| /* |
| * AMD 10Gb Ethernet driver |
| * |
| * This file is available to you under your choice of the following two |
| * licenses: |
| * |
| * License 1: GPLv2 |
| * |
| * Copyright (c) 2014-2016 Advanced Micro Devices, Inc. |
| * |
| * This file is free software; you may copy, redistribute and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation, either version 2 of the License, or (at |
| * your option) any later version. |
| * |
| * This file is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| * |
| * This file incorporates work covered by the following copyright and |
| * permission notice: |
| * The Synopsys DWC ETHER XGMAC Software Driver and documentation |
| * (hereinafter "Software") is an unsupported proprietary work of Synopsys, |
| * Inc. unless otherwise expressly agreed to in writing between Synopsys |
| * and you. |
| * |
| * The Software IS NOT an item of Licensed Software or Licensed Product |
| * under any End User Software License Agreement or Agreement for Licensed |
| * Product with Synopsys or any supplement thereto. Permission is hereby |
| * granted, free of charge, to any person obtaining a copy of this software |
| * annotated with this license and the Software, to deal in the Software |
| * without restriction, including without limitation the rights to use, |
| * copy, modify, merge, publish, distribute, sublicense, and/or sell copies |
| * of the Software, and to permit persons to whom the Software is furnished |
| * to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included |
| * in all copies or substantial portions of the Software. |
| * |
| * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" |
| * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A |
| * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS |
| * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| * THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * |
| * License 2: Modified BSD |
| * |
| * Copyright (c) 2014-2016 Advanced Micro Devices, Inc. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * * Neither the name of Advanced Micro Devices, Inc. nor the |
| * names of its contributors may be used to endorse or promote products |
| * derived from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * This file incorporates work covered by the following copyright and |
| * permission notice: |
| * The Synopsys DWC ETHER XGMAC Software Driver and documentation |
| * (hereinafter "Software") is an unsupported proprietary work of Synopsys, |
| * Inc. unless otherwise expressly agreed to in writing between Synopsys |
| * and you. |
| * |
| * The Software IS NOT an item of Licensed Software or Licensed Product |
| * under any End User Software License Agreement or Agreement for Licensed |
| * Product with Synopsys or any supplement thereto. Permission is hereby |
| * granted, free of charge, to any person obtaining a copy of this software |
| * annotated with this license and the Software, to deal in the Software |
| * without restriction, including without limitation the rights to use, |
| * copy, modify, merge, publish, distribute, sublicense, and/or sell copies |
| * of the Software, and to permit persons to whom the Software is furnished |
| * to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included |
| * in all copies or substantial portions of the Software. |
| * |
| * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" |
| * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A |
| * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS |
| * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| * THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include <linux/phy.h> |
| #include <linux/mdio.h> |
| #include <linux/clk.h> |
| #include <linux/bitrev.h> |
| #include <linux/crc32.h> |
| #include <linux/crc32poly.h> |
| |
| #include "xgbe.h" |
| #include "xgbe-common.h" |
| |
| static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata) |
| { |
| return pdata->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; |
| } |
| |
| static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata, |
| unsigned int usec) |
| { |
| unsigned long rate; |
| unsigned int ret; |
| |
| DBGPR("-->xgbe_usec_to_riwt\n"); |
| |
| rate = pdata->sysclk_rate; |
| |
| /* |
| * Convert the input usec value to the watchdog timer value. Each |
| * watchdog timer value is equivalent to 256 clock cycles. |
| * Calculate the required value as: |
| * ( usec * ( system_clock_mhz / 10^6 ) / 256 |
| */ |
| ret = (usec * (rate / 1000000)) / 256; |
| |
| DBGPR("<--xgbe_usec_to_riwt\n"); |
| |
| return ret; |
| } |
| |
| static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata, |
| unsigned int riwt) |
| { |
| unsigned long rate; |
| unsigned int ret; |
| |
| DBGPR("-->xgbe_riwt_to_usec\n"); |
| |
| rate = pdata->sysclk_rate; |
| |
| /* |
| * Convert the input watchdog timer value to the usec value. Each |
| * watchdog timer value is equivalent to 256 clock cycles. |
| * Calculate the required value as: |
| * ( riwt * 256 ) / ( system_clock_mhz / 10^6 ) |
| */ |
| ret = (riwt * 256) / (rate / 1000000); |
| |
| DBGPR("<--xgbe_riwt_to_usec\n"); |
| |
| return ret; |
| } |
| |
| static int xgbe_config_pbl_val(struct xgbe_prv_data *pdata) |
| { |
| unsigned int pblx8, pbl; |
| unsigned int i; |
| |
| pblx8 = DMA_PBL_X8_DISABLE; |
| pbl = pdata->pbl; |
| |
| if (pdata->pbl > 32) { |
| pblx8 = DMA_PBL_X8_ENABLE; |
| pbl >>= 3; |
| } |
| |
| for (i = 0; i < pdata->channel_count; i++) { |
| XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8, |
| pblx8); |
| |
| if (pdata->channel[i]->tx_ring) |
| XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, |
| PBL, pbl); |
| |
| if (pdata->channel[i]->rx_ring) |
| XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, |
| PBL, pbl); |
| } |
| |
| return 0; |
| } |
| |
| static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < pdata->channel_count; i++) { |
| if (!pdata->channel[i]->tx_ring) |
| break; |
| |
| XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP, |
| pdata->tx_osp_mode); |
| } |
| |
| return 0; |
| } |
| |
| static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < pdata->rx_q_count; i++) |
| XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val); |
| |
| return 0; |
| } |
| |
| static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < pdata->tx_q_count; i++) |
| XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val); |
| |
| return 0; |
| } |
| |
| static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata, |
| unsigned int val) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < pdata->rx_q_count; i++) |
| XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val); |
| |
| return 0; |
| } |
| |
| static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata, |
| unsigned int val) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < pdata->tx_q_count; i++) |
| XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val); |
| |
| return 0; |
| } |
| |
| static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < pdata->channel_count; i++) { |
| if (!pdata->channel[i]->rx_ring) |
| break; |
| |
| XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT, |
| pdata->rx_riwt); |
| } |
| |
| return 0; |
| } |
| |
| static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata) |
| { |
| return 0; |
| } |
| |
| static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < pdata->channel_count; i++) { |
| if (!pdata->channel[i]->rx_ring) |
| break; |
| |
| XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ, |
| pdata->rx_buf_size); |
| } |
| } |
| |
| static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < pdata->channel_count; i++) { |
| if (!pdata->channel[i]->tx_ring) |
| break; |
| |
| XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, 1); |
| } |
| } |
| |
| static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < pdata->channel_count; i++) { |
| if (!pdata->channel[i]->rx_ring) |
| break; |
| |
| XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1); |
| } |
| |
| XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE); |
| } |
| |
| static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type, |
| unsigned int index, unsigned int val) |
| { |
| unsigned int wait; |
| int ret = 0; |
| |
| mutex_lock(&pdata->rss_mutex); |
| |
| if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) { |
| ret = -EBUSY; |
| goto unlock; |
| } |
| |
| XGMAC_IOWRITE(pdata, MAC_RSSDR, val); |
| |
| XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index); |
| XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type); |
| XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0); |
| XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1); |
| |
| wait = 1000; |
| while (wait--) { |
| if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) |
| goto unlock; |
| |
| usleep_range(1000, 1500); |
| } |
| |
| ret = -EBUSY; |
| |
| unlock: |
| mutex_unlock(&pdata->rss_mutex); |
| |
| return ret; |
| } |
| |
| static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata) |
| { |
| unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32); |
| unsigned int *key = (unsigned int *)&pdata->rss_key; |
| int ret; |
| |
| while (key_regs--) { |
| ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE, |
| key_regs, *key++); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata) |
| { |
| unsigned int i; |
| int ret; |
| |
| for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) { |
| ret = xgbe_write_rss_reg(pdata, |
| XGBE_RSS_LOOKUP_TABLE_TYPE, i, |
| pdata->rss_table[i]); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key) |
| { |
| memcpy(pdata->rss_key, key, sizeof(pdata->rss_key)); |
| |
| return xgbe_write_rss_hash_key(pdata); |
| } |
| |
| static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata, |
| const u32 *table) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) |
| XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]); |
| |
| return xgbe_write_rss_lookup_table(pdata); |
| } |
| |
| static int xgbe_enable_rss(struct xgbe_prv_data *pdata) |
| { |
| int ret; |
| |
| if (!pdata->hw_feat.rss) |
| return -EOPNOTSUPP; |
| |
| /* Program the hash key */ |
| ret = xgbe_write_rss_hash_key(pdata); |
| if (ret) |
| return ret; |
| |
| /* Program the lookup table */ |
| ret = xgbe_write_rss_lookup_table(pdata); |
| if (ret) |
| return ret; |
| |
| /* Set the RSS options */ |
| XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options); |
| |
| /* Enable RSS */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1); |
| |
| return 0; |
| } |
| |
| static int xgbe_disable_rss(struct xgbe_prv_data *pdata) |
| { |
| if (!pdata->hw_feat.rss) |
| return -EOPNOTSUPP; |
| |
| XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0); |
| |
| return 0; |
| } |
| |
| static void xgbe_config_rss(struct xgbe_prv_data *pdata) |
| { |
| int ret; |
| |
| if (!pdata->hw_feat.rss) |
| return; |
| |
| if (pdata->netdev->features & NETIF_F_RXHASH) |
| ret = xgbe_enable_rss(pdata); |
| else |
| ret = xgbe_disable_rss(pdata); |
| |
| if (ret) |
| netdev_err(pdata->netdev, |
| "error configuring RSS, RSS disabled\n"); |
| } |
| |
| static bool xgbe_is_pfc_queue(struct xgbe_prv_data *pdata, |
| unsigned int queue) |
| { |
| unsigned int prio, tc; |
| |
| for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) { |
| /* Does this queue handle the priority? */ |
| if (pdata->prio2q_map[prio] != queue) |
| continue; |
| |
| /* Get the Traffic Class for this priority */ |
| tc = pdata->ets->prio_tc[prio]; |
| |
| /* Check if PFC is enabled for this traffic class */ |
| if (pdata->pfc->pfc_en & (1 << tc)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void xgbe_set_vxlan_id(struct xgbe_prv_data *pdata) |
| { |
| /* Program the VXLAN port */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, pdata->vxlan_port); |
| |
| netif_dbg(pdata, drv, pdata->netdev, "VXLAN tunnel id set to %hx\n", |
| pdata->vxlan_port); |
| } |
| |
| static void xgbe_enable_vxlan(struct xgbe_prv_data *pdata) |
| { |
| if (!pdata->hw_feat.vxn) |
| return; |
| |
| /* Program the VXLAN port */ |
| xgbe_set_vxlan_id(pdata); |
| |
| /* Allow for IPv6/UDP zero-checksum VXLAN packets */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 1); |
| |
| /* Enable VXLAN tunneling mode */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNM, 0); |
| XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 1); |
| |
| netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration enabled\n"); |
| } |
| |
| static void xgbe_disable_vxlan(struct xgbe_prv_data *pdata) |
| { |
| if (!pdata->hw_feat.vxn) |
| return; |
| |
| /* Disable tunneling mode */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 0); |
| |
| /* Clear IPv6/UDP zero-checksum VXLAN packets setting */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 0); |
| |
| /* Clear the VXLAN port */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, 0); |
| |
| netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration disabled\n"); |
| } |
| |
| static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata) |
| { |
| unsigned int max_q_count, q_count; |
| unsigned int reg, reg_val; |
| unsigned int i; |
| |
| /* Clear MTL flow control */ |
| for (i = 0; i < pdata->rx_q_count; i++) |
| XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0); |
| |
| /* Clear MAC flow control */ |
| max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES; |
| q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count); |
| reg = MAC_Q0TFCR; |
| for (i = 0; i < q_count; i++) { |
| reg_val = XGMAC_IOREAD(pdata, reg); |
| XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0); |
| XGMAC_IOWRITE(pdata, reg, reg_val); |
| |
| reg += MAC_QTFCR_INC; |
| } |
| |
| return 0; |
| } |
| |
| static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata) |
| { |
| struct ieee_pfc *pfc = pdata->pfc; |
| struct ieee_ets *ets = pdata->ets; |
| unsigned int max_q_count, q_count; |
| unsigned int reg, reg_val; |
| unsigned int i; |
| |
| /* Set MTL flow control */ |
| for (i = 0; i < pdata->rx_q_count; i++) { |
| unsigned int ehfc = 0; |
| |
| if (pdata->rx_rfd[i]) { |
| /* Flow control thresholds are established */ |
| if (pfc && ets) { |
| if (xgbe_is_pfc_queue(pdata, i)) |
| ehfc = 1; |
| } else { |
| ehfc = 1; |
| } |
| } |
| |
| XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc); |
| |
| netif_dbg(pdata, drv, pdata->netdev, |
| "flow control %s for RXq%u\n", |
| ehfc ? "enabled" : "disabled", i); |
| } |
| |
| /* Set MAC flow control */ |
| max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES; |
| q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count); |
| reg = MAC_Q0TFCR; |
| for (i = 0; i < q_count; i++) { |
| reg_val = XGMAC_IOREAD(pdata, reg); |
| |
| /* Enable transmit flow control */ |
| XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1); |
| /* Set pause time */ |
| XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff); |
| |
| XGMAC_IOWRITE(pdata, reg, reg_val); |
| |
| reg += MAC_QTFCR_INC; |
| } |
| |
| return 0; |
| } |
| |
| static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata) |
| { |
| XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0); |
| |
| return 0; |
| } |
| |
| static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata) |
| { |
| XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1); |
| |
| return 0; |
| } |
| |
| static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata) |
| { |
| struct ieee_pfc *pfc = pdata->pfc; |
| |
| if (pdata->tx_pause || (pfc && pfc->pfc_en)) |
| xgbe_enable_tx_flow_control(pdata); |
| else |
| xgbe_disable_tx_flow_control(pdata); |
| |
| return 0; |
| } |
| |
| static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata) |
| { |
| struct ieee_pfc *pfc = pdata->pfc; |
| |
| if (pdata->rx_pause || (pfc && pfc->pfc_en)) |
| xgbe_enable_rx_flow_control(pdata); |
| else |
| xgbe_disable_rx_flow_control(pdata); |
| |
| return 0; |
| } |
| |
| static void xgbe_config_flow_control(struct xgbe_prv_data *pdata) |
| { |
| struct ieee_pfc *pfc = pdata->pfc; |
| |
| xgbe_config_tx_flow_control(pdata); |
| xgbe_config_rx_flow_control(pdata); |
| |
| XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE, |
| (pfc && pfc->pfc_en) ? 1 : 0); |
| } |
| |
| static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_channel *channel; |
| unsigned int i, ver; |
| |
| /* Set the interrupt mode if supported */ |
| if (pdata->channel_irq_mode) |
| XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM, |
| pdata->channel_irq_mode); |
| |
| ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER); |
| |
| for (i = 0; i < pdata->channel_count; i++) { |
| channel = pdata->channel[i]; |
| |
| /* Clear all the interrupts which are set */ |
| XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, |
| XGMAC_DMA_IOREAD(channel, DMA_CH_SR)); |
| |
| /* Clear all interrupt enable bits */ |
| channel->curr_ier = 0; |
| |
| /* Enable following interrupts |
| * NIE - Normal Interrupt Summary Enable |
| * AIE - Abnormal Interrupt Summary Enable |
| * FBEE - Fatal Bus Error Enable |
| */ |
| if (ver < 0x21) { |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1); |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1); |
| } else { |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1); |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1); |
| } |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1); |
| |
| if (channel->tx_ring) { |
| /* Enable the following Tx interrupts |
| * TIE - Transmit Interrupt Enable (unless using |
| * per channel interrupts in edge triggered |
| * mode) |
| */ |
| if (!pdata->per_channel_irq || pdata->channel_irq_mode) |
| XGMAC_SET_BITS(channel->curr_ier, |
| DMA_CH_IER, TIE, 1); |
| } |
| if (channel->rx_ring) { |
| /* Enable following Rx interrupts |
| * RBUE - Receive Buffer Unavailable Enable |
| * RIE - Receive Interrupt Enable (unless using |
| * per channel interrupts in edge triggered |
| * mode) |
| */ |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1); |
| if (!pdata->per_channel_irq || pdata->channel_irq_mode) |
| XGMAC_SET_BITS(channel->curr_ier, |
| DMA_CH_IER, RIE, 1); |
| } |
| |
| XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier); |
| } |
| } |
| |
| static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata) |
| { |
| unsigned int mtl_q_isr; |
| unsigned int q_count, i; |
| |
| q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt); |
| for (i = 0; i < q_count; i++) { |
| /* Clear all the interrupts which are set */ |
| mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR); |
| XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr); |
| |
| /* No MTL interrupts to be enabled */ |
| XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0); |
| } |
| } |
| |
| static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata) |
| { |
| unsigned int mac_ier = 0; |
| |
| /* Enable Timestamp interrupt */ |
| XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1); |
| |
| XGMAC_IOWRITE(pdata, MAC_IER, mac_ier); |
| |
| /* Enable all counter interrupts */ |
| XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff); |
| XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff); |
| |
| /* Enable MDIO single command completion interrupt */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1); |
| } |
| |
| static void xgbe_enable_ecc_interrupts(struct xgbe_prv_data *pdata) |
| { |
| unsigned int ecc_isr, ecc_ier = 0; |
| |
| if (!pdata->vdata->ecc_support) |
| return; |
| |
| /* Clear all the interrupts which are set */ |
| ecc_isr = XP_IOREAD(pdata, XP_ECC_ISR); |
| XP_IOWRITE(pdata, XP_ECC_ISR, ecc_isr); |
| |
| /* Enable ECC interrupts */ |
| XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 1); |
| XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 1); |
| XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 1); |
| XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 1); |
| XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 1); |
| XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 1); |
| |
| XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier); |
| } |
| |
| static void xgbe_disable_ecc_ded(struct xgbe_prv_data *pdata) |
| { |
| unsigned int ecc_ier; |
| |
| ecc_ier = XP_IOREAD(pdata, XP_ECC_IER); |
| |
| /* Disable ECC DED interrupts */ |
| XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 0); |
| XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 0); |
| XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 0); |
| |
| XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier); |
| } |
| |
| static void xgbe_disable_ecc_sec(struct xgbe_prv_data *pdata, |
| enum xgbe_ecc_sec sec) |
| { |
| unsigned int ecc_ier; |
| |
| ecc_ier = XP_IOREAD(pdata, XP_ECC_IER); |
| |
| /* Disable ECC SEC interrupt */ |
| switch (sec) { |
| case XGBE_ECC_SEC_TX: |
| XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 0); |
| break; |
| case XGBE_ECC_SEC_RX: |
| XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 0); |
| break; |
| case XGBE_ECC_SEC_DESC: |
| XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 0); |
| break; |
| } |
| |
| XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier); |
| } |
| |
| static int xgbe_set_speed(struct xgbe_prv_data *pdata, int speed) |
| { |
| unsigned int ss; |
| |
| switch (speed) { |
| case SPEED_1000: |
| ss = 0x03; |
| break; |
| case SPEED_2500: |
| ss = 0x02; |
| break; |
| case SPEED_10000: |
| ss = 0x00; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss) |
| XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss); |
| |
| return 0; |
| } |
| |
| static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata) |
| { |
| /* Put the VLAN tag in the Rx descriptor */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1); |
| |
| /* Don't check the VLAN type */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1); |
| |
| /* Check only C-TAG (0x8100) packets */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0); |
| |
| /* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0); |
| |
| /* Enable VLAN tag stripping */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3); |
| |
| return 0; |
| } |
| |
| static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata) |
| { |
| XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0); |
| |
| return 0; |
| } |
| |
| static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata) |
| { |
| /* Enable VLAN filtering */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1); |
| |
| /* Enable VLAN Hash Table filtering */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1); |
| |
| /* Disable VLAN tag inverse matching */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0); |
| |
| /* Only filter on the lower 12-bits of the VLAN tag */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1); |
| |
| /* In order for the VLAN Hash Table filtering to be effective, |
| * the VLAN tag identifier in the VLAN Tag Register must not |
| * be zero. Set the VLAN tag identifier to "1" to enable the |
| * VLAN Hash Table filtering. This implies that a VLAN tag of |
| * 1 will always pass filtering. |
| */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1); |
| |
| return 0; |
| } |
| |
| static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata) |
| { |
| /* Disable VLAN filtering */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0); |
| |
| return 0; |
| } |
| |
| static u32 xgbe_vid_crc32_le(__le16 vid_le) |
| { |
| u32 crc = ~0; |
| u32 temp = 0; |
| unsigned char *data = (unsigned char *)&vid_le; |
| unsigned char data_byte = 0; |
| int i, bits; |
| |
| bits = get_bitmask_order(VLAN_VID_MASK); |
| for (i = 0; i < bits; i++) { |
| if ((i % 8) == 0) |
| data_byte = data[i / 8]; |
| |
| temp = ((crc & 1) ^ data_byte) & 1; |
| crc >>= 1; |
| data_byte >>= 1; |
| |
| if (temp) |
| crc ^= CRC32_POLY_LE; |
| } |
| |
| return crc; |
| } |
| |
| static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata) |
| { |
| u32 crc; |
| u16 vid; |
| __le16 vid_le; |
| u16 vlan_hash_table = 0; |
| |
| /* Generate the VLAN Hash Table value */ |
| for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) { |
| /* Get the CRC32 value of the VLAN ID */ |
| vid_le = cpu_to_le16(vid); |
| crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28; |
| |
| vlan_hash_table |= (1 << crc); |
| } |
| |
| /* Set the VLAN Hash Table filtering register */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table); |
| |
| return 0; |
| } |
| |
| static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata, |
| unsigned int enable) |
| { |
| unsigned int val = enable ? 1 : 0; |
| |
| if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val) |
| return 0; |
| |
| netif_dbg(pdata, drv, pdata->netdev, "%s promiscuous mode\n", |
| enable ? "entering" : "leaving"); |
| XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val); |
| |
| /* Hardware will still perform VLAN filtering in promiscuous mode */ |
| if (enable) { |
| xgbe_disable_rx_vlan_filtering(pdata); |
| } else { |
| if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER) |
| xgbe_enable_rx_vlan_filtering(pdata); |
| } |
| |
| return 0; |
| } |
| |
| static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata, |
| unsigned int enable) |
| { |
| unsigned int val = enable ? 1 : 0; |
| |
| if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val) |
| return 0; |
| |
| netif_dbg(pdata, drv, pdata->netdev, "%s allmulti mode\n", |
| enable ? "entering" : "leaving"); |
| XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val); |
| |
| return 0; |
| } |
| |
| static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata, |
| struct netdev_hw_addr *ha, unsigned int *mac_reg) |
| { |
| unsigned int mac_addr_hi, mac_addr_lo; |
| u8 *mac_addr; |
| |
| mac_addr_lo = 0; |
| mac_addr_hi = 0; |
| |
| if (ha) { |
| mac_addr = (u8 *)&mac_addr_lo; |
| mac_addr[0] = ha->addr[0]; |
| mac_addr[1] = ha->addr[1]; |
| mac_addr[2] = ha->addr[2]; |
| mac_addr[3] = ha->addr[3]; |
| mac_addr = (u8 *)&mac_addr_hi; |
| mac_addr[0] = ha->addr[4]; |
| mac_addr[1] = ha->addr[5]; |
| |
| netif_dbg(pdata, drv, pdata->netdev, |
| "adding mac address %pM at %#x\n", |
| ha->addr, *mac_reg); |
| |
| XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1); |
| } |
| |
| XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi); |
| *mac_reg += MAC_MACA_INC; |
| XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo); |
| *mac_reg += MAC_MACA_INC; |
| } |
| |
| static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata) |
