int ice_vsi_release(struct ice_vsi *vsi);
static void ice_update_vsi_stats(struct ice_vsi *vsi);
static void ice_update_pf_stats(struct ice_pf *pf);
/**
* ice_get_free_slot - get the next non-NULL location index in array
* @array: array to search
* @size: size of the array
* @curr: last known occupied index to be used as a search hint
*
* void * is being used to keep the functionality generic. This lets us use this
* function on any array of pointers.
*/
static int ice_get_free_slot(void *array, int size, int curr)
{
int **tmp_array = (int **)array;
int next;
if (curr < (size - 1) && !tmp_array[curr + 1]) {
next = curr + 1;
} else {
int i = 0;
while ((i < size) && (tmp_array[i]))
i++;
if (i == size)
next = ICE_NO_VSI;
else
next = i;
}
return next;
}
/**
* ice_search_res - Search the tracker for a block of resources
* @res: pointer to the resource
* @needed: size of the block needed
* @id: identifier to track owner
* Returns the base item index of the block, or -ENOMEM for error
*/
static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
{
int start = res->search_hint;
int end = start;
id |= ICE_RES_VALID_BIT;
do {
/* skip already allocated entries */
if (res->list[end++] & ICE_RES_VALID_BIT) {
start = end;
if ((start + needed) > res->num_entries)
break;
}
if (end == (start + needed)) {
int i = start;
/* there was enough, so assign it to the requestor */
while (i != end)
res->list[i++] = id;
if (end == res->num_entries)
end = 0;
res->search_hint = end;
return start;
}
} while (1);
return -ENOMEM;
}
/**
* ice_get_res - get a block of resources
* @pf: board private structure
* @res: pointer to the resource
* @needed: size of the block needed
* @id: identifier to track owner
*
* Returns the base item index of the block, or -ENOMEM for error
* The search_hint trick and lack of advanced fit-finding only works
* because we're highly likely to have all the same sized requests.
* Linear search time and any fragmentation should be minimal.
*/
static int
ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
{
int ret;
if (!res || !pf)
return -EINVAL;
if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
dev_err(&pf->pdev->dev,
"param err: needed=%d, num_entries = %d id=0x%04x\n",
needed, res->num_entries, id);
return -EINVAL;
}
/* search based on search_hint */
ret = ice_search_res(res, needed, id);
if (ret < 0) {
/* previous search failed. Reset search hint and try again */
res->search_hint = 0;
ret = ice_search_res(res, needed, id);
}
return ret;
}
/**
* ice_free_res - free a block of resources
* @res: pointer to the resource
* @index: starting index previously returned by ice_get_res
* @id: identifier to track owner
* Returns number of resources freed
*/
static int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
{
int count = 0;
int i;
if (!res || index >= res->num_entries)
return -EINVAL;
id |= ICE_RES_VALID_BIT;
for (i = index; i < res->num_entries && res->list[i] == id; i++) {
res->list[i] = 0;
count++;
}
return count;
}
/**
* ice_add_mac_to_list - Add a mac address filter entry to the list
* @vsi: the VSI to be forwarded to
* @add_list: pointer to the list which contains MAC filter entries
* @macaddr: the MAC address to be added.
*
* Adds mac address filter entry to the temp list
*
* Returns 0 on success or ENOMEM on failure.
*/
static int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list,
const u8 *macaddr)
{
struct ice_fltr_list_entry *tmp;
struct ice_pf *pf = vsi->back;
tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC);
if (!tmp)
return -ENOMEM;
tmp->fltr_info.flag = ICE_FLTR_TX;
tmp->fltr_info.src = vsi->vsi_num;
tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
tmp->fltr_info.fwd_id.vsi_id = vsi->vsi_num;
ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr);
INIT_LIST_HEAD(&tmp->list_entry);
list_add(&tmp->list_entry, add_list);
return 0;
}
/**
* ice_add_mac_to_sync_list - creates list of mac addresses to be synced
* @netdev: the net device on which the sync is happening
* @addr: mac address to sync
*
* This is a callback function which is called by the in kernel device sync
* functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
* populates the tmp_sync_list, which is later used by ice_add_mac to add the
* mac filters from the hardware.
*/
static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr))
return -EINVAL;
return 0;
}
/**
* ice_add_mac_to_unsync_list - creates list of mac addresses to be unsynced
* @netdev: the net device on which the unsync is happening
* @addr: mac address to unsync
*
* This is a callback function which is called by the in kernel device unsync
* functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
* populates the tmp_unsync_list, which is later used by ice_remove_mac to
* delete the mac filters from the hardware.
*/
static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr))
return -EINVAL;
return 0;
}
/**
* ice_free_fltr_list - free filter lists helper
* @dev: pointer to the device struct
* @h: pointer to the list head to be freed
*
* Helper function to free filter lists previously created using
* ice_add_mac_to_list
*/
static void ice_free_fltr_list(struct device *dev, struct list_head *h)
{
struct ice_fltr_list_entry *e, *tmp;
list_for_each_entry_safe(e, tmp, h, list_entry) {
list_del(&e->list_entry);
devm_kfree(dev, e);
}
}
/**
* ice_vsi_fltr_changed - check if filter state changed
* @vsi: VSI to be checked
*
* returns true if filter state has changed, false otherwise.
*/
static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
{
return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
}
/**
* ice_vsi_sync_fltr - Update the VSI filter list to the HW
* @vsi: ptr to the VSI
*
* Push any outstanding VSI filter changes through the AdminQ.
*/
static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
{
struct device *dev = &vsi->back->pdev->dev;
struct net_device *netdev = vsi->netdev;
bool promisc_forced_on = false;
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
enum ice_status status = 0;
u32 changed_flags = 0;
int err = 0;
if (!vsi->netdev)
return -EINVAL;
while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
usleep_range(1000, 2000);
changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
vsi->current_netdev_flags = vsi->netdev->flags;
INIT_LIST_HEAD(&vsi->tmp_sync_list);
INIT_LIST_HEAD(&vsi->tmp_unsync_list);
if (ice_vsi_fltr_changed(vsi)) {
clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
/* grab the netdev's addr_list_lock */
netif_addr_lock_bh(netdev);
__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
ice_add_mac_to_unsync_list);
__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
ice_add_mac_to_unsync_list);
/* our temp lists are populated. release lock */
netif_addr_unlock_bh(netdev);
}
/* Remove mac addresses in the unsync list */
status = ice_remove_mac(hw, &vsi->tmp_unsync_list);
ice_free_fltr_list(dev, &vsi->tmp_unsync_list);
if (status) {
netdev_err(netdev, "Failed to delete MAC filters\n");
/* if we failed because of alloc failures, just bail */
if (status == ICE_ERR_NO_MEMORY) {
err = -ENOMEM;
goto out;
}
}
/* Add mac addresses in the sync list */
status = ice_add_mac(hw, &vsi->tmp_sync_list);
ice_free_fltr_list(dev, &vsi->tmp_sync_list);
if (status) {
netdev_err(netdev, "Failed to add MAC filters\n");
/* If there is no more space for new umac filters, vsi
* should go into promiscuous mode. There should be some
* space reserved for promiscuous filters.
*/
if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
!test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
vsi->state)) {
promisc_forced_on = true;
netdev_warn(netdev,
"Reached MAC filter limit, forcing promisc mode on VSI %d\n",
vsi->vsi_num);
} else {
err = -EIO;
goto out;
}
}
/* check for changes in promiscuous modes */
if (changed_flags & IFF_ALLMULTI)
netdev_warn(netdev, "Unsupported configuration\n");
if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
if (vsi->current_netdev_flags & IFF_PROMISC) {
/* Apply TX filter rule to get traffic from VMs */
status = ice_cfg_dflt_vsi(hw, vsi->vsi_num, true,
ICE_FLTR_TX);
if (status) {
netdev_err(netdev, "Error setting default VSI %i tx rule\n",
vsi->vsi_num);
vsi->current_netdev_flags &= ~IFF_PROMISC;
err = -EIO;
goto out_promisc;
}
/* Apply RX filter rule to get traffic from wire */
status = ice_cfg_dflt_vsi(hw, vsi->vsi_num, true,
ICE_FLTR_RX);
if (status) {
netdev_err(netdev, "Error setting default VSI %i rx rule\n",
vsi->vsi_num);
vsi->current_netdev_flags &= ~IFF_PROMISC;
err = -EIO;
goto out_promisc;
}
} else {
/* Clear TX filter rule to stop traffic from VMs */
status = ice_cfg_dflt_vsi(hw, vsi->vsi_num, false,
ICE_FLTR_TX);
if (status) {
netdev_err(netdev, "Error clearing default VSI %i tx rule\n",
vsi->vsi_num);
vsi->current_netdev_flags |= IFF_PROMISC;
err = -EIO;
goto out_promisc;
}
/* Clear filter RX to remove traffic from wire */
status = ice_cfg_dflt_vsi(hw, vsi->vsi_num, false,
ICE_FLTR_RX);
if (status) {
netdev_err(netdev, "Error clearing default VSI %i rx rule\n",
vsi->vsi_num);
vsi->current_netdev_flags |= IFF_PROMISC;
err = -EIO;
goto out_promisc;
}
}
}
goto exit;
out_promisc:
set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
goto exit;
out:
/* if something went wrong then set the changed flag so we try again */
set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
exit:
clear_bit(__ICE_CFG_BUSY, vsi->state);
return err;
}
/**
* ice_sync_fltr_subtask - Sync the VSI filter list with HW
* @pf: board private structure
*/
static void ice_sync_fltr_subtask(struct ice_pf *pf)
{
int v;
if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
return;
clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
for (v = 0; v < pf->num_alloc_vsi; v++)
if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
ice_vsi_sync_fltr(pf->vsi[v])) {
/* come back and try again later */
set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
break;
}
}
/**
* ice_is_reset_recovery_pending - schedule a reset
* @state: pf state field
*/
static bool ice_is_reset_recovery_pending(unsigned long int *state)
{
return test_bit(__ICE_RESET_RECOVERY_PENDING, state);
}
/**
* ice_prepare_for_reset - prep for the core to reset
* @pf: board private structure
*
* Inform or close all dependent features in prep for reset.
*/
static void
ice_prepare_for_reset(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
u32 v;
ice_for_each_vsi(pf, v)
if (pf->vsi[v])
ice_remove_vsi_fltr(hw, pf->vsi[v]->vsi_num);
dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n");
/* disable the VSIs and their queues that are not already DOWN */
/* pf_dis_all_vsi modifies netdev structures -rtnl_lock needed */
ice_pf_dis_all_vsi(pf);
ice_for_each_vsi(pf, v)
if (pf->vsi[v])
pf->vsi[v]->vsi_num = 0;
ice_shutdown_all_ctrlq(hw);
}
/**
* ice_do_reset - Initiate one of many types of resets
* @pf: board private structure
* @reset_type: reset type requested
* before this function was called.
*/
static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
{
struct device *dev = &pf->pdev->dev;
struct ice_hw *hw = &pf->hw;
dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
WARN_ON(in_interrupt());
/* PFR is a bit of a special case because it doesn't result in an OICR
* interrupt. So for PFR, we prepare for reset, issue the reset and
* rebuild sequentially.
*/
if (reset_type == ICE_RESET_PFR) {
set_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
ice_prepare_for_reset(pf);
}
/* trigger the reset */
if (ice_reset(hw, reset_type)) {
dev_err(dev, "reset %d failed\n", reset_type);
set_bit(__ICE_RESET_FAILED, pf->state);
clear_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
return;
}
if (reset_type == ICE_RESET_PFR) {
pf->pfr_count++;
ice_rebuild(pf);
clear_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
}
}
/**
* ice_reset_subtask - Set up for resetting the device and driver
* @pf: board private structure
*/
static void ice_reset_subtask(struct ice_pf *pf)
{
enum ice_reset_req reset_type;
rtnl_lock();
/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
* OICR interrupt. The OICR handler (ice_misc_intr) determines what
* type of reset happened and sets __ICE_RESET_RECOVERY_PENDING bit in
* pf->state. So if reset/recovery is pending (as indicated by this bit)
* we do a rebuild and return.
*/
if (ice_is_reset_recovery_pending(pf->state)) {
clear_bit(__ICE_GLOBR_RECV, pf->state);
clear_bit(__ICE_CORER_RECV, pf->state);
ice_prepare_for_reset(pf);
/* make sure we are ready to rebuild */
if (ice_check_reset(&pf->hw)) {
set_bit(__ICE_RESET_FAILED, pf->state);
} else {
/* done with reset. start rebuild */
pf->hw.reset_ongoing = false;
ice_rebuild(pf);
}
clear_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
goto unlock;
}
/* No pending resets to finish processing. Check for new resets */
if (test_and_clear_bit(__ICE_GLOBR_REQ, pf->state))
reset_type = ICE_RESET_GLOBR;
else if (test_and_clear_bit(__ICE_CORER_REQ, pf->state))
reset_type = ICE_RESET_CORER;
else if (test_and_clear_bit(__ICE_PFR_REQ, pf->state))
reset_type = ICE_RESET_PFR;
else
goto unlock;
/* reset if not already down or resetting */
if (!test_bit(__ICE_DOWN, pf->state) &&
!test_bit(__ICE_CFG_BUSY, pf->state)) {
ice_do_reset(pf, reset_type);
}
unlock:
rtnl_unlock();
}
/**
* ice_watchdog_subtask - periodic tasks not using event driven scheduling
* @pf: board private structure
*/
static void ice_watchdog_subtask(struct ice_pf *pf)
{
int i;
/* if interface is down do nothing */
if (test_bit(__ICE_DOWN, pf->state) ||
test_bit(__ICE_CFG_BUSY, pf->state))
return;
/* make sure we don't do these things too often */
if (time_before(jiffies,
pf->serv_tmr_prev + pf->serv_tmr_period))
return;
pf->serv_tmr_prev = jiffies;
/* Update the stats for active netdevs so the network stack
* can look at updated numbers whenever it cares to
*/
ice_update_pf_stats(pf);
for (i = 0; i < pf->num_alloc_vsi; i++)
if (pf->vsi[i] && pf->vsi[i]->netdev)
ice_update_vsi_stats(pf->vsi[i]);
}
/**
* ice_print_link_msg - print link up or down message
* @vsi: the VSI whose link status is being queried
* @isup: boolean for if the link is now up or down
*/
void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
{
const char *speed;
const char *fc;
if (vsi->current_isup == isup)
return;
vsi->current_isup = isup;
if (!isup) {
netdev_info(vsi->netdev, "NIC Link is Down\n");
return;
}
switch (vsi->port_info->phy.link_info.link_speed) {
case ICE_AQ_LINK_SPEED_40GB:
speed = "40 G";
break;
case ICE_AQ_LINK_SPEED_25GB:
speed = "25 G";
break;
case ICE_AQ_LINK_SPEED_20GB:
speed = "20 G";
break;
case ICE_AQ_LINK_SPEED_10GB:
speed = "10 G";
break;
case ICE_AQ_LINK_SPEED_5GB:
speed = "5 G";
break;
case ICE_AQ_LINK_SPEED_2500MB:
speed = "2.5 G";
break;
case ICE_AQ_LINK_SPEED_1000MB:
speed = "1 G";
break;
case ICE_AQ_LINK_SPEED_100MB:
speed = "100 M";
break;
default:
speed = "Unknown";
break;
}
switch (vsi->port_info->fc.current_mode) {
case ICE_FC_FULL:
fc = "RX/TX";
break;
case ICE_FC_TX_PAUSE:
fc = "TX";
break;
case ICE_FC_RX_PAUSE:
fc = "RX";
break;
case ICE_FC_NONE:
fc = "None";
break;
default:
fc = "Unknown";
break;
}
netdev_info(vsi->netdev, "NIC Link is up %sbps, Flow Control: %s\n",
speed, fc);
}
/**
* ice_init_link_events - enable/initialize link events
* @pi: pointer to the port_info instance
*
* Returns -EIO on failure, 0 on success
*/
static int ice_init_link_events(struct ice_port_info *pi)
{
u16 mask;
mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
dev_dbg(ice_hw_to_dev(pi->hw),
"Failed to set link event mask for port %d\n",
pi->lport);
return -EIO;
}
if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
dev_dbg(ice_hw_to_dev(pi->hw),
"Failed to enable link events for port %d\n",
pi->lport);
return -EIO;
}
return 0;
}
/**
* ice_vsi_link_event - update the vsi's netdev
* @vsi: the vsi on which the link event occurred
* @link_up: whether or not the vsi needs to be set up or down
*/
static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
{
if (!vsi || test_bit(__ICE_DOWN, vsi->state))
return;
if (vsi->type == ICE_VSI_PF) {
if (!vsi->netdev) {
dev_dbg(&vsi->back->pdev->dev,
"vsi->netdev is not initialized!\n");
return;
}
if (link_up) {
netif_carrier_on(vsi->netdev);
netif_tx_wake_all_queues(vsi->netdev);
} else {
netif_carrier_off(vsi->netdev);
netif_tx_stop_all_queues(vsi->netdev);
}
}
}
/**
* ice_link_event - process the link event
* @pf: pf that the link event is associated with
* @pi: port_info for the port that the link event is associated with
*
* Returns -EIO if ice_get_link_status() fails
* Returns 0 on success
*/
static int
ice_link_event(struct ice_pf *pf, struct ice_port_info *pi)
{
u8 new_link_speed, old_link_speed;
struct ice_phy_info *phy_info;
bool new_link_same_as_old;
bool new_link, old_link;
u8 lport;
u16 v;
phy_info = &pi->phy;
phy_info->link_info_old = phy_info->link_info;
/* Force ice_get_link_status() to update link info */
phy_info->get_link_info = true;
old_link = (phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
old_link_speed = phy_info->link_info_old.link_speed;
lport = pi->lport;
if (ice_get_link_status(pi, &new_link)) {
dev_dbg(&pf->pdev->dev,
"Could not get link status for port %d\n", lport);
return -EIO;
}
new_link_speed = phy_info->link_info.link_speed;
new_link_same_as_old = (new_link == old_link &&
new_link_speed == old_link_speed);
ice_for_each_vsi(pf, v) {
struct ice_vsi *vsi = pf->vsi[v];
if (!vsi || !vsi->port_info)
continue;
if (new_link_same_as_old &&
(test_bit(__ICE_DOWN, vsi->state) ||
new_link == netif_carrier_ok(vsi->netdev)))
continue;
if (vsi->port_info->lport == lport) {
ice_print_link_msg(vsi, new_link);
ice_vsi_link_event(vsi, new_link);
}
}
return 0;
}
/**
* ice_handle_link_event - handle link event via ARQ
* @pf: pf that the link event is associated with
*
* Return -EINVAL if port_info is null
* Return status on succes
*/
static int ice_handle_link_event(struct ice_pf *pf)
{
struct ice_port_info *port_info;
int status;
port_info = pf->hw.port_info;
if (!port_info)
return -EINVAL;
status = ice_link_event(pf, port_info);
if (status)
dev_dbg(&pf->pdev->dev,
"Could not process link event, error %d\n", status);
return status;
}
/**
* __ice_clean_ctrlq - helper function to clean controlq rings
* @pf: ptr to struct ice_pf
* @q_type: specific Control queue type
*/
static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
{
struct ice_rq_event_info event;
struct ice_hw *hw = &pf->hw;
struct ice_ctl_q_info *cq;
u16 pending, i = 0;
const char *qtype;
u32 oldval, val;
/* Do not clean control queue if/when PF reset fails */
if (test_bit(__ICE_RESET_FAILED, pf->state))
return 0;
switch (q_type) {
case ICE_CTL_Q_ADMIN:
cq = &hw->adminq;
qtype = "Admin";
break;
default:
dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n",
q_type);
return 0;
}
/* check for error indications - PF_xx_AxQLEN register layout for
* FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
*/
val = rd32(hw, cq->rq.len);
if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
PF_FW_ARQLEN_ARQCRIT_M)) {
oldval = val;
if (val & PF_FW_ARQLEN_ARQVFE_M)
dev_dbg(&pf->pdev->dev,
"%s Receive Queue VF Error detected\n", qtype);
if (val & PF_FW_ARQLEN_ARQOVFL_M) {
dev_dbg(&pf->pdev->dev,
"%s Receive Queue Overflow Error detected\n",
qtype);
}
if (val & PF_FW_ARQLEN_ARQCRIT_M)
dev_dbg(&pf->pdev->dev,
"%s Receive Queue Critical Error detected\n",
qtype);
val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
PF_FW_ARQLEN_ARQCRIT_M);
if (oldval != val)
wr32(hw, cq->rq.len, val);
}
val = rd32(hw, cq->sq.len);
if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
PF_FW_ATQLEN_ATQCRIT_M)) {
oldval = val;
if (val & PF_FW_ATQLEN_ATQVFE_M)
dev_dbg(&pf->pdev->dev,
"%s Send Queue VF Error detected\n", qtype);
if (val & PF_FW_ATQLEN_ATQOVFL_M) {
dev_dbg(&pf->pdev->dev,
"%s Send Queue Overflow Error detected\n",
qtype);
}
if (val & PF_FW_ATQLEN_ATQCRIT_M)
dev_dbg(&pf->pdev->dev,
"%s Send Queue Critical Error detected\n",
qtype);
val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
PF_FW_ATQLEN_ATQCRIT_M);
if (oldval != val)
wr32(hw, cq->sq.len, val);
}
event.buf_len = cq->rq_buf_size;
event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len,
GFP_KERNEL);
if (!event.msg_buf)
return 0;
do {
enum ice_status ret;
u16 opcode;
ret = ice_clean_rq_elem(hw, cq, &event, &pending);
if (ret == ICE_ERR_AQ_NO_WORK)
break;
if (ret) {
dev_err(&pf->pdev->dev,
"%s Receive Queue event error %d\n", qtype,
ret);
break;
}
opcode = le16_to_cpu(event.desc.opcode);
switch (opcode) {
case ice_aqc_opc_get_link_status:
if (ice_handle_link_event(pf))
dev_err(&pf->pdev->dev,
"Could not handle link event\n");
break;
default:
dev_dbg(&pf->pdev->dev,
"%s Receive Queue unknown event 0x%04x ignored\n",
qtype, opcode);
break;
}
} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
devm_kfree(&pf->pdev->dev, event.msg_buf);
return pending && (i == ICE_DFLT_IRQ_WORK);
}
/**
* ice_ctrlq_pending - check if there is a difference between ntc and ntu
* @hw: pointer to hardware info
* @cq: control queue information
*
* returns true if there are pending messages in a queue, false if there aren't
*/
static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
u16 ntu;
ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
return cq->rq.next_to_clean != ntu;
}
/**
* ice_clean_adminq_subtask - clean the AdminQ rings
* @pf: board private structure
*/
static void ice_clean_adminq_subtask(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
return;
if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
return;
clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
/* There might be a situation where new messages arrive to a control
* queue between processing the last message and clearing the
* EVENT_PENDING bit. So before exiting, check queue head again (using
* ice_ctrlq_pending) and process new messages if any.
