|  | /* | 
|  | *	Routines having to do with the 'struct sk_buff' memory handlers. | 
|  | * | 
|  | *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk> | 
|  | *			Florian La Roche <rzsfl@rz.uni-sb.de> | 
|  | * | 
|  | *	Fixes: | 
|  | *		Alan Cox	:	Fixed the worst of the load | 
|  | *					balancer bugs. | 
|  | *		Dave Platt	:	Interrupt stacking fix. | 
|  | *	Richard Kooijman	:	Timestamp fixes. | 
|  | *		Alan Cox	:	Changed buffer format. | 
|  | *		Alan Cox	:	destructor hook for AF_UNIX etc. | 
|  | *		Linus Torvalds	:	Better skb_clone. | 
|  | *		Alan Cox	:	Added skb_copy. | 
|  | *		Alan Cox	:	Added all the changed routines Linus | 
|  | *					only put in the headers | 
|  | *		Ray VanTassle	:	Fixed --skb->lock in free | 
|  | *		Alan Cox	:	skb_copy copy arp field | 
|  | *		Andi Kleen	:	slabified it. | 
|  | *		Robert Olsson	:	Removed skb_head_pool | 
|  | * | 
|  | *	NOTE: | 
|  | *		The __skb_ routines should be called with interrupts | 
|  | *	disabled, or you better be *real* sure that the operation is atomic | 
|  | *	with respect to whatever list is being frobbed (e.g. via lock_sock() | 
|  | *	or via disabling bottom half handlers, etc). | 
|  | * | 
|  | *	This program is free software; you can redistribute it and/or | 
|  | *	modify it under the terms of the GNU General Public License | 
|  | *	as published by the Free Software Foundation; either version | 
|  | *	2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *	The functions in this file will not compile correctly with gcc 2.4.x | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kmemcheck.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/inet.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/tcp.h> | 
|  | #include <linux/udp.h> | 
|  | #include <linux/netdevice.h> | 
|  | #ifdef CONFIG_NET_CLS_ACT | 
|  | #include <net/pkt_sched.h> | 
|  | #endif | 
|  | #include <linux/string.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/splice.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/rtnetlink.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <linux/errqueue.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include <linux/if_vlan.h> | 
|  |  | 
|  | #include <net/protocol.h> | 
|  | #include <net/dst.h> | 
|  | #include <net/sock.h> | 
|  | #include <net/checksum.h> | 
|  | #include <net/ip6_checksum.h> | 
|  | #include <net/xfrm.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <trace/events/skb.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/user_namespace.h> | 
|  |  | 
|  | struct kmem_cache *skbuff_head_cache __read_mostly; | 
|  | static struct kmem_cache *skbuff_fclone_cache __read_mostly; | 
|  |  | 
|  | /** | 
|  | *	skb_panic - private function for out-of-line support | 
|  | *	@skb:	buffer | 
|  | *	@sz:	size | 
|  | *	@addr:	address | 
|  | *	@msg:	skb_over_panic or skb_under_panic | 
|  | * | 
|  | *	Out-of-line support for skb_put() and skb_push(). | 
|  | *	Called via the wrapper skb_over_panic() or skb_under_panic(). | 
|  | *	Keep out of line to prevent kernel bloat. | 
|  | *	__builtin_return_address is not used because it is not always reliable. | 
|  | */ | 
|  | static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, | 
|  | const char msg[]) | 
|  | { | 
|  | pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", | 
|  | msg, addr, skb->len, sz, skb->head, skb->data, | 
|  | (unsigned long)skb->tail, (unsigned long)skb->end, | 
|  | skb->dev ? skb->dev->name : "<NULL>"); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) | 
|  | { | 
|  | skb_panic(skb, sz, addr, __func__); | 
|  | } | 
|  |  | 
|  | static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) | 
|  | { | 
|  | skb_panic(skb, sz, addr, __func__); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells | 
|  | * the caller if emergency pfmemalloc reserves are being used. If it is and | 
|  | * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves | 
|  | * may be used. Otherwise, the packet data may be discarded until enough | 
|  | * memory is free | 
|  | */ | 
|  | #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ | 
|  | __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) | 
|  |  | 
|  | static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, | 
|  | unsigned long ip, bool *pfmemalloc) | 
|  | { | 
|  | void *obj; | 
|  | bool ret_pfmemalloc = false; | 
|  |  | 
|  | /* | 
|  | * Try a regular allocation, when that fails and we're not entitled | 
|  | * to the reserves, fail. | 
|  | */ | 
|  | obj = kmalloc_node_track_caller(size, | 
|  | flags | __GFP_NOMEMALLOC | __GFP_NOWARN, | 
|  | node); | 
|  | if (obj || !(gfp_pfmemalloc_allowed(flags))) | 
|  | goto out; | 
|  |  | 
|  | /* Try again but now we are using pfmemalloc reserves */ | 
|  | ret_pfmemalloc = true; | 
|  | obj = kmalloc_node_track_caller(size, flags, node); | 
|  |  | 
|  | out: | 
|  | if (pfmemalloc) | 
|  | *pfmemalloc = ret_pfmemalloc; | 
|  |  | 
|  | return obj; | 
|  | } | 
|  |  | 
|  | /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few | 
|  | *	'private' fields and also do memory statistics to find all the | 
|  | *	[BEEP] leaks. | 
|  | * | 
|  | */ | 
|  |  | 
|  | struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | /* Get the HEAD */ | 
|  | skb = kmem_cache_alloc_node(skbuff_head_cache, | 
|  | gfp_mask & ~__GFP_DMA, node); | 
|  | if (!skb) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Only clear those fields we need to clear, not those that we will | 
|  | * actually initialise below. Hence, don't put any more fields after | 
|  | * the tail pointer in struct sk_buff! | 
|  | */ | 
|  | memset(skb, 0, offsetof(struct sk_buff, tail)); | 
|  | skb->head = NULL; | 
|  | skb->truesize = sizeof(struct sk_buff); | 
|  | atomic_set(&skb->users, 1); | 
|  |  | 
|  | skb->mac_header = (typeof(skb->mac_header))~0U; | 
|  | out: | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__alloc_skb	-	allocate a network buffer | 
|  | *	@size: size to allocate | 
|  | *	@gfp_mask: allocation mask | 
|  | *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache | 
|  | *		instead of head cache and allocate a cloned (child) skb. | 
|  | *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for | 
|  | *		allocations in case the data is required for writeback | 
|  | *	@node: numa node to allocate memory on | 
|  | * | 
|  | *	Allocate a new &sk_buff. The returned buffer has no headroom and a | 
|  | *	tail room of at least size bytes. The object has a reference count | 
|  | *	of one. The return is the buffer. On a failure the return is %NULL. | 
|  | * | 
|  | *	Buffers may only be allocated from interrupts using a @gfp_mask of | 
|  | *	%GFP_ATOMIC. | 
|  | */ | 
|  | struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, | 
|  | int flags, int node) | 
|  | { | 
|  | struct kmem_cache *cache; | 
|  | struct skb_shared_info *shinfo; | 
|  | struct sk_buff *skb; | 
|  | u8 *data; | 
|  | bool pfmemalloc; | 
|  |  | 
|  | cache = (flags & SKB_ALLOC_FCLONE) | 
|  | ? skbuff_fclone_cache : skbuff_head_cache; | 
|  |  | 
|  | if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) | 
|  | gfp_mask |= __GFP_MEMALLOC; | 
|  |  | 
|  | /* Get the HEAD */ | 
|  | skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); | 
|  | if (!skb) | 
|  | goto out; | 
|  | prefetchw(skb); | 
|  |  | 
|  | /* We do our best to align skb_shared_info on a separate cache | 
|  | * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives | 
|  | * aligned memory blocks, unless SLUB/SLAB debug is enabled. | 
|  | * Both skb->head and skb_shared_info are cache line aligned. | 
|  | */ | 
|  | size = SKB_DATA_ALIGN(size); | 
|  | size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); | 
|  | data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); | 
|  | if (!data) | 
|  | goto nodata; | 
|  | /* kmalloc(size) might give us more room than requested. | 
|  | * Put skb_shared_info exactly at the end of allocated zone, | 
|  | * to allow max possible filling before reallocation. | 
|  | */ | 
|  | size = SKB_WITH_OVERHEAD(ksize(data)); | 
|  | prefetchw(data + size); | 
|  |  | 
|  | /* | 
|  | * Only clear those fields we need to clear, not those that we will | 
|  | * actually initialise below. Hence, don't put any more fields after | 
|  | * the tail pointer in struct sk_buff! | 
|  | */ | 
|  | memset(skb, 0, offsetof(struct sk_buff, tail)); | 
|  | /* Account for allocated memory : skb + skb->head */ | 
|  | skb->truesize = SKB_TRUESIZE(size); | 
|  | skb->pfmemalloc = pfmemalloc; | 
|  | atomic_set(&skb->users, 1); | 
|  | skb->head = data; | 
|  | skb->data = data; | 
|  | skb_reset_tail_pointer(skb); | 
|  | skb->end = skb->tail + size; | 
|  | skb->mac_header = (typeof(skb->mac_header))~0U; | 
|  | skb->transport_header = (typeof(skb->transport_header))~0U; | 
|  |  | 
|  | /* make sure we initialize shinfo sequentially */ | 
|  | shinfo = skb_shinfo(skb); | 
|  | memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); | 
|  | atomic_set(&shinfo->dataref, 1); | 
|  | kmemcheck_annotate_variable(shinfo->destructor_arg); | 
|  |  | 
|  | if (flags & SKB_ALLOC_FCLONE) { | 
|  | struct sk_buff_fclones *fclones; | 
|  |  | 
|  | fclones = container_of(skb, struct sk_buff_fclones, skb1); | 
|  |  | 
|  | kmemcheck_annotate_bitfield(&fclones->skb2, flags1); | 
|  | skb->fclone = SKB_FCLONE_ORIG; | 
|  | atomic_set(&fclones->fclone_ref, 1); | 
|  |  | 
|  | fclones->skb2.fclone = SKB_FCLONE_CLONE; | 
|  | fclones->skb2.pfmemalloc = pfmemalloc; | 
|  | } | 
|  | out: | 
|  | return skb; | 
|  | nodata: | 
|  | kmem_cache_free(cache, skb); | 
|  | skb = NULL; | 
|  | goto out; | 
|  | } | 
|  | EXPORT_SYMBOL(__alloc_skb); | 
|  |  | 
|  | /** | 
|  | * __build_skb - build a network buffer | 
|  | * @data: data buffer provided by caller | 
|  | * @frag_size: size of data, or 0 if head was kmalloced | 
|  | * | 
|  | * Allocate a new &sk_buff. Caller provides space holding head and | 
|  | * skb_shared_info. @data must have been allocated by kmalloc() only if | 
|  | * @frag_size is 0, otherwise data should come from the page allocator | 
|  | *  or vmalloc() | 
|  | * The return is the new skb buffer. | 
|  | * On a failure the return is %NULL, and @data is not freed. | 
|  | * Notes : | 
|  | *  Before IO, driver allocates only data buffer where NIC put incoming frame | 
|  | *  Driver should add room at head (NET_SKB_PAD) and | 
|  | *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) | 
|  | *  After IO, driver calls build_skb(), to allocate sk_buff and populate it | 
|  | *  before giving packet to stack. | 
|  | *  RX rings only contains data buffers, not full skbs. | 
|  | */ | 
|  | struct sk_buff *__build_skb(void *data, unsigned int frag_size) | 
|  | { | 
|  | struct skb_shared_info *shinfo; | 
|  | struct sk_buff *skb; | 
|  | unsigned int size = frag_size ? : ksize(data); | 
|  |  | 
|  | skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); | 
|  | if (!skb) | 
|  | return NULL; | 
|  |  | 
|  | size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); | 
|  |  | 
|  | memset(skb, 0, offsetof(struct sk_buff, tail)); | 
|  | skb->truesize = SKB_TRUESIZE(size); | 
|  | atomic_set(&skb->users, 1); | 
|  | skb->head = data; | 
|  | skb->data = data; | 
|  | skb_reset_tail_pointer(skb); | 
|  | skb->end = skb->tail + size; | 
|  | skb->mac_header = (typeof(skb->mac_header))~0U; | 