| { |
| struct net_device *netdev = pdata->netdev; |
| struct netdev_hw_addr *ha; |
| unsigned int mac_reg; |
| unsigned int addn_macs; |
| |
| mac_reg = MAC_MACA1HR; |
| addn_macs = pdata->hw_feat.addn_mac; |
| |
| if (netdev_uc_count(netdev) > addn_macs) { |
| xgbe_set_promiscuous_mode(pdata, 1); |
| } else { |
| netdev_for_each_uc_addr(ha, netdev) { |
| xgbe_set_mac_reg(pdata, ha, &mac_reg); |
| addn_macs--; |
| } |
| |
| if (netdev_mc_count(netdev) > addn_macs) { |
| xgbe_set_all_multicast_mode(pdata, 1); |
| } else { |
| netdev_for_each_mc_addr(ha, netdev) { |
| xgbe_set_mac_reg(pdata, ha, &mac_reg); |
| addn_macs--; |
| } |
| } |
| } |
| |
| /* Clear remaining additional MAC address entries */ |
| while (addn_macs--) |
| xgbe_set_mac_reg(pdata, NULL, &mac_reg); |
| } |
| |
| static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata) |
| { |
| struct net_device *netdev = pdata->netdev; |
| struct netdev_hw_addr *ha; |
| unsigned int hash_reg; |
| unsigned int hash_table_shift, hash_table_count; |
| u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE]; |
| u32 crc; |
| unsigned int i; |
| |
| hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7); |
| hash_table_count = pdata->hw_feat.hash_table_size / 32; |
| memset(hash_table, 0, sizeof(hash_table)); |
| |
| /* Build the MAC Hash Table register values */ |
| netdev_for_each_uc_addr(ha, netdev) { |
| crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN)); |
| crc >>= hash_table_shift; |
| hash_table[crc >> 5] |= (1 << (crc & 0x1f)); |
| } |
| |
| netdev_for_each_mc_addr(ha, netdev) { |
| crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN)); |
| crc >>= hash_table_shift; |
| hash_table[crc >> 5] |= (1 << (crc & 0x1f)); |
| } |
| |
| /* Set the MAC Hash Table registers */ |
| hash_reg = MAC_HTR0; |
| for (i = 0; i < hash_table_count; i++) { |
| XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]); |
| hash_reg += MAC_HTR_INC; |
| } |
| } |
| |
| static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata) |
| { |
| if (pdata->hw_feat.hash_table_size) |
| xgbe_set_mac_hash_table(pdata); |
| else |
| xgbe_set_mac_addn_addrs(pdata); |
| |
| return 0; |
| } |
| |
| static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, u8 *addr) |
| { |
| unsigned int mac_addr_hi, mac_addr_lo; |
| |
| mac_addr_hi = (addr[5] << 8) | (addr[4] << 0); |
| mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) | |
| (addr[1] << 8) | (addr[0] << 0); |
| |
| XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi); |
| XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo); |
| |
| return 0; |
| } |
| |
| static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata) |
| { |
| struct net_device *netdev = pdata->netdev; |
| unsigned int pr_mode, am_mode; |
| |
| pr_mode = ((netdev->flags & IFF_PROMISC) != 0); |
| am_mode = ((netdev->flags & IFF_ALLMULTI) != 0); |
| |
| xgbe_set_promiscuous_mode(pdata, pr_mode); |
| xgbe_set_all_multicast_mode(pdata, am_mode); |
| |
| xgbe_add_mac_addresses(pdata); |
| |
| return 0; |
| } |
| |
| static int xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio) |
| { |
| unsigned int reg; |
| |
| if (gpio > 15) |
| return -EINVAL; |
| |
| reg = XGMAC_IOREAD(pdata, MAC_GPIOSR); |
| |
| reg &= ~(1 << (gpio + 16)); |
| XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg); |
| |
| return 0; |
| } |
| |
| static int xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio) |
| { |
| unsigned int reg; |
| |
| if (gpio > 15) |
| return -EINVAL; |
| |
| reg = XGMAC_IOREAD(pdata, MAC_GPIOSR); |
| |
| reg |= (1 << (gpio + 16)); |
| XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg); |
| |
| return 0; |
| } |
| |
| static int xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, |
| int mmd_reg) |
| { |
| unsigned long flags; |
| unsigned int mmd_address, index, offset; |
| int mmd_data; |
| |
| if (mmd_reg & MII_ADDR_C45) |
| mmd_address = mmd_reg & ~MII_ADDR_C45; |
| else |
| mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff); |
| |
| /* The PCS registers are accessed using mmio. The underlying |
| * management interface uses indirect addressing to access the MMD |
| * register sets. This requires accessing of the PCS register in two |
| * phases, an address phase and a data phase. |
| * |
| * The mmio interface is based on 16-bit offsets and values. All |
| * register offsets must therefore be adjusted by left shifting the |
| * offset 1 bit and reading 16 bits of data. |
| */ |
| mmd_address <<= 1; |
| index = mmd_address & ~pdata->xpcs_window_mask; |
| offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask); |
| |
| spin_lock_irqsave(&pdata->xpcs_lock, flags); |
| XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index); |
| mmd_data = XPCS16_IOREAD(pdata, offset); |
| spin_unlock_irqrestore(&pdata->xpcs_lock, flags); |
| |
| return mmd_data; |
| } |
| |
| static void xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, |
| int mmd_reg, int mmd_data) |
| { |
| unsigned long flags; |
| unsigned int mmd_address, index, offset; |
| |
| if (mmd_reg & MII_ADDR_C45) |
| mmd_address = mmd_reg & ~MII_ADDR_C45; |
| else |
| mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff); |
| |
| /* The PCS registers are accessed using mmio. The underlying |
| * management interface uses indirect addressing to access the MMD |
| * register sets. This requires accessing of the PCS register in two |
| * phases, an address phase and a data phase. |
| * |
| * The mmio interface is based on 16-bit offsets and values. All |
| * register offsets must therefore be adjusted by left shifting the |
| * offset 1 bit and writing 16 bits of data. |
| */ |
| mmd_address <<= 1; |
| index = mmd_address & ~pdata->xpcs_window_mask; |
| offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask); |
| |
| spin_lock_irqsave(&pdata->xpcs_lock, flags); |
| XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index); |
| XPCS16_IOWRITE(pdata, offset, mmd_data); |
| spin_unlock_irqrestore(&pdata->xpcs_lock, flags); |
| } |
| |
| static int xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, |
| int mmd_reg) |
| { |
| unsigned long flags; |
| unsigned int mmd_address; |
| int mmd_data; |
| |
| if (mmd_reg & MII_ADDR_C45) |
| mmd_address = mmd_reg & ~MII_ADDR_C45; |
| else |
| mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff); |
| |
| /* The PCS registers are accessed using mmio. The underlying APB3 |
| * management interface uses indirect addressing to access the MMD |
| * register sets. This requires accessing of the PCS register in two |
| * phases, an address phase and a data phase. |
| * |
| * The mmio interface is based on 32-bit offsets and values. All |
| * register offsets must therefore be adjusted by left shifting the |
| * offset 2 bits and reading 32 bits of data. |
| */ |
| spin_lock_irqsave(&pdata->xpcs_lock, flags); |
| XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8); |
| mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2); |
| spin_unlock_irqrestore(&pdata->xpcs_lock, flags); |
| |
| return mmd_data; |
| } |
| |
| static void xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, |
| int mmd_reg, int mmd_data) |
| { |
| unsigned int mmd_address; |
| unsigned long flags; |
| |
| if (mmd_reg & MII_ADDR_C45) |
| mmd_address = mmd_reg & ~MII_ADDR_C45; |
| else |
| mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff); |
| |
| /* The PCS registers are accessed using mmio. The underlying APB3 |
| * management interface uses indirect addressing to access the MMD |
| * register sets. This requires accessing of the PCS register in two |
| * phases, an address phase and a data phase. |
| * |
| * The mmio interface is based on 32-bit offsets and values. All |
| * register offsets must therefore be adjusted by left shifting the |
| * offset 2 bits and writing 32 bits of data. |
| */ |
| spin_lock_irqsave(&pdata->xpcs_lock, flags); |
| XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8); |
| XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data); |
| spin_unlock_irqrestore(&pdata->xpcs_lock, flags); |
| } |
| |
| static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad, |
| int mmd_reg) |
| { |
| switch (pdata->vdata->xpcs_access) { |
| case XGBE_XPCS_ACCESS_V1: |
| return xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg); |
| |
| case XGBE_XPCS_ACCESS_V2: |
| default: |
| return xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg); |
| } |
| } |
| |
| static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad, |
| int mmd_reg, int mmd_data) |
| { |
| switch (pdata->vdata->xpcs_access) { |
| case XGBE_XPCS_ACCESS_V1: |
| return xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data); |
| |
| case XGBE_XPCS_ACCESS_V2: |
| default: |
| return xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data); |
| } |
| } |
| |
| static unsigned int xgbe_create_mdio_sca(int port, int reg) |
| { |
| unsigned int mdio_sca, da; |
| |
| da = (reg & MII_ADDR_C45) ? reg >> 16 : 0; |
| |
| mdio_sca = 0; |
| XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg); |
| XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port); |
| XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da); |
| |
| return mdio_sca; |
| } |
| |
| static int xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, |
| int reg, u16 val) |
| { |
| unsigned int mdio_sca, mdio_sccd; |
| |
| reinit_completion(&pdata->mdio_complete); |
| |
| mdio_sca = xgbe_create_mdio_sca(addr, reg); |
| XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca); |
| |
| mdio_sccd = 0; |
| XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val); |
| XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1); |
| XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1); |
| XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd); |
| |
| if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) { |
| netdev_err(pdata->netdev, "mdio write operation timed out\n"); |
| return -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |
| |
| static int xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, |
| int reg) |
| { |
| unsigned int mdio_sca, mdio_sccd; |
| |
| reinit_completion(&pdata->mdio_complete); |
| |
| mdio_sca = xgbe_create_mdio_sca(addr, reg); |
| XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca); |
| |
| mdio_sccd = 0; |
| XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3); |
| XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1); |
| XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd); |
| |
| if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) { |
| netdev_err(pdata->netdev, "mdio read operation timed out\n"); |
| return -ETIMEDOUT; |
| } |
| |
| return XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA); |
| } |
| |
| static int xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port, |
| enum xgbe_mdio_mode mode) |
| { |
| unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R); |
| |
| switch (mode) { |
| case XGBE_MDIO_MODE_CL22: |
| if (port > XGMAC_MAX_C22_PORT) |
| return -EINVAL; |
| reg_val |= (1 << port); |
| break; |
| case XGBE_MDIO_MODE_CL45: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val); |
| |
| return 0; |
| } |
| |
| static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc) |
| { |
| return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN); |
| } |
| |
| static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata) |
| { |
| XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0); |
| |
| return 0; |
| } |
| |
| static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata) |
| { |
| XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1); |
| |
| return 0; |
| } |
| |
| static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata) |
| { |
| struct xgbe_ring_desc *rdesc = rdata->rdesc; |
| |
| /* Reset the Tx descriptor |
| * Set buffer 1 (lo) address to zero |
| * Set buffer 1 (hi) address to zero |
| * Reset all other control bits (IC, TTSE, B2L & B1L) |
| * Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc) |
| */ |
| rdesc->desc0 = 0; |
| rdesc->desc1 = 0; |
| rdesc->desc2 = 0; |
| rdesc->desc3 = 0; |
| |
| /* Make sure ownership is written to the descriptor */ |
| dma_wmb(); |
| } |
| |
| static void xgbe_tx_desc_init(struct xgbe_channel *channel) |
| { |
| struct xgbe_ring *ring = channel->tx_ring; |
| struct xgbe_ring_data *rdata; |
| int i; |
| int start_index = ring->cur; |
| |
| DBGPR("-->tx_desc_init\n"); |
| |
| /* Initialze all descriptors */ |
| for (i = 0; i < ring->rdesc_count; i++) { |
| rdata = XGBE_GET_DESC_DATA(ring, i); |
| |
| /* Initialize Tx descriptor */ |
| xgbe_tx_desc_reset(rdata); |
| } |
| |
| /* Update the total number of Tx descriptors */ |
| XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1); |
| |
| /* Update the starting address of descriptor ring */ |
| rdata = XGBE_GET_DESC_DATA(ring, start_index); |
| XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI, |
| upper_32_bits(rdata->rdesc_dma)); |
| XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO, |
| lower_32_bits(rdata->rdesc_dma)); |
| |
| DBGPR("<--tx_desc_init\n"); |
| } |
| |
| static void xgbe_rx_desc_reset(struct xgbe_prv_data *pdata, |
| struct xgbe_ring_data *rdata, unsigned int index) |