*/
if (ice_ctrlq_pending(hw, &hw->adminq))
__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
ice_flush(hw);
}
/**
* ice_service_task_schedule - schedule the service task to wake up
* @pf: board private structure
*
* If not already scheduled, this puts the task into the work queue.
*/
static void ice_service_task_schedule(struct ice_pf *pf)
{
if (!test_bit(__ICE_DOWN, pf->state) &&
!test_and_set_bit(__ICE_SERVICE_SCHED, pf->state))
queue_work(ice_wq, &pf->serv_task);
}
/**
* ice_service_task_complete - finish up the service task
* @pf: board private structure
*/
static void ice_service_task_complete(struct ice_pf *pf)
{
WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
/* force memory (pf->state) to sync before next service task */
smp_mb__before_atomic();
clear_bit(__ICE_SERVICE_SCHED, pf->state);
}
/**
* ice_service_timer - timer callback to schedule service task
* @t: pointer to timer_list
*/
static void ice_service_timer(struct timer_list *t)
{
struct ice_pf *pf = from_timer(pf, t, serv_tmr);
mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
ice_service_task_schedule(pf);
}
/**
* ice_service_task - manage and run subtasks
* @work: pointer to work_struct contained by the PF struct
*/
static void ice_service_task(struct work_struct *work)
{
struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
unsigned long start_time = jiffies;
/* subtasks */
/* process reset requests first */
ice_reset_subtask(pf);
/* bail if a reset/recovery cycle is pending */
if (ice_is_reset_recovery_pending(pf->state) ||
test_bit(__ICE_SUSPENDED, pf->state)) {
ice_service_task_complete(pf);
return;
}
ice_sync_fltr_subtask(pf);
ice_watchdog_subtask(pf);
ice_clean_adminq_subtask(pf);
/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
ice_service_task_complete(pf);
/* If the tasks have taken longer than one service timer period
* or there is more work to be done, reset the service timer to
* schedule the service task now.
*/
if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
mod_timer(&pf->serv_tmr, jiffies);
}
/**
* ice_set_ctrlq_len - helper function to set controlq length
* @hw: pointer to the hw instance
*/
static void ice_set_ctrlq_len(struct ice_hw *hw)
{
hw->adminq.num_rq_entries = ICE_AQ_LEN;
hw->adminq.num_sq_entries = ICE_AQ_LEN;
hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
}
/**
* ice_irq_affinity_notify - Callback for affinity changes
* @notify: context as to what irq was changed
* @mask: the new affinity mask
*
* This is a callback function used by the irq_set_affinity_notifier function
* so that we may register to receive changes to the irq affinity masks.
*/
static void ice_irq_affinity_notify(struct irq_affinity_notify *notify,
const cpumask_t *mask)
{
struct ice_q_vector *q_vector =
container_of(notify, struct ice_q_vector, affinity_notify);
cpumask_copy(&q_vector->affinity_mask, mask);
}
/**
* ice_irq_affinity_release - Callback for affinity notifier release
* @ref: internal core kernel usage
*
* This is a callback function used by the irq_set_affinity_notifier function
* to inform the current notification subscriber that they will no longer
* receive notifications.
*/
static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
/**
* ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
* @vsi: the VSI being un-configured
*/
static void ice_vsi_dis_irq(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
int base = vsi->base_vector;
u32 val;
int i;
/* disable interrupt causation from each queue */
if (vsi->tx_rings) {
ice_for_each_txq(vsi, i) {
if (vsi->tx_rings[i]) {
u16 reg;
reg = vsi->tx_rings[i]->reg_idx;
val = rd32(hw, QINT_TQCTL(reg));
val &= ~QINT_TQCTL_CAUSE_ENA_M;
wr32(hw, QINT_TQCTL(reg), val);
}
}
}
if (vsi->rx_rings) {
ice_for_each_rxq(vsi, i) {
if (vsi->rx_rings[i]) {
u16 reg;
reg = vsi->rx_rings[i]->reg_idx;
val = rd32(hw, QINT_RQCTL(reg));
val &= ~QINT_RQCTL_CAUSE_ENA_M;
wr32(hw, QINT_RQCTL(reg), val);
}
}
}
/* disable each interrupt */
if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
for (i = vsi->base_vector;
i < (vsi->num_q_vectors + vsi->base_vector); i++)
wr32(hw, GLINT_DYN_CTL(i), 0);
ice_flush(hw);
for (i = 0; i < vsi->num_q_vectors; i++)
synchronize_irq(pf->msix_entries[i + base].vector);
}
}
/**
* ice_vsi_ena_irq - Enable IRQ for the given VSI
* @vsi: the VSI being configured
*/
static int ice_vsi_ena_irq(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
int i;
for (i = 0; i < vsi->num_q_vectors; i++)
ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
}
ice_flush(hw);
return 0;
}
/**
* ice_vsi_delete - delete a VSI from the switch
* @vsi: pointer to VSI being removed
*/
static void ice_vsi_delete(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_vsi_ctx ctxt;
enum ice_status status;
ctxt.vsi_num = vsi->vsi_num;
memcpy(&ctxt.info, &vsi->info, sizeof(struct ice_aqc_vsi_props));
status = ice_aq_free_vsi(&pf->hw, &ctxt, false, NULL);
if (status)
dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n",
vsi->vsi_num);
}
/**
* ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
* @vsi: the VSI being configured
* @basename: name for the vector
*/
static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
{
int q_vectors = vsi->num_q_vectors;
struct ice_pf *pf = vsi->back;
int base = vsi->base_vector;
int rx_int_idx = 0;
int tx_int_idx = 0;
int vector, err;
int irq_num;
for (vector = 0; vector < q_vectors; vector++) {
struct ice_q_vector *q_vector = vsi->q_vectors[vector];
irq_num = pf->msix_entries[base + vector].vector;
if (q_vector->tx.ring && q_vector->rx.ring) {
snprintf(q_vector->name, sizeof(q_vector->name) - 1,
"%s-%s-%d", basename, "TxRx", rx_int_idx++);
tx_int_idx++;
} else if (q_vector->rx.ring) {
snprintf(q_vector->name, sizeof(q_vector->name) - 1,
"%s-%s-%d", basename, "rx", rx_int_idx++);
} else if (q_vector->tx.ring) {
snprintf(q_vector->name, sizeof(q_vector->name) - 1,
"%s-%s-%d", basename, "tx", tx_int_idx++);
} else {
/* skip this unused q_vector */
continue;
}
err = devm_request_irq(&pf->pdev->dev,
pf->msix_entries[base + vector].vector,
vsi->irq_handler, 0, q_vector->name,
q_vector);
if (err) {
netdev_err(vsi->netdev,
"MSIX request_irq failed, error: %d\n", err);
goto free_q_irqs;
}
/* register for affinity change notifications */
q_vector->affinity_notify.notify = ice_irq_affinity_notify;
q_vector->affinity_notify.release = ice_irq_affinity_release;
irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
/* assign the mask for this irq */
irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
}
vsi->irqs_ready = true;
return 0;
free_q_irqs:
while (vector) {
vector--;
irq_num = pf->msix_entries[base + vector].vector,
irq_set_affinity_notifier(irq_num, NULL);
irq_set_affinity_hint(irq_num, NULL);
devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]);
}
return err;
}
/**
* ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
* @vsi: the VSI being configured
*/
static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
{
struct ice_hw_common_caps *cap;
struct ice_pf *pf = vsi->back;
if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
vsi->rss_size = 1;
return;
}
cap = &pf->hw.func_caps.common_cap;
switch (vsi->type) {
case ICE_VSI_PF:
/* PF VSI will inherit RSS instance of PF */
vsi->rss_table_size = cap->rss_table_size;
vsi->rss_size = min_t(int, num_online_cpus(),
BIT(cap->rss_table_entry_width));
vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
break;
default:
dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
break;
}
}
/**
* ice_vsi_setup_q_map - Setup a VSI queue map
* @vsi: the VSI being configured
* @ctxt: VSI context structure
*/
static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
{
u16 offset = 0, qmap = 0, numq_tc;
u16 pow = 0, max_rss = 0, qcount;
u16 qcount_tx = vsi->alloc_txq;
u16 qcount_rx = vsi->alloc_rxq;
bool ena_tc0 = false;
int i;
/* at least TC0 should be enabled by default */
if (vsi->tc_cfg.numtc) {
if (!(vsi->tc_cfg.ena_tc & BIT(0)))
ena_tc0 = true;
} else {
ena_tc0 = true;
}
if (ena_tc0) {
vsi->tc_cfg.numtc++;
vsi->tc_cfg.ena_tc |= 1;
}
numq_tc = qcount_rx / vsi->tc_cfg.numtc;
/* TC mapping is a function of the number of Rx queues assigned to the
* VSI for each traffic class and the offset of these queues.
* The first 10 bits are for queue offset for TC0, next 4 bits for no:of
* queues allocated to TC0. No:of queues is a power-of-2.
*
* If TC is not enabled, the queue offset is set to 0, and allocate one
* queue, this way, traffic for the given TC will be sent to the default
* queue.
*
* Setup number and offset of Rx queues for all TCs for the VSI
*/
/* qcount will change if RSS is enabled */
if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
if (vsi->type == ICE_VSI_PF)
max_rss = ICE_MAX_LG_RSS_QS;
else
max_rss = ICE_MAX_SMALL_RSS_QS;
qcount = min_t(int, numq_tc, max_rss);
qcount = min_t(int, qcount, vsi->rss_size);
} else {
qcount = numq_tc;
}
/* find the (rounded up) power-of-2 of qcount */
pow = order_base_2(qcount);
for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
/* TC is not enabled */
vsi->tc_cfg.tc_info[i].qoffset = 0;
vsi->tc_cfg.tc_info[i].qcount = 1;
ctxt->info.tc_mapping[i] = 0;
continue;
}
/* TC is enabled */
vsi->tc_cfg.tc_info[i].qoffset = offset;
vsi->tc_cfg.tc_info[i].qcount = qcount;
qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
ICE_AQ_VSI_TC_Q_OFFSET_M) |
((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
ICE_AQ_VSI_TC_Q_NUM_M);
offset += qcount;
ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
}
vsi->num_txq = qcount_tx;
vsi->num_rxq = offset;
/* Rx queue mapping */
ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
/* q_mapping buffer holds the info for the first queue allocated for
* this VSI in the PF space and also the number of queues associated
* with this VSI.
*/
ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
}
/**
* ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
* @ctxt: the VSI context being set
*
* This initializes a default VSI context for all sections except the Queues.
*/
static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
{
u32 table = 0;
memset(&ctxt->info, 0, sizeof(ctxt->info));
/* VSI's should be allocated from shared pool */
ctxt->alloc_from_pool = true;
/* Src pruning enabled by default */
ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
/* Traffic from VSI can be sent to LAN */
ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
/* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
* behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
* packets untagged/tagged.
*/
ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
ICE_AQ_VSI_VLAN_MODE_M) >>
ICE_AQ_VSI_VLAN_MODE_S);
/* Have 1:1 UP mapping for both ingress/egress tables */
table |= ICE_UP_TABLE_TRANSLATE(0, 0);
table |= ICE_UP_TABLE_TRANSLATE(1, 1);
table |= ICE_UP_TABLE_TRANSLATE(2, 2);
table |= ICE_UP_TABLE_TRANSLATE(3, 3);
table |= ICE_UP_TABLE_TRANSLATE(4, 4);
table |= ICE_UP_TABLE_TRANSLATE(5, 5);
table |= ICE_UP_TABLE_TRANSLATE(6, 6);
table |= ICE_UP_TABLE_TRANSLATE(7, 7);
ctxt->info.ingress_table = cpu_to_le32(table);
ctxt->info.egress_table = cpu_to_le32(table);
/* Have 1:1 UP mapping for outer to inner UP table */
ctxt->info.outer_up_table = cpu_to_le32(table);
/* No Outer tag support outer_tag_flags remains to zero */
}
/**
* ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
* @ctxt: the VSI context being set
* @vsi: the VSI being configured
*/
static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
{
u8 lut_type, hash_type;
switch (vsi->type) {
case ICE_VSI_PF:
/* PF VSI will inherit RSS instance of PF */
lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
break;
default:
dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
vsi->type);
return;
}
ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
}
/**
* ice_vsi_add - Create a new VSI or fetch preallocated VSI
* @vsi: the VSI being configured
*
* This initializes a VSI context depending on the VSI type to be added and
* passes it down to the add_vsi aq command to create a new VSI.