|  | skb->transport_header = (typeof(skb->transport_header))~0U; | 
|  |  | 
|  | /* make sure we initialize shinfo sequentially */ | 
|  | shinfo = skb_shinfo(skb); | 
|  | memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); | 
|  | atomic_set(&shinfo->dataref, 1); | 
|  | kmemcheck_annotate_variable(shinfo->destructor_arg); | 
|  |  | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /* build_skb() is wrapper over __build_skb(), that specifically | 
|  | * takes care of skb->head and skb->pfmemalloc | 
|  | * This means that if @frag_size is not zero, then @data must be backed | 
|  | * by a page fragment, not kmalloc() or vmalloc() | 
|  | */ | 
|  | struct sk_buff *build_skb(void *data, unsigned int frag_size) | 
|  | { | 
|  | struct sk_buff *skb = __build_skb(data, frag_size); | 
|  |  | 
|  | if (skb && frag_size) { | 
|  | skb->head_frag = 1; | 
|  | if (virt_to_head_page(data)->pfmemalloc) | 
|  | skb->pfmemalloc = 1; | 
|  | } | 
|  | return skb; | 
|  | } | 
|  | EXPORT_SYMBOL(build_skb); | 
|  |  | 
|  | static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); | 
|  | static DEFINE_PER_CPU(struct page_frag_cache, napi_alloc_cache); | 
|  |  | 
|  | static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) | 
|  | { | 
|  | struct page_frag_cache *nc; | 
|  | unsigned long flags; | 
|  | void *data; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | nc = this_cpu_ptr(&netdev_alloc_cache); | 
|  | data = __alloc_page_frag(nc, fragsz, gfp_mask); | 
|  | local_irq_restore(flags); | 
|  | return data; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * netdev_alloc_frag - allocate a page fragment | 
|  | * @fragsz: fragment size | 
|  | * | 
|  | * Allocates a frag from a page for receive buffer. | 
|  | * Uses GFP_ATOMIC allocations. | 
|  | */ | 
|  | void *netdev_alloc_frag(unsigned int fragsz) | 
|  | { | 
|  | return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); | 
|  | } | 
|  | EXPORT_SYMBOL(netdev_alloc_frag); | 
|  |  | 
|  | static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) | 
|  | { | 
|  | struct page_frag_cache *nc = this_cpu_ptr(&napi_alloc_cache); | 
|  |  | 
|  | return __alloc_page_frag(nc, fragsz, gfp_mask); | 
|  | } | 
|  |  | 
|  | void *napi_alloc_frag(unsigned int fragsz) | 
|  | { | 
|  | return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); | 
|  | } | 
|  | EXPORT_SYMBOL(napi_alloc_frag); | 
|  |  | 
|  | /** | 
|  | *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device | 
|  | *	@dev: network device to receive on | 
|  | *	@length: length to allocate | 
|  | *	@gfp_mask: get_free_pages mask, passed to alloc_skb | 
|  | * | 
|  | *	Allocate a new &sk_buff and assign it a usage count of one. The | 
|  | *	buffer has NET_SKB_PAD headroom built in. Users should allocate | 
|  | *	the headroom they think they need without accounting for the | 
|  | *	built in space. The built in space is used for optimisations. | 
|  | * | 
|  | *	%NULL is returned if there is no free memory. | 
|  | */ | 
|  | struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | struct page_frag_cache *nc; | 
|  | unsigned long flags; | 
|  | struct sk_buff *skb; | 
|  | bool pfmemalloc; | 
|  | void *data; | 
|  |  | 
|  | len += NET_SKB_PAD; | 
|  |  | 
|  | if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || | 
|  | (gfp_mask & (__GFP_WAIT | GFP_DMA))) { | 
|  | skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); | 
|  | if (!skb) | 
|  | goto skb_fail; | 
|  | goto skb_success; | 
|  | } | 
|  |  | 
|  | len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); | 
|  | len = SKB_DATA_ALIGN(len); | 
|  |  | 
|  | if (sk_memalloc_socks()) | 
|  | gfp_mask |= __GFP_MEMALLOC; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | nc = this_cpu_ptr(&netdev_alloc_cache); | 
|  | data = __alloc_page_frag(nc, len, gfp_mask); | 
|  | pfmemalloc = nc->pfmemalloc; | 
|  |  | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | if (unlikely(!data)) | 
|  | return NULL; | 
|  |  | 
|  | skb = __build_skb(data, len); | 
|  | if (unlikely(!skb)) { | 
|  | skb_free_frag(data); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* use OR instead of assignment to avoid clearing of bits in mask */ | 
|  | if (pfmemalloc) | 
|  | skb->pfmemalloc = 1; | 
|  | skb->head_frag = 1; | 
|  |  | 
|  | skb_success: | 
|  | skb_reserve(skb, NET_SKB_PAD); | 
|  | skb->dev = dev; | 
|  |  | 
|  | skb_fail: | 
|  | return skb; | 
|  | } | 
|  | EXPORT_SYMBOL(__netdev_alloc_skb); | 
|  |  | 
|  | /** | 
|  | *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance | 
|  | *	@napi: napi instance this buffer was allocated for | 
|  | *	@length: length to allocate | 
|  | *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages | 
|  | * | 
|  | *	Allocate a new sk_buff for use in NAPI receive.  This buffer will | 
|  | *	attempt to allocate the head from a special reserved region used | 
|  | *	only for NAPI Rx allocation.  By doing this we can save several | 
|  | *	CPU cycles by avoiding having to disable and re-enable IRQs. | 
|  | * | 
|  | *	%NULL is returned if there is no free memory. | 
|  | */ | 
|  | struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | struct page_frag_cache *nc = this_cpu_ptr(&napi_alloc_cache); | 
|  | struct sk_buff *skb; | 
|  | void *data; | 
|  |  | 
|  | len += NET_SKB_PAD + NET_IP_ALIGN; | 
|  |  | 
|  | if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || | 
|  | (gfp_mask & (__GFP_WAIT | GFP_DMA))) { | 
|  | skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); | 
|  | if (!skb) | 
|  | goto skb_fail; | 
|  | goto skb_success; | 
|  | } | 
|  |  | 
|  | len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); | 
|  | len = SKB_DATA_ALIGN(len); | 
|  |  | 
|  | if (sk_memalloc_socks()) | 
|  | gfp_mask |= __GFP_MEMALLOC; | 
|  |  | 
|  | data = __alloc_page_frag(nc, len, gfp_mask); | 
|  | if (unlikely(!data)) | 
|  | return NULL; | 
|  |  | 
|  | skb = __build_skb(data, len); | 
|  | if (unlikely(!skb)) { | 
|  | skb_free_frag(data); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* use OR instead of assignment to avoid clearing of bits in mask */ | 
|  | if (nc->pfmemalloc) | 
|  | skb->pfmemalloc = 1; | 
|  | skb->head_frag = 1; | 
|  |  | 
|  | skb_success: | 
|  | skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); | 
|  | skb->dev = napi->dev; | 
|  |  | 
|  | skb_fail: | 
|  | return skb; | 
|  | } | 
|  | EXPORT_SYMBOL(__napi_alloc_skb); | 
|  |  | 
|  | void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, | 
|  | int size, unsigned int truesize) | 
|  | { | 
|  | skb_fill_page_desc(skb, i, page, off, size); | 
|  | skb->len += size; | 
|  | skb->data_len += size; | 
|  | skb->truesize += truesize; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_add_rx_frag); | 
|  |  | 
|  | void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, | 
|  | unsigned int truesize) | 
|  | { | 
|  | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
|  |  | 
|  | skb_frag_size_add(frag, size); | 
|  | skb->len += size; | 
|  | skb->data_len += size; | 
|  | skb->truesize += truesize; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_coalesce_rx_frag); | 
|  |  | 
|  | static void skb_drop_list(struct sk_buff **listp) | 
|  | { | 
|  | kfree_skb_list(*listp); | 
|  | *listp = NULL; | 
|  | } | 
|  |  | 
|  | static inline void skb_drop_fraglist(struct sk_buff *skb) | 
|  | { | 
|  | skb_drop_list(&skb_shinfo(skb)->frag_list); | 
|  | } | 
|  |  | 
|  | static void skb_clone_fraglist(struct sk_buff *skb) | 
|  | { | 
|  | struct sk_buff *list; | 
|  |  | 
|  | skb_walk_frags(skb, list) | 
|  | skb_get(list); | 
|  | } | 
|  |  | 
|  | static void skb_free_head(struct sk_buff *skb) | 
|  | { | 
|  | unsigned char *head = skb->head; | 
|  |  | 
|  | if (skb->head_frag) | 
|  | skb_free_frag(head); | 
|  | else | 
|  | kfree(head); | 
|  | } | 
|  |  | 
|  | static void skb_release_data(struct sk_buff *skb) | 
|  | { | 
|  | struct skb_shared_info *shinfo = skb_shinfo(skb); | 
|  | int i; | 
|  |  | 
|  | if (skb->cloned && | 
|  | atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, | 
|  | &shinfo->dataref)) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < shinfo->nr_frags; i++) | 
|  | __skb_frag_unref(&shinfo->frags[i]); | 
|  |  | 
|  | /* | 
|  | * If skb buf is from userspace, we need to notify the caller | 
|  | * the lower device DMA has done; | 
|  | */ | 
|  | if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) { | 
|  | struct ubuf_info *uarg; | 
|  |  | 
|  | uarg = shinfo->destructor_arg; | 
|  | if (uarg->callback) | 
|  | uarg->callback(uarg, true); | 
|  | } | 
|  |  | 
|  | if (shinfo->frag_list) | 
|  | kfree_skb_list(shinfo->frag_list); | 
|  |  | 
|  | skb_free_head(skb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Free an skbuff by memory without cleaning the state. | 
|  | */ | 
|  | static void kfree_skbmem(struct sk_buff *skb) | 
|  | { | 
|  | struct sk_buff_fclones *fclones; | 
|  |  | 
|  | switch (skb->fclone) { | 
|  | case SKB_FCLONE_UNAVAILABLE: | 
|  | kmem_cache_free(skbuff_head_cache, skb); | 
|  | return; | 
|  |  | 
|  | case SKB_FCLONE_ORIG: | 
|  | fclones = container_of(skb, struct sk_buff_fclones, skb1); | 
|  |  | 
|  | /* We usually free the clone (TX completion) before original skb | 
|  | * This test would have no chance to be true for the clone, | 
|  | * while here, branch prediction will be good. | 
|  | */ | 
|  | if (atomic_read(&fclones->fclone_ref) == 1) | 
|  | goto fastpath; | 
|  | break; | 
|  |  | 
|  | default: /* SKB_FCLONE_CLONE */ | 
|  | fclones = container_of(skb, struct sk_buff_fclones, skb2); | 
|  | break; | 
|  | } | 
|  | if (!atomic_dec_and_test(&fclones->fclone_ref)) | 
|  | return; | 
|  | fastpath: | 
|  | kmem_cache_free(skbuff_fclone_cache, fclones); | 
|  | } | 
|  |  | 
|  | static void skb_release_head_state(struct sk_buff *skb) | 
|  | { | 
|  | skb_dst_drop(skb); | 
|  | #ifdef CONFIG_XFRM | 
|  | secpath_put(skb->sp); | 
|  | #endif | 
|  | if (skb->destructor) { | 
|  | WARN_ON(in_irq()); | 
|  | skb->destructor(skb); | 
|  | } | 
|  | #if IS_ENABLED(CONFIG_NF_CONNTRACK) | 
|  | nf_conntrack_put(skb->nfct); | 
|  | #endif | 
|  | #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) | 
|  | nf_bridge_put(skb->nf_bridge); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Free everything but the sk_buff shell. */ | 
|  | static void skb_release_all(struct sk_buff *skb) | 
|  | { | 
|  | skb_release_head_state(skb); | 
|  | if (likely(skb->head)) | 
|  | skb_release_data(skb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__kfree_skb - private function | 
|  | *	@skb: buffer | 
|  | * | 
|  | *	Free an sk_buff. Release anything attached to the buffer. | 
|  | *	Clean the state. This is an internal helper function. Users should | 
|  | *	always call kfree_skb | 
|  | */ | 
|  |  | 
|  | void __kfree_skb(struct sk_buff *skb) | 
|  | { | 
|  | skb_release_all(skb); | 
|  | kfree_skbmem(skb); | 
|  | } | 
|  | EXPORT_SYMBOL(__kfree_skb); | 
|  |  | 
|  | /** | 
|  | *	kfree_skb - free an sk_buff | 
|  | *	@skb: buffer to free | 
|  | * | 
|  | *	Drop a reference to the buffer and free it if the usage count has | 
|  | *	hit zero. | 
|  | */ | 
|  | void kfree_skb(struct sk_buff *skb) | 
|  | { | 
|  | if (unlikely(!skb)) | 
|  | return; | 
|  | if (likely(atomic_read(&skb->users) == 1)) | 
|  | smp_rmb(); | 