| { |
| struct xgbe_ring_desc *rdesc = rdata->rdesc; |
| unsigned int rx_usecs = pdata->rx_usecs; |
| unsigned int rx_frames = pdata->rx_frames; |
| unsigned int inte; |
| dma_addr_t hdr_dma, buf_dma; |
| |
| if (!rx_usecs && !rx_frames) { |
| /* No coalescing, interrupt for every descriptor */ |
| inte = 1; |
| } else { |
| /* Set interrupt based on Rx frame coalescing setting */ |
| if (rx_frames && !((index + 1) % rx_frames)) |
| inte = 1; |
| else |
| inte = 0; |
| } |
| |
| /* Reset the Rx descriptor |
| * Set buffer 1 (lo) address to header dma address (lo) |
| * Set buffer 1 (hi) address to header dma address (hi) |
| * Set buffer 2 (lo) address to buffer dma address (lo) |
| * Set buffer 2 (hi) address to buffer dma address (hi) and |
| * set control bits OWN and INTE |
| */ |
| hdr_dma = rdata->rx.hdr.dma_base + rdata->rx.hdr.dma_off; |
| buf_dma = rdata->rx.buf.dma_base + rdata->rx.buf.dma_off; |
| rdesc->desc0 = cpu_to_le32(lower_32_bits(hdr_dma)); |
| rdesc->desc1 = cpu_to_le32(upper_32_bits(hdr_dma)); |
| rdesc->desc2 = cpu_to_le32(lower_32_bits(buf_dma)); |
| rdesc->desc3 = cpu_to_le32(upper_32_bits(buf_dma)); |
| |
| XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE, inte); |
| |
| /* Since the Rx DMA engine is likely running, make sure everything |
| * is written to the descriptor(s) before setting the OWN bit |
| * for the descriptor |
| */ |
| dma_wmb(); |
| |
| XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1); |
| |
| /* Make sure ownership is written to the descriptor */ |
| dma_wmb(); |
| } |
| |
| static void xgbe_rx_desc_init(struct xgbe_channel *channel) |
| { |
| struct xgbe_prv_data *pdata = channel->pdata; |
| struct xgbe_ring *ring = channel->rx_ring; |
| struct xgbe_ring_data *rdata; |
| unsigned int start_index = ring->cur; |
| unsigned int i; |
| |
| DBGPR("-->rx_desc_init\n"); |
| |
| /* Initialize all descriptors */ |
| for (i = 0; i < ring->rdesc_count; i++) { |
| rdata = XGBE_GET_DESC_DATA(ring, i); |
| |
| /* Initialize Rx descriptor */ |
| xgbe_rx_desc_reset(pdata, rdata, i); |
| } |
| |
| /* Update the total number of Rx descriptors */ |
| XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1); |
| |
| /* Update the starting address of descriptor ring */ |
| rdata = XGBE_GET_DESC_DATA(ring, start_index); |
| XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI, |
| upper_32_bits(rdata->rdesc_dma)); |
| XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO, |
| lower_32_bits(rdata->rdesc_dma)); |
| |
| /* Update the Rx Descriptor Tail Pointer */ |
| rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1); |
| XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO, |
| lower_32_bits(rdata->rdesc_dma)); |
| |
| DBGPR("<--rx_desc_init\n"); |
| } |
| |
| static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata, |
| unsigned int addend) |
| { |
| unsigned int count = 10000; |
| |
| /* Set the addend register value and tell the device */ |
| XGMAC_IOWRITE(pdata, MAC_TSAR, addend); |
| XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1); |
| |
| /* Wait for addend update to complete */ |
| while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG)) |
| udelay(5); |
| |
| if (!count) |
| netdev_err(pdata->netdev, |
| "timed out updating timestamp addend register\n"); |
| } |
| |
| static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec, |
| unsigned int nsec) |
| { |
| unsigned int count = 10000; |
| |
| /* Set the time values and tell the device */ |
| XGMAC_IOWRITE(pdata, MAC_STSUR, sec); |
| XGMAC_IOWRITE(pdata, MAC_STNUR, nsec); |
| XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1); |
| |
| /* Wait for time update to complete */ |
| while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT)) |
| udelay(5); |
| |
| if (!count) |
| netdev_err(pdata->netdev, "timed out initializing timestamp\n"); |
| } |
| |
| static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata) |
| { |
| u64 nsec; |
| |
| nsec = XGMAC_IOREAD(pdata, MAC_STSR); |
| nsec *= NSEC_PER_SEC; |
| nsec += XGMAC_IOREAD(pdata, MAC_STNR); |
| |
| return nsec; |
| } |
| |
| static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata) |
| { |
| unsigned int tx_snr, tx_ssr; |
| u64 nsec; |
| |
| if (pdata->vdata->tx_tstamp_workaround) { |
| tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR); |
| tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR); |
| } else { |
| tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR); |
| tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR); |
| } |
| |
| if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS)) |
| return 0; |
| |
| nsec = tx_ssr; |
| nsec *= NSEC_PER_SEC; |
| nsec += tx_snr; |
| |
| return nsec; |
| } |
| |
| static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet, |
| struct xgbe_ring_desc *rdesc) |
| { |
| u64 nsec; |
| |
| if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) && |
| !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) { |
| nsec = le32_to_cpu(rdesc->desc1); |
| nsec <<= 32; |
| nsec |= le32_to_cpu(rdesc->desc0); |
| if (nsec != 0xffffffffffffffffULL) { |
| packet->rx_tstamp = nsec; |
| XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, |
| RX_TSTAMP, 1); |
| } |
| } |
| } |
| |
| static int xgbe_config_tstamp(struct xgbe_prv_data *pdata, |
| unsigned int mac_tscr) |
| { |
| /* Set one nano-second accuracy */ |
| XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1); |
| |
| /* Set fine timestamp update */ |
| XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1); |
| |
| /* Overwrite earlier timestamps */ |
| XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1); |
| |
| XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr); |
| |
| /* Exit if timestamping is not enabled */ |
| if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA)) |
| return 0; |
| |
| /* Initialize time registers */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC); |
| XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC); |
| xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend); |
| xgbe_set_tstamp_time(pdata, 0, 0); |
| |
| /* Initialize the timecounter */ |
| timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc, |
| ktime_to_ns(ktime_get_real())); |
| |
| return 0; |
| } |
| |
| static void xgbe_tx_start_xmit(struct xgbe_channel *channel, |
| struct xgbe_ring *ring) |
| { |
| struct xgbe_prv_data *pdata = channel->pdata; |
| struct xgbe_ring_data *rdata; |
| |
| /* Make sure everything is written before the register write */ |
| wmb(); |
| |
| /* Issue a poll command to Tx DMA by writing address |
| * of next immediate free descriptor */ |
| rdata = XGBE_GET_DESC_DATA(ring, ring->cur); |
| XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO, |
| lower_32_bits(rdata->rdesc_dma)); |
| |
| /* Start the Tx timer */ |
| if (pdata->tx_usecs && !channel->tx_timer_active) { |
| channel->tx_timer_active = 1; |
| mod_timer(&channel->tx_timer, |
| jiffies + usecs_to_jiffies(pdata->tx_usecs)); |
| } |
| |
| ring->tx.xmit_more = 0; |
| } |
| |
| static void xgbe_dev_xmit(struct xgbe_channel *channel) |
| { |
| struct xgbe_prv_data *pdata = channel->pdata; |
| struct xgbe_ring *ring = channel->tx_ring; |
| struct xgbe_ring_data *rdata; |
| struct xgbe_ring_desc *rdesc; |
| struct xgbe_packet_data *packet = &ring->packet_data; |
| unsigned int tx_packets, tx_bytes; |
| unsigned int csum, tso, vlan, vxlan; |
| unsigned int tso_context, vlan_context; |
| unsigned int tx_set_ic; |
| int start_index = ring->cur; |
| int cur_index = ring->cur; |
| int i; |
| |
| DBGPR("-->xgbe_dev_xmit\n"); |
| |
| tx_packets = packet->tx_packets; |
| tx_bytes = packet->tx_bytes; |
| |
| csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, |
| CSUM_ENABLE); |
| tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, |
| TSO_ENABLE); |
| vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, |
| VLAN_CTAG); |
| vxlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, |
| VXLAN); |
| |
| if (tso && (packet->mss != ring->tx.cur_mss)) |
| tso_context = 1; |
| else |
| tso_context = 0; |
| |
| if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag)) |
| vlan_context = 1; |
| else |
| vlan_context = 0; |
| |
| /* Determine if an interrupt should be generated for this Tx: |
| * Interrupt: |
| * - Tx frame count exceeds the frame count setting |
| * - Addition of Tx frame count to the frame count since the |
| * last interrupt was set exceeds the frame count setting |
| * No interrupt: |
| * - No frame count setting specified (ethtool -C ethX tx-frames 0) |
| * - Addition of Tx frame count to the frame count since the |
| * last interrupt was set does not exceed the frame count setting |
| */ |
| ring->coalesce_count += tx_packets; |
| if (!pdata->tx_frames) |
| tx_set_ic = 0; |
| else if (tx_packets > pdata->tx_frames) |
| tx_set_ic = 1; |
| else if ((ring->coalesce_count % pdata->tx_frames) < tx_packets) |
| tx_set_ic = 1; |
| else |
| tx_set_ic = 0; |
| |
| rdata = XGBE_GET_DESC_DATA(ring, cur_index); |
| rdesc = rdata->rdesc; |
| |
| /* Create a context descriptor if this is a TSO packet */ |
| if (tso_context || vlan_context) { |
| if (tso_context) { |
| netif_dbg(pdata, tx_queued, pdata->netdev, |
| "TSO context descriptor, mss=%u\n", |
| packet->mss); |
| |
| /* Set the MSS size */ |
| XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2, |
| MSS, packet->mss); |
| |
| /* Mark it as a CONTEXT descriptor */ |
| XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, |
| CTXT, 1); |
| |
| /* Indicate this descriptor contains the MSS */ |
| XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, |
| TCMSSV, 1); |
| |
| ring->tx.cur_mss = packet->mss; |
| } |
| |
| if (vlan_context) { |
| netif_dbg(pdata, tx_queued, pdata->netdev, |
| "VLAN context descriptor, ctag=%u\n", |
| packet->vlan_ctag); |
| |
| /* Mark it as a CONTEXT descriptor */ |
| XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, |
| CTXT, 1); |
| |
| /* Set the VLAN tag */ |
| XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, |
| VT, packet->vlan_ctag); |
| |
| /* Indicate this descriptor contains the VLAN tag */ |
| XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, |
| VLTV, 1); |
| |
| ring->tx.cur_vlan_ctag = packet->vlan_ctag; |
| } |
| |
| cur_index++; |
| rdata = XGBE_GET_DESC_DATA(ring, cur_index); |
| rdesc = rdata->rdesc; |
| } |
| |
| /* Update buffer address (for TSO this is the header) */ |
| rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma)); |
| rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma)); |
| |
| /* Update the buffer length */ |
| XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L, |
| rdata->skb_dma_len); |
| |
| /* VLAN tag insertion check */ |
| if (vlan) |
| XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR, |
| TX_NORMAL_DESC2_VLAN_INSERT); |
| |
| /* Timestamp enablement check */ |
| if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP)) |
| XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1); |
| |
| /* Mark it as First Descriptor */ |
| XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1); |
| |
| /* Mark it as a NORMAL descriptor */ |
| XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0); |
| |
| /* Set OWN bit if not the first descriptor */ |
| if (cur_index != start_index) |
| XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1); |
| |
| if (tso) { |
| /* Enable TSO */ |
| XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1); |
| XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL, |
| packet->tcp_payload_len); |
| XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN, |
| packet->tcp_header_len / 4); |
| |
| pdata->ext_stats.tx_tso_packets += tx_packets; |
| } else { |
| /* Enable CRC and Pad Insertion */ |
| XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0); |
| |
| /* Enable HW CSUM */ |
| if (csum) |
| XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, |
| CIC, 0x3); |
| |
| /* Set the total length to be transmitted */ |
| XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL, |
| packet->length); |
| } |
| |
| if (vxlan) { |
| XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, VNP, |
| TX_NORMAL_DESC3_VXLAN_PACKET); |
| |
| pdata->ext_stats.tx_vxlan_packets += packet->tx_packets; |
| } |
| |
| for (i = cur_index - start_index + 1; i < packet->rdesc_count; i++) { |
| cur_index++; |
| rdata = XGBE_GET_DESC_DATA(ring, cur_index); |
| rdesc = rdata->rdesc; |
| |
| /* Update buffer address */ |
| rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma)); |
| rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma)); |
| |
| /* Update the buffer length */ |
| XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L, |
| rdata->skb_dma_len); |
| |
| /* Set OWN bit */ |
| XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1); |
| |
| /* Mark it as NORMAL descriptor */ |
| XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0); |
| |
| /* Enable HW CSUM */ |
| if (csum) |
| XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, |
| CIC, 0x3); |
| } |
| |
| /* Set LAST bit for the last descriptor */ |
| XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1); |
| |
| /* Set IC bit based on Tx coalescing settings */ |
| if (tx_set_ic) |
| XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1); |