*/
static int ice_vsi_add(struct ice_vsi *vsi)
{
struct ice_vsi_ctx ctxt = { 0 };
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
int ret = 0;
switch (vsi->type) {
case ICE_VSI_PF:
ctxt.flags = ICE_AQ_VSI_TYPE_PF;
break;
default:
return -ENODEV;
}
ice_set_dflt_vsi_ctx(&ctxt);
/* if the switch is in VEB mode, allow VSI loopback */
if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
ctxt.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
/* Set LUT type and HASH type if RSS is enabled */
if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
ice_set_rss_vsi_ctx(&ctxt, vsi);
ctxt.info.sw_id = vsi->port_info->sw_id;
ice_vsi_setup_q_map(vsi, &ctxt);
ret = ice_aq_add_vsi(hw, &ctxt, NULL);
if (ret) {
dev_err(&vsi->back->pdev->dev,
"Add VSI AQ call failed, err %d\n", ret);
return -EIO;
}
vsi->info = ctxt.info;
vsi->vsi_num = ctxt.vsi_num;
return ret;
}
/**
* ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
* @vsi: the VSI being cleaned up
*/
static void ice_vsi_release_msix(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
u16 vector = vsi->base_vector;
struct ice_hw *hw = &pf->hw;
u32 txq = 0;
u32 rxq = 0;
int i, q;
for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
struct ice_q_vector *q_vector = vsi->q_vectors[i];
wr32(hw, GLINT_ITR(ICE_RX_ITR, vector), 0);
wr32(hw, GLINT_ITR(ICE_TX_ITR, vector), 0);
for (q = 0; q < q_vector->num_ring_tx; q++) {
wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
txq++;
}
for (q = 0; q < q_vector->num_ring_rx; q++) {
wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
rxq++;
}
}
ice_flush(hw);
}
/**
* ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
* @vsi: the VSI having rings deallocated
*/
static void ice_vsi_clear_rings(struct ice_vsi *vsi)
{
int i;
if (vsi->tx_rings) {
for (i = 0; i < vsi->alloc_txq; i++) {
if (vsi->tx_rings[i]) {
kfree_rcu(vsi->tx_rings[i], rcu);
vsi->tx_rings[i] = NULL;
}
}
}
if (vsi->rx_rings) {
for (i = 0; i < vsi->alloc_rxq; i++) {
if (vsi->rx_rings[i]) {
kfree_rcu(vsi->rx_rings[i], rcu);
vsi->rx_rings[i] = NULL;
}
}
}
}
/**
* ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
* @vsi: VSI which is having rings allocated
*/
static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int i;
/* Allocate tx_rings */
for (i = 0; i < vsi->alloc_txq; i++) {
struct ice_ring *ring;
/* allocate with kzalloc(), free with kfree_rcu() */
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
goto err_out;
ring->q_index = i;
ring->reg_idx = vsi->txq_map[i];
ring->ring_active = false;
ring->vsi = vsi;
ring->netdev = vsi->netdev;
ring->dev = &pf->pdev->dev;
ring->count = vsi->num_desc;
vsi->tx_rings[i] = ring;
}
/* Allocate rx_rings */
for (i = 0; i < vsi->alloc_rxq; i++) {
struct ice_ring *ring;
/* allocate with kzalloc(), free with kfree_rcu() */
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
goto err_out;
ring->q_index = i;
ring->reg_idx = vsi->rxq_map[i];
ring->ring_active = false;
ring->vsi = vsi;
ring->netdev = vsi->netdev;
ring->dev = &pf->pdev->dev;
ring->count = vsi->num_desc;
vsi->rx_rings[i] = ring;
}
return 0;
err_out:
ice_vsi_clear_rings(vsi);
return -ENOMEM;
}
/**
* ice_vsi_free_irq - Free the irq association with the OS
* @vsi: the VSI being configured
*/
static void ice_vsi_free_irq(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int base = vsi->base_vector;
if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
int i;
if (!vsi->q_vectors || !vsi->irqs_ready)
return;
vsi->irqs_ready = false;
for (i = 0; i < vsi->num_q_vectors; i++) {
u16 vector = i + base;
int irq_num;
irq_num = pf->msix_entries[vector].vector;
/* free only the irqs that were actually requested */
if (!vsi->q_vectors[i] ||
!(vsi->q_vectors[i]->num_ring_tx ||
vsi->q_vectors[i]->num_ring_rx))
continue;
/* clear the affinity notifier in the IRQ descriptor */
irq_set_affinity_notifier(irq_num, NULL);
/* clear the affinity_mask in the IRQ descriptor */
irq_set_affinity_hint(irq_num, NULL);
synchronize_irq(irq_num);
devm_free_irq(&pf->pdev->dev, irq_num,
vsi->q_vectors[i]);
}
ice_vsi_release_msix(vsi);
}
}
/**
* ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
* @vsi: the VSI being configured
*/
static void ice_vsi_cfg_msix(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
u16 vector = vsi->base_vector;
struct ice_hw *hw = &pf->hw;
u32 txq = 0, rxq = 0;
int i, q, itr;
u8 itr_gran;
for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
struct ice_q_vector *q_vector = vsi->q_vectors[i];
itr_gran = hw->itr_gran_200;
if (q_vector->num_ring_rx) {
q_vector->rx.itr =
ITR_TO_REG(vsi->rx_rings[rxq]->rx_itr_setting,
itr_gran);
q_vector->rx.latency_range = ICE_LOW_LATENCY;
}
if (q_vector->num_ring_tx) {
q_vector->tx.itr =
ITR_TO_REG(vsi->tx_rings[txq]->tx_itr_setting,
itr_gran);
q_vector->tx.latency_range = ICE_LOW_LATENCY;
}
wr32(hw, GLINT_ITR(ICE_RX_ITR, vector), q_vector->rx.itr);
wr32(hw, GLINT_ITR(ICE_TX_ITR, vector), q_vector->tx.itr);
/* Both Transmit Queue Interrupt Cause Control register
* and Receive Queue Interrupt Cause control register
* expects MSIX_INDX field to be the vector index
* within the function space and not the absolute
* vector index across PF or across device.
* For SR-IOV VF VSIs queue vector index always starts
* with 1 since first vector index(0) is used for OICR
* in VF space. Since VMDq and other PF VSIs are withtin
* the PF function space, use the vector index thats
* tracked for this PF.
*/
for (q = 0; q < q_vector->num_ring_tx; q++) {
u32 val;
itr = ICE_TX_ITR;
val = QINT_TQCTL_CAUSE_ENA_M |
(itr << QINT_TQCTL_ITR_INDX_S) |
(vector << QINT_TQCTL_MSIX_INDX_S);
wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
txq++;
}
for (q = 0; q < q_vector->num_ring_rx; q++) {
u32 val;
itr = ICE_RX_ITR;
val = QINT_RQCTL_CAUSE_ENA_M |
(itr << QINT_RQCTL_ITR_INDX_S) |
(vector << QINT_RQCTL_MSIX_INDX_S);
wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
rxq++;
}
}
ice_flush(hw);
}
/**
* ice_ena_misc_vector - enable the non-queue interrupts
* @pf: board private structure
*/
static void ice_ena_misc_vector(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
u32 val;
/* clear things first */
wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
rd32(hw, PFINT_OICR); /* read to clear */
val = (PFINT_OICR_ECC_ERR_M |
PFINT_OICR_MAL_DETECT_M |
PFINT_OICR_GRST_M |
PFINT_OICR_PCI_EXCEPTION_M |
PFINT_OICR_HMC_ERR_M |
PFINT_OICR_PE_CRITERR_M);
wr32(hw, PFINT_OICR_ENA, val);
/* SW_ITR_IDX = 0, but don't change INTENA */
wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
}
/**
* ice_misc_intr - misc interrupt handler
* @irq: interrupt number
* @data: pointer to a q_vector
*/
static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
{
struct ice_pf *pf = (struct ice_pf *)data;
struct ice_hw *hw = &pf->hw;
irqreturn_t ret = IRQ_NONE;
u32 oicr, ena_mask;
set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
oicr = rd32(hw, PFINT_OICR);
ena_mask = rd32(hw, PFINT_OICR_ENA);
if (oicr & PFINT_OICR_GRST_M) {
u32 reset;
/* we have a reset warning */
ena_mask &= ~PFINT_OICR_GRST_M;
reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
GLGEN_RSTAT_RESET_TYPE_S;
if (reset == ICE_RESET_CORER)
pf->corer_count++;
else if (reset == ICE_RESET_GLOBR)
pf->globr_count++;
else
pf->empr_count++;
/* If a reset cycle isn't already in progress, we set a bit in
* pf->state so that the service task can start a reset/rebuild.
* We also make note of which reset happened so that peer
* devices/drivers can be informed.
*/
if (!test_and_set_bit(__ICE_RESET_RECOVERY_PENDING,
pf->state)) {
if (reset == ICE_RESET_CORER)
set_bit(__ICE_CORER_RECV, pf->state);
else if (reset == ICE_RESET_GLOBR)
set_bit(__ICE_GLOBR_RECV, pf->state);
else
set_bit(__ICE_EMPR_RECV, pf->state);
/* There are couple of different bits at play here.
* hw->reset_ongoing indicates whether the hardware is
* in reset. This is set to true when a reset interrupt
* is received and set back to false after the driver
* has determined that the hardware is out of reset.
*
* __ICE_RESET_RECOVERY_PENDING in pf->state indicates
* that a post reset rebuild is required before the
* driver is operational again. This is set above.
*
* As this is the start of the reset/rebuild cycle, set
* both to indicate that.
*/
hw->reset_ongoing = true;
}
}
if (oicr & PFINT_OICR_HMC_ERR_M) {
ena_mask &= ~PFINT_OICR_HMC_ERR_M;
dev_dbg(&pf->pdev->dev,
"HMC Error interrupt - info 0x%x, data 0x%x\n",
rd32(hw, PFHMC_ERRORINFO),
rd32(hw, PFHMC_ERRORDATA));
}
/* Report and mask off any remaining unexpected interrupts */
oicr &= ena_mask;
if (oicr) {
dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n",
oicr);
/* If a critical error is pending there is no choice but to
* reset the device.
*/
if (oicr & (PFINT_OICR_PE_CRITERR_M |
PFINT_OICR_PCI_EXCEPTION_M |
PFINT_OICR_ECC_ERR_M)) {
set_bit(__ICE_PFR_REQ, pf->state);
ice_service_task_schedule(pf);
}
ena_mask &= ~oicr;
}
ret = IRQ_HANDLED;
/* re-enable interrupt causes that are not handled during this pass */
wr32(hw, PFINT_OICR_ENA, ena_mask);
if (!test_bit(__ICE_DOWN, pf->state)) {
ice_service_task_schedule(pf);
ice_irq_dynamic_ena(hw, NULL, NULL);
}
return ret;
}
/**
* ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
* @vsi: the VSI being configured
*
* This function maps descriptor rings to the queue-specific vectors allotted
* through the MSI-X enabling code. On a constrained vector budget, we map Tx
* and Rx rings to the vector as "efficiently" as possible.
*/
static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
{
int q_vectors = vsi->num_q_vectors;
int tx_rings_rem, rx_rings_rem;
int v_id;
/* initially assigning remaining rings count to VSIs num queue value */
tx_rings_rem = vsi->num_txq;
rx_rings_rem = vsi->num_rxq;
for (v_id = 0; v_id < q_vectors; v_id++) {
struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
/* Tx rings mapping to vector */
tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
q_vector->num_ring_tx = tx_rings_per_v;
q_vector->tx.ring = NULL;
q_base = vsi->num_txq - tx_rings_rem;
for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
struct ice_ring *tx_ring = vsi->tx_rings[q_id];
tx_ring->q_vector = q_vector;
tx_ring->next = q_vector->tx.ring;
q_vector->tx.ring = tx_ring;
}
tx_rings_rem -= tx_rings_per_v;
/* Rx rings mapping to vector */
rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
q_vector->num_ring_rx = rx_rings_per_v;
q_vector->rx.ring = NULL;
q_base = vsi->num_rxq - rx_rings_rem;
for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
struct ice_ring *rx_ring = vsi->rx_rings[q_id];
rx_ring->q_vector = q_vector;
rx_ring->next = q_vector->rx.ring;
q_vector->rx.ring = rx_ring;
}
rx_rings_rem -= rx_rings_per_v;
}
}
/**
* ice_vsi_set_num_qs - Set num queues, descriptors and vectors for a VSI
* @vsi: the VSI being configured
*
* Return 0 on success and a negative value on error
*/
static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
switch (vsi->type) {
case ICE_VSI_PF:
vsi->alloc_txq = pf->num_lan_tx;
vsi->alloc_rxq = pf->num_lan_rx;
vsi->num_desc = ALIGN(ICE_DFLT_NUM_DESC, ICE_REQ_DESC_MULTIPLE);
vsi->num_q_vectors = max_t(int, pf->num_lan_rx, pf->num_lan_tx);
break;
default:
dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
vsi->type);
break;
}
}
/**
* ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi
* @vsi: VSI pointer
* @alloc_qvectors: a bool to specify if q_vectors need to be allocated.
*
* On error: returns error code (negative)
* On success: returns 0
*/
static int ice_vsi_alloc_arrays(struct ice_vsi *vsi, bool alloc_qvectors)
{
struct ice_pf *pf = vsi->back;
/* allocate memory for both Tx and Rx ring pointers */
vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
sizeof(struct ice_ring *), GFP_KERNEL);
if (!vsi->tx_rings)
goto err_txrings;
vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
sizeof(struct ice_ring *), GFP_KERNEL);
if (!vsi->rx_rings)
goto err_rxrings;
if (alloc_qvectors) {
/* allocate memory for q_vector pointers */
vsi->q_vectors = devm_kcalloc(&pf->pdev->dev,
vsi->num_q_vectors,
sizeof(struct ice_q_vector *),
GFP_KERNEL);
if (!vsi->q_vectors)
goto err_vectors;
}
return 0;
err_vectors:
devm_kfree(&pf->pdev->dev, vsi->rx_rings);
err_rxrings:
devm_kfree(&pf->pdev->dev, vsi->tx_rings);
err_txrings:
return -ENOMEM;
}
/**
* ice_msix_clean_rings - MSIX mode Interrupt Handler
* @irq: interrupt number
* @data: pointer to a q_vector
*/
static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
{
struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
if (!q_vector->tx.ring && !q_vector->rx.ring)
return IRQ_HANDLED;
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
/**
* ice_vsi_alloc - Allocates the next available struct vsi in the PF
* @pf: board private structure
* @type: type of VSI
*
* returns a pointer to a VSI on success, NULL on failure.
*/
static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type)
{
struct ice_vsi *vsi = NULL;
/* Need to protect the allocation of the VSIs at the PF level */
mutex_lock(&pf->sw_mutex);
/* If we have already allocated our maximum number of VSIs,
* pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
* is available to be populated
*/
if (pf->next_vsi == ICE_NO_VSI) {
dev_dbg(&pf->pdev->dev, "out of VSI slots!\n");
goto unlock_pf;
}
vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL);
if (!vsi)
goto unlock_pf;
vsi->type = type;
vsi->back = pf;
set_bit(__ICE_DOWN, vsi->state);
vsi->idx = pf->next_vsi;
vsi->work_lmt = ICE_DFLT_IRQ_WORK;
ice_vsi_set_num_qs(vsi);
switch (vsi->type) {
case ICE_VSI_PF:
if (ice_vsi_alloc_arrays(vsi, true))
goto err_rings;
/* Setup default MSIX irq handler for VSI */
vsi->irq_handler = ice_msix_clean_rings;
break;
default:
dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
goto unlock_pf;
}
/* fill VSI slot in the PF struct */
pf->vsi[pf->next_vsi] = vsi;
/* prepare pf->next_vsi for next use */
pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
pf->next_vsi);
goto unlock_pf;
err_rings:
devm_kfree(&pf->pdev->dev, vsi);
vsi = NULL;
unlock_pf:
mutex_unlock(&pf->sw_mutex);
return vsi;
}
/**
* ice_free_irq_msix_misc - Unroll misc vector setup
* @pf: board private structure
*/
static void ice_free_irq_msix_misc(struct ice_pf *pf)
{
/* disable OICR interrupt */
wr32(&pf->hw, PFINT_OICR_ENA, 0);
ice_flush(&pf->hw);
if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) {
synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
devm_free_irq(&pf->pdev->dev,
pf->msix_entries[pf->oicr_idx].vector, pf);
}
ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
}
/**
* ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
* @pf: board private structure
*
* This sets up the handler for MSIX 0, which is used to manage the
* non-queue interrupts, e.g. AdminQ and errors. This is not used
* when in MSI or Legacy interrupt mode.
*/
static int ice_req_irq_msix_misc(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
int oicr_idx, err = 0;
u8 itr_gran;
u32 val;
if (!pf->int_name[0])
snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
dev_driver_string(&pf->pdev->dev),
dev_name(&pf->pdev->dev));
/* Do not request IRQ but do enable OICR interrupt since settings are
* lost during reset. Note that this function is called only during
* rebuild path and not while reset is in progress.