|  | else if (likely(!atomic_dec_and_test(&skb->users))) | 
|  | return; | 
|  | trace_kfree_skb(skb, __builtin_return_address(0)); | 
|  | __kfree_skb(skb); | 
|  | } | 
|  | EXPORT_SYMBOL(kfree_skb); | 
|  |  | 
|  | void kfree_skb_list(struct sk_buff *segs) | 
|  | { | 
|  | while (segs) { | 
|  | struct sk_buff *next = segs->next; | 
|  |  | 
|  | kfree_skb(segs); | 
|  | segs = next; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(kfree_skb_list); | 
|  |  | 
|  | /** | 
|  | *	skb_tx_error - report an sk_buff xmit error | 
|  | *	@skb: buffer that triggered an error | 
|  | * | 
|  | *	Report xmit error if a device callback is tracking this skb. | 
|  | *	skb must be freed afterwards. | 
|  | */ | 
|  | void skb_tx_error(struct sk_buff *skb) | 
|  | { | 
|  | if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { | 
|  | struct ubuf_info *uarg; | 
|  |  | 
|  | uarg = skb_shinfo(skb)->destructor_arg; | 
|  | if (uarg->callback) | 
|  | uarg->callback(uarg, false); | 
|  | skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(skb_tx_error); | 
|  |  | 
|  | /** | 
|  | *	consume_skb - free an skbuff | 
|  | *	@skb: buffer to free | 
|  | * | 
|  | *	Drop a ref to the buffer and free it if the usage count has hit zero | 
|  | *	Functions identically to kfree_skb, but kfree_skb assumes that the frame | 
|  | *	is being dropped after a failure and notes that | 
|  | */ | 
|  | void consume_skb(struct sk_buff *skb) | 
|  | { | 
|  | if (unlikely(!skb)) | 
|  | return; | 
|  | if (likely(atomic_read(&skb->users) == 1)) | 
|  | smp_rmb(); | 
|  | else if (likely(!atomic_dec_and_test(&skb->users))) | 
|  | return; | 
|  | trace_consume_skb(skb); | 
|  | __kfree_skb(skb); | 
|  | } | 
|  | EXPORT_SYMBOL(consume_skb); | 
|  |  | 
|  | /* Make sure a field is enclosed inside headers_start/headers_end section */ | 
|  | #define CHECK_SKB_FIELD(field) \ | 
|  | BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\ | 
|  | offsetof(struct sk_buff, headers_start));	\ | 
|  | BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\ | 
|  | offsetof(struct sk_buff, headers_end));	\ | 
|  |  | 
|  | static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) | 
|  | { | 
|  | new->tstamp		= old->tstamp; | 
|  | /* We do not copy old->sk */ | 
|  | new->dev		= old->dev; | 
|  | memcpy(new->cb, old->cb, sizeof(old->cb)); | 
|  | skb_dst_copy(new, old); | 
|  | #ifdef CONFIG_XFRM | 
|  | new->sp			= secpath_get(old->sp); | 
|  | #endif | 
|  | __nf_copy(new, old, false); | 
|  |  | 
|  | /* Note : this field could be in headers_start/headers_end section | 
|  | * It is not yet because we do not want to have a 16 bit hole | 
|  | */ | 
|  | new->queue_mapping = old->queue_mapping; | 
|  |  | 
|  | memcpy(&new->headers_start, &old->headers_start, | 
|  | offsetof(struct sk_buff, headers_end) - | 
|  | offsetof(struct sk_buff, headers_start)); | 
|  | CHECK_SKB_FIELD(protocol); | 
|  | CHECK_SKB_FIELD(csum); | 
|  | CHECK_SKB_FIELD(hash); | 
|  | CHECK_SKB_FIELD(priority); | 
|  | CHECK_SKB_FIELD(skb_iif); | 
|  | CHECK_SKB_FIELD(vlan_proto); | 
|  | CHECK_SKB_FIELD(vlan_tci); | 
|  | CHECK_SKB_FIELD(transport_header); | 
|  | CHECK_SKB_FIELD(network_header); | 
|  | CHECK_SKB_FIELD(mac_header); | 
|  | CHECK_SKB_FIELD(inner_protocol); | 
|  | CHECK_SKB_FIELD(inner_transport_header); | 
|  | CHECK_SKB_FIELD(inner_network_header); | 
|  | CHECK_SKB_FIELD(inner_mac_header); | 
|  | CHECK_SKB_FIELD(mark); | 
|  | #ifdef CONFIG_NETWORK_SECMARK | 
|  | CHECK_SKB_FIELD(secmark); | 
|  | #endif | 
|  | #ifdef CONFIG_NET_RX_BUSY_POLL | 
|  | CHECK_SKB_FIELD(napi_id); | 
|  | #endif | 
|  | #ifdef CONFIG_XPS | 
|  | CHECK_SKB_FIELD(sender_cpu); | 
|  | #endif | 
|  | #ifdef CONFIG_NET_SCHED | 
|  | CHECK_SKB_FIELD(tc_index); | 
|  | #ifdef CONFIG_NET_CLS_ACT | 
|  | CHECK_SKB_FIELD(tc_verd); | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * You should not add any new code to this function.  Add it to | 
|  | * __copy_skb_header above instead. | 
|  | */ | 
|  | static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) | 
|  | { | 
|  | #define C(x) n->x = skb->x | 
|  |  | 
|  | n->next = n->prev = NULL; | 
|  | n->sk = NULL; | 
|  | __copy_skb_header(n, skb); | 
|  |  | 
|  | C(len); | 
|  | C(data_len); | 
|  | C(mac_len); | 
|  | n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; | 
|  | n->cloned = 1; | 
|  | n->nohdr = 0; | 
|  | n->destructor = NULL; | 
|  | C(tail); | 
|  | C(end); | 
|  | C(head); | 
|  | C(head_frag); | 
|  | C(data); | 
|  | C(truesize); | 
|  | atomic_set(&n->users, 1); | 
|  |  | 
|  | atomic_inc(&(skb_shinfo(skb)->dataref)); | 
|  | skb->cloned = 1; | 
|  |  | 
|  | return n; | 
|  | #undef C | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_morph	-	morph one skb into another | 
|  | *	@dst: the skb to receive the contents | 
|  | *	@src: the skb to supply the contents | 
|  | * | 
|  | *	This is identical to skb_clone except that the target skb is | 
|  | *	supplied by the user. | 
|  | * | 
|  | *	The target skb is returned upon exit. | 
|  | */ | 
|  | struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) | 
|  | { | 
|  | skb_release_all(dst); | 
|  | return __skb_clone(dst, src); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_morph); | 
|  |  | 
|  | /** | 
|  | *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel | 
|  | *	@skb: the skb to modify | 
|  | *	@gfp_mask: allocation priority | 
|  | * | 
|  | *	This must be called on SKBTX_DEV_ZEROCOPY skb. | 
|  | *	It will copy all frags into kernel and drop the reference | 
|  | *	to userspace pages. | 
|  | * | 
|  | *	If this function is called from an interrupt gfp_mask() must be | 
|  | *	%GFP_ATOMIC. | 
|  | * | 
|  | *	Returns 0 on success or a negative error code on failure | 
|  | *	to allocate kernel memory to copy to. | 
|  | */ | 
|  | int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) | 
|  | { | 
|  | int i; | 
|  | int num_frags = skb_shinfo(skb)->nr_frags; | 
|  | struct page *page, *head = NULL; | 
|  | struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg; | 
|  |  | 
|  | for (i = 0; i < num_frags; i++) { | 
|  | u8 *vaddr; | 
|  | skb_frag_t *f = &skb_shinfo(skb)->frags[i]; | 
|  |  | 
|  | page = alloc_page(gfp_mask); | 
|  | if (!page) { | 
|  | while (head) { | 
|  | struct page *next = (struct page *)page_private(head); | 
|  | put_page(head); | 
|  | head = next; | 
|  | } | 
|  | return -ENOMEM; | 
|  | } | 
|  | vaddr = kmap_atomic(skb_frag_page(f)); | 
|  | memcpy(page_address(page), | 
|  | vaddr + f->page_offset, skb_frag_size(f)); | 
|  | kunmap_atomic(vaddr); | 
|  | set_page_private(page, (unsigned long)head); | 
|  | head = page; | 
|  | } | 
|  |  | 
|  | /* skb frags release userspace buffers */ | 
|  | for (i = 0; i < num_frags; i++) | 
|  | skb_frag_unref(skb, i); | 
|  |  | 
|  | uarg->callback(uarg, false); | 
|  |  | 
|  | /* skb frags point to kernel buffers */ | 
|  | for (i = num_frags - 1; i >= 0; i--) { | 
|  | __skb_fill_page_desc(skb, i, head, 0, | 
|  | skb_shinfo(skb)->frags[i].size); | 
|  | head = (struct page *)page_private(head); | 
|  | } | 
|  |  | 
|  | skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_copy_ubufs); | 
|  |  | 
|  | /** | 
|  | *	skb_clone	-	duplicate an sk_buff | 
|  | *	@skb: buffer to clone | 
|  | *	@gfp_mask: allocation priority | 
|  | * | 
|  | *	Duplicate an &sk_buff. The new one is not owned by a socket. Both | 
|  | *	copies share the same packet data but not structure. The new | 
|  | *	buffer has a reference count of 1. If the allocation fails the | 
|  | *	function returns %NULL otherwise the new buffer is returned. | 
|  | * | 
|  | *	If this function is called from an interrupt gfp_mask() must be | 
|  | *	%GFP_ATOMIC. | 
|  | */ | 
|  |  | 
|  | struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) | 
|  | { | 
|  | struct sk_buff_fclones *fclones = container_of(skb, | 
|  | struct sk_buff_fclones, | 
|  | skb1); | 
|  | struct sk_buff *n; | 
|  |  | 
|  | if (skb_orphan_frags(skb, gfp_mask)) | 
|  | return NULL; | 
|  |  | 
|  | if (skb->fclone == SKB_FCLONE_ORIG && | 
|  | atomic_read(&fclones->fclone_ref) == 1) { | 
|  | n = &fclones->skb2; | 
|  | atomic_set(&fclones->fclone_ref, 2); | 
|  | } else { | 
|  | if (skb_pfmemalloc(skb)) | 
|  | gfp_mask |= __GFP_MEMALLOC; | 
|  |  | 
|  | n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); | 
|  | if (!n) | 
|  | return NULL; | 
|  |  | 
|  | kmemcheck_annotate_bitfield(n, flags1); | 
|  | n->fclone = SKB_FCLONE_UNAVAILABLE; | 
|  | } | 
|  |  | 
|  | return __skb_clone(n, skb); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_clone); | 
|  |  | 
|  | static void skb_headers_offset_update(struct sk_buff *skb, int off) | 
|  | { | 
|  | /* Only adjust this if it actually is csum_start rather than csum */ | 
|  | if (skb->ip_summed == CHECKSUM_PARTIAL) | 
|  | skb->csum_start += off; | 
|  | /* {transport,network,mac}_header and tail are relative to skb->head */ | 
|  | skb->transport_header += off; | 
|  | skb->network_header   += off; | 
|  | if (skb_mac_header_was_set(skb)) | 
|  | skb->mac_header += off; | 
|  | skb->inner_transport_header += off; | 
|  | skb->inner_network_header += off; | 
|  | skb->inner_mac_header += off; | 
|  | } | 
|  |  | 
|  | static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) | 
|  | { | 
|  | __copy_skb_header(new, old); | 
|  |  | 
|  | skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; | 
|  | skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; | 
|  | skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; | 
|  | } | 
|  |  | 
|  | static inline int skb_alloc_rx_flag(const struct sk_buff *skb) | 
|  | { | 
|  | if (skb_pfmemalloc(skb)) | 
|  | return SKB_ALLOC_RX; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_copy	-	create private copy of an sk_buff | 
|  | *	@skb: buffer to copy | 
|  | *	@gfp_mask: allocation priority | 
|  | * | 
|  | *	Make a copy of both an &sk_buff and its data. This is used when the | 
|  | *	caller wishes to modify the data and needs a private copy of the | 
|  | *	data to alter. Returns %NULL on failure or the pointer to the buffer | 
|  | *	on success. The returned buffer has a reference count of 1. | 
|  | * | 
|  | *	As by-product this function converts non-linear &sk_buff to linear | 
|  | *	one, so that &sk_buff becomes completely private and caller is allowed | 
|  | *	to modify all the data of returned buffer. This means that this | 
|  | *	function is not recommended for use in circumstances when only | 
|  | *	header is going to be modified. Use pskb_copy() instead. | 
|  | */ | 
|  |  | 
|  | struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) | 
|  | { | 
|  | int headerlen = skb_headroom(skb); | 
|  | unsigned int size = skb_end_offset(skb) + skb->data_len; | 
|  | struct sk_buff *n = __alloc_skb(size, gfp_mask, | 
|  | skb_alloc_rx_flag(skb), NUMA_NO_NODE); | 
|  |  | 
|  | if (!n) | 
|  | return NULL; | 
|  |  | 
|  | /* Set the data pointer */ | 
|  | skb_reserve(n, headerlen); | 
|  | /* Set the tail pointer and length */ | 
|  | skb_put(n, skb->len); | 
|  |  | 
|  | if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) | 
|  | BUG(); | 
|  |  | 
|  | copy_skb_header(n, skb); | 
|  | return n; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_copy); | 
|  |  | 
|  | /** | 
|  | *	__pskb_copy_fclone	-  create copy of an sk_buff with private head. | 