| |
| /* Save the Tx info to report back during cleanup */ |
| rdata->tx.packets = tx_packets; |
| rdata->tx.bytes = tx_bytes; |
| |
| pdata->ext_stats.txq_packets[channel->queue_index] += tx_packets; |
| pdata->ext_stats.txq_bytes[channel->queue_index] += tx_bytes; |
| |
| /* In case the Tx DMA engine is running, make sure everything |
| * is written to the descriptor(s) before setting the OWN bit |
| * for the first descriptor |
| */ |
| dma_wmb(); |
| |
| /* Set OWN bit for the first descriptor */ |
| rdata = XGBE_GET_DESC_DATA(ring, start_index); |
| rdesc = rdata->rdesc; |
| XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1); |
| |
| if (netif_msg_tx_queued(pdata)) |
| xgbe_dump_tx_desc(pdata, ring, start_index, |
| packet->rdesc_count, 1); |
| |
| /* Make sure ownership is written to the descriptor */ |
| smp_wmb(); |
| |
| ring->cur = cur_index + 1; |
| if (!packet->skb->xmit_more || |
| netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev, |
| channel->queue_index))) |
| xgbe_tx_start_xmit(channel, ring); |
| else |
| ring->tx.xmit_more = 1; |
| |
| DBGPR(" %s: descriptors %u to %u written\n", |
| channel->name, start_index & (ring->rdesc_count - 1), |
| (ring->cur - 1) & (ring->rdesc_count - 1)); |
| |
| DBGPR("<--xgbe_dev_xmit\n"); |
| } |
| |
| static int xgbe_dev_read(struct xgbe_channel *channel) |
| { |
| struct xgbe_prv_data *pdata = channel->pdata; |
| struct xgbe_ring *ring = channel->rx_ring; |
| struct xgbe_ring_data *rdata; |
| struct xgbe_ring_desc *rdesc; |
| struct xgbe_packet_data *packet = &ring->packet_data; |
| struct net_device *netdev = pdata->netdev; |
| unsigned int err, etlt, l34t; |
| |
| DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur); |
| |
| rdata = XGBE_GET_DESC_DATA(ring, ring->cur); |
| rdesc = rdata->rdesc; |
| |
| /* Check for data availability */ |
| if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN)) |
| return 1; |
| |
| /* Make sure descriptor fields are read after reading the OWN bit */ |
| dma_rmb(); |
| |
| if (netif_msg_rx_status(pdata)) |
| xgbe_dump_rx_desc(pdata, ring, ring->cur); |
| |
| if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) { |
| /* Timestamp Context Descriptor */ |
| xgbe_get_rx_tstamp(packet, rdesc); |
| |
| XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, |
| CONTEXT, 1); |
| XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, |
| CONTEXT_NEXT, 0); |
| return 0; |
| } |
| |
| /* Normal Descriptor, be sure Context Descriptor bit is off */ |
| XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0); |
| |
| /* Indicate if a Context Descriptor is next */ |
| if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA)) |
| XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, |
| CONTEXT_NEXT, 1); |
| |
| /* Get the header length */ |
| if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) { |
| XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, |
| FIRST, 1); |
| rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2, |
| RX_NORMAL_DESC2, HL); |
| if (rdata->rx.hdr_len) |
| pdata->ext_stats.rx_split_header_packets++; |
| } else { |
| XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, |
| FIRST, 0); |
| } |
| |
| /* Get the RSS hash */ |
| if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) { |
| XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, |
| RSS_HASH, 1); |
| |
| packet->rss_hash = le32_to_cpu(rdesc->desc1); |
| |
| l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T); |
| switch (l34t) { |
| case RX_DESC3_L34T_IPV4_TCP: |
| case RX_DESC3_L34T_IPV4_UDP: |
| case RX_DESC3_L34T_IPV6_TCP: |
| case RX_DESC3_L34T_IPV6_UDP: |
| packet->rss_hash_type = PKT_HASH_TYPE_L4; |
| break; |
| default: |
| packet->rss_hash_type = PKT_HASH_TYPE_L3; |
| } |
| } |
| |
| /* Not all the data has been transferred for this packet */ |
| if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD)) |
| return 0; |
| |
| /* This is the last of the data for this packet */ |
| XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, |
| LAST, 1); |
| |
| /* Get the packet length */ |
| rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL); |
| |
| /* Set checksum done indicator as appropriate */ |
| if (netdev->features & NETIF_F_RXCSUM) { |
| XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, |
| CSUM_DONE, 1); |
| XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, |
| TNPCSUM_DONE, 1); |
| } |
| |
| /* Set the tunneled packet indicator */ |
| if (XGMAC_GET_BITS_LE(rdesc->desc2, RX_NORMAL_DESC2, TNP)) { |
| XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, |
| TNP, 1); |
| pdata->ext_stats.rx_vxlan_packets++; |
| |
| l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T); |
| switch (l34t) { |
| case RX_DESC3_L34T_IPV4_UNKNOWN: |
| case RX_DESC3_L34T_IPV6_UNKNOWN: |
| XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, |
| TNPCSUM_DONE, 0); |
| break; |
| } |
| } |
| |
| /* Check for errors (only valid in last descriptor) */ |
| err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES); |
| etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT); |
| netif_dbg(pdata, rx_status, netdev, "err=%u, etlt=%#x\n", err, etlt); |
| |
| if (!err || !etlt) { |
| /* No error if err is 0 or etlt is 0 */ |
| if ((etlt == 0x09) && |
| (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) { |
| XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, |
| VLAN_CTAG, 1); |
| packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0, |
| RX_NORMAL_DESC0, |
| OVT); |
| netif_dbg(pdata, rx_status, netdev, "vlan-ctag=%#06x\n", |
| packet->vlan_ctag); |
| } |
| } else { |
| unsigned int tnp = XGMAC_GET_BITS(packet->attributes, |
| RX_PACKET_ATTRIBUTES, TNP); |
| |
| if ((etlt == 0x05) || (etlt == 0x06)) { |
| XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, |
| CSUM_DONE, 0); |
| XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, |
| TNPCSUM_DONE, 0); |
| pdata->ext_stats.rx_csum_errors++; |
| } else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) { |
| XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, |
| CSUM_DONE, 0); |
| XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, |
| TNPCSUM_DONE, 0); |
| pdata->ext_stats.rx_vxlan_csum_errors++; |
| } else { |
| XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS, |
| FRAME, 1); |
| } |
| } |
| |
| pdata->ext_stats.rxq_packets[channel->queue_index]++; |
| pdata->ext_stats.rxq_bytes[channel->queue_index] += rdata->rx.len; |
| |
| DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name, |
| ring->cur & (ring->rdesc_count - 1), ring->cur); |
| |
| return 0; |
| } |
| |
| static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc) |
| { |
| /* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */ |
| return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT); |
| } |
| |
| static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc) |
| { |
| /* Rx and Tx share LD bit, so check TDES3.LD bit */ |
| return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD); |
| } |
| |
| static int xgbe_enable_int(struct xgbe_channel *channel, |
| enum xgbe_int int_id) |
| { |
| switch (int_id) { |
| case XGMAC_INT_DMA_CH_SR_TI: |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1); |
| break; |
| case XGMAC_INT_DMA_CH_SR_TPS: |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1); |
| break; |
| case XGMAC_INT_DMA_CH_SR_TBU: |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1); |
| break; |
| case XGMAC_INT_DMA_CH_SR_RI: |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1); |
| break; |
| case XGMAC_INT_DMA_CH_SR_RBU: |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1); |
| break; |
| case XGMAC_INT_DMA_CH_SR_RPS: |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1); |
| break; |
| case XGMAC_INT_DMA_CH_SR_TI_RI: |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1); |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1); |
| break; |
| case XGMAC_INT_DMA_CH_SR_FBE: |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1); |
| break; |
| case XGMAC_INT_DMA_ALL: |
| channel->curr_ier |= channel->saved_ier; |
| break; |
| default: |
| return -1; |
| } |
| |
| XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier); |
| |
| return 0; |
| } |
| |
| static int xgbe_disable_int(struct xgbe_channel *channel, |
| enum xgbe_int int_id) |
| { |
| switch (int_id) { |
| case XGMAC_INT_DMA_CH_SR_TI: |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0); |
| break; |
| case XGMAC_INT_DMA_CH_SR_TPS: |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0); |
| break; |
| case XGMAC_INT_DMA_CH_SR_TBU: |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0); |
| break; |
| case XGMAC_INT_DMA_CH_SR_RI: |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0); |
| break; |
| case XGMAC_INT_DMA_CH_SR_RBU: |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0); |
| break; |
| case XGMAC_INT_DMA_CH_SR_RPS: |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0); |
| break; |
| case XGMAC_INT_DMA_CH_SR_TI_RI: |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0); |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0); |
| break; |
| case XGMAC_INT_DMA_CH_SR_FBE: |
| XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0); |
| break; |
| case XGMAC_INT_DMA_ALL: |
| channel->saved_ier = channel->curr_ier; |
| channel->curr_ier = 0; |
| break; |
| default: |
| return -1; |
| } |
| |
| XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier); |
| |
| return 0; |
| } |
| |
| static int __xgbe_exit(struct xgbe_prv_data *pdata) |
| { |
| unsigned int count = 2000; |
| |
| DBGPR("-->xgbe_exit\n"); |
| |
| /* Issue a software reset */ |
| XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1); |
| usleep_range(10, 15); |
| |
| /* Poll Until Poll Condition */ |
| while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR)) |
| usleep_range(500, 600); |
| |
| if (!count) |
| return -EBUSY; |
| |
| DBGPR("<--xgbe_exit\n"); |
| |
| return 0; |
| } |
| |
| static int xgbe_exit(struct xgbe_prv_data *pdata) |
| { |
| int ret; |
| |
| /* To guard against possible incorrectly generated interrupts, |
| * issue the software reset twice. |
| */ |
| ret = __xgbe_exit(pdata); |
| if (ret) |
| return ret; |
| |
| return __xgbe_exit(pdata); |
| } |
| |
| static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata) |
| { |
| unsigned int i, count; |
| |
| if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21) |
| return 0; |
| |
| for (i = 0; i < pdata->tx_q_count; i++) |
| XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1); |
| |
| /* Poll Until Poll Condition */ |
| for (i = 0; i < pdata->tx_q_count; i++) { |
| count = 2000; |
| while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i, |
| MTL_Q_TQOMR, FTQ)) |
| usleep_range(500, 600); |
| |
| if (!count) |
| return -EBUSY; |
| } |
| |
| return 0; |
| } |
| |
| static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata) |
| { |
| unsigned int sbmr; |
| |
| sbmr = XGMAC_IOREAD(pdata, DMA_SBMR); |
| |
| /* Set enhanced addressing mode */ |
| XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1); |
| |
| /* Set the System Bus mode */ |
| XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1); |
| XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2); |
| XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal); |
| XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1); |
| XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1); |
| |
| XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr); |
| |
| /* Set descriptor fetching threshold */ |
| if (pdata->vdata->tx_desc_prefetch) |
| XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS, |
| pdata->vdata->tx_desc_prefetch); |
| |
| if (pdata->vdata->rx_desc_prefetch) |
| XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS, |
| pdata->vdata->rx_desc_prefetch); |
| } |
| |
| static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata) |
| { |
| XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr); |
| XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr); |
| if (pdata->awarcr) |
| XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr); |
| } |
| |
| static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata) |
| { |
| unsigned int i; |
| |
| /* Set Tx to weighted round robin scheduling algorithm */ |
| XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR); |
| |
| /* Set Tx traffic classes to use WRR algorithm with equal weights */ |
| for (i = 0; i < pdata->hw_feat.tc_cnt; i++) { |
| XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA, |
| MTL_TSA_ETS); |
| XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1); |
| } |
| |
| /* Set Rx to strict priority algorithm */ |
| XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP); |
| } |
| |
| static void xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata, |
| unsigned int queue, |
| unsigned int q_fifo_size) |
| { |
| unsigned int frame_fifo_size; |
| unsigned int rfa, rfd; |
| |
| frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata)); |
| |
| if (pdata->pfcq[queue] && (q_fifo_size > pdata->pfc_rfa)) { |
| /* PFC is active for this queue */ |
| rfa = pdata->pfc_rfa; |
| rfd = rfa + frame_fifo_size; |
| if (rfd > XGMAC_FLOW_CONTROL_MAX) |
| rfd = XGMAC_FLOW_CONTROL_MAX; |