*/
if (ice_is_reset_recovery_pending(pf->state))
goto skip_req_irq;
/* reserve one vector in irq_tracker for misc interrupts */
oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
if (oicr_idx < 0)
return oicr_idx;
pf->oicr_idx = oicr_idx;
err = devm_request_irq(&pf->pdev->dev,
pf->msix_entries[pf->oicr_idx].vector,
ice_misc_intr, 0, pf->int_name, pf);
if (err) {
dev_err(&pf->pdev->dev,
"devm_request_irq for %s failed: %d\n",
pf->int_name, err);
ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
return err;
}
skip_req_irq:
ice_ena_misc_vector(pf);
val = ((pf->oicr_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
PFINT_OICR_CTL_CAUSE_ENA_M);
wr32(hw, PFINT_OICR_CTL, val);
/* This enables Admin queue Interrupt causes */
val = ((pf->oicr_idx & PFINT_FW_CTL_MSIX_INDX_M) |
PFINT_FW_CTL_CAUSE_ENA_M);
wr32(hw, PFINT_FW_CTL, val);
itr_gran = hw->itr_gran_200;
wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
ITR_TO_REG(ICE_ITR_8K, itr_gran));
ice_flush(hw);
ice_irq_dynamic_ena(hw, NULL, NULL);
return 0;
}
/**
* ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
* @vsi: the VSI getting queues
*
* Return 0 on success and a negative value on error
*/
static int ice_vsi_get_qs_contig(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int offset, ret = 0;
mutex_lock(&pf->avail_q_mutex);
/* look for contiguous block of queues for tx */
offset = bitmap_find_next_zero_area(pf->avail_txqs, ICE_MAX_TXQS,
0, vsi->alloc_txq, 0);
if (offset < ICE_MAX_TXQS) {
int i;
bitmap_set(pf->avail_txqs, offset, vsi->alloc_txq);
for (i = 0; i < vsi->alloc_txq; i++)
vsi->txq_map[i] = i + offset;
} else {
ret = -ENOMEM;
vsi->tx_mapping_mode = ICE_VSI_MAP_SCATTER;
}
/* look for contiguous block of queues for rx */
offset = bitmap_find_next_zero_area(pf->avail_rxqs, ICE_MAX_RXQS,
0, vsi->alloc_rxq, 0);
if (offset < ICE_MAX_RXQS) {
int i;
bitmap_set(pf->avail_rxqs, offset, vsi->alloc_rxq);
for (i = 0; i < vsi->alloc_rxq; i++)
vsi->rxq_map[i] = i + offset;
} else {
ret = -ENOMEM;
vsi->rx_mapping_mode = ICE_VSI_MAP_SCATTER;
}
mutex_unlock(&pf->avail_q_mutex);
return ret;
}
/**
* ice_vsi_get_qs_scatter - Assign a scattered queues to VSI
* @vsi: the VSI getting queues
*
* Return 0 on success and a negative value on error
*/
static int ice_vsi_get_qs_scatter(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int i, index = 0;
mutex_lock(&pf->avail_q_mutex);
if (vsi->tx_mapping_mode == ICE_VSI_MAP_SCATTER) {
for (i = 0; i < vsi->alloc_txq; i++) {
index = find_next_zero_bit(pf->avail_txqs,
ICE_MAX_TXQS, index);
if (index < ICE_MAX_TXQS) {
set_bit(index, pf->avail_txqs);
vsi->txq_map[i] = index;
} else {
goto err_scatter_tx;
}
}
}
if (vsi->rx_mapping_mode == ICE_VSI_MAP_SCATTER) {
for (i = 0; i < vsi->alloc_rxq; i++) {
index = find_next_zero_bit(pf->avail_rxqs,
ICE_MAX_RXQS, index);
if (index < ICE_MAX_RXQS) {
set_bit(index, pf->avail_rxqs);
vsi->rxq_map[i] = index;
} else {
goto err_scatter_rx;
}
}
}
mutex_unlock(&pf->avail_q_mutex);
return 0;
err_scatter_rx:
/* unflag any queues we have grabbed (i is failed position) */
for (index = 0; index < i; index++) {
clear_bit(vsi->rxq_map[index], pf->avail_rxqs);
vsi->rxq_map[index] = 0;
}
i = vsi->alloc_txq;
err_scatter_tx:
/* i is either position of failed attempt or vsi->alloc_txq */
for (index = 0; index < i; index++) {
clear_bit(vsi->txq_map[index], pf->avail_txqs);
vsi->txq_map[index] = 0;
}
mutex_unlock(&pf->avail_q_mutex);
return -ENOMEM;
}
/**
* ice_vsi_get_qs - Assign queues from PF to VSI
* @vsi: the VSI to assign queues to
*
* Returns 0 on success and a negative value on error
*/
static int ice_vsi_get_qs(struct ice_vsi *vsi)
{
int ret = 0;
vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG;
vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG;
/* NOTE: ice_vsi_get_qs_contig() will set the rx/tx mapping
* modes individually to scatter if assigning contiguous queues
* to rx or tx fails
*/
ret = ice_vsi_get_qs_contig(vsi);
if (ret < 0) {
if (vsi->tx_mapping_mode == ICE_VSI_MAP_SCATTER)
vsi->alloc_txq = max_t(u16, vsi->alloc_txq,
ICE_MAX_SCATTER_TXQS);
if (vsi->rx_mapping_mode == ICE_VSI_MAP_SCATTER)
vsi->alloc_rxq = max_t(u16, vsi->alloc_rxq,
ICE_MAX_SCATTER_RXQS);
ret = ice_vsi_get_qs_scatter(vsi);
}
return ret;
}
/**
* ice_vsi_put_qs - Release queues from VSI to PF
* @vsi: the VSI thats going to release queues
*/
static void ice_vsi_put_qs(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int i;
mutex_lock(&pf->avail_q_mutex);
for (i = 0; i < vsi->alloc_txq; i++) {
clear_bit(vsi->txq_map[i], pf->avail_txqs);
vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
}
for (i = 0; i < vsi->alloc_rxq; i++) {
clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
}
mutex_unlock(&pf->avail_q_mutex);
}
/**
* ice_free_q_vector - Free memory allocated for a specific interrupt vector
* @vsi: VSI having the memory freed
* @v_idx: index of the vector to be freed
*/
static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
{
struct ice_q_vector *q_vector;
struct ice_ring *ring;
if (!vsi->q_vectors[v_idx]) {
dev_dbg(&vsi->back->pdev->dev, "Queue vector at index %d not found\n",
v_idx);
return;
}
q_vector = vsi->q_vectors[v_idx];
ice_for_each_ring(ring, q_vector->tx)
ring->q_vector = NULL;
ice_for_each_ring(ring, q_vector->rx)
ring->q_vector = NULL;
/* only VSI with an associated netdev is set up with NAPI */
if (vsi->netdev)
netif_napi_del(&q_vector->napi);
devm_kfree(&vsi->back->pdev->dev, q_vector);
vsi->q_vectors[v_idx] = NULL;
}
/**
* ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
* @vsi: the VSI having memory freed
*/
static void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
{
int v_idx;
for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++)
ice_free_q_vector(vsi, v_idx);
}
/**
* ice_cfg_netdev - Setup the netdev flags
* @vsi: the VSI being configured
*
* Returns 0 on success, negative value on failure
*/
static int ice_cfg_netdev(struct ice_vsi *vsi)
{
netdev_features_t csumo_features;
netdev_features_t vlano_features;
netdev_features_t dflt_features;
netdev_features_t tso_features;
struct ice_netdev_priv *np;
struct net_device *netdev;
u8 mac_addr[ETH_ALEN];
netdev = alloc_etherdev_mqs(sizeof(struct ice_netdev_priv),
vsi->alloc_txq, vsi->alloc_rxq);
if (!netdev)
return -ENOMEM;
vsi->netdev = netdev;
np = netdev_priv(netdev);
np->vsi = vsi;
dflt_features = NETIF_F_SG |
NETIF_F_HIGHDMA |
NETIF_F_RXHASH;
csumo_features = NETIF_F_RXCSUM |
NETIF_F_IP_CSUM |
NETIF_F_IPV6_CSUM;
vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_RX;
tso_features = NETIF_F_TSO;
/* set features that user can change */
netdev->hw_features = dflt_features | csumo_features |
vlano_features | tso_features;
/* enable features */
netdev->features |= netdev->hw_features;
/* encap and VLAN devices inherit default, csumo and tso features */
netdev->hw_enc_features |= dflt_features | csumo_features |
tso_features;
netdev->vlan_features |= dflt_features | csumo_features |
tso_features;
if (vsi->type == ICE_VSI_PF) {
SET_NETDEV_DEV(netdev, &vsi->back->pdev->dev);
ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
ether_addr_copy(netdev->dev_addr, mac_addr);
ether_addr_copy(netdev->perm_addr, mac_addr);
}
netdev->priv_flags |= IFF_UNICAST_FLT;
/* assign netdev_ops */
netdev->netdev_ops = &ice_netdev_ops;
/* setup watchdog timeout value to be 5 second */
netdev->watchdog_timeo = 5 * HZ;
ice_set_ethtool_ops(netdev);
netdev->min_mtu = ETH_MIN_MTU;
netdev->max_mtu = ICE_MAX_MTU;
return 0;
}
/**
* ice_vsi_free_arrays - clean up vsi resources
* @vsi: pointer to VSI being cleared
* @free_qvectors: bool to specify if q_vectors should be deallocated
*/
static void ice_vsi_free_arrays(struct ice_vsi *vsi, bool free_qvectors)
{
struct ice_pf *pf = vsi->back;
/* free the ring and vector containers */
if (free_qvectors && vsi->q_vectors) {
devm_kfree(&pf->pdev->dev, vsi->q_vectors);
vsi->q_vectors = NULL;
}
if (vsi->tx_rings) {
devm_kfree(&pf->pdev->dev, vsi->tx_rings);
vsi->tx_rings = NULL;
}
if (vsi->rx_rings) {
devm_kfree(&pf->pdev->dev, vsi->rx_rings);
vsi->rx_rings = NULL;
}
}
/**
* ice_vsi_clear - clean up and deallocate the provided vsi
* @vsi: pointer to VSI being cleared
*
* This deallocates the vsi's queue resources, removes it from the PF's
* VSI array if necessary, and deallocates the VSI
*
* Returns 0 on success, negative on failure
*/
static int ice_vsi_clear(struct ice_vsi *vsi)
{
struct ice_pf *pf = NULL;
if (!vsi)
return 0;
if (!vsi->back)
return -EINVAL;
pf = vsi->back;
if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n",
vsi->idx);
return -EINVAL;
}
mutex_lock(&pf->sw_mutex);
/* updates the PF for this cleared vsi */
pf->vsi[vsi->idx] = NULL;
if (vsi->idx < pf->next_vsi)
pf->next_vsi = vsi->idx;
ice_vsi_free_arrays(vsi, true);
mutex_unlock(&pf->sw_mutex);
devm_kfree(&pf->pdev->dev, vsi);
return 0;
}
/**
* ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
* @vsi: the VSI being configured
* @v_idx: index of the vector in the vsi struct
*
* We allocate one q_vector. If allocation fails we return -ENOMEM.
*/
static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
{
struct ice_pf *pf = vsi->back;
struct ice_q_vector *q_vector;
/* allocate q_vector */
q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
if (!q_vector)
return -ENOMEM;
q_vector->vsi = vsi;
q_vector->v_idx = v_idx;
/* only set affinity_mask if the CPU is online */
if (cpu_online(v_idx))
cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
if (vsi->netdev)
netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
NAPI_POLL_WEIGHT);
/* tie q_vector and vsi together */
vsi->q_vectors[v_idx] = q_vector;
return 0;
}
/**
* ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
* @vsi: the VSI being configured
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
*/
static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int v_idx = 0, num_q_vectors;
int err;
if (vsi->q_vectors[0]) {
dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
vsi->vsi_num);
return -EEXIST;
}
if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
num_q_vectors = vsi->num_q_vectors;
} else {
err = -EINVAL;
goto err_out;
}
for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
err = ice_vsi_alloc_q_vector(vsi, v_idx);
if (err)
goto err_out;
}
return 0;
err_out:
while (v_idx--)
ice_free_q_vector(vsi, v_idx);
dev_err(&pf->pdev->dev,
"Failed to allocate %d q_vector for VSI %d, ret=%d\n",
vsi->num_q_vectors, vsi->vsi_num, err);
vsi->num_q_vectors = 0;
return err;
}
/**
* ice_vsi_setup_vector_base - Set up the base vector for the given VSI
* @vsi: ptr to the VSI
*
* This should only be called after ice_vsi_alloc() which allocates the
* corresponding SW VSI structure and initializes num_queue_pairs for the
* newly allocated VSI.
*
* Returns 0 on success or negative on failure
*/
static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int num_q_vectors = 0;
if (vsi->base_vector) {
dev_dbg(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n",
vsi->vsi_num, vsi->base_vector);
return -EEXIST;
}
if (!test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
return -ENOENT;
switch (vsi->type) {
case ICE_VSI_PF:
num_q_vectors = vsi->num_q_vectors;
break;
default:
dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
vsi->type);
break;
}
if (num_q_vectors)
vsi->base_vector = ice_get_res(pf, pf->irq_tracker,
num_q_vectors, vsi->idx);
if (vsi->base_vector < 0) {
dev_err(&pf->pdev->dev,
"Failed to get tracking for %d vectors for VSI %d, err=%d\n",
num_q_vectors, vsi->vsi_num, vsi->base_vector);
return -ENOENT;
}
return 0;
}
/**
* ice_fill_rss_lut - Fill the RSS lookup table with default values
* @lut: Lookup table
* @rss_table_size: Lookup table size
* @rss_size: Range of queue number for hashing
*/
void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
{
u16 i;
for (i = 0; i < rss_table_size; i++)
lut[i] = i % rss_size;
}
/**
* ice_vsi_cfg_rss - Configure RSS params for a VSI
* @vsi: VSI to be configured
*/
static int ice_vsi_cfg_rss(struct ice_vsi *vsi)
{
u8 seed[ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE];
struct ice_aqc_get_set_rss_keys *key;
struct ice_pf *pf = vsi->back;
enum ice_status status;
int err = 0;
u8 *lut;
vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq);
lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL);
if (!lut)
return -ENOMEM;
if (vsi->rss_lut_user)
memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
else
ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
status = ice_aq_set_rss_lut(&pf->hw, vsi->vsi_num, vsi->rss_lut_type,
lut, vsi->rss_table_size);
if (status) {
dev_err(&vsi->back->pdev->dev,
"set_rss_lut failed, error %d\n", status);
err = -EIO;
goto ice_vsi_cfg_rss_exit;
}
key = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*key), GFP_KERNEL);
if (!key) {
err = -ENOMEM;
goto ice_vsi_cfg_rss_exit;
}
if (vsi->rss_hkey_user)
memcpy(seed, vsi->rss_hkey_user,
ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
else
netdev_rss_key_fill((void *)seed,
ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
memcpy(&key->standard_rss_key, seed,
ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
status = ice_aq_set_rss_key(&pf->hw, vsi->vsi_num, key);
if (status) {
dev_err(&vsi->back->pdev->dev, "set_rss_key failed, error %d\n",
status);
err = -EIO;
}
devm_kfree(&pf->pdev->dev, key);
ice_vsi_cfg_rss_exit:
devm_kfree(&pf->pdev->dev, lut);
return err;
}
/**
* ice_vsi_reinit_setup - return resource and reallocate resource for a VSI
* @vsi: pointer to the ice_vsi
*
* This reallocates the VSIs queue resources
*
* Returns 0 on success and negative value on failure
*/
static int ice_vsi_reinit_setup(struct ice_vsi *vsi)
{
u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
int ret, i;
if (!vsi)
return -EINVAL;
ice_vsi_free_q_vectors(vsi);
ice_free_res(vsi->back->irq_tracker, vsi->base_vector, vsi->idx);
vsi->base_vector = 0;
ice_vsi_clear_rings(vsi);
ice_vsi_free_arrays(vsi, false);
ice_vsi_set_num_qs(vsi);
/* Initialize VSI struct elements and create VSI in FW */
ret = ice_vsi_add(vsi);
if (ret < 0)
goto err_vsi;
ret = ice_vsi_alloc_arrays(vsi, false);
if (ret < 0)
goto err_vsi;
switch (vsi->type) {
case ICE_VSI_PF:
if (!vsi->netdev) {
ret = ice_cfg_netdev(vsi);
if (ret)
goto err_rings;
ret = register_netdev(vsi->netdev);
if (ret)
goto err_rings;
netif_carrier_off(vsi->netdev);
netif_tx_stop_all_queues(vsi->netdev);
}
ret = ice_vsi_alloc_q_vectors(vsi);
if (ret)
goto err_rings;
ret = ice_vsi_setup_vector_base(vsi);
if (ret)
goto err_vectors;
ret = ice_vsi_alloc_rings(vsi);
if (ret)
goto err_vectors;
ice_vsi_map_rings_to_vectors(vsi);
break;
default:
break;
}
ice_vsi_set_tc_cfg(vsi);
/* configure VSI nodes based on number of queues and TC's */
for (i = 0; i < vsi->tc_cfg.numtc; i++)
max_txqs[i] = vsi->num_txq;
ret = ice_cfg_vsi_lan(vsi->port_info, vsi->vsi_num,
vsi->tc_cfg.ena_tc, max_txqs);
if (ret) {
dev_info(&vsi->back->pdev->dev,
"Failed VSI lan queue config\n");
goto err_vectors;
}
return 0;
err_vectors:
ice_vsi_free_q_vectors(vsi);
err_rings:
if (vsi->netdev) {
vsi->current_netdev_flags = 0;
unregister_netdev(vsi->netdev);
free_netdev(vsi->netdev);
vsi->netdev = NULL;
}
err_vsi:
ice_vsi_clear(vsi);
set_bit(__ICE_RESET_FAILED, vsi->back->state);
return ret;
}
/**
* ice_vsi_setup - Set up a VSI by a given type
* @pf: board private structure
* @type: VSI type
* @pi: pointer to the port_info instance
*
* This allocates the sw VSI structure and its queue resources.
*
* Returns pointer to the successfully allocated and configure VSI sw struct on
* success, otherwise returns NULL on failure.