|  | *	@skb: buffer to copy | 
|  | *	@headroom: headroom of new skb | 
|  | *	@gfp_mask: allocation priority | 
|  | *	@fclone: if true allocate the copy of the skb from the fclone | 
|  | *	cache instead of the head cache; it is recommended to set this | 
|  | *	to true for the cases where the copy will likely be cloned | 
|  | * | 
|  | *	Make a copy of both an &sk_buff and part of its data, located | 
|  | *	in header. Fragmented data remain shared. This is used when | 
|  | *	the caller wishes to modify only header of &sk_buff and needs | 
|  | *	private copy of the header to alter. Returns %NULL on failure | 
|  | *	or the pointer to the buffer on success. | 
|  | *	The returned buffer has a reference count of 1. | 
|  | */ | 
|  |  | 
|  | struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, | 
|  | gfp_t gfp_mask, bool fclone) | 
|  | { | 
|  | unsigned int size = skb_headlen(skb) + headroom; | 
|  | int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); | 
|  | struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); | 
|  |  | 
|  | if (!n) | 
|  | goto out; | 
|  |  | 
|  | /* Set the data pointer */ | 
|  | skb_reserve(n, headroom); | 
|  | /* Set the tail pointer and length */ | 
|  | skb_put(n, skb_headlen(skb)); | 
|  | /* Copy the bytes */ | 
|  | skb_copy_from_linear_data(skb, n->data, n->len); | 
|  |  | 
|  | n->truesize += skb->data_len; | 
|  | n->data_len  = skb->data_len; | 
|  | n->len	     = skb->len; | 
|  |  | 
|  | if (skb_shinfo(skb)->nr_frags) { | 
|  | int i; | 
|  |  | 
|  | if (skb_orphan_frags(skb, gfp_mask)) { | 
|  | kfree_skb(n); | 
|  | n = NULL; | 
|  | goto out; | 
|  | } | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
|  | skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; | 
|  | skb_frag_ref(skb, i); | 
|  | } | 
|  | skb_shinfo(n)->nr_frags = i; | 
|  | } | 
|  |  | 
|  | if (skb_has_frag_list(skb)) { | 
|  | skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; | 
|  | skb_clone_fraglist(n); | 
|  | } | 
|  |  | 
|  | copy_skb_header(n, skb); | 
|  | out: | 
|  | return n; | 
|  | } | 
|  | EXPORT_SYMBOL(__pskb_copy_fclone); | 
|  |  | 
|  | /** | 
|  | *	pskb_expand_head - reallocate header of &sk_buff | 
|  | *	@skb: buffer to reallocate | 
|  | *	@nhead: room to add at head | 
|  | *	@ntail: room to add at tail | 
|  | *	@gfp_mask: allocation priority | 
|  | * | 
|  | *	Expands (or creates identical copy, if @nhead and @ntail are zero) | 
|  | *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have | 
|  | *	reference count of 1. Returns zero in the case of success or error, | 
|  | *	if expansion failed. In the last case, &sk_buff is not changed. | 
|  | * | 
|  | *	All the pointers pointing into skb header may change and must be | 
|  | *	reloaded after call to this function. | 
|  | */ | 
|  |  | 
|  | int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | int i; | 
|  | u8 *data; | 
|  | int size = nhead + skb_end_offset(skb) + ntail; | 
|  | long off; | 
|  |  | 
|  | BUG_ON(nhead < 0); | 
|  |  | 
|  | if (skb_shared(skb)) | 
|  | BUG(); | 
|  |  | 
|  | size = SKB_DATA_ALIGN(size); | 
|  |  | 
|  | if (skb_pfmemalloc(skb)) | 
|  | gfp_mask |= __GFP_MEMALLOC; | 
|  | data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), | 
|  | gfp_mask, NUMA_NO_NODE, NULL); | 
|  | if (!data) | 
|  | goto nodata; | 
|  | size = SKB_WITH_OVERHEAD(ksize(data)); | 
|  |  | 
|  | /* Copy only real data... and, alas, header. This should be | 
|  | * optimized for the cases when header is void. | 
|  | */ | 
|  | memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); | 
|  |  | 
|  | memcpy((struct skb_shared_info *)(data + size), | 
|  | skb_shinfo(skb), | 
|  | offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); | 
|  |  | 
|  | /* | 
|  | * if shinfo is shared we must drop the old head gracefully, but if it | 
|  | * is not we can just drop the old head and let the existing refcount | 
|  | * be since all we did is relocate the values | 
|  | */ | 
|  | if (skb_cloned(skb)) { | 
|  | /* copy this zero copy skb frags */ | 
|  | if (skb_orphan_frags(skb, gfp_mask)) | 
|  | goto nofrags; | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) | 
|  | skb_frag_ref(skb, i); | 
|  |  | 
|  | if (skb_has_frag_list(skb)) | 
|  | skb_clone_fraglist(skb); | 
|  |  | 
|  | skb_release_data(skb); | 
|  | } else { | 
|  | skb_free_head(skb); | 
|  | } | 
|  | off = (data + nhead) - skb->head; | 
|  |  | 
|  | skb->head     = data; | 
|  | skb->head_frag = 0; | 
|  | skb->data    += off; | 
|  | #ifdef NET_SKBUFF_DATA_USES_OFFSET | 
|  | skb->end      = size; | 
|  | off           = nhead; | 
|  | #else | 
|  | skb->end      = skb->head + size; | 
|  | #endif | 
|  | skb->tail	      += off; | 
|  | skb_headers_offset_update(skb, nhead); | 
|  | skb->cloned   = 0; | 
|  | skb->hdr_len  = 0; | 
|  | skb->nohdr    = 0; | 
|  | atomic_set(&skb_shinfo(skb)->dataref, 1); | 
|  | return 0; | 
|  |  | 
|  | nofrags: | 
|  | kfree(data); | 
|  | nodata: | 
|  | return -ENOMEM; | 
|  | } | 
|  | EXPORT_SYMBOL(pskb_expand_head); | 
|  |  | 
|  | /* Make private copy of skb with writable head and some headroom */ | 
|  |  | 
|  | struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) | 
|  | { | 
|  | struct sk_buff *skb2; | 
|  | int delta = headroom - skb_headroom(skb); | 
|  |  | 
|  | if (delta <= 0) | 
|  | skb2 = pskb_copy(skb, GFP_ATOMIC); | 
|  | else { | 
|  | skb2 = skb_clone(skb, GFP_ATOMIC); | 
|  | if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, | 
|  | GFP_ATOMIC)) { | 
|  | kfree_skb(skb2); | 
|  | skb2 = NULL; | 
|  | } | 
|  | } | 
|  | return skb2; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_realloc_headroom); | 
|  |  | 
|  | /** | 
|  | *	skb_copy_expand	-	copy and expand sk_buff | 
|  | *	@skb: buffer to copy | 
|  | *	@newheadroom: new free bytes at head | 
|  | *	@newtailroom: new free bytes at tail | 
|  | *	@gfp_mask: allocation priority | 
|  | * | 
|  | *	Make a copy of both an &sk_buff and its data and while doing so | 
|  | *	allocate additional space. | 
|  | * | 
|  | *	This is used when the caller wishes to modify the data and needs a | 
|  | *	private copy of the data to alter as well as more space for new fields. | 
|  | *	Returns %NULL on failure or the pointer to the buffer | 
|  | *	on success. The returned buffer has a reference count of 1. | 
|  | * | 
|  | *	You must pass %GFP_ATOMIC as the allocation priority if this function | 
|  | *	is called from an interrupt. | 
|  | */ | 
|  | struct sk_buff *skb_copy_expand(const struct sk_buff *skb, | 
|  | int newheadroom, int newtailroom, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | /* | 
|  | *	Allocate the copy buffer | 
|  | */ | 
|  | struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, | 
|  | gfp_mask, skb_alloc_rx_flag(skb), | 
|  | NUMA_NO_NODE); | 
|  | int oldheadroom = skb_headroom(skb); | 
|  | int head_copy_len, head_copy_off; | 
|  |  | 
|  | if (!n) | 
|  | return NULL; | 
|  |  | 
|  | skb_reserve(n, newheadroom); | 
|  |  | 
|  | /* Set the tail pointer and length */ | 
|  | skb_put(n, skb->len); | 
|  |  | 
|  | head_copy_len = oldheadroom; | 
|  | head_copy_off = 0; | 
|  | if (newheadroom <= head_copy_len) | 
|  | head_copy_len = newheadroom; | 
|  | else | 
|  | head_copy_off = newheadroom - head_copy_len; | 
|  |  | 
|  | /* Copy the linear header and data. */ | 
|  | if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, | 
|  | skb->len + head_copy_len)) | 
|  | BUG(); | 
|  |  | 
|  | copy_skb_header(n, skb); | 
|  |  | 
|  | skb_headers_offset_update(n, newheadroom - oldheadroom); | 
|  |  | 
|  | return n; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_copy_expand); | 
|  |  | 
|  | /** | 
|  | *	skb_pad			-	zero pad the tail of an skb | 
|  | *	@skb: buffer to pad | 
|  | *	@pad: space to pad | 
|  | * | 
|  | *	Ensure that a buffer is followed by a padding area that is zero | 
|  | *	filled. Used by network drivers which may DMA or transfer data | 
|  | *	beyond the buffer end onto the wire. | 
|  | * | 
|  | *	May return error in out of memory cases. The skb is freed on error. | 
|  | */ | 
|  |  | 
|  | int skb_pad(struct sk_buff *skb, int pad) | 
|  | { | 
|  | int err; | 
|  | int ntail; | 
|  |  | 
|  | /* If the skbuff is non linear tailroom is always zero.. */ | 
|  | if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { | 
|  | memset(skb->data+skb->len, 0, pad); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ntail = skb->data_len + pad - (skb->end - skb->tail); | 
|  | if (likely(skb_cloned(skb) || ntail > 0)) { | 
|  | err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); | 
|  | if (unlikely(err)) | 
|  | goto free_skb; | 
|  | } | 
|  |  | 
|  | /* FIXME: The use of this function with non-linear skb's really needs | 
|  | * to be audited. | 
|  | */ | 
|  | err = skb_linearize(skb); | 
|  | if (unlikely(err)) | 
|  | goto free_skb; | 
|  |  | 
|  | memset(skb->data + skb->len, 0, pad); | 
|  | return 0; | 
|  |  | 
|  | free_skb: | 
|  | kfree_skb(skb); | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_pad); | 
|  |  | 
|  | /** | 
|  | *	pskb_put - add data to the tail of a potentially fragmented buffer | 
|  | *	@skb: start of the buffer to use | 
|  | *	@tail: tail fragment of the buffer to use | 
|  | *	@len: amount of data to add | 
|  | * | 
|  | *	This function extends the used data area of the potentially | 
|  | *	fragmented buffer. @tail must be the last fragment of @skb -- or | 
|  | *	@skb itself. If this would exceed the total buffer size the kernel | 
|  | *	will panic. A pointer to the first byte of the extra data is | 
|  | *	returned. | 
|  | */ | 
|  |  | 
|  | unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) | 
|  | { | 
|  | if (tail != skb) { | 
|  | skb->data_len += len; | 
|  | skb->len += len; | 
|  | } | 
|  | return skb_put(tail, len); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pskb_put); | 
|  |  | 
|  | /** | 
|  | *	skb_put - add data to a buffer | 
|  | *	@skb: buffer to use | 
|  | *	@len: amount of data to add | 
|  | * | 
|  | *	This function extends the used data area of the buffer. If this would | 
|  | *	exceed the total buffer size the kernel will panic. A pointer to the | 
|  | *	first byte of the extra data is returned. | 
|  | */ | 
|  | unsigned char *skb_put(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | unsigned char *tmp = skb_tail_pointer(skb); | 
|  | SKB_LINEAR_ASSERT(skb); | 
|  | skb->tail += len; | 
|  | skb->len  += len; | 
|  | if (unlikely(skb->tail > skb->end)) | 
|  | skb_over_panic(skb, len, __builtin_return_address(0)); | 
|  | return tmp; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_put); | 
|  |  | 
|  | /** | 
|  | *	skb_push - add data to the start of a buffer | 
|  | *	@skb: buffer to use | 
|  | *	@len: amount of data to add | 
|  | * | 
|  | *	This function extends the used data area of the buffer at the buffer | 
|  | *	start. If this would exceed the total buffer headroom the kernel will | 
|  | *	panic. A pointer to the first byte of the extra data is returned. | 
|  | */ | 
|  | unsigned char *skb_push(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | skb->data -= len; | 
|  | skb->len  += len; | 
|  | if (unlikely(skb->data<skb->head)) | 
|  | skb_under_panic(skb, len, __builtin_return_address(0)); | 