| if (rfa >= XGMAC_FLOW_CONTROL_MAX) |
| rfa = XGMAC_FLOW_CONTROL_MAX - XGMAC_FLOW_CONTROL_UNIT; |
| } else { |
| /* This path deals with just maximum frame sizes which are |
| * limited to a jumbo frame of 9,000 (plus headers, etc.) |
| * so we can never exceed the maximum allowable RFA/RFD |
| * values. |
| */ |
| if (q_fifo_size <= 2048) { |
| /* rx_rfd to zero to signal no flow control */ |
| pdata->rx_rfa[queue] = 0; |
| pdata->rx_rfd[queue] = 0; |
| return; |
| } |
| |
| if (q_fifo_size <= 4096) { |
| /* Between 2048 and 4096 */ |
| pdata->rx_rfa[queue] = 0; /* Full - 1024 bytes */ |
| pdata->rx_rfd[queue] = 1; /* Full - 1536 bytes */ |
| return; |
| } |
| |
| if (q_fifo_size <= frame_fifo_size) { |
| /* Between 4096 and max-frame */ |
| pdata->rx_rfa[queue] = 2; /* Full - 2048 bytes */ |
| pdata->rx_rfd[queue] = 5; /* Full - 3584 bytes */ |
| return; |
| } |
| |
| if (q_fifo_size <= (frame_fifo_size * 3)) { |
| /* Between max-frame and 3 max-frames, |
| * trigger if we get just over a frame of data and |
| * resume when we have just under half a frame left. |
| */ |
| rfa = q_fifo_size - frame_fifo_size; |
| rfd = rfa + (frame_fifo_size / 2); |
| } else { |
| /* Above 3 max-frames - trigger when just over |
| * 2 frames of space available |
| */ |
| rfa = frame_fifo_size * 2; |
| rfa += XGMAC_FLOW_CONTROL_UNIT; |
| rfd = rfa + frame_fifo_size; |
| } |
| } |
| |
| pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa); |
| pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd); |
| } |
| |
| static void xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata, |
| unsigned int *fifo) |
| { |
| unsigned int q_fifo_size; |
| unsigned int i; |
| |
| for (i = 0; i < pdata->rx_q_count; i++) { |
| q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT; |
| |
| xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size); |
| } |
| } |
| |
| static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < pdata->rx_q_count; i++) { |
| XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA, |
| pdata->rx_rfa[i]); |
| XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD, |
| pdata->rx_rfd[i]); |
| } |
| } |
| |
| static unsigned int xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata) |
| { |
| /* The configured value may not be the actual amount of fifo RAM */ |
| return min_t(unsigned int, pdata->tx_max_fifo_size, |
| pdata->hw_feat.tx_fifo_size); |
| } |
| |
| static unsigned int xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata) |
| { |
| /* The configured value may not be the actual amount of fifo RAM */ |
| return min_t(unsigned int, pdata->rx_max_fifo_size, |
| pdata->hw_feat.rx_fifo_size); |
| } |
| |
| static void xgbe_calculate_equal_fifo(unsigned int fifo_size, |
| unsigned int queue_count, |
| unsigned int *fifo) |
| { |
| unsigned int q_fifo_size; |
| unsigned int p_fifo; |
| unsigned int i; |
| |
| q_fifo_size = fifo_size / queue_count; |
| |
| /* Calculate the fifo setting by dividing the queue's fifo size |
| * by the fifo allocation increment (with 0 representing the |
| * base allocation increment so decrement the result by 1). |
| */ |
| p_fifo = q_fifo_size / XGMAC_FIFO_UNIT; |
| if (p_fifo) |
| p_fifo--; |
| |
| /* Distribute the fifo equally amongst the queues */ |
| for (i = 0; i < queue_count; i++) |
| fifo[i] = p_fifo; |
| } |
| |
| static unsigned int xgbe_set_nonprio_fifos(unsigned int fifo_size, |
| unsigned int queue_count, |
| unsigned int *fifo) |
| { |
| unsigned int i; |
| |
| BUILD_BUG_ON_NOT_POWER_OF_2(XGMAC_FIFO_MIN_ALLOC); |
| |
| if (queue_count <= IEEE_8021QAZ_MAX_TCS) |
| return fifo_size; |
| |
| /* Rx queues 9 and up are for specialized packets, |
| * such as PTP or DCB control packets, etc. and |
| * don't require a large fifo |
| */ |
| for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) { |
| fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1; |
| fifo_size -= XGMAC_FIFO_MIN_ALLOC; |
| } |
| |
| return fifo_size; |
| } |
| |
| static unsigned int xgbe_get_pfc_delay(struct xgbe_prv_data *pdata) |
| { |
| unsigned int delay; |
| |
| /* If a delay has been provided, use that */ |
| if (pdata->pfc->delay) |
| return pdata->pfc->delay / 8; |
| |
| /* Allow for two maximum size frames */ |
| delay = xgbe_get_max_frame(pdata); |
| delay += XGMAC_ETH_PREAMBLE; |
| delay *= 2; |
| |
| /* Allow for PFC frame */ |
| delay += XGMAC_PFC_DATA_LEN; |
| delay += ETH_HLEN + ETH_FCS_LEN; |
| delay += XGMAC_ETH_PREAMBLE; |
| |
| /* Allow for miscellaneous delays (LPI exit, cable, etc.) */ |
| delay += XGMAC_PFC_DELAYS; |
| |
| return delay; |
| } |
| |
| static unsigned int xgbe_get_pfc_queues(struct xgbe_prv_data *pdata) |
| { |
| unsigned int count, prio_queues; |
| unsigned int i; |
| |
| if (!pdata->pfc->pfc_en) |
| return 0; |
| |
| count = 0; |
| prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count); |
| for (i = 0; i < prio_queues; i++) { |
| if (!xgbe_is_pfc_queue(pdata, i)) |
| continue; |
| |
| pdata->pfcq[i] = 1; |
| count++; |
| } |
| |
| return count; |
| } |
| |
| static void xgbe_calculate_dcb_fifo(struct xgbe_prv_data *pdata, |
| unsigned int fifo_size, |
| unsigned int *fifo) |
| { |
| unsigned int q_fifo_size, rem_fifo, addn_fifo; |
| unsigned int prio_queues; |
| unsigned int pfc_count; |
| unsigned int i; |
| |
| q_fifo_size = XGMAC_FIFO_ALIGN(xgbe_get_max_frame(pdata)); |
| prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count); |
| pfc_count = xgbe_get_pfc_queues(pdata); |
| |
| if (!pfc_count || ((q_fifo_size * prio_queues) > fifo_size)) { |
| /* No traffic classes with PFC enabled or can't do lossless */ |
| xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo); |
| return; |
| } |
| |
| /* Calculate how much fifo we have to play with */ |
| rem_fifo = fifo_size - (q_fifo_size * prio_queues); |
| |
| /* Calculate how much more than base fifo PFC needs, which also |
| * becomes the threshold activation point (RFA) |
| */ |
| pdata->pfc_rfa = xgbe_get_pfc_delay(pdata); |
| pdata->pfc_rfa = XGMAC_FLOW_CONTROL_ALIGN(pdata->pfc_rfa); |
| |
| if (pdata->pfc_rfa > q_fifo_size) { |
| addn_fifo = pdata->pfc_rfa - q_fifo_size; |
| addn_fifo = XGMAC_FIFO_ALIGN(addn_fifo); |
| } else { |
| addn_fifo = 0; |
| } |
| |
| /* Calculate DCB fifo settings: |
| * - distribute remaining fifo between the VLAN priority |
| * queues based on traffic class PFC enablement and overall |
| * priority (0 is lowest priority, so start at highest) |
| */ |
| i = prio_queues; |
| while (i > 0) { |
| i--; |
| |
| fifo[i] = (q_fifo_size / XGMAC_FIFO_UNIT) - 1; |
| |
| if (!pdata->pfcq[i] || !addn_fifo) |
| continue; |
| |
| if (addn_fifo > rem_fifo) { |
| netdev_warn(pdata->netdev, |
| "RXq%u cannot set needed fifo size\n", i); |
| if (!rem_fifo) |
| continue; |
| |
| addn_fifo = rem_fifo; |
| } |
| |
| fifo[i] += (addn_fifo / XGMAC_FIFO_UNIT); |
| rem_fifo -= addn_fifo; |
| } |
| |
| if (rem_fifo) { |
| unsigned int inc_fifo = rem_fifo / prio_queues; |
| |
| /* Distribute remaining fifo across queues */ |
| for (i = 0; i < prio_queues; i++) |
| fifo[i] += (inc_fifo / XGMAC_FIFO_UNIT); |
| } |
| } |
| |
| static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata) |
| { |
| unsigned int fifo_size; |
| unsigned int fifo[XGBE_MAX_QUEUES]; |
| unsigned int i; |
| |
| fifo_size = xgbe_get_tx_fifo_size(pdata); |
| |
| xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo); |
| |
| for (i = 0; i < pdata->tx_q_count; i++) |
| XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]); |
| |
| netif_info(pdata, drv, pdata->netdev, |
| "%d Tx hardware queues, %d byte fifo per queue\n", |
| pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT)); |
| } |
| |
| static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata) |
| { |
| unsigned int fifo_size; |
| unsigned int fifo[XGBE_MAX_QUEUES]; |
| unsigned int prio_queues; |
| unsigned int i; |
| |
| /* Clear any DCB related fifo/queue information */ |
| memset(pdata->pfcq, 0, sizeof(pdata->pfcq)); |
| pdata->pfc_rfa = 0; |
| |
| fifo_size = xgbe_get_rx_fifo_size(pdata); |
| prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count); |
| |
| /* Assign a minimum fifo to the non-VLAN priority queues */ |
| fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo); |
| |
| if (pdata->pfc && pdata->ets) |
| xgbe_calculate_dcb_fifo(pdata, fifo_size, fifo); |
| else |
| xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo); |
| |
| for (i = 0; i < pdata->rx_q_count; i++) |
| XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]); |
| |
| xgbe_calculate_flow_control_threshold(pdata, fifo); |
| xgbe_config_flow_control_threshold(pdata); |
| |
| if (pdata->pfc && pdata->ets && pdata->pfc->pfc_en) { |
| netif_info(pdata, drv, pdata->netdev, |
| "%u Rx hardware queues\n", pdata->rx_q_count); |
| for (i = 0; i < pdata->rx_q_count; i++) |
| netif_info(pdata, drv, pdata->netdev, |
| "RxQ%u, %u byte fifo queue\n", i, |
| ((fifo[i] + 1) * XGMAC_FIFO_UNIT)); |
| } else { |
| netif_info(pdata, drv, pdata->netdev, |
| "%u Rx hardware queues, %u byte fifo per queue\n", |
| pdata->rx_q_count, |
| ((fifo[0] + 1) * XGMAC_FIFO_UNIT)); |
| } |
| } |
| |
| static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata) |
| { |
| unsigned int qptc, qptc_extra, queue; |
| unsigned int prio_queues; |
| unsigned int ppq, ppq_extra, prio; |
| unsigned int mask; |
| unsigned int i, j, reg, reg_val; |
| |
| /* Map the MTL Tx Queues to Traffic Classes |
| * Note: Tx Queues >= Traffic Classes |
| */ |
| qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt; |
| qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt; |
| |
| for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) { |
| for (j = 0; j < qptc; j++) { |
| netif_dbg(pdata, drv, pdata->netdev, |
| "TXq%u mapped to TC%u\n", queue, i); |
| XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR, |
| Q2TCMAP, i); |
| pdata->q2tc_map[queue++] = i; |
| } |
| |
| if (i < qptc_extra) { |
| netif_dbg(pdata, drv, pdata->netdev, |
| "TXq%u mapped to TC%u\n", queue, i); |
| XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR, |
| Q2TCMAP, i); |
| pdata->q2tc_map[queue++] = i; |
| } |
| } |
| |
| /* Map the 8 VLAN priority values to available MTL Rx queues */ |
| prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count); |
| ppq = IEEE_8021QAZ_MAX_TCS / prio_queues; |
| ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues; |
| |
| reg = MAC_RQC2R; |
| reg_val = 0; |
| for (i = 0, prio = 0; i < prio_queues;) { |
| mask = 0; |
| for (j = 0; j < ppq; j++) { |
| netif_dbg(pdata, drv, pdata->netdev, |
| "PRIO%u mapped to RXq%u\n", prio, i); |
| mask |= (1 << prio); |
| pdata->prio2q_map[prio++] = i; |
| } |
| |
| if (i < ppq_extra) { |
| netif_dbg(pdata, drv, pdata->netdev, |
| "PRIO%u mapped to RXq%u\n", prio, i); |
| mask |= (1 << prio); |
| pdata->prio2q_map[prio++] = i; |
| } |
| |
| reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3)); |
| |
| if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues)) |
| continue; |
| |
| XGMAC_IOWRITE(pdata, reg, reg_val); |
| reg += MAC_RQC2_INC; |
| reg_val = 0; |
| } |
| |
| /* Select dynamic mapping of MTL Rx queue to DMA Rx channel */ |
| reg = MTL_RQDCM0R; |
| reg_val = 0; |
| for (i = 0; i < pdata->rx_q_count;) { |
| reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3)); |
| |
| if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count)) |
| continue; |
| |
| XGMAC_IOWRITE(pdata, reg, reg_val); |
| |
| reg += MTL_RQDCM_INC; |
| reg_val = 0; |
| } |
| } |
| |
| static void xgbe_config_tc(struct xgbe_prv_data *pdata) |
| { |
| unsigned int offset, queue, prio; |
| u8 i; |
| |
| netdev_reset_tc(pdata->netdev); |
| if (!pdata->num_tcs) |
| return; |
| |
| netdev_set_num_tc(pdata->netdev, pdata->num_tcs); |
| |
| for (i = 0, queue = 0, offset = 0; i < pdata->num_tcs; i++) { |
| while ((queue < pdata->tx_q_count) && |
| (pdata->q2tc_map[queue] == i)) |
| queue++; |
| |
| netif_dbg(pdata, drv, pdata->netdev, "TC%u using TXq%u-%u\n", |
| i, offset, queue - 1); |
| netdev_set_tc_queue(pdata->netdev, i, queue - offset, offset); |
| offset = queue; |
| } |
| |
| if (!pdata->ets) |
| return; |
| |
| for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) |
| netdev_set_prio_tc_map(pdata->netdev, prio, |
| pdata->ets->prio_tc[prio]); |
| } |
| |
| static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata) |
| { |
| struct ieee_ets *ets = pdata->ets; |
| unsigned int total_weight, min_weight, weight; |
| unsigned int mask, reg, reg_val; |
| unsigned int i, prio; |
| |
| if (!ets) |
| return; |
| |
| /* Set Tx to deficit weighted round robin scheduling algorithm (when |
| * traffic class is using ETS algorithm) |
| */ |
| XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR); |
| |
| /* Set Traffic Class algorithms */ |
| total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt; |
| min_weight = total_weight / 100; |
| if (!min_weight) |
| min_weight = 1; |
| |
| for (i = 0; i < pdata->hw_feat.tc_cnt; i++) { |
| /* Map the priorities to the traffic class */ |
| mask = 0; |
| for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) { |
| if (ets->prio_tc[prio] == i) |
| mask |= (1 << prio); |
| } |
| mask &= 0xff; |
| |
| netif_dbg(pdata, drv, pdata->netdev, "TC%u PRIO mask=%#x\n", |
| i, mask); |