*/
static struct ice_vsi *
ice_vsi_setup(struct ice_pf *pf, enum ice_vsi_type type,
struct ice_port_info *pi)
{
u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
struct device *dev = &pf->pdev->dev;
struct ice_vsi_ctx ctxt = { 0 };
struct ice_vsi *vsi;
int ret, i;
vsi = ice_vsi_alloc(pf, type);
if (!vsi) {
dev_err(dev, "could not allocate VSI\n");
return NULL;
}
vsi->port_info = pi;
vsi->vsw = pf->first_sw;
if (ice_vsi_get_qs(vsi)) {
dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
vsi->idx);
goto err_get_qs;
}
/* set RSS capabilities */
ice_vsi_set_rss_params(vsi);
/* create the VSI */
ret = ice_vsi_add(vsi);
if (ret)
goto err_vsi;
ctxt.vsi_num = vsi->vsi_num;
switch (vsi->type) {
case ICE_VSI_PF:
ret = ice_cfg_netdev(vsi);
if (ret)
goto err_cfg_netdev;
ret = register_netdev(vsi->netdev);
if (ret)
goto err_register_netdev;
netif_carrier_off(vsi->netdev);
/* make sure transmit queues start off as stopped */
netif_tx_stop_all_queues(vsi->netdev);
ret = ice_vsi_alloc_q_vectors(vsi);
if (ret)
goto err_msix;
ret = ice_vsi_setup_vector_base(vsi);
if (ret)
goto err_rings;
ret = ice_vsi_alloc_rings(vsi);
if (ret)
goto err_rings;
ice_vsi_map_rings_to_vectors(vsi);
/* Do not exit if configuring RSS had an issue, at least
* receive traffic on first queue. Hence no need to capture
* return value
*/
if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
ice_vsi_cfg_rss(vsi);
break;
default:
/* if vsi type is not recognized, clean up the resources and
* exit
*/
goto err_rings;
}
ice_vsi_set_tc_cfg(vsi);
/* configure VSI nodes based on number of queues and TC's */
for (i = 0; i < vsi->tc_cfg.numtc; i++)
max_txqs[i] = vsi->num_txq;
ret = ice_cfg_vsi_lan(vsi->port_info, vsi->vsi_num,
vsi->tc_cfg.ena_tc, max_txqs);
if (ret) {
dev_info(&pf->pdev->dev, "Failed VSI lan queue config\n");
goto err_rings;
}
return vsi;
err_rings:
ice_vsi_free_q_vectors(vsi);
err_msix:
if (vsi->netdev && vsi->netdev->reg_state == NETREG_REGISTERED)
unregister_netdev(vsi->netdev);
err_register_netdev:
if (vsi->netdev) {
free_netdev(vsi->netdev);
vsi->netdev = NULL;
}
err_cfg_netdev:
ret = ice_aq_free_vsi(&pf->hw, &ctxt, false, NULL);
if (ret)
dev_err(&vsi->back->pdev->dev,
"Free VSI AQ call failed, err %d\n", ret);
err_vsi:
ice_vsi_put_qs(vsi);
err_get_qs:
pf->q_left_tx += vsi->alloc_txq;
pf->q_left_rx += vsi->alloc_rxq;
ice_vsi_clear(vsi);
return NULL;
}
/**
* ice_vsi_add_vlan - Add vsi membership for given vlan
* @vsi: the vsi being configured
* @vid: vlan id to be added
*/
static int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid)
{
struct ice_fltr_list_entry *tmp;
struct ice_pf *pf = vsi->back;
LIST_HEAD(tmp_add_list);
enum ice_status status;
int err = 0;
tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL);
if (!tmp)
return -ENOMEM;
tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
tmp->fltr_info.flag = ICE_FLTR_TX;
tmp->fltr_info.src = vsi->vsi_num;
tmp->fltr_info.fwd_id.vsi_id = vsi->vsi_num;
tmp->fltr_info.l_data.vlan.vlan_id = vid;
INIT_LIST_HEAD(&tmp->list_entry);
list_add(&tmp->list_entry, &tmp_add_list);
status = ice_add_vlan(&pf->hw, &tmp_add_list);
if (status) {
err = -ENODEV;
dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n",
vid, vsi->vsi_num);
}
ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
return err;
}
/**
* ice_vlan_rx_add_vid - Add a vlan id filter to HW offload
* @netdev: network interface to be adjusted
* @proto: unused protocol
* @vid: vlan id to be added
*
* net_device_ops implementation for adding vlan ids
*/
static int ice_vlan_rx_add_vid(struct net_device *netdev,
__always_unused __be16 proto, u16 vid)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
int ret = 0;
if (vid >= VLAN_N_VID) {
netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
vid, VLAN_N_VID);
return -EINVAL;
}
if (vsi->info.pvid)
return -EINVAL;
/* Add all VLAN ids including 0 to the switch filter. VLAN id 0 is
* needed to continue allowing all untagged packets since VLAN prune
* list is applied to all packets by the switch
*/
ret = ice_vsi_add_vlan(vsi, vid);
if (!ret)
set_bit(vid, vsi->active_vlans);
return ret;
}
/**
* ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
* @vsi: the VSI being configured
* @vid: VLAN id to be removed
*/
static void ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
{
struct ice_fltr_list_entry *list;
struct ice_pf *pf = vsi->back;
LIST_HEAD(tmp_add_list);
list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
if (!list)
return;
list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
list->fltr_info.fwd_id.vsi_id = vsi->vsi_num;
list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
list->fltr_info.l_data.vlan.vlan_id = vid;
list->fltr_info.flag = ICE_FLTR_TX;
list->fltr_info.src = vsi->vsi_num;
INIT_LIST_HEAD(&list->list_entry);
list_add(&list->list_entry, &tmp_add_list);
if (ice_remove_vlan(&pf->hw, &tmp_add_list))
dev_err(&pf->pdev->dev, "Error removing VLAN %d on vsi %i\n",
vid, vsi->vsi_num);
ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
}
/**
* ice_vlan_rx_kill_vid - Remove a vlan id filter from HW offload
* @netdev: network interface to be adjusted
* @proto: unused protocol
* @vid: vlan id to be removed
*
* net_device_ops implementation for removing vlan ids
*/
static int ice_vlan_rx_kill_vid(struct net_device *netdev,
__always_unused __be16 proto, u16 vid)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
if (vsi->info.pvid)
return -EINVAL;
/* return code is ignored as there is nothing a user
* can do about failure to remove and a log message was
* already printed from the other function
*/
ice_vsi_kill_vlan(vsi, vid);
clear_bit(vid, vsi->active_vlans);
return 0;
}
/**
* ice_setup_pf_sw - Setup the HW switch on startup or after reset
* @pf: board private structure
*
* Returns 0 on success, negative value on failure
*/
static int ice_setup_pf_sw(struct ice_pf *pf)
{
LIST_HEAD(tmp_add_list);
u8 broadcast[ETH_ALEN];
struct ice_vsi *vsi;
int status = 0;
if (!ice_is_reset_recovery_pending(pf->state)) {
vsi = ice_vsi_setup(pf, ICE_VSI_PF, pf->hw.port_info);
if (!vsi) {
status = -ENOMEM;
goto error_exit;
}
} else {
vsi = pf->vsi[0];
status = ice_vsi_reinit_setup(vsi);
if (status < 0)
return -EIO;
}
/* tmp_add_list contains a list of MAC addresses for which MAC
* filters need to be programmed. Add the VSI's unicast MAC to
* this list
*/
status = ice_add_mac_to_list(vsi, &tmp_add_list,
vsi->port_info->mac.perm_addr);
if (status)
goto error_exit;
/* VSI needs to receive broadcast traffic, so add the broadcast
* MAC address to the list.
*/
eth_broadcast_addr(broadcast);
status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast);
if (status)
goto error_exit;
/* program MAC filters for entries in tmp_add_list */
status = ice_add_mac(&pf->hw, &tmp_add_list);
if (status) {
dev_err(&pf->pdev->dev, "Could not add MAC filters\n");
status = -ENOMEM;
goto error_exit;
}
ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
return status;
error_exit:
ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
if (vsi) {
ice_vsi_free_q_vectors(vsi);
if (vsi->netdev && vsi->netdev->reg_state == NETREG_REGISTERED)
unregister_netdev(vsi->netdev);
if (vsi->netdev) {
free_netdev(vsi->netdev);
vsi->netdev = NULL;
}
ice_vsi_delete(vsi);
ice_vsi_put_qs(vsi);
pf->q_left_tx += vsi->alloc_txq;
pf->q_left_rx += vsi->alloc_rxq;
ice_vsi_clear(vsi);
}
return status;
}
/**
* ice_determine_q_usage - Calculate queue distribution
* @pf: board private structure
*
* Return -ENOMEM if we don't get enough queues for all ports
*/
static void ice_determine_q_usage(struct ice_pf *pf)
{
u16 q_left_tx, q_left_rx;
q_left_tx = pf->hw.func_caps.common_cap.num_txq;
q_left_rx = pf->hw.func_caps.common_cap.num_rxq;
pf->num_lan_tx = min_t(int, q_left_tx, num_online_cpus());
/* only 1 rx queue unless RSS is enabled */
if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
pf->num_lan_rx = 1;
else
pf->num_lan_rx = min_t(int, q_left_rx, num_online_cpus());
pf->q_left_tx = q_left_tx - pf->num_lan_tx;
pf->q_left_rx = q_left_rx - pf->num_lan_rx;
}
/**
* ice_deinit_pf - Unrolls initialziations done by ice_init_pf
* @pf: board private structure to initialize
*/
static void ice_deinit_pf(struct ice_pf *pf)
{
if (pf->serv_tmr.function)
del_timer_sync(&pf->serv_tmr);
if (pf->serv_task.func)
cancel_work_sync(&pf->serv_task);
mutex_destroy(&pf->sw_mutex);
mutex_destroy(&pf->avail_q_mutex);
}
/**
* ice_init_pf - Initialize general software structures (struct ice_pf)
* @pf: board private structure to initialize
*/
static void ice_init_pf(struct ice_pf *pf)
{
bitmap_zero(pf->flags, ICE_PF_FLAGS_NBITS);
set_bit(ICE_FLAG_MSIX_ENA, pf->flags);
mutex_init(&pf->sw_mutex);
mutex_init(&pf->avail_q_mutex);
/* Clear avail_[t|r]x_qs bitmaps (set all to avail) */
mutex_lock(&pf->avail_q_mutex);
bitmap_zero(pf->avail_txqs, ICE_MAX_TXQS);
bitmap_zero(pf->avail_rxqs, ICE_MAX_RXQS);
mutex_unlock(&pf->avail_q_mutex);
if (pf->hw.func_caps.common_cap.rss_table_size)
set_bit(ICE_FLAG_RSS_ENA, pf->flags);
/* setup service timer and periodic service task */
timer_setup(&pf->serv_tmr, ice_service_timer, 0);
pf->serv_tmr_period = HZ;
INIT_WORK(&pf->serv_task, ice_service_task);
clear_bit(__ICE_SERVICE_SCHED, pf->state);
}
/**
* ice_ena_msix_range - Request a range of MSIX vectors from the OS
* @pf: board private structure
*
* compute the number of MSIX vectors required (v_budget) and request from
* the OS. Return the number of vectors reserved or negative on failure
*/
static int ice_ena_msix_range(struct ice_pf *pf)
{
int v_left, v_actual, v_budget = 0;
int needed, err, i;
v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
/* reserve one vector for miscellaneous handler */
needed = 1;
v_budget += needed;
v_left -= needed;
/* reserve vectors for LAN traffic */
pf->num_lan_msix = min_t(int, num_online_cpus(), v_left);
v_budget += pf->num_lan_msix;
pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget,
sizeof(struct msix_entry), GFP_KERNEL);
if (!pf->msix_entries) {
err = -ENOMEM;
goto exit_err;
}
for (i = 0; i < v_budget; i++)
pf->msix_entries[i].entry = i;
/* actually reserve the vectors */
v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
ICE_MIN_MSIX, v_budget);
if (v_actual < 0) {
dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n");
err = v_actual;
goto msix_err;
}
if (v_actual < v_budget) {
dev_warn(&pf->pdev->dev,
"not enough vectors. requested = %d, obtained = %d\n",
v_budget, v_actual);
if (v_actual >= (pf->num_lan_msix + 1)) {
pf->num_avail_msix = v_actual - (pf->num_lan_msix + 1);
} else if (v_actual >= 2) {
pf->num_lan_msix = 1;
pf->num_avail_msix = v_actual - 2;
} else {
pci_disable_msix(pf->pdev);
err = -ERANGE;
goto msix_err;
}
}
return v_actual;
msix_err:
devm_kfree(&pf->pdev->dev, pf->msix_entries);
goto exit_err;
exit_err:
pf->num_lan_msix = 0;
clear_bit(ICE_FLAG_MSIX_ENA, pf->flags);
return err;
}
/**
* ice_dis_msix - Disable MSI-X interrupt setup in OS
* @pf: board private structure
*/
static void ice_dis_msix(struct ice_pf *pf)
{
pci_disable_msix(pf->pdev);
devm_kfree(&pf->pdev->dev, pf->msix_entries);
pf->msix_entries = NULL;
clear_bit(ICE_FLAG_MSIX_ENA, pf->flags);
}
/**
* ice_init_interrupt_scheme - Determine proper interrupt scheme
* @pf: board private structure to initialize
*/
static int ice_init_interrupt_scheme(struct ice_pf *pf)
{
int vectors = 0;
ssize_t size;
if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
vectors = ice_ena_msix_range(pf);
else
return -ENODEV;
if (vectors < 0)
return vectors;
/* set up vector assignment tracking */
size = sizeof(struct ice_res_tracker) + (sizeof(u16) * vectors);
pf->irq_tracker = devm_kzalloc(&pf->pdev->dev, size, GFP_KERNEL);
if (!pf->irq_tracker) {
ice_dis_msix(pf);
return -ENOMEM;
}
pf->irq_tracker->num_entries = vectors;
return 0;
}
/**
* ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
* @pf: board private structure
*/
static void ice_clear_interrupt_scheme(struct ice_pf *pf)
{
if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
ice_dis_msix(pf);
if (pf->irq_tracker) {
devm_kfree(&pf->pdev->dev, pf->irq_tracker);
pf->irq_tracker = NULL;
}
}
/**
* ice_probe - Device initialization routine
* @pdev: PCI device information struct
* @ent: entry in ice_pci_tbl
*
* Returns 0 on success, negative on failure
*/
static int ice_probe(struct pci_dev *pdev,
const struct pci_device_id __always_unused *ent)
{
struct ice_pf *pf;
struct ice_hw *hw;
int err;
/* this driver uses devres, see Documentation/driver-model/devres.txt */
err = pcim_enable_device(pdev);
if (err)
return err;
err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
if (err) {
dev_err(&pdev->dev, "BAR0 I/O map error %d\n", err);
return err;
}
pf = devm_kzalloc(&pdev->dev, sizeof(*pf), GFP_KERNEL);
if (!pf)
return -ENOMEM;
/* set up for high or low dma */
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (err)
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err);
return err;
}
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
pf->pdev = pdev;
pci_set_drvdata(pdev, pf);
set_bit(__ICE_DOWN, pf->state);
hw = &pf->hw;
hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
hw->back = pf;
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_device_id = pdev->subsystem_device;
hw->bus.device = PCI_SLOT(pdev->devfn);
hw->bus.func = PCI_FUNC(pdev->devfn);
ice_set_ctrlq_len(hw);
pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
#ifndef CONFIG_DYNAMIC_DEBUG
if (debug < -1)
hw->debug_mask = debug;
#endif
err = ice_init_hw(hw);
if (err) {
dev_err(&pdev->dev, "ice_init_hw failed: %d\n", err);
err = -EIO;
goto err_exit_unroll;
}
dev_info(&pdev->dev, "firmware %d.%d.%05d api %d.%d\n",
hw->fw_maj_ver, hw->fw_min_ver, hw->fw_build,
hw->api_maj_ver, hw->api_min_ver);
ice_init_pf(pf);
ice_determine_q_usage(pf);
pf->num_alloc_vsi = min_t(u16, ICE_MAX_VSI_ALLOC,
hw->func_caps.guaranteed_num_vsi);
if (!pf->num_alloc_vsi) {
err = -EIO;
goto err_init_pf_unroll;
}
pf->vsi = devm_kcalloc(&pdev->dev, pf->num_alloc_vsi,
sizeof(struct ice_vsi *), GFP_KERNEL);
if (!pf->vsi) {
err = -ENOMEM;
goto err_init_pf_unroll;
}
err = ice_init_interrupt_scheme(pf);
if (err) {
dev_err(&pdev->dev,
"ice_init_interrupt_scheme failed: %d\n", err);
err = -EIO;
goto err_init_interrupt_unroll;
}
/* In case of MSIX we are going to setup the misc vector right here
* to handle admin queue events etc. In case of legacy and MSI
* the misc functionality and queue processing is combined in
* the same vector and that gets setup at open.
*/
if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
err = ice_req_irq_msix_misc(pf);
if (err) {
dev_err(&pdev->dev,
"setup of misc vector failed: %d\n", err);
goto err_init_interrupt_unroll;
}
}
/* create switch struct for the switch element created by FW on boot */
pf->first_sw = devm_kzalloc(&pdev->dev, sizeof(struct ice_sw),
GFP_KERNEL);
if (!pf->first_sw) {
err = -ENOMEM;
goto err_msix_misc_unroll;
}
pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
pf->first_sw->pf = pf;
/* record the sw_id available for later use */
pf->first_sw->sw_id = hw->port_info->sw_id;
err = ice_setup_pf_sw(pf);
if (err) {
dev_err(&pdev->dev,
"probe failed due to setup pf switch:%d\n", err);
goto err_alloc_sw_unroll;
}
/* Driver is mostly up */
clear_bit(__ICE_DOWN, pf->state);
/* since everything is good, start the service timer */
mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
err = ice_init_link_events(pf->hw.port_info);
if (err) {
dev_err(&pdev->dev, "ice_init_link_events failed: %d\n", err);
goto err_alloc_sw_unroll;
}
return 0;
err_alloc_sw_unroll:
set_bit(__ICE_DOWN, pf->state);
devm_kfree(&pf->pdev->dev, pf->first_sw);
err_msix_misc_unroll:
ice_free_irq_msix_misc(pf);
err_init_interrupt_unroll:
ice_clear_interrupt_scheme(pf);
devm_kfree(&pdev->dev, pf->vsi);
err_init_pf_unroll:
ice_deinit_pf(pf);
ice_deinit_hw(hw);
err_exit_unroll:
pci_disable_pcie_error_reporting(pdev);
return err;
}
/**
* ice_remove - Device removal routine
* @pdev: PCI device information struct
*/
static void ice_remove(struct pci_dev *pdev)
{
struct ice_pf *pf = pci_get_drvdata(pdev);
int i = 0;
int err;
if (!pf)
return;
set_bit(__ICE_DOWN, pf->state);
for (i = 0; i < pf->num_alloc_vsi; i++) {
if (!pf->vsi[i])
continue;
err = ice_vsi_release(pf->vsi[i]);
if (err)
dev_dbg(&pf->pdev->dev, "Failed to release VSI index %d (err %d)\n",
i, err);
}
ice_free_irq_msix_misc(pf);
ice_clear_interrupt_scheme(pf);
ice_deinit_pf(pf);
ice_deinit_hw(&pf->hw);
pci_disable_pcie_error_reporting(pdev);
}
/* ice_pci_tbl - PCI Device ID Table
*
* Wildcard entries (PCI_ANY_ID) should come last
* Last entry must be all 0s
*
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
* Class, Class Mask, private data (not used) }
*/
static const struct pci_device_id ice_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_BACKPLANE), 0 },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_QSFP), 0 },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_SFP), 0 },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_10G_BASE_T), 0 },
{ PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_SGMII), 0 },
/* required last entry */
{ 0, }
};
MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
static struct pci_driver ice_driver = {
.name = KBUILD_MODNAME,
.id_table = ice_pci_tbl,
.probe = ice_probe,
.remove = ice_remove,
};
/**
* ice_module_init - Driver registration routine
*
* ice_module_init is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
*/
static int __init ice_module_init(void)
{
int status;
pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver);
pr_info("%s\n", ice_copyright);
ice_wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, KBUILD_MODNAME);
if (!ice_wq) {
pr_err("Failed to create workqueue\n");
return -ENOMEM;
}
status = pci_register_driver(&ice_driver);
if (status) {
pr_err("failed to register pci driver, err %d\n", status);
destroy_workqueue(ice_wq);
}
return status;
}
module_init(ice_module_init);
/**
* ice_module_exit - Driver exit cleanup routine
*
* ice_module_exit is called just before the driver is removed
* from memory.