|  | return skb->data; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_push); | 
|  |  | 
|  | /** | 
|  | *	skb_pull - remove data from the start of a buffer | 
|  | *	@skb: buffer to use | 
|  | *	@len: amount of data to remove | 
|  | * | 
|  | *	This function removes data from the start of a buffer, returning | 
|  | *	the memory to the headroom. A pointer to the next data in the buffer | 
|  | *	is returned. Once the data has been pulled future pushes will overwrite | 
|  | *	the old data. | 
|  | */ | 
|  | unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | return skb_pull_inline(skb, len); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_pull); | 
|  |  | 
|  | /** | 
|  | *	skb_trim - remove end from a buffer | 
|  | *	@skb: buffer to alter | 
|  | *	@len: new length | 
|  | * | 
|  | *	Cut the length of a buffer down by removing data from the tail. If | 
|  | *	the buffer is already under the length specified it is not modified. | 
|  | *	The skb must be linear. | 
|  | */ | 
|  | void skb_trim(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | if (skb->len > len) | 
|  | __skb_trim(skb, len); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_trim); | 
|  |  | 
|  | /* Trims skb to length len. It can change skb pointers. | 
|  | */ | 
|  |  | 
|  | int ___pskb_trim(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | struct sk_buff **fragp; | 
|  | struct sk_buff *frag; | 
|  | int offset = skb_headlen(skb); | 
|  | int nfrags = skb_shinfo(skb)->nr_frags; | 
|  | int i; | 
|  | int err; | 
|  |  | 
|  | if (skb_cloned(skb) && | 
|  | unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) | 
|  | return err; | 
|  |  | 
|  | i = 0; | 
|  | if (offset >= len) | 
|  | goto drop_pages; | 
|  |  | 
|  | for (; i < nfrags; i++) { | 
|  | int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); | 
|  |  | 
|  | if (end < len) { | 
|  | offset = end; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); | 
|  |  | 
|  | drop_pages: | 
|  | skb_shinfo(skb)->nr_frags = i; | 
|  |  | 
|  | for (; i < nfrags; i++) | 
|  | skb_frag_unref(skb, i); | 
|  |  | 
|  | if (skb_has_frag_list(skb)) | 
|  | skb_drop_fraglist(skb); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); | 
|  | fragp = &frag->next) { | 
|  | int end = offset + frag->len; | 
|  |  | 
|  | if (skb_shared(frag)) { | 
|  | struct sk_buff *nfrag; | 
|  |  | 
|  | nfrag = skb_clone(frag, GFP_ATOMIC); | 
|  | if (unlikely(!nfrag)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | nfrag->next = frag->next; | 
|  | consume_skb(frag); | 
|  | frag = nfrag; | 
|  | *fragp = frag; | 
|  | } | 
|  |  | 
|  | if (end < len) { | 
|  | offset = end; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (end > len && | 
|  | unlikely((err = pskb_trim(frag, len - offset)))) | 
|  | return err; | 
|  |  | 
|  | if (frag->next) | 
|  | skb_drop_list(&frag->next); | 
|  | break; | 
|  | } | 
|  |  | 
|  | done: | 
|  | if (len > skb_headlen(skb)) { | 
|  | skb->data_len -= skb->len - len; | 
|  | skb->len       = len; | 
|  | } else { | 
|  | skb->len       = len; | 
|  | skb->data_len  = 0; | 
|  | skb_set_tail_pointer(skb, len); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(___pskb_trim); | 
|  |  | 
|  | /** | 
|  | *	__pskb_pull_tail - advance tail of skb header | 
|  | *	@skb: buffer to reallocate | 
|  | *	@delta: number of bytes to advance tail | 
|  | * | 
|  | *	The function makes a sense only on a fragmented &sk_buff, | 
|  | *	it expands header moving its tail forward and copying necessary | 
|  | *	data from fragmented part. | 
|  | * | 
|  | *	&sk_buff MUST have reference count of 1. | 
|  | * | 
|  | *	Returns %NULL (and &sk_buff does not change) if pull failed | 
|  | *	or value of new tail of skb in the case of success. | 
|  | * | 
|  | *	All the pointers pointing into skb header may change and must be | 
|  | *	reloaded after call to this function. | 
|  | */ | 
|  |  | 
|  | /* Moves tail of skb head forward, copying data from fragmented part, | 
|  | * when it is necessary. | 
|  | * 1. It may fail due to malloc failure. | 
|  | * 2. It may change skb pointers. | 
|  | * | 
|  | * It is pretty complicated. Luckily, it is called only in exceptional cases. | 
|  | */ | 
|  | unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) | 
|  | { | 
|  | /* If skb has not enough free space at tail, get new one | 
|  | * plus 128 bytes for future expansions. If we have enough | 
|  | * room at tail, reallocate without expansion only if skb is cloned. | 
|  | */ | 
|  | int i, k, eat = (skb->tail + delta) - skb->end; | 
|  |  | 
|  | if (eat > 0 || skb_cloned(skb)) { | 
|  | if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, | 
|  | GFP_ATOMIC)) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) | 
|  | BUG(); | 
|  |  | 
|  | /* Optimization: no fragments, no reasons to preestimate | 
|  | * size of pulled pages. Superb. | 
|  | */ | 
|  | if (!skb_has_frag_list(skb)) | 
|  | goto pull_pages; | 
|  |  | 
|  | /* Estimate size of pulled pages. */ | 
|  | eat = delta; | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
|  | int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); | 
|  |  | 
|  | if (size >= eat) | 
|  | goto pull_pages; | 
|  | eat -= size; | 
|  | } | 
|  |  | 
|  | /* If we need update frag list, we are in troubles. | 
|  | * Certainly, it possible to add an offset to skb data, | 
|  | * but taking into account that pulling is expected to | 
|  | * be very rare operation, it is worth to fight against | 
|  | * further bloating skb head and crucify ourselves here instead. | 
|  | * Pure masohism, indeed. 8)8) | 
|  | */ | 
|  | if (eat) { | 
|  | struct sk_buff *list = skb_shinfo(skb)->frag_list; | 
|  | struct sk_buff *clone = NULL; | 
|  | struct sk_buff *insp = NULL; | 
|  |  | 
|  | do { | 
|  | BUG_ON(!list); | 
|  |  | 
|  | if (list->len <= eat) { | 
|  | /* Eaten as whole. */ | 
|  | eat -= list->len; | 
|  | list = list->next; | 
|  | insp = list; | 
|  | } else { | 
|  | /* Eaten partially. */ | 
|  |  | 
|  | if (skb_shared(list)) { | 
|  | /* Sucks! We need to fork list. :-( */ | 
|  | clone = skb_clone(list, GFP_ATOMIC); | 
|  | if (!clone) | 
|  | return NULL; | 
|  | insp = list->next; | 
|  | list = clone; | 
|  | } else { | 
|  | /* This may be pulled without | 
|  | * problems. */ | 
|  | insp = list; | 
|  | } | 
|  | if (!pskb_pull(list, eat)) { | 
|  | kfree_skb(clone); | 
|  | return NULL; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } while (eat); | 
|  |  | 
|  | /* Free pulled out fragments. */ | 
|  | while ((list = skb_shinfo(skb)->frag_list) != insp) { | 
|  | skb_shinfo(skb)->frag_list = list->next; | 
|  | kfree_skb(list); | 
|  | } | 
|  | /* And insert new clone at head. */ | 
|  | if (clone) { | 
|  | clone->next = list; | 
|  | skb_shinfo(skb)->frag_list = clone; | 
|  | } | 
|  | } | 
|  | /* Success! Now we may commit changes to skb data. */ | 
|  |  | 
|  | pull_pages: | 
|  | eat = delta; | 
|  | k = 0; | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
|  | int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); | 
|  |  | 
|  | if (size <= eat) { | 
|  | skb_frag_unref(skb, i); | 
|  | eat -= size; | 
|  | } else { | 
|  | skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; | 
|  | if (eat) { | 
|  | skb_shinfo(skb)->frags[k].page_offset += eat; | 
|  | skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); | 
|  | eat = 0; | 
|  | } | 
|  | k++; | 
|  | } | 
|  | } | 
|  | skb_shinfo(skb)->nr_frags = k; | 
|  |  | 
|  | skb->tail     += delta; | 
|  | skb->data_len -= delta; | 
|  |  | 
|  | return skb_tail_pointer(skb); | 
|  | } | 
|  | EXPORT_SYMBOL(__pskb_pull_tail); | 
|  |  | 
|  | /** | 
|  | *	skb_copy_bits - copy bits from skb to kernel buffer | 
|  | *	@skb: source skb | 
|  | *	@offset: offset in source | 
|  | *	@to: destination buffer | 
|  | *	@len: number of bytes to copy | 
|  | * | 
|  | *	Copy the specified number of bytes from the source skb to the | 
|  | *	destination buffer. | 
|  | * | 
|  | *	CAUTION ! : | 
|  | *		If its prototype is ever changed, | 
|  | *		check arch/{*}/net/{*}.S files, | 
|  | *		since it is called from BPF assembly code. | 
|  | */ | 
|  | int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) | 
|  | { | 
|  | int start = skb_headlen(skb); | 
|  | struct sk_buff *frag_iter; | 
|  | int i, copy; | 
|  |  | 
|  | if (offset > (int)skb->len - len) | 
|  | goto fault; | 
|  |  | 
|  | /* Copy header. */ | 
|  | if ((copy = start - offset) > 0) { | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | skb_copy_from_linear_data_offset(skb, offset, to, copy); | 
|  | if ((len -= copy) == 0) | 
|  | return 0; | 
|  | offset += copy; | 
|  | to     += copy; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
|  | int end; | 
|  | skb_frag_t *f = &skb_shinfo(skb)->frags[i]; | 
|  |  | 
|  | WARN_ON(start > offset + len); | 
|  |  | 
|  | end = start + skb_frag_size(f); | 
|  | if ((copy = end - offset) > 0) { | 
|  | u8 *vaddr; | 
|  |  | 
|  | if (copy > len) | 
|  | copy = len; | 
|  |  | 
|  | vaddr = kmap_atomic(skb_frag_page(f)); | 
|  | memcpy(to, | 
|  | vaddr + f->page_offset + offset - start, | 
|  | copy); | 
|  | kunmap_atomic(vaddr); | 
|  |  | 
|  | if ((len -= copy) == 0) | 
|  | return 0; | 
|  | offset += copy; | 
|  | to     += copy; | 
|  | } | 
|  | start = end; | 
|  | } | 
|  |  | 
|  | skb_walk_frags(skb, frag_iter) { | 
|  | int end; | 
|  |  | 
|  | WARN_ON(start > offset + len); | 
|  |  | 
|  | end = start + frag_iter->len; | 
|  | if ((copy = end - offset) > 0) { | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | if (skb_copy_bits(frag_iter, offset - start, to, copy)) | 
|  | goto fault; | 
|  | if ((len -= copy) == 0) | 
|  | return 0; | 
|  | offset += copy; | 
|  | to     += copy; | 
|  | } | 
|  | start = end; | 
|  | } | 
|  |  | 
|  | if (!len) | 
|  | return 0; | 
|  |  | 
|  | fault: | 
|  | return -EFAULT; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_copy_bits); | 
|  |  | 
|  | /* | 
|  | * Callback from splice_to_pipe(), if we need to release some pages | 
|  | * at the end of the spd in case we error'ed out in filling the pipe. | 
|  | */ | 
|  | static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) | 
|  | { | 
|  | put_page(spd->pages[i]); | 
|  | } | 
|  |  | 
|  | static struct page *linear_to_page(struct page *page, unsigned int *len, | 
|  | unsigned int *offset, | 
|  | struct sock *sk) | 
|  | { | 
|  | struct page_frag *pfrag = sk_page_frag(sk); | 
|  |  | 
|  | if (!sk_page_frag_refill(sk, pfrag)) | 
|  | return NULL; | 
|  |  | 
|  | *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); | 
|  |  | 
|  | memcpy(page_address(pfrag->page) + pfrag->offset, | 
|  | page_address(page) + *offset, *len); | 
|  | *offset = pfrag->offset; | 
|  | pfrag->offset += *len; | 
|  |  | 
|  | return pfrag->page; | 
|  | } | 
|  |  | 
|  | static bool spd_can_coalesce(const struct splice_pipe_desc *spd, | 
|  | struct page *page, | 
|  | unsigned int offset) | 
|  | { | 
|  | return	spd->nr_pages && | 
|  | spd->pages[spd->nr_pages - 1] == page && | 
|  | (spd->partial[spd->nr_pages - 1].offset + | 
|  | spd->partial[spd->nr_pages - 1].len == offset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill page/offset/length into spd, if it can hold more pages. | 
|  | */ | 
|  | static bool spd_fill_page(struct splice_pipe_desc *spd, | 
|  | struct pipe_inode_info *pipe, struct page *page, | 