| reg = MTL_TCPM0R + (MTL_TCPM_INC * (i / MTL_TCPM_TC_PER_REG)); |
| reg_val = XGMAC_IOREAD(pdata, reg); |
| |
| reg_val &= ~(0xff << ((i % MTL_TCPM_TC_PER_REG) << 3)); |
| reg_val |= (mask << ((i % MTL_TCPM_TC_PER_REG) << 3)); |
| |
| XGMAC_IOWRITE(pdata, reg, reg_val); |
| |
| /* Set the traffic class algorithm */ |
| switch (ets->tc_tsa[i]) { |
| case IEEE_8021QAZ_TSA_STRICT: |
| netif_dbg(pdata, drv, pdata->netdev, |
| "TC%u using SP\n", i); |
| XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA, |
| MTL_TSA_SP); |
| break; |
| case IEEE_8021QAZ_TSA_ETS: |
| weight = total_weight * ets->tc_tx_bw[i] / 100; |
| weight = clamp(weight, min_weight, total_weight); |
| |
| netif_dbg(pdata, drv, pdata->netdev, |
| "TC%u using DWRR (weight %u)\n", i, weight); |
| XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA, |
| MTL_TSA_ETS); |
| XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, |
| weight); |
| break; |
| } |
| } |
| |
| xgbe_config_tc(pdata); |
| } |
| |
| static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata) |
| { |
| if (!test_bit(XGBE_DOWN, &pdata->dev_state)) { |
| /* Just stop the Tx queues while Rx fifo is changed */ |
| netif_tx_stop_all_queues(pdata->netdev); |
| |
| /* Suspend Rx so that fifo's can be adjusted */ |
| pdata->hw_if.disable_rx(pdata); |
| } |
| |
| xgbe_config_rx_fifo_size(pdata); |
| xgbe_config_flow_control(pdata); |
| |
| if (!test_bit(XGBE_DOWN, &pdata->dev_state)) { |
| /* Resume Rx */ |
| pdata->hw_if.enable_rx(pdata); |
| |
| /* Resume Tx queues */ |
| netif_tx_start_all_queues(pdata->netdev); |
| } |
| } |
| |
| static void xgbe_config_mac_address(struct xgbe_prv_data *pdata) |
| { |
| xgbe_set_mac_address(pdata, pdata->netdev->dev_addr); |
| |
| /* Filtering is done using perfect filtering and hash filtering */ |
| if (pdata->hw_feat.hash_table_size) { |
| XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1); |
| XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1); |
| XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1); |
| } |
| } |
| |
| static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata) |
| { |
| unsigned int val; |
| |
| val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0; |
| |
| XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val); |
| } |
| |
| static void xgbe_config_mac_speed(struct xgbe_prv_data *pdata) |
| { |
| xgbe_set_speed(pdata, pdata->phy_speed); |
| } |
| |
| static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata) |
| { |
| if (pdata->netdev->features & NETIF_F_RXCSUM) |
| xgbe_enable_rx_csum(pdata); |
| else |
| xgbe_disable_rx_csum(pdata); |
| } |
| |
| static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata) |
| { |
| /* Indicate that VLAN Tx CTAGs come from context descriptors */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0); |
| XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1); |
| |
| /* Set the current VLAN Hash Table register value */ |
| xgbe_update_vlan_hash_table(pdata); |
| |
| if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER) |
| xgbe_enable_rx_vlan_filtering(pdata); |
| else |
| xgbe_disable_rx_vlan_filtering(pdata); |
| |
| if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) |
| xgbe_enable_rx_vlan_stripping(pdata); |
| else |
| xgbe_disable_rx_vlan_stripping(pdata); |
| } |
| |
| static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo) |
| { |
| bool read_hi; |
| u64 val; |
| |
| if (pdata->vdata->mmc_64bit) { |
| switch (reg_lo) { |
| /* These registers are always 32 bit */ |
| case MMC_RXRUNTERROR: |
| case MMC_RXJABBERERROR: |
| case MMC_RXUNDERSIZE_G: |
| case MMC_RXOVERSIZE_G: |
| case MMC_RXWATCHDOGERROR: |
| read_hi = false; |
| break; |
| |
| default: |
| read_hi = true; |
| } |
| } else { |
| switch (reg_lo) { |
| /* These registers are always 64 bit */ |
| case MMC_TXOCTETCOUNT_GB_LO: |
| case MMC_TXOCTETCOUNT_G_LO: |
| case MMC_RXOCTETCOUNT_GB_LO: |
| case MMC_RXOCTETCOUNT_G_LO: |
| read_hi = true; |
| break; |
| |
| default: |
| read_hi = false; |
| } |
| } |
| |
| val = XGMAC_IOREAD(pdata, reg_lo); |
| |
| if (read_hi) |
| val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32); |
| |
| return val; |
| } |
| |
| static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_mmc_stats *stats = &pdata->mmc_stats; |
| unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB)) |
| stats->txoctetcount_gb += |
| xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB)) |
| stats->txframecount_gb += |
| xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G)) |
| stats->txbroadcastframes_g += |
| xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G)) |
| stats->txmulticastframes_g += |
| xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB)) |
| stats->tx64octets_gb += |
| xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB)) |
| stats->tx65to127octets_gb += |
| xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB)) |
| stats->tx128to255octets_gb += |
| xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB)) |
| stats->tx256to511octets_gb += |
| xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB)) |
| stats->tx512to1023octets_gb += |
| xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB)) |
| stats->tx1024tomaxoctets_gb += |
| xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB)) |
| stats->txunicastframes_gb += |
| xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB)) |
| stats->txmulticastframes_gb += |
| xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB)) |
| stats->txbroadcastframes_g += |
| xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR)) |
| stats->txunderflowerror += |
| xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G)) |
| stats->txoctetcount_g += |
| xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G)) |
| stats->txframecount_g += |
| xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES)) |
| stats->txpauseframes += |
| xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G)) |
| stats->txvlanframes_g += |
| xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO); |
| } |
| |
| static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_mmc_stats *stats = &pdata->mmc_stats; |
| unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB)) |
| stats->rxframecount_gb += |
| xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB)) |
| stats->rxoctetcount_gb += |
| xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G)) |
| stats->rxoctetcount_g += |
| xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G)) |
| stats->rxbroadcastframes_g += |
| xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G)) |
| stats->rxmulticastframes_g += |
| xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR)) |
| stats->rxcrcerror += |
| xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR)) |
| stats->rxrunterror += |
| xgbe_mmc_read(pdata, MMC_RXRUNTERROR); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR)) |
| stats->rxjabbererror += |
| xgbe_mmc_read(pdata, MMC_RXJABBERERROR); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G)) |
| stats->rxundersize_g += |
| xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G)) |
| stats->rxoversize_g += |
| xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB)) |
| stats->rx64octets_gb += |
| xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB)) |
| stats->rx65to127octets_gb += |
| xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB)) |
| stats->rx128to255octets_gb += |
| xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB)) |
| stats->rx256to511octets_gb += |
| xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB)) |
| stats->rx512to1023octets_gb += |
| xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB)) |
| stats->rx1024tomaxoctets_gb += |
| xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G)) |
| stats->rxunicastframes_g += |
| xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR)) |
| stats->rxlengtherror += |
| xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE)) |
| stats->rxoutofrangetype += |
| xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES)) |
| stats->rxpauseframes += |
| xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW)) |
| stats->rxfifooverflow += |
| xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB)) |
| stats->rxvlanframes_gb += |
| xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO); |
| |
| if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR)) |
| stats->rxwatchdogerror += |
| xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR); |
| } |
| |
| static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_mmc_stats *stats = &pdata->mmc_stats; |
| |
| /* Freeze counters */ |
| XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1); |
| |
| stats->txoctetcount_gb += |
| xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO); |
| |
| stats->txframecount_gb += |
| xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO); |
| |
| stats->txbroadcastframes_g += |
| xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO); |
| |
| stats->txmulticastframes_g += |
| xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO); |
| |
| stats->tx64octets_gb += |
| xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO); |
| |
| stats->tx65to127octets_gb += |
| xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO); |
| |
| stats->tx128to255octets_gb += |
| xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO); |
| |
| stats->tx256to511octets_gb += |
| xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO); |
| |
| stats->tx512to1023octets_gb += |
| xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO); |
| |
| stats->tx1024tomaxoctets_gb += |
| xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO); |
| |
| stats->txunicastframes_gb += |
| xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO); |
| |
| stats->txmulticastframes_gb += |
| xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO); |
| |
| stats->txbroadcastframes_g += |
| xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO); |
| |
| stats->txunderflowerror += |
| xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO); |
| |
| stats->txoctetcount_g += |
| xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO); |
| |
| stats->txframecount_g += |
| xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO); |
| |
| stats->txpauseframes += |
| xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO); |
| |
| stats->txvlanframes_g += |
| xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO); |
| |
| stats->rxframecount_gb += |
| xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO); |
| |
| stats->rxoctetcount_gb += |
| xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO); |
| |
| stats->rxoctetcount_g += |
| xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO); |
| |
| stats->rxbroadcastframes_g += |
| xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO); |
| |
| stats->rxmulticastframes_g += |
| xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO); |
| |
| stats->rxcrcerror += |
| xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO); |
| |
| stats->rxrunterror += |
| xgbe_mmc_read(pdata, MMC_RXRUNTERROR); |
| |
| stats->rxjabbererror += |
| xgbe_mmc_read(pdata, MMC_RXJABBERERROR); |
| |
| stats->rxundersize_g += |
| xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G); |
| |
| stats->rxoversize_g += |
| xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G); |
| |
| stats->rx64octets_gb += |
| xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO); |
| |
| stats->rx65to127octets_gb += |
| xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO); |
| |
| stats->rx128to255octets_gb += |
| xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO); |
| |
| stats->rx256to511octets_gb += |
| xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO); |
| |
| stats->rx512to1023octets_gb += |
| xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO); |
| |
| stats->rx1024tomaxoctets_gb += |
| xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO); |
| |
| stats->rxunicastframes_g += |
| xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO); |
| |
| stats->rxlengtherror += |
| xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO); |
| |
| stats->rxoutofrangetype += |
| xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO); |
| |
| stats->rxpauseframes += |
| xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO); |
| |
| stats->rxfifooverflow += |
| xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO); |
| |
| stats->rxvlanframes_gb += |
| xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO); |
| |
| stats->rxwatchdogerror += |
| xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR); |
| |
| /* Un-freeze counters */ |
| XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0); |
| } |
| |
| static void xgbe_config_mmc(struct xgbe_prv_data *pdata) |
| { |
| /* Set counters to reset on read */ |
| XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1); |
| |
| /* Reset the counters */ |
| XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1); |
| } |
| |
| static void xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata, |
| unsigned int queue) |
| { |
| unsigned int tx_status; |
| unsigned long tx_timeout; |
| |
| /* The Tx engine cannot be stopped if it is actively processing |