*/
static void __exit ice_module_exit(void)
{
pci_unregister_driver(&ice_driver);
destroy_workqueue(ice_wq);
pr_info("module unloaded\n");
}
module_exit(ice_module_exit);
/**
* ice_set_mac_address - NDO callback to set mac address
* @netdev: network interface device structure
* @pi: pointer to an address structure
*
* Returns 0 on success, negative on failure
*/
static int ice_set_mac_address(struct net_device *netdev, void *pi)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
struct sockaddr *addr = pi;
enum ice_status status;
LIST_HEAD(a_mac_list);
LIST_HEAD(r_mac_list);
u8 flags = 0;
int err;
u8 *mac;
mac = (u8 *)addr->sa_data;
if (!is_valid_ether_addr(mac))
return -EADDRNOTAVAIL;
if (ether_addr_equal(netdev->dev_addr, mac)) {
netdev_warn(netdev, "already using mac %pM\n", mac);
return 0;
}
if (test_bit(__ICE_DOWN, pf->state) ||
ice_is_reset_recovery_pending(pf->state)) {
netdev_err(netdev, "can't set mac %pM. device not ready\n",
mac);
return -EBUSY;
}
/* When we change the mac address we also have to change the mac address
* based filter rules that were created previously for the old mac
* address. So first, we remove the old filter rule using ice_remove_mac
* and then create a new filter rule using ice_add_mac. Note that for
* both these operations, we first need to form a "list" of mac
* addresses (even though in this case, we have only 1 mac address to be
* added/removed) and this done using ice_add_mac_to_list. Depending on
* the ensuing operation this "list" of mac addresses is either to be
* added or removed from the filter.
*/
err = ice_add_mac_to_list(vsi, &r_mac_list, netdev->dev_addr);
if (err) {
err = -EADDRNOTAVAIL;
goto free_lists;
}
status = ice_remove_mac(hw, &r_mac_list);
if (status) {
err = -EADDRNOTAVAIL;
goto free_lists;
}
err = ice_add_mac_to_list(vsi, &a_mac_list, mac);
if (err) {
err = -EADDRNOTAVAIL;
goto free_lists;
}
status = ice_add_mac(hw, &a_mac_list);
if (status) {
err = -EADDRNOTAVAIL;
goto free_lists;
}
free_lists:
/* free list entries */
ice_free_fltr_list(&pf->pdev->dev, &r_mac_list);
ice_free_fltr_list(&pf->pdev->dev, &a_mac_list);
if (err) {
netdev_err(netdev, "can't set mac %pM. filter update failed\n",
mac);
return err;
}
/* change the netdev's mac address */
memcpy(netdev->dev_addr, mac, netdev->addr_len);
netdev_dbg(vsi->netdev, "updated mac address to %pM\n",
netdev->dev_addr);
/* write new mac address to the firmware */
flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
if (status) {
netdev_err(netdev, "can't set mac %pM. write to firmware failed.\n",
mac);
}
return 0;
}
/**
* ice_set_rx_mode - NDO callback to set the netdev filters
* @netdev: network interface device structure
*/
static void ice_set_rx_mode(struct net_device *netdev)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
if (!vsi)
return;
/* Set the flags to synchronize filters
* ndo_set_rx_mode may be triggered even without a change in netdev
* flags
*/
set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
/* schedule our worker thread which will take care of
* applying the new filter changes
*/
ice_service_task_schedule(vsi->back);
}
/**
* ice_fdb_add - add an entry to the hardware database
* @ndm: the input from the stack
* @tb: pointer to array of nladdr (unused)
* @dev: the net device pointer
* @addr: the MAC address entry being added
* @vid: VLAN id
* @flags: instructions from stack about fdb operation
*/
static int ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
struct net_device *dev, const unsigned char *addr,
u16 vid, u16 flags)
{
int err;
if (vid) {
netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
return -EINVAL;
}
if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
netdev_err(dev, "FDB only supports static addresses\n");
return -EINVAL;
}
if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
err = dev_uc_add_excl(dev, addr);
else if (is_multicast_ether_addr(addr))
err = dev_mc_add_excl(dev, addr);
else
err = -EINVAL;
/* Only return duplicate errors if NLM_F_EXCL is set */
if (err == -EEXIST && !(flags & NLM_F_EXCL))
err = 0;
return err;
}
/**
* ice_fdb_del - delete an entry from the hardware database
* @ndm: the input from the stack
* @tb: pointer to array of nladdr (unused)
* @dev: the net device pointer
* @addr: the MAC address entry being added
* @vid: VLAN id
*/
static int ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
struct net_device *dev, const unsigned char *addr,
__always_unused u16 vid)
{
int err;
if (ndm->ndm_state & NUD_PERMANENT) {
netdev_err(dev, "FDB only supports static addresses\n");
return -EINVAL;
}
if (is_unicast_ether_addr(addr))
err = dev_uc_del(dev, addr);
else if (is_multicast_ether_addr(addr))
err = dev_mc_del(dev, addr);
else
err = -EINVAL;
return err;
}
/**
* ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
* @vsi: the vsi being changed
*/
static int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
{
struct device *dev = &vsi->back->pdev->dev;
struct ice_hw *hw = &vsi->back->hw;
struct ice_vsi_ctx ctxt = { 0 };
enum ice_status status;
/* Here we are configuring the VSI to let the driver add VLAN tags by
* setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
* insertion happens in the Tx hot path, in ice_tx_map.
*/
ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
ctxt.vsi_num = vsi->vsi_num;
status = ice_aq_update_vsi(hw, &ctxt, NULL);
if (status) {
dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
status, hw->adminq.sq_last_status);
return -EIO;
}
vsi->info.vlan_flags = ctxt.info.vlan_flags;
return 0;
}
/**
* ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
* @vsi: the vsi being changed
* @ena: boolean value indicating if this is a enable or disable request
*/
static int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
{
struct device *dev = &vsi->back->pdev->dev;
struct ice_hw *hw = &vsi->back->hw;
struct ice_vsi_ctx ctxt = { 0 };
enum ice_status status;
/* Here we are configuring what the VSI should do with the VLAN tag in
* the Rx packet. We can either leave the tag in the packet or put it in
* the Rx descriptor.
*/
if (ena) {
/* Strip VLAN tag from Rx packet and put it in the desc */
ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
} else {
/* Disable stripping. Leave tag in packet */
ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
}
/* Allow all packets untagged/tagged */
ctxt.info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
ctxt.vsi_num = vsi->vsi_num;
status = ice_aq_update_vsi(hw, &ctxt, NULL);
if (status) {
dev_err(dev, "update VSI for VALN strip failed, ena = %d err %d aq_err %d\n",
ena, status, hw->adminq.sq_last_status);
return -EIO;
}
vsi->info.vlan_flags = ctxt.info.vlan_flags;
return 0;
}
/**
* ice_set_features - set the netdev feature flags
* @netdev: ptr to the netdev being adjusted
* @features: the feature set that the stack is suggesting
*/
static int ice_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
int ret = 0;
if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
!(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
ret = ice_vsi_manage_vlan_stripping(vsi, true);
else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
ret = ice_vsi_manage_vlan_stripping(vsi, false);
else if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
!(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
ret = ice_vsi_manage_vlan_insertion(vsi);
else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
ret = ice_vsi_manage_vlan_insertion(vsi);
return ret;
}
/**
* ice_vsi_vlan_setup - Setup vlan offload properties on a VSI
* @vsi: VSI to setup vlan properties for
*/
static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
{
int ret = 0;
if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
ret = ice_vsi_manage_vlan_stripping(vsi, true);
if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
ret = ice_vsi_manage_vlan_insertion(vsi);
return ret;
}
/**
* ice_restore_vlan - Reinstate VLANs when vsi/netdev comes back up
* @vsi: the VSI being brought back up
*/
static int ice_restore_vlan(struct ice_vsi *vsi)
{
int err;
u16 vid;
if (!vsi->netdev)
return -EINVAL;
err = ice_vsi_vlan_setup(vsi);
if (err)
return err;
for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) {
err = ice_vlan_rx_add_vid(vsi->netdev, htons(ETH_P_8021Q), vid);
if (err)
break;
}
return err;
}
/**
* ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
* @ring: The Tx ring to configure
* @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
* @pf_q: queue index in the PF space
*
* Configure the Tx descriptor ring in TLAN context.
*/
static void
ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
{
struct ice_vsi *vsi = ring->vsi;
struct ice_hw *hw = &vsi->back->hw;
tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
tlan_ctx->port_num = vsi->port_info->lport;
/* Transmit Queue Length */
tlan_ctx->qlen = ring->count;
/* PF number */
tlan_ctx->pf_num = hw->pf_id;
/* queue belongs to a specific VSI type
* VF / VM index should be programmed per vmvf_type setting:
* for vmvf_type = VF, it is VF number between 0-256
* for vmvf_type = VM, it is VM number between 0-767
* for PF or EMP this field should be set to zero
*/
switch (vsi->type) {
case ICE_VSI_PF:
tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
break;
default:
return;
}
/* make sure the context is associated with the right VSI */
tlan_ctx->src_vsi = vsi->vsi_num;
tlan_ctx->tso_ena = ICE_TX_LEGACY;
tlan_ctx->tso_qnum = pf_q;
/* Legacy or Advanced Host Interface:
* 0: Advanced Host Interface
* 1: Legacy Host Interface
*/
tlan_ctx->legacy_int = ICE_TX_LEGACY;
}
/**
* ice_vsi_cfg_txqs - Configure the VSI for Tx
* @vsi: the VSI being configured
*
* Return 0 on success and a negative value on error
* Configure the Tx VSI for operation.
*/
static int ice_vsi_cfg_txqs(struct ice_vsi *vsi)
{
struct ice_aqc_add_tx_qgrp *qg_buf;
struct ice_aqc_add_txqs_perq *txq;
struct ice_pf *pf = vsi->back;
enum ice_status status;
u16 buf_len, i, pf_q;
int err = 0, tc = 0;
u8 num_q_grps;
buf_len = sizeof(struct ice_aqc_add_tx_qgrp);
qg_buf = devm_kzalloc(&pf->pdev->dev, buf_len, GFP_KERNEL);
if (!qg_buf)
return -ENOMEM;
if (vsi->num_txq > ICE_MAX_TXQ_PER_TXQG) {
err = -EINVAL;
goto err_cfg_txqs;
}
qg_buf->num_txqs = 1;
num_q_grps = 1;
/* set up and configure the tx queues */
ice_for_each_txq(vsi, i) {
struct ice_tlan_ctx tlan_ctx = { 0 };
pf_q = vsi->txq_map[i];
ice_setup_tx_ctx(vsi->tx_rings[i], &tlan_ctx, pf_q);
/* copy context contents into the qg_buf */
qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
ice_tlan_ctx_info);
/* init queue specific tail reg. It is referred as transmit
* comm scheduler queue doorbell.
*/
vsi->tx_rings[i]->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
status = ice_ena_vsi_txq(vsi->port_info, vsi->vsi_num, tc,
num_q_grps, qg_buf, buf_len, NULL);
if (status) {
dev_err(&vsi->back->pdev->dev,
"Failed to set LAN Tx queue context, error: %d\n",
status);
err = -ENODEV;
goto err_cfg_txqs;
}
/* Add Tx Queue TEID into the VSI tx ring from the response
* This will complete configuring and enabling the queue.
*/
txq = &qg_buf->txqs[0];
if (pf_q == le16_to_cpu(txq->txq_id))
vsi->tx_rings[i]->txq_teid =
le32_to_cpu(txq->q_teid);
}
err_cfg_txqs:
devm_kfree(&pf->pdev->dev, qg_buf);
return err;
}
/**
* ice_setup_rx_ctx - Configure a receive ring context
* @ring: The Rx ring to configure
*
* Configure the Rx descriptor ring in RLAN context.
*/
static int ice_setup_rx_ctx(struct ice_ring *ring)
{
struct ice_vsi *vsi = ring->vsi;
struct ice_hw *hw = &vsi->back->hw;
u32 rxdid = ICE_RXDID_FLEX_NIC;
struct ice_rlan_ctx rlan_ctx;
u32 regval;
u16 pf_q;
int err;
/* what is RX queue number in global space of 2K rx queues */
pf_q = vsi->rxq_map[ring->q_index];
/* clear the context structure first */
memset(&rlan_ctx, 0, sizeof(rlan_ctx));
rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
rlan_ctx.qlen = ring->count;
/* Receive Packet Data Buffer Size.
* The Packet Data Buffer Size is defined in 128 byte units.
*/
rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
/* use 32 byte descriptors */
rlan_ctx.dsize = 1;
/* Strip the Ethernet CRC bytes before the packet is posted to host
* memory.
*/
rlan_ctx.crcstrip = 1;
/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
rlan_ctx.l2tsel = 1;
rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
/* This controls whether VLAN is stripped from inner headers
* The VLAN in the inner L2 header is stripped to the receive
* descriptor if enabled by this flag.
*/
rlan_ctx.showiv = 0;
/* Max packet size for this queue - must not be set to a larger value
* than 5 x DBUF
*/
rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);
/* Rx queue threshold in units of 64 */
rlan_ctx.lrxqthresh = 1;
/* Enable Flexible Descriptors in the queue context which
* allows this driver to select a specific receive descriptor format
*/
regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
QRXFLXP_CNTXT_RXDID_IDX_M;
/* increasing context priority to pick up profile id;
* default is 0x01; setting to 0x03 to ensure profile
* is programming if prev context is of same priority
*/
regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
QRXFLXP_CNTXT_RXDID_PRIO_M;
wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
/* Absolute queue number out of 2K needs to be passed */
err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
if (err) {
dev_err(&vsi->back->pdev->dev,
"Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
pf_q, err);
return -EIO;
}
/* init queue specific tail register */
ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
writel(0, ring->tail);
ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
return 0;
}
/**
* ice_vsi_cfg_rxqs - Configure the VSI for Rx
* @vsi: the VSI being configured
*
* Return 0 on success and a negative value on error
* Configure the Rx VSI for operation.
*/
static int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
{
int err = 0;
u16 i;
if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN)
vsi->max_frame = vsi->netdev->mtu +
ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
else
vsi->max_frame = ICE_RXBUF_2048;
vsi->rx_buf_len = ICE_RXBUF_2048;
/* set up individual rings */
for (i = 0; i < vsi->num_rxq && !err; i++)
err = ice_setup_rx_ctx(vsi->rx_rings[i]);
if (err) {
dev_err(&vsi->back->pdev->dev, "ice_setup_rx_ctx failed\n");
return -EIO;
}
return err;
}
/**
* ice_vsi_cfg - Setup the VSI
* @vsi: the VSI being configured
*
* Return 0 on success and negative value on error
*/
static int ice_vsi_cfg(struct ice_vsi *vsi)
{
int err;
if (vsi->netdev) {
ice_set_rx_mode(vsi->netdev);
err = ice_restore_vlan(vsi);
if (err)
return err;
}
err = ice_vsi_cfg_txqs(vsi);
if (!err)
err = ice_vsi_cfg_rxqs(vsi);
return err;
}
/**
* ice_vsi_stop_tx_rings - Disable Tx rings
* @vsi: the VSI being configured
*/
static int ice_vsi_stop_tx_rings(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
enum ice_status status;
u32 *q_teids, val;
u16 *q_ids, i;
int err = 0;
if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
return -EINVAL;
q_teids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_teids),
GFP_KERNEL);
if (!q_teids)
return -ENOMEM;
q_ids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_ids),
GFP_KERNEL);
if (!q_ids) {
err = -ENOMEM;
goto err_alloc_q_ids;
}
/* set up the tx queue list to be disabled */
ice_for_each_txq(vsi, i) {
u16 v_idx;
if (!vsi->tx_rings || !vsi->tx_rings[i]) {
err = -EINVAL;
goto err_out;
}
q_ids[i] = vsi->txq_map[i];
q_teids[i] = vsi->tx_rings[i]->txq_teid;
/* clear cause_ena bit for disabled queues */
val = rd32(hw, QINT_TQCTL(vsi->tx_rings[i]->reg_idx));
val &= ~QINT_TQCTL_CAUSE_ENA_M;
wr32(hw, QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val);
/* software is expected to wait for 100 ns */
ndelay(100);
/* trigger a software interrupt for the vector associated to
* the queue to schedule napi handler
*/
v_idx = vsi->tx_rings[i]->q_vector->v_idx;
wr32(hw, GLINT_DYN_CTL(vsi->base_vector + v_idx),
GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M);
}
status = ice_dis_vsi_txq(vsi->port_info, vsi->num_txq, q_ids, q_teids,
NULL);
/* if the disable queue command was exercised during an active reset
* flow, ICE_ERR_RESET_ONGOING is returned. This is not an error as
* the reset operation disables queues at the hardware level anyway.
*/
if (status == ICE_ERR_RESET_ONGOING) {
dev_dbg(&pf->pdev->dev,
"Reset in progress. LAN Tx queues already disabled\n");
} else if (status) {
dev_err(&pf->pdev->dev,
"Failed to disable LAN Tx queues, error: %d\n",
status);
err = -ENODEV;
}
err_out:
devm_kfree(&pf->pdev->dev, q_ids);
err_alloc_q_ids:
devm_kfree(&pf->pdev->dev, q_teids);
return err;
}
/**
* ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
* @pf: the PF being configured
* @pf_q: the PF queue
* @ena: enable or disable state of the queue
*
* This routine will wait for the given Rx queue of the PF to reach the
* enabled or disabled state.
* Returns -ETIMEDOUT in case of failing to reach the requested state after
* multiple retries; else will return 0 in case of success.