|  | unsigned int *len, unsigned int offset, | 
|  | bool linear, | 
|  | struct sock *sk) | 
|  | { | 
|  | if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) | 
|  | return true; | 
|  |  | 
|  | if (linear) { | 
|  | page = linear_to_page(page, len, &offset, sk); | 
|  | if (!page) | 
|  | return true; | 
|  | } | 
|  | if (spd_can_coalesce(spd, page, offset)) { | 
|  | spd->partial[spd->nr_pages - 1].len += *len; | 
|  | return false; | 
|  | } | 
|  | get_page(page); | 
|  | spd->pages[spd->nr_pages] = page; | 
|  | spd->partial[spd->nr_pages].len = *len; | 
|  | spd->partial[spd->nr_pages].offset = offset; | 
|  | spd->nr_pages++; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool __splice_segment(struct page *page, unsigned int poff, | 
|  | unsigned int plen, unsigned int *off, | 
|  | unsigned int *len, | 
|  | struct splice_pipe_desc *spd, bool linear, | 
|  | struct sock *sk, | 
|  | struct pipe_inode_info *pipe) | 
|  | { | 
|  | if (!*len) | 
|  | return true; | 
|  |  | 
|  | /* skip this segment if already processed */ | 
|  | if (*off >= plen) { | 
|  | *off -= plen; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* ignore any bits we already processed */ | 
|  | poff += *off; | 
|  | plen -= *off; | 
|  | *off = 0; | 
|  |  | 
|  | do { | 
|  | unsigned int flen = min(*len, plen); | 
|  |  | 
|  | if (spd_fill_page(spd, pipe, page, &flen, poff, | 
|  | linear, sk)) | 
|  | return true; | 
|  | poff += flen; | 
|  | plen -= flen; | 
|  | *len -= flen; | 
|  | } while (*len && plen); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map linear and fragment data from the skb to spd. It reports true if the | 
|  | * pipe is full or if we already spliced the requested length. | 
|  | */ | 
|  | static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, | 
|  | unsigned int *offset, unsigned int *len, | 
|  | struct splice_pipe_desc *spd, struct sock *sk) | 
|  | { | 
|  | int seg; | 
|  |  | 
|  | /* map the linear part : | 
|  | * If skb->head_frag is set, this 'linear' part is backed by a | 
|  | * fragment, and if the head is not shared with any clones then | 
|  | * we can avoid a copy since we own the head portion of this page. | 
|  | */ | 
|  | if (__splice_segment(virt_to_page(skb->data), | 
|  | (unsigned long) skb->data & (PAGE_SIZE - 1), | 
|  | skb_headlen(skb), | 
|  | offset, len, spd, | 
|  | skb_head_is_locked(skb), | 
|  | sk, pipe)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * then map the fragments | 
|  | */ | 
|  | for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { | 
|  | const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; | 
|  |  | 
|  | if (__splice_segment(skb_frag_page(f), | 
|  | f->page_offset, skb_frag_size(f), | 
|  | offset, len, spd, false, sk, pipe)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ssize_t skb_socket_splice(struct sock *sk, | 
|  | struct pipe_inode_info *pipe, | 
|  | struct splice_pipe_desc *spd) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Drop the socket lock, otherwise we have reverse | 
|  | * locking dependencies between sk_lock and i_mutex | 
|  | * here as compared to sendfile(). We enter here | 
|  | * with the socket lock held, and splice_to_pipe() will | 
|  | * grab the pipe inode lock. For sendfile() emulation, | 
|  | * we call into ->sendpage() with the i_mutex lock held | 
|  | * and networking will grab the socket lock. | 
|  | */ | 
|  | release_sock(sk); | 
|  | ret = splice_to_pipe(pipe, spd); | 
|  | lock_sock(sk); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map data from the skb to a pipe. Should handle both the linear part, | 
|  | * the fragments, and the frag list. It does NOT handle frag lists within | 
|  | * the frag list, if such a thing exists. We'd probably need to recurse to | 
|  | * handle that cleanly. | 
|  | */ | 
|  | int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, | 
|  | struct pipe_inode_info *pipe, unsigned int tlen, | 
|  | unsigned int flags, | 
|  | ssize_t (*splice_cb)(struct sock *, | 
|  | struct pipe_inode_info *, | 
|  | struct splice_pipe_desc *)) | 
|  | { | 
|  | struct partial_page partial[MAX_SKB_FRAGS]; | 
|  | struct page *pages[MAX_SKB_FRAGS]; | 
|  | struct splice_pipe_desc spd = { | 
|  | .pages = pages, | 
|  | .partial = partial, | 
|  | .nr_pages_max = MAX_SKB_FRAGS, | 
|  | .flags = flags, | 
|  | .ops = &nosteal_pipe_buf_ops, | 
|  | .spd_release = sock_spd_release, | 
|  | }; | 
|  | struct sk_buff *frag_iter; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * __skb_splice_bits() only fails if the output has no room left, | 
|  | * so no point in going over the frag_list for the error case. | 
|  | */ | 
|  | if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk)) | 
|  | goto done; | 
|  | else if (!tlen) | 
|  | goto done; | 
|  |  | 
|  | /* | 
|  | * now see if we have a frag_list to map | 
|  | */ | 
|  | skb_walk_frags(skb, frag_iter) { | 
|  | if (!tlen) | 
|  | break; | 
|  | if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | done: | 
|  | if (spd.nr_pages) | 
|  | ret = splice_cb(sk, pipe, &spd); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_splice_bits); | 
|  |  | 
|  | /** | 
|  | *	skb_store_bits - store bits from kernel buffer to skb | 
|  | *	@skb: destination buffer | 
|  | *	@offset: offset in destination | 
|  | *	@from: source buffer | 
|  | *	@len: number of bytes to copy | 
|  | * | 
|  | *	Copy the specified number of bytes from the source buffer to the | 
|  | *	destination skb.  This function handles all the messy bits of | 
|  | *	traversing fragment lists and such. | 
|  | */ | 
|  |  | 
|  | int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) | 
|  | { | 
|  | int start = skb_headlen(skb); | 
|  | struct sk_buff *frag_iter; | 
|  | int i, copy; | 
|  |  | 
|  | if (offset > (int)skb->len - len) | 
|  | goto fault; | 
|  |  | 
|  | if ((copy = start - offset) > 0) { | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | skb_copy_to_linear_data_offset(skb, offset, from, copy); | 
|  | if ((len -= copy) == 0) | 
|  | return 0; | 
|  | offset += copy; | 
|  | from += copy; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
|  | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
|  | int end; | 
|  |  | 
|  | WARN_ON(start > offset + len); | 
|  |  | 
|  | end = start + skb_frag_size(frag); | 
|  | if ((copy = end - offset) > 0) { | 
|  | u8 *vaddr; | 
|  |  | 
|  | if (copy > len) | 
|  | copy = len; | 
|  |  | 
|  | vaddr = kmap_atomic(skb_frag_page(frag)); | 
|  | memcpy(vaddr + frag->page_offset + offset - start, | 
|  | from, copy); | 
|  | kunmap_atomic(vaddr); | 
|  |  | 
|  | if ((len -= copy) == 0) | 
|  | return 0; | 
|  | offset += copy; | 
|  | from += copy; | 
|  | } | 
|  | start = end; | 
|  | } | 
|  |  | 
|  | skb_walk_frags(skb, frag_iter) { | 
|  | int end; | 
|  |  | 
|  | WARN_ON(start > offset + len); | 
|  |  | 
|  | end = start + frag_iter->len; | 
|  | if ((copy = end - offset) > 0) { | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | if (skb_store_bits(frag_iter, offset - start, | 
|  | from, copy)) | 
|  | goto fault; | 
|  | if ((len -= copy) == 0) | 
|  | return 0; | 
|  | offset += copy; | 
|  | from += copy; | 
|  | } | 
|  | start = end; | 
|  | } | 
|  | if (!len) | 
|  | return 0; | 
|  |  | 
|  | fault: | 
|  | return -EFAULT; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_store_bits); | 
|  |  | 
|  | /* Checksum skb data. */ | 
|  | __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, | 
|  | __wsum csum, const struct skb_checksum_ops *ops) | 
|  | { | 
|  | int start = skb_headlen(skb); | 
|  | int i, copy = start - offset; | 
|  | struct sk_buff *frag_iter; | 
|  | int pos = 0; | 
|  |  | 
|  | /* Checksum header. */ | 
|  | if (copy > 0) { | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | csum = ops->update(skb->data + offset, copy, csum); | 
|  | if ((len -= copy) == 0) | 
|  | return csum; | 
|  | offset += copy; | 
|  | pos	= copy; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
|  | int end; | 
|  | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
|  |  | 
|  | WARN_ON(start > offset + len); | 
|  |  | 
|  | end = start + skb_frag_size(frag); | 
|  | if ((copy = end - offset) > 0) { | 
|  | __wsum csum2; | 
|  | u8 *vaddr; | 
|  |  | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | vaddr = kmap_atomic(skb_frag_page(frag)); | 
|  | csum2 = ops->update(vaddr + frag->page_offset + | 
|  | offset - start, copy, 0); | 
|  | kunmap_atomic(vaddr); | 
|  | csum = ops->combine(csum, csum2, pos, copy); | 
|  | if (!(len -= copy)) | 
|  | return csum; | 
|  | offset += copy; | 
|  | pos    += copy; | 
|  | } | 
|  | start = end; | 
|  | } | 
|  |  | 
|  | skb_walk_frags(skb, frag_iter) { | 
|  | int end; | 
|  |  | 
|  | WARN_ON(start > offset + len); | 
|  |  | 
|  | end = start + frag_iter->len; | 
|  | if ((copy = end - offset) > 0) { | 
|  | __wsum csum2; | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | csum2 = __skb_checksum(frag_iter, offset - start, | 
|  | copy, 0, ops); | 
|  | csum = ops->combine(csum, csum2, pos, copy); | 
|  | if ((len -= copy) == 0) | 
|  | return csum; | 
|  | offset += copy; | 
|  | pos    += copy; | 
|  | } | 
|  | start = end; | 
|  | } | 
|  | BUG_ON(len); | 
|  |  | 
|  | return csum; | 
|  | } | 
|  | EXPORT_SYMBOL(__skb_checksum); | 
|  |  | 
|  | __wsum skb_checksum(const struct sk_buff *skb, int offset, | 
|  | int len, __wsum csum) | 
|  | { | 
|  | const struct skb_checksum_ops ops = { | 
|  | .update  = csum_partial_ext, | 
|  | .combine = csum_block_add_ext, | 
|  | }; | 
|  |  | 
|  | return __skb_checksum(skb, offset, len, csum, &ops); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_checksum); | 
|  |  | 
|  | /* Both of above in one bottle. */ | 
|  |  | 
|  | __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, | 
|  | u8 *to, int len, __wsum csum) | 
|  | { | 
|  | int start = skb_headlen(skb); | 
|  | int i, copy = start - offset; | 
|  | struct sk_buff *frag_iter; | 
|  | int pos = 0; | 
|  |  | 
|  | /* Copy header. */ | 
|  | if (copy > 0) { | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | csum = csum_partial_copy_nocheck(skb->data + offset, to, | 
|  | copy, csum); | 
|  | if ((len -= copy) == 0) | 
|  | return csum; | 
|  | offset += copy; | 
|  | to     += copy; | 
|  | pos	= copy; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
|  | int end; | 
|  |  | 
|  | WARN_ON(start > offset + len); | 
|  |  | 
|  | end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); | 
|  | if ((copy = end - offset) > 0) { | 
|  | __wsum csum2; | 
|  | u8 *vaddr; | 
|  | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
|  |  | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | vaddr = kmap_atomic(skb_frag_page(frag)); | 
|  | csum2 = csum_partial_copy_nocheck(vaddr + | 
|  | frag->page_offset + | 
|  | offset - start, to, | 
|  | copy, 0); | 
|  | kunmap_atomic(vaddr); | 
|  | csum = csum_block_add(csum, csum2, pos); | 
|  | if (!(len -= copy)) | 
|  | return csum; | 
|  | offset += copy; | 
|  | to     += copy; | 
|  | pos    += copy; | 
|  | } | 
|  | start = end; | 
|  | } | 
|  |  | 
|  | skb_walk_frags(skb, frag_iter) { | 
|  | __wsum csum2; | 
|  | int end; | 
|  |  | 
|  | WARN_ON(start > offset + len); | 
|  |  | 
|  | end = start + frag_iter->len; | 