| * packets. Wait for the Tx queue to empty the Tx fifo. Don't |
| * wait forever though... |
| */ |
| tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ); |
| while (time_before(jiffies, tx_timeout)) { |
| tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR); |
| if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) && |
| (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0)) |
| break; |
| |
| usleep_range(500, 1000); |
| } |
| |
| if (!time_before(jiffies, tx_timeout)) |
| netdev_info(pdata->netdev, |
| "timed out waiting for Tx queue %u to empty\n", |
| queue); |
| } |
| |
| static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata, |
| unsigned int queue) |
| { |
| unsigned int tx_dsr, tx_pos, tx_qidx; |
| unsigned int tx_status; |
| unsigned long tx_timeout; |
| |
| if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20) |
| return xgbe_txq_prepare_tx_stop(pdata, queue); |
| |
| /* Calculate the status register to read and the position within */ |
| if (queue < DMA_DSRX_FIRST_QUEUE) { |
| tx_dsr = DMA_DSR0; |
| tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START; |
| } else { |
| tx_qidx = queue - DMA_DSRX_FIRST_QUEUE; |
| |
| tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC); |
| tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) + |
| DMA_DSRX_TPS_START; |
| } |
| |
| /* The Tx engine cannot be stopped if it is actively processing |
| * descriptors. Wait for the Tx engine to enter the stopped or |
| * suspended state. Don't wait forever though... |
| */ |
| tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ); |
| while (time_before(jiffies, tx_timeout)) { |
| tx_status = XGMAC_IOREAD(pdata, tx_dsr); |
| tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH); |
| if ((tx_status == DMA_TPS_STOPPED) || |
| (tx_status == DMA_TPS_SUSPENDED)) |
| break; |
| |
| usleep_range(500, 1000); |
| } |
| |
| if (!time_before(jiffies, tx_timeout)) |
| netdev_info(pdata->netdev, |
| "timed out waiting for Tx DMA channel %u to stop\n", |
| queue); |
| } |
| |
| static void xgbe_enable_tx(struct xgbe_prv_data *pdata) |
| { |
| unsigned int i; |
| |
| /* Enable each Tx DMA channel */ |
| for (i = 0; i < pdata->channel_count; i++) { |
| if (!pdata->channel[i]->tx_ring) |
| break; |
| |
| XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1); |
| } |
| |
| /* Enable each Tx queue */ |
| for (i = 0; i < pdata->tx_q_count; i++) |
| XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, |
| MTL_Q_ENABLED); |
| |
| /* Enable MAC Tx */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1); |
| } |
| |
| static void xgbe_disable_tx(struct xgbe_prv_data *pdata) |
| { |
| unsigned int i; |
| |
| /* Prepare for Tx DMA channel stop */ |
| for (i = 0; i < pdata->tx_q_count; i++) |
| xgbe_prepare_tx_stop(pdata, i); |
| |
| /* Disable MAC Tx */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0); |
| |
| /* Disable each Tx queue */ |
| for (i = 0; i < pdata->tx_q_count; i++) |
| XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0); |
| |
| /* Disable each Tx DMA channel */ |
| for (i = 0; i < pdata->channel_count; i++) { |
| if (!pdata->channel[i]->tx_ring) |
| break; |
| |
| XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0); |
| } |
| } |
| |
| static void xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata, |
| unsigned int queue) |
| { |
| unsigned int rx_status; |
| unsigned long rx_timeout; |
| |
| /* The Rx engine cannot be stopped if it is actively processing |
| * packets. Wait for the Rx queue to empty the Rx fifo. Don't |
| * wait forever though... |
| */ |
| rx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ); |
| while (time_before(jiffies, rx_timeout)) { |
| rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR); |
| if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) && |
| (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0)) |
| break; |
| |
| usleep_range(500, 1000); |
| } |
| |
| if (!time_before(jiffies, rx_timeout)) |
| netdev_info(pdata->netdev, |
| "timed out waiting for Rx queue %u to empty\n", |
| queue); |
| } |
| |
| static void xgbe_enable_rx(struct xgbe_prv_data *pdata) |
| { |
| unsigned int reg_val, i; |
| |
| /* Enable each Rx DMA channel */ |
| for (i = 0; i < pdata->channel_count; i++) { |
| if (!pdata->channel[i]->rx_ring) |
| break; |
| |
| XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1); |
| } |
| |
| /* Enable each Rx queue */ |
| reg_val = 0; |
| for (i = 0; i < pdata->rx_q_count; i++) |
| reg_val |= (0x02 << (i << 1)); |
| XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val); |
| |
| /* Enable MAC Rx */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1); |
| XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1); |
| XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1); |
| XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1); |
| } |
| |
| static void xgbe_disable_rx(struct xgbe_prv_data *pdata) |
| { |
| unsigned int i; |
| |
| /* Disable MAC Rx */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0); |
| XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0); |
| XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0); |
| XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0); |
| |
| /* Prepare for Rx DMA channel stop */ |
| for (i = 0; i < pdata->rx_q_count; i++) |
| xgbe_prepare_rx_stop(pdata, i); |
| |
| /* Disable each Rx queue */ |
| XGMAC_IOWRITE(pdata, MAC_RQC0R, 0); |
| |
| /* Disable each Rx DMA channel */ |
| for (i = 0; i < pdata->channel_count; i++) { |
| if (!pdata->channel[i]->rx_ring) |
| break; |
| |
| XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0); |
| } |
| } |
| |
| static void xgbe_powerup_tx(struct xgbe_prv_data *pdata) |
| { |
| unsigned int i; |
| |
| /* Enable each Tx DMA channel */ |
| for (i = 0; i < pdata->channel_count; i++) { |
| if (!pdata->channel[i]->tx_ring) |
| break; |
| |
| XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1); |
| } |
| |
| /* Enable MAC Tx */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1); |
| } |
| |
| static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata) |
| { |
| unsigned int i; |
| |
| /* Prepare for Tx DMA channel stop */ |
| for (i = 0; i < pdata->tx_q_count; i++) |
| xgbe_prepare_tx_stop(pdata, i); |
| |
| /* Disable MAC Tx */ |
| XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0); |
| |
| /* Disable each Tx DMA channel */ |
| for (i = 0; i < pdata->channel_count; i++) { |
| if (!pdata->channel[i]->tx_ring) |
| break; |
| |
| XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0); |
| } |
| } |
| |
| static void xgbe_powerup_rx(struct xgbe_prv_data *pdata) |
| { |
| unsigned int i; |
| |
| /* Enable each Rx DMA channel */ |
| for (i = 0; i < pdata->channel_count; i++) { |
| if (!pdata->channel[i]->rx_ring) |
| break; |
| |
| XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1); |
| } |
| } |
| |
| static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata) |
| { |
| unsigned int i; |
| |
| /* Disable each Rx DMA channel */ |
| for (i = 0; i < pdata->channel_count; i++) { |
| if (!pdata->channel[i]->rx_ring) |
| break; |
| |
| XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0); |
| } |
| } |
| |
| static int xgbe_init(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_desc_if *desc_if = &pdata->desc_if; |
| int ret; |
| |
| DBGPR("-->xgbe_init\n"); |
| |
| /* Flush Tx queues */ |
| ret = xgbe_flush_tx_queues(pdata); |
| if (ret) { |
| netdev_err(pdata->netdev, "error flushing TX queues\n"); |
| return ret; |
| } |
| |
| /* |
| * Initialize DMA related features |
| */ |
| xgbe_config_dma_bus(pdata); |
| xgbe_config_dma_cache(pdata); |
| xgbe_config_osp_mode(pdata); |
| xgbe_config_pbl_val(pdata); |
| xgbe_config_rx_coalesce(pdata); |
| xgbe_config_tx_coalesce(pdata); |
| xgbe_config_rx_buffer_size(pdata); |
| xgbe_config_tso_mode(pdata); |
| xgbe_config_sph_mode(pdata); |
| xgbe_config_rss(pdata); |
| desc_if->wrapper_tx_desc_init(pdata); |
| desc_if->wrapper_rx_desc_init(pdata); |
| xgbe_enable_dma_interrupts(pdata); |
| |
| /* |
| * Initialize MTL related features |
| */ |
| xgbe_config_mtl_mode(pdata); |
| xgbe_config_queue_mapping(pdata); |
| xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode); |
| xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode); |
| xgbe_config_tx_threshold(pdata, pdata->tx_threshold); |
| xgbe_config_rx_threshold(pdata, pdata->rx_threshold); |
| xgbe_config_tx_fifo_size(pdata); |
| xgbe_config_rx_fifo_size(pdata); |
| /*TODO: Error Packet and undersized good Packet forwarding enable |
| (FEP and FUP) |
| */ |
| xgbe_config_dcb_tc(pdata); |
| xgbe_enable_mtl_interrupts(pdata); |
| |
| /* |
| * Initialize MAC related features |
| */ |
| xgbe_config_mac_address(pdata); |
| xgbe_config_rx_mode(pdata); |
| xgbe_config_jumbo_enable(pdata); |
| xgbe_config_flow_control(pdata); |
| xgbe_config_mac_speed(pdata); |
| xgbe_config_checksum_offload(pdata); |
| xgbe_config_vlan_support(pdata); |
| xgbe_config_mmc(pdata); |
| xgbe_enable_mac_interrupts(pdata); |
| |
| /* |
| * Initialize ECC related features |
| */ |
| xgbe_enable_ecc_interrupts(pdata); |
| |
| DBGPR("<--xgbe_init\n"); |
| |
| return 0; |
| } |
| |
| void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if) |
| { |
| DBGPR("-->xgbe_init_function_ptrs\n"); |
| |
| hw_if->tx_complete = xgbe_tx_complete; |
| |
| hw_if->set_mac_address = xgbe_set_mac_address; |
| hw_if->config_rx_mode = xgbe_config_rx_mode; |
| |
| hw_if->enable_rx_csum = xgbe_enable_rx_csum; |
| hw_if->disable_rx_csum = xgbe_disable_rx_csum; |
| |
| hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping; |
| hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping; |
| hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering; |
| hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering; |
| hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table; |
| |
| hw_if->read_mmd_regs = xgbe_read_mmd_regs; |
| hw_if->write_mmd_regs = xgbe_write_mmd_regs; |
| |
| hw_if->set_speed = xgbe_set_speed; |
| |
| hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode; |
| hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs; |
| hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs; |
| |
| hw_if->set_gpio = xgbe_set_gpio; |
| hw_if->clr_gpio = xgbe_clr_gpio; |
| |
| hw_if->enable_tx = xgbe_enable_tx; |
| hw_if->disable_tx = xgbe_disable_tx; |
| hw_if->enable_rx = xgbe_enable_rx; |
| hw_if->disable_rx = xgbe_disable_rx; |
| |
| hw_if->powerup_tx = xgbe_powerup_tx; |
| hw_if->powerdown_tx = xgbe_powerdown_tx; |
| hw_if->powerup_rx = xgbe_powerup_rx; |
| hw_if->powerdown_rx = xgbe_powerdown_rx; |
| |
| hw_if->dev_xmit = xgbe_dev_xmit; |
| hw_if->dev_read = xgbe_dev_read; |
| hw_if->enable_int = xgbe_enable_int; |
| hw_if->disable_int = xgbe_disable_int; |
| hw_if->init = xgbe_init; |
| hw_if->exit = xgbe_exit; |
| |
| /* Descriptor related Sequences have to be initialized here */ |
| hw_if->tx_desc_init = xgbe_tx_desc_init; |
| hw_if->rx_desc_init = xgbe_rx_desc_init; |
| hw_if->tx_desc_reset = xgbe_tx_desc_reset; |
| hw_if->rx_desc_reset = xgbe_rx_desc_reset; |
| hw_if->is_last_desc = xgbe_is_last_desc; |
| hw_if->is_context_desc = xgbe_is_context_desc; |
| hw_if->tx_start_xmit = xgbe_tx_start_xmit; |
| |
| /* For FLOW ctrl */ |
| hw_if->config_tx_flow_control = xgbe_config_tx_flow_control; |
| hw_if->config_rx_flow_control = xgbe_config_rx_flow_control; |
| |
| /* For RX coalescing */ |
| hw_if->config_rx_coalesce = xgbe_config_rx_coalesce; |
| hw_if->config_tx_coalesce = xgbe_config_tx_coalesce; |
| hw_if->usec_to_riwt = xgbe_usec_to_riwt; |
| hw_if->riwt_to_usec = xgbe_riwt_to_usec; |
| |
| /* For RX and TX threshold config */ |
| hw_if->config_rx_threshold = xgbe_config_rx_threshold; |
| hw_if->config_tx_threshold = xgbe_config_tx_threshold; |
| |
| /* For RX and TX Store and Forward Mode config */ |
| hw_if->config_rsf_mode = xgbe_config_rsf_mode; |
| hw_if->config_tsf_mode = xgbe_config_tsf_mode; |
| |
| /* For TX DMA Operating on Second Frame config */ |
| hw_if->config_osp_mode = xgbe_config_osp_mode; |
| |
| /* For MMC statistics support */ |
| hw_if->tx_mmc_int = xgbe_tx_mmc_int; |
| hw_if->rx_mmc_int = xgbe_rx_mmc_int; |
| hw_if->read_mmc_stats = xgbe_read_mmc_stats; |
| |
| /* For PTP config */ |
| hw_if->config_tstamp = xgbe_config_tstamp; |
| hw_if->update_tstamp_addend = xgbe_update_tstamp_addend; |
| hw_if->set_tstamp_time = xgbe_set_tstamp_time; |
| hw_if->get_tstamp_time = xgbe_get_tstamp_time; |
| hw_if->get_tx_tstamp = xgbe_get_tx_tstamp; |
| |
| /* For Data Center Bridging config */ |
| hw_if->config_tc = xgbe_config_tc; |
| hw_if->config_dcb_tc = xgbe_config_dcb_tc; |
| hw_if->config_dcb_pfc = xgbe_config_dcb_pfc; |
| |
| /* For Receive Side Scaling */ |
| hw_if->enable_rss = xgbe_enable_rss; |
| hw_if->disable_rss = xgbe_disable_rss; |
| hw_if->set_rss_hash_key = xgbe_set_rss_hash_key; |
| hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table; |
| |
| /* For ECC */ |
| hw_if->disable_ecc_ded = xgbe_disable_ecc_ded; |
| hw_if->disable_ecc_sec = xgbe_disable_ecc_sec; |
| |
| /* For VXLAN */ |
| hw_if->enable_vxlan = xgbe_enable_vxlan; |
| hw_if->disable_vxlan = xgbe_disable_vxlan; |
| hw_if->set_vxlan_id = xgbe_set_vxlan_id; |
| |
| DBGPR("<--xgbe_init_function_ptrs\n"); |
| } |