*/
static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
{
int i;
for (i = 0; i < ICE_Q_WAIT_RETRY_LIMIT; i++) {
u32 rx_reg = rd32(&pf->hw, QRX_CTRL(pf_q));
if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
break;
usleep_range(10, 20);
}
if (i >= ICE_Q_WAIT_RETRY_LIMIT)
return -ETIMEDOUT;
return 0;
}
/**
* ice_vsi_ctrl_rx_rings - Start or stop a VSI's rx rings
* @vsi: the VSI being configured
* @ena: start or stop the rx rings
*/
static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
int i, j, ret = 0;
for (i = 0; i < vsi->num_rxq; i++) {
int pf_q = vsi->rxq_map[i];
u32 rx_reg;
for (j = 0; j < ICE_Q_WAIT_MAX_RETRY; j++) {
rx_reg = rd32(hw, QRX_CTRL(pf_q));
if (((rx_reg >> QRX_CTRL_QENA_REQ_S) & 1) ==
((rx_reg >> QRX_CTRL_QENA_STAT_S) & 1))
break;
usleep_range(1000, 2000);
}
/* Skip if the queue is already in the requested state */
if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
continue;
/* turn on/off the queue */
if (ena)
rx_reg |= QRX_CTRL_QENA_REQ_M;
else
rx_reg &= ~QRX_CTRL_QENA_REQ_M;
wr32(hw, QRX_CTRL(pf_q), rx_reg);
/* wait for the change to finish */
ret = ice_pf_rxq_wait(pf, pf_q, ena);
if (ret) {
dev_err(&pf->pdev->dev,
"VSI idx %d Rx ring %d %sable timeout\n",
vsi->idx, pf_q, (ena ? "en" : "dis"));
break;
}
}
return ret;
}
/**
* ice_vsi_start_rx_rings - start VSI's rx rings
* @vsi: the VSI whose rings are to be started
*
* Returns 0 on success and a negative value on error
*/
static int ice_vsi_start_rx_rings(struct ice_vsi *vsi)
{
return ice_vsi_ctrl_rx_rings(vsi, true);
}
/**
* ice_vsi_stop_rx_rings - stop VSI's rx rings
* @vsi: the VSI
*
* Returns 0 on success and a negative value on error
*/
static int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
{
return ice_vsi_ctrl_rx_rings(vsi, false);
}
/**
* ice_vsi_stop_tx_rx_rings - stop VSI's tx and rx rings
* @vsi: the VSI
* Returns 0 on success and a negative value on error
*/
static int ice_vsi_stop_tx_rx_rings(struct ice_vsi *vsi)
{
int err_tx, err_rx;
err_tx = ice_vsi_stop_tx_rings(vsi);
if (err_tx)
dev_dbg(&vsi->back->pdev->dev, "Failed to disable Tx rings\n");
err_rx = ice_vsi_stop_rx_rings(vsi);
if (err_rx)
dev_dbg(&vsi->back->pdev->dev, "Failed to disable Rx rings\n");
if (err_tx || err_rx)
return -EIO;
return 0;
}
/**
* ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
* @vsi: the VSI being configured
*/
static void ice_napi_enable_all(struct ice_vsi *vsi)
{
int q_idx;
if (!vsi->netdev)
return;
for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) {
struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
if (q_vector->rx.ring || q_vector->tx.ring)
napi_enable(&q_vector->napi);
}
}
/**
* ice_up_complete - Finish the last steps of bringing up a connection
* @vsi: The VSI being configured
*
* Return 0 on success and negative value on error
*/
static int ice_up_complete(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int err;
if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
ice_vsi_cfg_msix(vsi);
else
return -ENOTSUPP;
/* Enable only Rx rings, Tx rings were enabled by the FW when the
* Tx queue group list was configured and the context bits were
* programmed using ice_vsi_cfg_txqs
*/
err = ice_vsi_start_rx_rings(vsi);
if (err)
return err;
clear_bit(__ICE_DOWN, vsi->state);
ice_napi_enable_all(vsi);
ice_vsi_ena_irq(vsi);
if (vsi->port_info &&
(vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
vsi->netdev) {
ice_print_link_msg(vsi, true);
netif_tx_start_all_queues(vsi->netdev);
netif_carrier_on(vsi->netdev);
}
ice_service_task_schedule(pf);
return err;
}
/**
* ice_up - Bring the connection back up after being down
* @vsi: VSI being configured
*/
int ice_up(struct ice_vsi *vsi)
{
int err;
err = ice_vsi_cfg(vsi);
if (!err)
err = ice_up_complete(vsi);
return err;
}
/**
* ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
* @ring: Tx or Rx ring to read stats from
* @pkts: packets stats counter
* @bytes: bytes stats counter
*
* This function fetches stats from the ring considering the atomic operations
* that needs to be performed to read u64 values in 32 bit machine.
*/
static void ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts,
u64 *bytes)
{
unsigned int start;
*pkts = 0;
*bytes = 0;
if (!ring)
return;
do {
start = u64_stats_fetch_begin_irq(&ring->syncp);
*pkts = ring->stats.pkts;
*bytes = ring->stats.bytes;
} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
}
/**
* ice_stat_update40 - read 40 bit stat from the chip and update stat values
* @hw: ptr to the hardware info
* @hireg: high 32 bit HW register to read from
* @loreg: low 32 bit HW register to read from
* @prev_stat_loaded: bool to specify if previous stats are loaded
* @prev_stat: ptr to previous loaded stat value
* @cur_stat: ptr to current stat value
*/
static void ice_stat_update40(struct ice_hw *hw, u32 hireg, u32 loreg,
bool prev_stat_loaded, u64 *prev_stat,
u64 *cur_stat)
{
u64 new_data;
new_data = rd32(hw, loreg);
new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;
/* device stats are not reset at PFR, they likely will not be zeroed
* when the driver starts. So save the first values read and use them as
* offsets to be subtracted from the raw values in order to report stats
* that count from zero.
*/
if (!prev_stat_loaded)
*prev_stat = new_data;
if (likely(new_data >= *prev_stat))
*cur_stat = new_data - *prev_stat;
else
/* to manage the potential roll-over */
*cur_stat = (new_data + BIT_ULL(40)) - *prev_stat;
*cur_stat &= 0xFFFFFFFFFFULL;
}
/**
* ice_stat_update32 - read 32 bit stat from the chip and update stat values
* @hw: ptr to the hardware info
* @reg: HW register to read from
* @prev_stat_loaded: bool to specify if previous stats are loaded
* @prev_stat: ptr to previous loaded stat value
* @cur_stat: ptr to current stat value
*/
static void ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
u64 *prev_stat, u64 *cur_stat)
{
u32 new_data;
new_data = rd32(hw, reg);
/* device stats are not reset at PFR, they likely will not be zeroed
* when the driver starts. So save the first values read and use them as
* offsets to be subtracted from the raw values in order to report stats
* that count from zero.
*/
if (!prev_stat_loaded)
*prev_stat = new_data;
if (likely(new_data >= *prev_stat))
*cur_stat = new_data - *prev_stat;
else
/* to manage the potential roll-over */
*cur_stat = (new_data + BIT_ULL(32)) - *prev_stat;
}
/**
* ice_update_eth_stats - Update VSI-specific ethernet statistics counters
* @vsi: the VSI to be updated
*/
static void ice_update_eth_stats(struct ice_vsi *vsi)
{
struct ice_eth_stats *prev_es, *cur_es;
struct ice_hw *hw = &vsi->back->hw;
u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
prev_es = &vsi->eth_stats_prev;
cur_es = &vsi->eth_stats;
ice_stat_update40(hw, GLV_GORCH(vsi_num), GLV_GORCL(vsi_num),
vsi->stat_offsets_loaded, &prev_es->rx_bytes,
&cur_es->rx_bytes);
ice_stat_update40(hw, GLV_UPRCH(vsi_num), GLV_UPRCL(vsi_num),
vsi->stat_offsets_loaded, &prev_es->rx_unicast,
&cur_es->rx_unicast);
ice_stat_update40(hw, GLV_MPRCH(vsi_num), GLV_MPRCL(vsi_num),
vsi->stat_offsets_loaded, &prev_es->rx_multicast,
&cur_es->rx_multicast);
ice_stat_update40(hw, GLV_BPRCH(vsi_num), GLV_BPRCL(vsi_num),
vsi->stat_offsets_loaded, &prev_es->rx_broadcast,
&cur_es->rx_broadcast);
ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
&prev_es->rx_discards, &cur_es->rx_discards);
ice_stat_update40(hw, GLV_GOTCH(vsi_num), GLV_GOTCL(vsi_num),
vsi->stat_offsets_loaded, &prev_es->tx_bytes,
&cur_es->tx_bytes);
ice_stat_update40(hw, GLV_UPTCH(vsi_num), GLV_UPTCL(vsi_num),
vsi->stat_offsets_loaded, &prev_es->tx_unicast,
&cur_es->tx_unicast);
ice_stat_update40(hw, GLV_MPTCH(vsi_num), GLV_MPTCL(vsi_num),
vsi->stat_offsets_loaded, &prev_es->tx_multicast,
&cur_es->tx_multicast);
ice_stat_update40(hw, GLV_BPTCH(vsi_num), GLV_BPTCL(vsi_num),
vsi->stat_offsets_loaded, &prev_es->tx_broadcast,
&cur_es->tx_broadcast);
ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
&prev_es->tx_errors, &cur_es->tx_errors);
vsi->stat_offsets_loaded = true;
}
/**
* ice_update_vsi_ring_stats - Update VSI stats counters
* @vsi: the VSI to be updated
*/
static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
{
struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
struct ice_ring *ring;
u64 pkts, bytes;
int i;
/* reset netdev stats */
vsi_stats->tx_packets = 0;
vsi_stats->tx_bytes = 0;
vsi_stats->rx_packets = 0;
vsi_stats->rx_bytes = 0;
/* reset non-netdev (extended) stats */
vsi->tx_restart = 0;
vsi->tx_busy = 0;
vsi->tx_linearize = 0;
vsi->rx_buf_failed = 0;
vsi->rx_page_failed = 0;
rcu_read_lock();
/* update Tx rings counters */
ice_for_each_txq(vsi, i) {
ring = READ_ONCE(vsi->tx_rings[i]);
ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
vsi_stats->tx_packets += pkts;
vsi_stats->tx_bytes += bytes;
vsi->tx_restart += ring->tx_stats.restart_q;
vsi->tx_busy += ring->tx_stats.tx_busy;
vsi->tx_linearize += ring->tx_stats.tx_linearize;
}
/* update Rx rings counters */
ice_for_each_rxq(vsi, i) {
ring = READ_ONCE(vsi->rx_rings[i]);
ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
vsi_stats->rx_packets += pkts;
vsi_stats->rx_bytes += bytes;
vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
}
rcu_read_unlock();
}
/**
* ice_update_vsi_stats - Update VSI stats counters
* @vsi: the VSI to be updated
*/
static void ice_update_vsi_stats(struct ice_vsi *vsi)
{
struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
struct ice_eth_stats *cur_es = &vsi->eth_stats;
struct ice_pf *pf = vsi->back;
if (test_bit(__ICE_DOWN, vsi->state) ||
test_bit(__ICE_CFG_BUSY, pf->state))
return;
/* get stats as recorded by Tx/Rx rings */
ice_update_vsi_ring_stats(vsi);
/* get VSI stats as recorded by the hardware */
ice_update_eth_stats(vsi);
cur_ns->tx_errors = cur_es->tx_errors;
cur_ns->rx_dropped = cur_es->rx_discards;
cur_ns->tx_dropped = cur_es->tx_discards;
cur_ns->multicast = cur_es->rx_multicast;
/* update some more netdev stats if this is main VSI */
if (vsi->type == ICE_VSI_PF) {
cur_ns->rx_crc_errors = pf->stats.crc_errors;
cur_ns->rx_errors = pf->stats.crc_errors +
pf->stats.illegal_bytes;
cur_ns->rx_length_errors = pf->stats.rx_len_errors;
}
}
/**
* ice_update_pf_stats - Update PF port stats counters
* @pf: PF whose stats needs to be updated
*/
static void ice_update_pf_stats(struct ice_pf *pf)
{
struct ice_hw_port_stats *prev_ps, *cur_ps;
struct ice_hw *hw = &pf->hw;
u8 pf_id;
prev_ps = &pf->stats_prev;
cur_ps = &pf->stats;
pf_id = hw->pf_id;
ice_stat_update40(hw, GLPRT_GORCH(pf_id), GLPRT_GORCL(pf_id),
pf->stat_prev_loaded, &prev_ps->eth.rx_bytes,
&cur_ps->eth.rx_bytes);
ice_stat_update40(hw, GLPRT_UPRCH(pf_id), GLPRT_UPRCL(pf_id),
pf->stat_prev_loaded, &prev_ps->eth.rx_unicast,
&cur_ps->eth.rx_unicast);
ice_stat_update40(hw, GLPRT_MPRCH(pf_id), GLPRT_MPRCL(pf_id),
pf->stat_prev_loaded, &prev_ps->eth.rx_multicast,
&cur_ps->eth.rx_multicast);
ice_stat_update40(hw, GLPRT_BPRCH(pf_id), GLPRT_BPRCL(pf_id),
pf->stat_prev_loaded, &prev_ps->eth.rx_broadcast,
&cur_ps->eth.rx_broadcast);
ice_stat_update40(hw, GLPRT_GOTCH(pf_id), GLPRT_GOTCL(pf_id),
pf->stat_prev_loaded, &prev_ps->eth.tx_bytes,
&cur_ps->eth.tx_bytes);
ice_stat_update40(hw, GLPRT_UPTCH(pf_id), GLPRT_UPTCL(pf_id),
pf->stat_prev_loaded, &prev_ps->eth.tx_unicast,
&cur_ps->eth.tx_unicast);
ice_stat_update40(hw, GLPRT_MPTCH(pf_id), GLPRT_MPTCL(pf_id),
pf->stat_prev_loaded, &prev_ps->eth.tx_multicast,
&cur_ps->eth.tx_multicast);
ice_stat_update40(hw, GLPRT_BPTCH(pf_id), GLPRT_BPTCL(pf_id),
pf->stat_prev_loaded, &prev_ps->eth.tx_broadcast,
&cur_ps->eth.tx_broadcast);
ice_stat_update32(hw, GLPRT_TDOLD(pf_id), pf->stat_prev_loaded,
&prev_ps->tx_dropped_link_down,
&cur_ps->tx_dropped_link_down);
ice_stat_update40(hw, GLPRT_PRC64H(pf_id), GLPRT_PRC64L(pf_id),
pf->stat_prev_loaded, &prev_ps->rx_size_64,
&cur_ps->rx_size_64);
ice_stat_update40(hw, GLPRT_PRC127H(pf_id), GLPRT_PRC127L(pf_id),
pf->stat_prev_loaded, &prev_ps->rx_size_127,
&cur_ps->rx_size_127);
ice_stat_update40(hw, GLPRT_PRC255H(pf_id), GLPRT_PRC255L(pf_id),
pf->stat_prev_loaded, &prev_ps->rx_size_255,
&cur_ps->rx_size_255);
ice_stat_update40(hw, GLPRT_PRC511H(pf_id), GLPRT_PRC511L(pf_id),
pf->stat_prev_loaded, &prev_ps->rx_size_511,
&cur_ps->rx_size_511);
ice_stat_update40(hw, GLPRT_PRC1023H(pf_id),
GLPRT_PRC1023L(pf_id), pf->stat_prev_loaded,
&prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
ice_stat_update40(hw, GLPRT_PRC1522H(pf_id),
GLPRT_PRC1522L(pf_id), pf->stat_prev_loaded,
&prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
ice_stat_update40(hw, GLPRT_PRC9522H(pf_id),
GLPRT_PRC9522L(pf_id), pf->stat_prev_loaded,
&prev_ps->rx_size_big, &cur_ps->rx_size_big);
ice_stat_update40(hw, GLPRT_PTC64H(pf_id), GLPRT_PTC64L(pf_id),
pf->stat_prev_loaded, &prev_ps->tx_size_64,
&cur_ps->tx_size_64);
ice_stat_update40(hw, GLPRT_PTC127H(pf_id), GLPRT_PTC127L(pf_id),
pf->stat_prev_loaded, &prev_ps->tx_size_127,
&cur_ps->tx_size_127);
ice_stat_update40(hw, GLPRT_PTC255H(pf_id), GLPRT_PTC255L(pf_id),
pf->stat_prev_loaded, &prev_ps->tx_size_255,
&cur_ps->tx_size_255);
ice_stat_update40(hw, GLPRT_PTC511H(pf_id), GLPRT_PTC511L(pf_id),
pf->stat_prev_loaded, &prev_ps->tx_size_511,
&cur_ps->tx_size_511);
ice_stat_update40(hw, GLPRT_PTC1023H(pf_id),
GLPRT_PTC1023L(pf_id), pf->stat_prev_loaded,
&prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
ice_stat_update40(hw, GLPRT_PTC1522H(pf_id),
GLPRT_PTC1522L(pf_id), pf->stat_prev_loaded,
&prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
ice_stat_update40(hw, GLPRT_PTC9522H(pf_id),
GLPRT_PTC9522L(pf_id), pf->stat_prev_loaded,
&prev_ps->tx_size_big, &cur_ps->tx_size_big);
ice_stat_update32(hw, GLPRT_LXONRXC(pf_id), pf->stat_prev_loaded,
&prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
ice_stat_update32(hw, GLPRT_LXOFFRXC(pf_id), pf->stat_prev_loaded,
&prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
ice_stat_update32(hw, GLPRT_LXONTXC(pf_id), pf->stat_prev_loaded,
&prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
ice_stat_update32(hw, GLPRT_LXOFFTXC(pf_id), pf->stat_prev_loaded,
&prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
ice_stat_update32(hw, GLPRT_CRCERRS(pf_id), pf->stat_prev_loaded,
&prev_ps->crc_errors, &cur_ps->crc_errors);
ice_stat_update32(hw, GLPRT_ILLERRC(pf_id), pf->stat_prev_loaded,
&prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
ice_stat_update32(hw, GLPRT_MLFC(pf_id), pf->stat_prev_loaded,
&prev_ps->mac_local_faults,
&cur_ps->mac_local_faults);
ice_stat_update32(hw, GLPRT_MRFC(pf_id), pf->stat_prev_loaded,
&prev_ps->mac_remote_faults,
&cur_ps->mac_remote_faults);
ice_stat_update32(hw, GLPRT_RLEC(pf_id), pf->stat_prev_loaded,
&prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
ice_stat_update32(hw, GLPRT_RUC(pf_id), pf->stat_prev_loaded,
&prev_ps->rx_undersize, &cur_ps->rx_undersize);
ice_stat_update32(hw, GLPRT_RFC(pf_id), pf->stat_prev_loaded,
&prev_ps->rx_fragments, &cur_ps->rx_fragments);
ice_stat_update32(hw, GLPRT_ROC(pf_id), pf->stat_prev_loaded,
&prev_ps->rx_oversize, &cur_ps->rx_oversize);
ice_stat_update32(hw, GLPRT_RJC(pf_id), pf->stat_prev_loaded,
&prev_ps->rx_jabber, &cur_ps->rx_jabber);
pf->stat_prev_loaded = true;
}
/**
* ice_get_stats64 - get statistics for network device structure
* @netdev: network interface device structure
* @stats: main device statistics structure
*/
static
void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct rtnl_link_stats64 *vsi_stats;
struct ice_vsi *vsi = np->vsi;
vsi_stats = &vsi->net_stats;
if (test_bit(__ICE_DOWN, vsi->state) || !vsi->num_txq || !vsi->num_rxq)
return;
/* netdev packet/byte stats come from ring counter. These are obtained
* by summing up ring counters (done by ice_update_vsi_ring_stats).