|  | if ((copy = end - offset) > 0) { | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | csum2 = skb_copy_and_csum_bits(frag_iter, | 
|  | offset - start, | 
|  | to, copy, 0); | 
|  | csum = csum_block_add(csum, csum2, pos); | 
|  | if ((len -= copy) == 0) | 
|  | return csum; | 
|  | offset += copy; | 
|  | to     += copy; | 
|  | pos    += copy; | 
|  | } | 
|  | start = end; | 
|  | } | 
|  | BUG_ON(len); | 
|  | return csum; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_copy_and_csum_bits); | 
|  |  | 
|  | /** | 
|  | *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() | 
|  | *	@from: source buffer | 
|  | * | 
|  | *	Calculates the amount of linear headroom needed in the 'to' skb passed | 
|  | *	into skb_zerocopy(). | 
|  | */ | 
|  | unsigned int | 
|  | skb_zerocopy_headlen(const struct sk_buff *from) | 
|  | { | 
|  | unsigned int hlen = 0; | 
|  |  | 
|  | if (!from->head_frag || | 
|  | skb_headlen(from) < L1_CACHE_BYTES || | 
|  | skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) | 
|  | hlen = skb_headlen(from); | 
|  |  | 
|  | if (skb_has_frag_list(from)) | 
|  | hlen = from->len; | 
|  |  | 
|  | return hlen; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); | 
|  |  | 
|  | /** | 
|  | *	skb_zerocopy - Zero copy skb to skb | 
|  | *	@to: destination buffer | 
|  | *	@from: source buffer | 
|  | *	@len: number of bytes to copy from source buffer | 
|  | *	@hlen: size of linear headroom in destination buffer | 
|  | * | 
|  | *	Copies up to `len` bytes from `from` to `to` by creating references | 
|  | *	to the frags in the source buffer. | 
|  | * | 
|  | *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the | 
|  | *	headroom in the `to` buffer. | 
|  | * | 
|  | *	Return value: | 
|  | *	0: everything is OK | 
|  | *	-ENOMEM: couldn't orphan frags of @from due to lack of memory | 
|  | *	-EFAULT: skb_copy_bits() found some problem with skb geometry | 
|  | */ | 
|  | int | 
|  | skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) | 
|  | { | 
|  | int i, j = 0; | 
|  | int plen = 0; /* length of skb->head fragment */ | 
|  | int ret; | 
|  | struct page *page; | 
|  | unsigned int offset; | 
|  |  | 
|  | BUG_ON(!from->head_frag && !hlen); | 
|  |  | 
|  | /* dont bother with small payloads */ | 
|  | if (len <= skb_tailroom(to)) | 
|  | return skb_copy_bits(from, 0, skb_put(to, len), len); | 
|  |  | 
|  | if (hlen) { | 
|  | ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  | len -= hlen; | 
|  | } else { | 
|  | plen = min_t(int, skb_headlen(from), len); | 
|  | if (plen) { | 
|  | page = virt_to_head_page(from->head); | 
|  | offset = from->data - (unsigned char *)page_address(page); | 
|  | __skb_fill_page_desc(to, 0, page, offset, plen); | 
|  | get_page(page); | 
|  | j = 1; | 
|  | len -= plen; | 
|  | } | 
|  | } | 
|  |  | 
|  | to->truesize += len + plen; | 
|  | to->len += len + plen; | 
|  | to->data_len += len + plen; | 
|  |  | 
|  | if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { | 
|  | skb_tx_error(from); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { | 
|  | if (!len) | 
|  | break; | 
|  | skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; | 
|  | skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); | 
|  | len -= skb_shinfo(to)->frags[j].size; | 
|  | skb_frag_ref(to, j); | 
|  | j++; | 
|  | } | 
|  | skb_shinfo(to)->nr_frags = j; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_zerocopy); | 
|  |  | 
|  | void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) | 
|  | { | 
|  | __wsum csum; | 
|  | long csstart; | 
|  |  | 
|  | if (skb->ip_summed == CHECKSUM_PARTIAL) | 
|  | csstart = skb_checksum_start_offset(skb); | 
|  | else | 
|  | csstart = skb_headlen(skb); | 
|  |  | 
|  | BUG_ON(csstart > skb_headlen(skb)); | 
|  |  | 
|  | skb_copy_from_linear_data(skb, to, csstart); | 
|  |  | 
|  | csum = 0; | 
|  | if (csstart != skb->len) | 
|  | csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, | 
|  | skb->len - csstart, 0); | 
|  |  | 
|  | if (skb->ip_summed == CHECKSUM_PARTIAL) { | 
|  | long csstuff = csstart + skb->csum_offset; | 
|  |  | 
|  | *((__sum16 *)(to + csstuff)) = csum_fold(csum); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(skb_copy_and_csum_dev); | 
|  |  | 
|  | /** | 
|  | *	skb_dequeue - remove from the head of the queue | 
|  | *	@list: list to dequeue from | 
|  | * | 
|  | *	Remove the head of the list. The list lock is taken so the function | 
|  | *	may be used safely with other locking list functions. The head item is | 
|  | *	returned or %NULL if the list is empty. | 
|  | */ | 
|  |  | 
|  | struct sk_buff *skb_dequeue(struct sk_buff_head *list) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct sk_buff *result; | 
|  |  | 
|  | spin_lock_irqsave(&list->lock, flags); | 
|  | result = __skb_dequeue(list); | 
|  | spin_unlock_irqrestore(&list->lock, flags); | 
|  | return result; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_dequeue); | 
|  |  | 
|  | /** | 
|  | *	skb_dequeue_tail - remove from the tail of the queue | 
|  | *	@list: list to dequeue from | 
|  | * | 
|  | *	Remove the tail of the list. The list lock is taken so the function | 
|  | *	may be used safely with other locking list functions. The tail item is | 
|  | *	returned or %NULL if the list is empty. | 
|  | */ | 
|  | struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct sk_buff *result; | 
|  |  | 
|  | spin_lock_irqsave(&list->lock, flags); | 
|  | result = __skb_dequeue_tail(list); | 
|  | spin_unlock_irqrestore(&list->lock, flags); | 
|  | return result; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_dequeue_tail); | 
|  |  | 
|  | /** | 
|  | *	skb_queue_purge - empty a list | 
|  | *	@list: list to empty | 
|  | * | 
|  | *	Delete all buffers on an &sk_buff list. Each buffer is removed from | 
|  | *	the list and one reference dropped. This function takes the list | 
|  | *	lock and is atomic with respect to other list locking functions. | 
|  | */ | 
|  | void skb_queue_purge(struct sk_buff_head *list) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | while ((skb = skb_dequeue(list)) != NULL) | 
|  | kfree_skb(skb); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_queue_purge); | 
|  |  | 
|  | /** | 
|  | *	skb_queue_head - queue a buffer at the list head | 
|  | *	@list: list to use | 
|  | *	@newsk: buffer to queue | 
|  | * | 
|  | *	Queue a buffer at the start of the list. This function takes the | 
|  | *	list lock and can be used safely with other locking &sk_buff functions | 
|  | *	safely. | 
|  | * | 
|  | *	A buffer cannot be placed on two lists at the same time. | 
|  | */ | 
|  | void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&list->lock, flags); | 
|  | __skb_queue_head(list, newsk); | 
|  | spin_unlock_irqrestore(&list->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_queue_head); | 
|  |  | 
|  | /** | 
|  | *	skb_queue_tail - queue a buffer at the list tail | 
|  | *	@list: list to use | 
|  | *	@newsk: buffer to queue | 
|  | * | 
|  | *	Queue a buffer at the tail of the list. This function takes the | 
|  | *	list lock and can be used safely with other locking &sk_buff functions | 
|  | *	safely. | 
|  | * | 
|  | *	A buffer cannot be placed on two lists at the same time. | 
|  | */ | 
|  | void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&list->lock, flags); | 
|  | __skb_queue_tail(list, newsk); | 
|  | spin_unlock_irqrestore(&list->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_queue_tail); | 
|  |  | 
|  | /** | 
|  | *	skb_unlink	-	remove a buffer from a list | 
|  | *	@skb: buffer to remove | 
|  | *	@list: list to use | 
|  | * | 
|  | *	Remove a packet from a list. The list locks are taken and this | 
|  | *	function is atomic with respect to other list locked calls | 
|  | * | 
|  | *	You must know what list the SKB is on. | 
|  | */ | 
|  | void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&list->lock, flags); | 
|  | __skb_unlink(skb, list); | 
|  | spin_unlock_irqrestore(&list->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_unlink); | 
|  |  | 
|  | /** | 
|  | *	skb_append	-	append a buffer | 
|  | *	@old: buffer to insert after | 
|  | *	@newsk: buffer to insert | 
|  | *	@list: list to use | 
|  | * | 
|  | *	Place a packet after a given packet in a list. The list locks are taken | 
|  | *	and this function is atomic with respect to other list locked calls. | 
|  | *	A buffer cannot be placed on two lists at the same time. | 
|  | */ | 
|  | void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&list->lock, flags); | 
|  | __skb_queue_after(list, old, newsk); | 
|  | spin_unlock_irqrestore(&list->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_append); | 
|  |  | 
|  | /** | 
|  | *	skb_insert	-	insert a buffer | 
|  | *	@old: buffer to insert before | 
|  | *	@newsk: buffer to insert | 
|  | *	@list: list to use | 
|  | * | 
|  | *	Place a packet before a given packet in a list. The list locks are | 
|  | * 	taken and this function is atomic with respect to other list locked | 
|  | *	calls. | 
|  | * | 
|  | *	A buffer cannot be placed on two lists at the same time. | 
|  | */ | 
|  | void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&list->lock, flags); | 
|  | __skb_insert(newsk, old->prev, old, list); | 
|  | spin_unlock_irqrestore(&list->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_insert); | 
|  |  | 
|  | static inline void skb_split_inside_header(struct sk_buff *skb, | 
|  | struct sk_buff* skb1, | 
|  | const u32 len, const int pos) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), | 
|  | pos - len); | 
|  | /* And move data appendix as is. */ | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) | 
|  | skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; | 
|  |  | 
|  | skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; | 
|  | skb_shinfo(skb)->nr_frags  = 0; | 
|  | skb1->data_len		   = skb->data_len; | 
|  | skb1->len		   += skb1->data_len; | 
|  | skb->data_len		   = 0; | 
|  | skb->len		   = len; | 
|  | skb_set_tail_pointer(skb, len); | 
|  | } | 
|  |  | 
|  | static inline void skb_split_no_header(struct sk_buff *skb, | 
|  | struct sk_buff* skb1, | 
|  | const u32 len, int pos) | 
|  | { | 
|  | int i, k = 0; | 
|  | const int nfrags = skb_shinfo(skb)->nr_frags; | 
|  |  | 
|  | skb_shinfo(skb)->nr_frags = 0; | 
|  | skb1->len		  = skb1->data_len = skb->len - len; | 
|  | skb->len		  = len; | 
|  | skb->data_len		  = len - pos; | 
|  |  | 
|  | for (i = 0; i < nfrags; i++) { | 
|  | int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); | 
|  |  | 
|  | if (pos + size > len) { | 
|  | skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; | 
|  |  | 
|  | if (pos < len) { | 
|  | /* Split frag. | 
|  | * We have two variants in this case: | 
|  | * 1. Move all the frag to the second | 
|  | *    part, if it is possible. F.e. | 
|  | *    this approach is mandatory for TUX, | 
|  | *    where splitting is expensive. | 
|  | * 2. Split is accurately. We make this. | 
|  | */ | 
|  | skb_frag_ref(skb, i); | 
|  | skb_shinfo(skb1)->frags[0].page_offset += len - pos; | 
|  | skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); | 
|  | skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); | 
|  | skb_shinfo(skb)->nr_frags++; | 
|  | } | 
|  | k++; | 
|  | } else | 
|  | skb_shinfo(skb)->nr_frags++; | 
|  | pos += size; | 
|  | } | 