*/
ice_update_vsi_ring_stats(vsi);
stats->tx_packets = vsi_stats->tx_packets;
stats->tx_bytes = vsi_stats->tx_bytes;
stats->rx_packets = vsi_stats->rx_packets;
stats->rx_bytes = vsi_stats->rx_bytes;
/* The rest of the stats can be read from the hardware but instead we
* just return values that the watchdog task has already obtained from
* the hardware.
*/
stats->multicast = vsi_stats->multicast;
stats->tx_errors = vsi_stats->tx_errors;
stats->tx_dropped = vsi_stats->tx_dropped;
stats->rx_errors = vsi_stats->rx_errors;
stats->rx_dropped = vsi_stats->rx_dropped;
stats->rx_crc_errors = vsi_stats->rx_crc_errors;
stats->rx_length_errors = vsi_stats->rx_length_errors;
}
/**
* ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
* @vsi: VSI having NAPI disabled
*/
static void ice_napi_disable_all(struct ice_vsi *vsi)
{
int q_idx;
if (!vsi->netdev)
return;
for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) {
struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
if (q_vector->rx.ring || q_vector->tx.ring)
napi_disable(&q_vector->napi);
}
}
/**
* ice_down - Shutdown the connection
* @vsi: The VSI being stopped
*/
int ice_down(struct ice_vsi *vsi)
{
int i, err;
/* Caller of this function is expected to set the
* vsi->state __ICE_DOWN bit
*/
if (vsi->netdev) {
netif_carrier_off(vsi->netdev);
netif_tx_disable(vsi->netdev);
}
ice_vsi_dis_irq(vsi);
err = ice_vsi_stop_tx_rx_rings(vsi);
ice_napi_disable_all(vsi);
ice_for_each_txq(vsi, i)
ice_clean_tx_ring(vsi->tx_rings[i]);
ice_for_each_rxq(vsi, i)
ice_clean_rx_ring(vsi->rx_rings[i]);
if (err)
netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
vsi->vsi_num, vsi->vsw->sw_id);
return err;
}
/**
* ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
* @vsi: VSI having resources allocated
*
* Return 0 on success, negative on failure
*/
static int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
{
int i, err = 0;
if (!vsi->num_txq) {
dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n",
vsi->vsi_num);
return -EINVAL;
}
ice_for_each_txq(vsi, i) {
err = ice_setup_tx_ring(vsi->tx_rings[i]);
if (err)
break;
}
return err;
}
/**
* ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
* @vsi: VSI having resources allocated
*
* Return 0 on success, negative on failure
*/
static int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
{
int i, err = 0;
if (!vsi->num_rxq) {
dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n",
vsi->vsi_num);
return -EINVAL;
}
ice_for_each_rxq(vsi, i) {
err = ice_setup_rx_ring(vsi->rx_rings[i]);
if (err)
break;
}
return err;
}
/**
* ice_vsi_req_irq - Request IRQ from the OS
* @vsi: The VSI IRQ is being requested for
* @basename: name for the vector
*
* Return 0 on success and a negative value on error
*/
static int ice_vsi_req_irq(struct ice_vsi *vsi, char *basename)
{
struct ice_pf *pf = vsi->back;
int err = -EINVAL;
if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
err = ice_vsi_req_irq_msix(vsi, basename);
return err;
}
/**
* ice_vsi_free_tx_rings - Free Tx resources for VSI queues
* @vsi: the VSI having resources freed
*/
static void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
{
int i;
if (!vsi->tx_rings)
return;
ice_for_each_txq(vsi, i)
if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
ice_free_tx_ring(vsi->tx_rings[i]);
}
/**
* ice_vsi_free_rx_rings - Free Rx resources for VSI queues
* @vsi: the VSI having resources freed
*/
static void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
{
int i;
if (!vsi->rx_rings)
return;
ice_for_each_rxq(vsi, i)
if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
ice_free_rx_ring(vsi->rx_rings[i]);
}
/**
* ice_vsi_open - Called when a network interface is made active
* @vsi: the VSI to open
*
* Initialization of the VSI
*
* Returns 0 on success, negative value on error
*/
static int ice_vsi_open(struct ice_vsi *vsi)
{
char int_name[ICE_INT_NAME_STR_LEN];
struct ice_pf *pf = vsi->back;
int err;
/* allocate descriptors */
err = ice_vsi_setup_tx_rings(vsi);
if (err)
goto err_setup_tx;
err = ice_vsi_setup_rx_rings(vsi);
if (err)
goto err_setup_rx;
err = ice_vsi_cfg(vsi);
if (err)
goto err_setup_rx;
snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
dev_driver_string(&pf->pdev->dev), vsi->netdev->name);
err = ice_vsi_req_irq(vsi, int_name);
if (err)
goto err_setup_rx;
/* Notify the stack of the actual queue counts. */
err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
if (err)
goto err_set_qs;
err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
if (err)
goto err_set_qs;
err = ice_up_complete(vsi);
if (err)
goto err_up_complete;
return 0;
err_up_complete:
ice_down(vsi);
err_set_qs:
ice_vsi_free_irq(vsi);
err_setup_rx:
ice_vsi_free_rx_rings(vsi);
err_setup_tx:
ice_vsi_free_tx_rings(vsi);
return err;
}
/**
* ice_vsi_close - Shut down a VSI
* @vsi: the VSI being shut down
*/
static void ice_vsi_close(struct ice_vsi *vsi)
{
if (!test_and_set_bit(__ICE_DOWN, vsi->state))
ice_down(vsi);
ice_vsi_free_irq(vsi);
ice_vsi_free_tx_rings(vsi);
ice_vsi_free_rx_rings(vsi);
}
/**
* ice_rss_clean - Delete RSS related VSI structures that hold user inputs
* @vsi: the VSI being removed
*/
static void ice_rss_clean(struct ice_vsi *vsi)
{
struct ice_pf *pf;
pf = vsi->back;
if (vsi->rss_hkey_user)
devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user);
if (vsi->rss_lut_user)
devm_kfree(&pf->pdev->dev, vsi->rss_lut_user);
}
/**
* ice_vsi_release - Delete a VSI and free its resources
* @vsi: the VSI being removed
*
* Returns 0 on success or < 0 on error
*/
static int ice_vsi_release(struct ice_vsi *vsi)
{
struct ice_pf *pf;
if (!vsi->back)
return -ENODEV;
pf = vsi->back;
if (vsi->netdev) {
unregister_netdev(vsi->netdev);
free_netdev(vsi->netdev);
vsi->netdev = NULL;
}
if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
ice_rss_clean(vsi);
/* Disable VSI and free resources */
ice_vsi_dis_irq(vsi);
ice_vsi_close(vsi);
/* reclaim interrupt vectors back to PF */
ice_free_res(vsi->back->irq_tracker, vsi->base_vector, vsi->idx);
pf->num_avail_msix += vsi->num_q_vectors;
ice_remove_vsi_fltr(&pf->hw, vsi->vsi_num);
ice_vsi_delete(vsi);
ice_vsi_free_q_vectors(vsi);
ice_vsi_clear_rings(vsi);
ice_vsi_put_qs(vsi);
pf->q_left_tx += vsi->alloc_txq;
pf->q_left_rx += vsi->alloc_rxq;
ice_vsi_clear(vsi);
return 0;
}
/**
* ice_dis_vsi - pause a VSI
* @vsi: the VSI being paused
*/
static void ice_dis_vsi(struct ice_vsi *vsi)
{
if (test_bit(__ICE_DOWN, vsi->state))
return;
set_bit(__ICE_NEEDS_RESTART, vsi->state);
if (vsi->netdev && netif_running(vsi->netdev) &&
vsi->type == ICE_VSI_PF)
vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
ice_vsi_close(vsi);
}
/**
* ice_ena_vsi - resume a VSI
* @vsi: the VSI being resume
*/
static void ice_ena_vsi(struct ice_vsi *vsi)
{
if (!test_and_clear_bit(__ICE_NEEDS_RESTART, vsi->state))
return;
if (vsi->netdev && netif_running(vsi->netdev))
vsi->netdev->netdev_ops->ndo_open(vsi->netdev);
else if (ice_vsi_open(vsi))
/* this clears the DOWN bit */
dev_dbg(&vsi->back->pdev->dev, "Failed open VSI 0x%04X on switch 0x%04X\n",
vsi->vsi_num, vsi->vsw->sw_id);
}
/**
* ice_pf_dis_all_vsi - Pause all VSIs on a PF
* @pf: the PF
*/
static void ice_pf_dis_all_vsi(struct ice_pf *pf)
{
int v;
ice_for_each_vsi(pf, v)
if (pf->vsi[v])
ice_dis_vsi(pf->vsi[v]);
}
/**
* ice_pf_ena_all_vsi - Resume all VSIs on a PF
* @pf: the PF
*/
static void ice_pf_ena_all_vsi(struct ice_pf *pf)
{
int v;
ice_for_each_vsi(pf, v)
if (pf->vsi[v])
ice_ena_vsi(pf->vsi[v]);
}
/**
* ice_rebuild - rebuild after reset
* @pf: pf to rebuild
*/
static void ice_rebuild(struct ice_pf *pf)
{
struct device *dev = &pf->pdev->dev;
struct ice_hw *hw = &pf->hw;
enum ice_status ret;
int err;
if (test_bit(__ICE_DOWN, pf->state))
goto clear_recovery;
dev_dbg(dev, "rebuilding pf\n");
ret = ice_init_all_ctrlq(hw);
if (ret) {
dev_err(dev, "control queues init failed %d\n", ret);
goto fail_reset;
}
ret = ice_clear_pf_cfg(hw);
if (ret) {
dev_err(dev, "clear PF configuration failed %d\n", ret);
goto fail_reset;
}
ice_clear_pxe_mode(hw);
ret = ice_get_caps(hw);
if (ret) {
dev_err(dev, "ice_get_caps failed %d\n", ret);
goto fail_reset;
}
/* basic nic switch setup */
err = ice_setup_pf_sw(pf);
if (err) {
dev_err(dev, "ice_setup_pf_sw failed\n");
goto fail_reset;
}
/* start misc vector */
if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
err = ice_req_irq_msix_misc(pf);
if (err) {
dev_err(dev, "misc vector setup failed: %d\n", err);
goto fail_reset;
}
}
/* restart the VSIs that were rebuilt and running before the reset */
ice_pf_ena_all_vsi(pf);
return;
fail_reset:
ice_shutdown_all_ctrlq(hw);
set_bit(__ICE_RESET_FAILED, pf->state);
clear_recovery:
set_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
}
/**
* ice_change_mtu - NDO callback to change the MTU
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
*/
static int ice_change_mtu(struct net_device *netdev, int new_mtu)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
struct ice_pf *pf = vsi->back;
u8 count = 0;
if (new_mtu == netdev->mtu) {
netdev_warn(netdev, "mtu is already %u\n", netdev->mtu);
return 0;
}
if (new_mtu < netdev->min_mtu) {
netdev_err(netdev, "new mtu invalid. min_mtu is %d\n",
netdev->min_mtu);
return -EINVAL;
} else if (new_mtu > netdev->max_mtu) {
netdev_err(netdev, "new mtu invalid. max_mtu is %d\n",
netdev->min_mtu);
return -EINVAL;
}
/* if a reset is in progress, wait for some time for it to complete */
do {
if (ice_is_reset_recovery_pending(pf->state)) {
count++;
usleep_range(1000, 2000);
} else {
break;
}
} while (count < 100);
if (count == 100) {
netdev_err(netdev, "can't change mtu. Device is busy\n");
return -EBUSY;
}
netdev->mtu = new_mtu;
/* if VSI is up, bring it down and then back up */
if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
int err;
err = ice_down(vsi);
if (err) {
netdev_err(netdev, "change mtu if_up err %d\n", err);
return err;
}
err = ice_up(vsi);
if (err) {
netdev_err(netdev, "change mtu if_up err %d\n", err);
return err;
}
}
netdev_dbg(netdev, "changed mtu to %d\n", new_mtu);
return 0;
}
/**
* ice_set_rss - Set RSS keys and lut
* @vsi: Pointer to VSI structure
* @seed: RSS hash seed
* @lut: Lookup table
* @lut_size: Lookup table size
*
* Returns 0 on success, negative on failure
*/
int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
enum ice_status status;
if (seed) {
struct ice_aqc_get_set_rss_keys *buf =
(struct ice_aqc_get_set_rss_keys *)seed;
status = ice_aq_set_rss_key(hw, vsi->vsi_num, buf);
if (status) {
dev_err(&pf->pdev->dev,
"Cannot set RSS key, err %d aq_err %d\n",
status, hw->adminq.rq_last_status);
return -EIO;
}
}
if (lut) {
status = ice_aq_set_rss_lut(hw, vsi->vsi_num,
vsi->rss_lut_type, lut, lut_size);
if (status) {
dev_err(&pf->pdev->dev,
"Cannot set RSS lut, err %d aq_err %d\n",
status, hw->adminq.rq_last_status);
return -EIO;
}
}
return 0;
}
/**
* ice_get_rss - Get RSS keys and lut
* @vsi: Pointer to VSI structure
* @seed: Buffer to store the keys
* @lut: Buffer to store the lookup table entries
* @lut_size: Size of buffer to store the lookup table entries
*
* Returns 0 on success, negative on failure
*/
int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
enum ice_status status;
if (seed) {
struct ice_aqc_get_set_rss_keys *buf =
(struct ice_aqc_get_set_rss_keys *)seed;
status = ice_aq_get_rss_key(hw, vsi->vsi_num, buf);
if (status) {
dev_err(&pf->pdev->dev,
"Cannot get RSS key, err %d aq_err %d\n",
status, hw->adminq.rq_last_status);
return -EIO;
}
}
if (lut) {
status = ice_aq_get_rss_lut(hw, vsi->vsi_num,
vsi->rss_lut_type, lut, lut_size);
if (status) {
dev_err(&pf->pdev->dev,
"Cannot get RSS lut, err %d aq_err %d\n",
status, hw->adminq.rq_last_status);
return -EIO;
}
}
return 0;
}
/**
* ice_open - Called when a network interface becomes active
* @netdev: network interface device structure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the netdev watchdog is enabled,
* and the stack is notified that the interface is ready.
*
* Returns 0 on success, negative value on failure
*/
static int ice_open(struct net_device *netdev)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
int err;
netif_carrier_off(netdev);
err = ice_vsi_open(vsi);
if (err)
netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
vsi->vsi_num, vsi->vsw->sw_id);
return err;
}
/**
* ice_stop - Disables a network interface
* @netdev: network interface device structure
*
* The stop entry point is called when an interface is de-activated by the OS,
* and the netdevice enters the DOWN state. The hardware is still under the
* driver's control, but the netdev interface is disabled.
*
* Returns success only - not allowed to fail
*/
static int ice_stop(struct net_device *netdev)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
ice_vsi_close(vsi);
return 0;
}
/**
* ice_features_check - Validate encapsulated packet conforms to limits
* @skb: skb buffer
* @netdev: This port's netdev
* @features: Offload features that the stack believes apply
*/
static netdev_features_t
ice_features_check(struct sk_buff *skb,
struct net_device __always_unused *netdev,
netdev_features_t features)
{
size_t len;
/* No point in doing any of this if neither checksum nor GSO are
* being requested for this frame. We can rule out both by just
* checking for CHECKSUM_PARTIAL
*/
if (skb->ip_summed != CHECKSUM_PARTIAL)
return features;
/* We cannot support GSO if the MSS is going to be less than
* 64 bytes. If it is then we need to drop support for GSO.
*/
if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
features &= ~NETIF_F_GSO_MASK;
len = skb_network_header(skb) - skb->data;
if (len & ~(ICE_TXD_MACLEN_MAX))
goto out_rm_features;
len = skb_transport_header(skb) - skb_network_header(skb);
if (len & ~(ICE_TXD_IPLEN_MAX))
goto out_rm_features;
if (skb->encapsulation) {
len = skb_inner_network_header(skb) - skb_transport_header(skb);
if (len & ~(ICE_TXD_L4LEN_MAX))
goto out_rm_features;
len = skb_inner_transport_header(skb) -
skb_inner_network_header(skb);
if (len & ~(ICE_TXD_IPLEN_MAX))
goto out_rm_features;
}
return features;
out_rm_features:
return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
}
static const struct net_device_ops ice_netdev_ops = {
.ndo_open = ice_open,
.ndo_stop = ice_stop,
.ndo_start_xmit = ice_start_xmit,
.ndo_features_check = ice_features_check,
.ndo_set_rx_mode = ice_set_rx_mode,
.ndo_set_mac_address = ice_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = ice_change_mtu,
.ndo_get_stats64 = ice_get_stats64,
.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
.ndo_set_features = ice_set_features,
.ndo_fdb_add = ice_fdb_add,
.ndo_fdb_del = ice_fdb_del,
};