|  | skb_shinfo(skb1)->nr_frags = k; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_split - Split fragmented skb to two parts at length len. | 
|  | * @skb: the buffer to split | 
|  | * @skb1: the buffer to receive the second part | 
|  | * @len: new length for skb | 
|  | */ | 
|  | void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) | 
|  | { | 
|  | int pos = skb_headlen(skb); | 
|  |  | 
|  | skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; | 
|  | if (len < pos)	/* Split line is inside header. */ | 
|  | skb_split_inside_header(skb, skb1, len, pos); | 
|  | else		/* Second chunk has no header, nothing to copy. */ | 
|  | skb_split_no_header(skb, skb1, len, pos); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_split); | 
|  |  | 
|  | /* Shifting from/to a cloned skb is a no-go. | 
|  | * | 
|  | * Caller cannot keep skb_shinfo related pointers past calling here! | 
|  | */ | 
|  | static int skb_prepare_for_shift(struct sk_buff *skb) | 
|  | { | 
|  | return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_shift - Shifts paged data partially from skb to another | 
|  | * @tgt: buffer into which tail data gets added | 
|  | * @skb: buffer from which the paged data comes from | 
|  | * @shiftlen: shift up to this many bytes | 
|  | * | 
|  | * Attempts to shift up to shiftlen worth of bytes, which may be less than | 
|  | * the length of the skb, from skb to tgt. Returns number bytes shifted. | 
|  | * It's up to caller to free skb if everything was shifted. | 
|  | * | 
|  | * If @tgt runs out of frags, the whole operation is aborted. | 
|  | * | 
|  | * Skb cannot include anything else but paged data while tgt is allowed | 
|  | * to have non-paged data as well. | 
|  | * | 
|  | * TODO: full sized shift could be optimized but that would need | 
|  | * specialized skb free'er to handle frags without up-to-date nr_frags. | 
|  | */ | 
|  | int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) | 
|  | { | 
|  | int from, to, merge, todo; | 
|  | struct skb_frag_struct *fragfrom, *fragto; | 
|  |  | 
|  | BUG_ON(shiftlen > skb->len); | 
|  | BUG_ON(skb_headlen(skb));	/* Would corrupt stream */ | 
|  |  | 
|  | todo = shiftlen; | 
|  | from = 0; | 
|  | to = skb_shinfo(tgt)->nr_frags; | 
|  | fragfrom = &skb_shinfo(skb)->frags[from]; | 
|  |  | 
|  | /* Actual merge is delayed until the point when we know we can | 
|  | * commit all, so that we don't have to undo partial changes | 
|  | */ | 
|  | if (!to || | 
|  | !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), | 
|  | fragfrom->page_offset)) { | 
|  | merge = -1; | 
|  | } else { | 
|  | merge = to - 1; | 
|  |  | 
|  | todo -= skb_frag_size(fragfrom); | 
|  | if (todo < 0) { | 
|  | if (skb_prepare_for_shift(skb) || | 
|  | skb_prepare_for_shift(tgt)) | 
|  | return 0; | 
|  |  | 
|  | /* All previous frag pointers might be stale! */ | 
|  | fragfrom = &skb_shinfo(skb)->frags[from]; | 
|  | fragto = &skb_shinfo(tgt)->frags[merge]; | 
|  |  | 
|  | skb_frag_size_add(fragto, shiftlen); | 
|  | skb_frag_size_sub(fragfrom, shiftlen); | 
|  | fragfrom->page_offset += shiftlen; | 
|  |  | 
|  | goto onlymerged; | 
|  | } | 
|  |  | 
|  | from++; | 
|  | } | 
|  |  | 
|  | /* Skip full, not-fitting skb to avoid expensive operations */ | 
|  | if ((shiftlen == skb->len) && | 
|  | (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) | 
|  | return 0; | 
|  |  | 
|  | if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) | 
|  | return 0; | 
|  |  | 
|  | while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { | 
|  | if (to == MAX_SKB_FRAGS) | 
|  | return 0; | 
|  |  | 
|  | fragfrom = &skb_shinfo(skb)->frags[from]; | 
|  | fragto = &skb_shinfo(tgt)->frags[to]; | 
|  |  | 
|  | if (todo >= skb_frag_size(fragfrom)) { | 
|  | *fragto = *fragfrom; | 
|  | todo -= skb_frag_size(fragfrom); | 
|  | from++; | 
|  | to++; | 
|  |  | 
|  | } else { | 
|  | __skb_frag_ref(fragfrom); | 
|  | fragto->page = fragfrom->page; | 
|  | fragto->page_offset = fragfrom->page_offset; | 
|  | skb_frag_size_set(fragto, todo); | 
|  |  | 
|  | fragfrom->page_offset += todo; | 
|  | skb_frag_size_sub(fragfrom, todo); | 
|  | todo = 0; | 
|  |  | 
|  | to++; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ready to "commit" this state change to tgt */ | 
|  | skb_shinfo(tgt)->nr_frags = to; | 
|  |  | 
|  | if (merge >= 0) { | 
|  | fragfrom = &skb_shinfo(skb)->frags[0]; | 
|  | fragto = &skb_shinfo(tgt)->frags[merge]; | 
|  |  | 
|  | skb_frag_size_add(fragto, skb_frag_size(fragfrom)); | 
|  | __skb_frag_unref(fragfrom); | 
|  | } | 
|  |  | 
|  | /* Reposition in the original skb */ | 
|  | to = 0; | 
|  | while (from < skb_shinfo(skb)->nr_frags) | 
|  | skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; | 
|  | skb_shinfo(skb)->nr_frags = to; | 
|  |  | 
|  | BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); | 
|  |  | 
|  | onlymerged: | 
|  | /* Most likely the tgt won't ever need its checksum anymore, skb on | 
|  | * the other hand might need it if it needs to be resent | 
|  | */ | 
|  | tgt->ip_summed = CHECKSUM_PARTIAL; | 
|  | skb->ip_summed = CHECKSUM_PARTIAL; | 
|  |  | 
|  | /* Yak, is it really working this way? Some helper please? */ | 
|  | skb->len -= shiftlen; | 
|  | skb->data_len -= shiftlen; | 
|  | skb->truesize -= shiftlen; | 
|  | tgt->len += shiftlen; | 
|  | tgt->data_len += shiftlen; | 
|  | tgt->truesize += shiftlen; | 
|  |  | 
|  | return shiftlen; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_prepare_seq_read - Prepare a sequential read of skb data | 
|  | * @skb: the buffer to read | 
|  | * @from: lower offset of data to be read | 
|  | * @to: upper offset of data to be read | 
|  | * @st: state variable | 
|  | * | 
|  | * Initializes the specified state variable. Must be called before | 
|  | * invoking skb_seq_read() for the first time. | 
|  | */ | 
|  | void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, | 
|  | unsigned int to, struct skb_seq_state *st) | 
|  | { | 
|  | st->lower_offset = from; | 
|  | st->upper_offset = to; | 
|  | st->root_skb = st->cur_skb = skb; | 
|  | st->frag_idx = st->stepped_offset = 0; | 
|  | st->frag_data = NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_prepare_seq_read); | 
|  |  | 
|  | /** | 
|  | * skb_seq_read - Sequentially read skb data | 
|  | * @consumed: number of bytes consumed by the caller so far | 
|  | * @data: destination pointer for data to be returned | 
|  | * @st: state variable | 
|  | * | 
|  | * Reads a block of skb data at @consumed relative to the | 
|  | * lower offset specified to skb_prepare_seq_read(). Assigns | 
|  | * the head of the data block to @data and returns the length | 
|  | * of the block or 0 if the end of the skb data or the upper | 
|  | * offset has been reached. | 
|  | * | 
|  | * The caller is not required to consume all of the data | 
|  | * returned, i.e. @consumed is typically set to the number | 
|  | * of bytes already consumed and the next call to | 
|  | * skb_seq_read() will return the remaining part of the block. | 
|  | * | 
|  | * Note 1: The size of each block of data returned can be arbitrary, | 
|  | *       this limitation is the cost for zerocopy sequential | 
|  | *       reads of potentially non linear data. | 
|  | * | 
|  | * Note 2: Fragment lists within fragments are not implemented | 
|  | *       at the moment, state->root_skb could be replaced with | 
|  | *       a stack for this purpose. | 
|  | */ | 
|  | unsigned int skb_seq_read(unsigned int consumed, const u8 **data, | 
|  | struct skb_seq_state *st) | 
|  | { | 
|  | unsigned int block_limit, abs_offset = consumed + st->lower_offset; | 
|  | skb_frag_t *frag; | 
|  |  | 
|  | if (unlikely(abs_offset >= st->upper_offset)) { | 
|  | if (st->frag_data) { | 
|  | kunmap_atomic(st->frag_data); | 
|  | st->frag_data = NULL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | next_skb: | 
|  | block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; | 
|  |  | 
|  | if (abs_offset < block_limit && !st->frag_data) { | 
|  | *data = st->cur_skb->data + (abs_offset - st->stepped_offset); | 
|  | return block_limit - abs_offset; | 
|  | } | 
|  |  | 
|  | if (st->frag_idx == 0 && !st->frag_data) | 
|  | st->stepped_offset += skb_headlen(st->cur_skb); | 
|  |  | 
|  | while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { | 
|  | frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; | 
|  | block_limit = skb_frag_size(frag) + st->stepped_offset; | 
|  |  | 
|  | if (abs_offset < block_limit) { | 
|  | if (!st->frag_data) | 
|  | st->frag_data = kmap_atomic(skb_frag_page(frag)); | 
|  |  | 
|  | *data = (u8 *) st->frag_data + frag->page_offset + | 
|  | (abs_offset - st->stepped_offset); | 
|  |  | 
|  | return block_limit - abs_offset; | 
|  | } | 
|  |  | 
|  | if (st->frag_data) { | 
|  | kunmap_atomic(st->frag_data); | 
|  | st->frag_data = NULL; | 
|  | } | 
|  |  | 
|  | st->frag_idx++; | 
|  | st->stepped_offset += skb_frag_size(frag); | 
|  | } | 
|  |  | 
|  | if (st->frag_data) { | 
|  | kunmap_atomic(st->frag_data); | 
|  | st->frag_data = NULL; | 
|  | } | 
|  |  | 
|  | if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { | 
|  | st->cur_skb = skb_shinfo(st->root_skb)->frag_list; | 
|  | st->frag_idx = 0; | 
|  | goto next_skb; | 
|  | } else if (st->cur_skb->next) { | 
|  | st->cur_skb = st->cur_skb->next; | 
|  | st->frag_idx = 0; | 
|  | goto next_skb; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_seq_read); | 
|  |  | 
|  | /** | 
|  | * skb_abort_seq_read - Abort a sequential read of skb data | 
|  | * @st: state variable | 
|  | * | 
|  | * Must be called if skb_seq_read() was not called until it | 
|  | * returned 0. | 
|  | */ | 
|  | void skb_abort_seq_read(struct skb_seq_state *st) | 
|  | { | 
|  | if (st->frag_data) | 
|  | kunmap_atomic(st->frag_data); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_abort_seq_read); | 
|  |  | 
|  | #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb)) | 
|  |  | 
|  | static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, | 
|  | struct ts_config *conf, | 
|  | struct ts_state *state) | 
|  | { | 
|  | return skb_seq_read(offset, text, TS_SKB_CB(state)); | 
|  | } | 
|  |  | 
|  | static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) | 
|  | { | 
|  | skb_abort_seq_read(TS_SKB_CB(state)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_find_text - Find a text pattern in skb data | 
|  | * @skb: the buffer to look in | 
|  | * @from: search offset | 
|  | * @to: search limit | 
|  | * @config: textsearch configuration | 
|  | * | 
|  | * Finds a pattern in the skb data according to the specified | 
|  | * textsearch configuration. Use textsearch_next() to retrieve | 
|  | * subsequent occurrences of the pattern. Returns the offset | 
|  | * to the first occurrence or UINT_MAX if no match was found. | 
|  | */ | 
|  | unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, | 
|  | unsigned int to, struct ts_config *config) | 
|  | { | 
|  | struct ts_state state; | 
|  | unsigned int ret; | 
|  |  | 
|  | config->get_next_block = skb_ts_get_next_block; | 
|  | config->finish = skb_ts_finish; | 
|  |  | 
|  | skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); | 
|  |  | 
|  | ret = textsearch_find(config, &state); | 
|  | return (ret <= to - from ? ret : UINT_MAX); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_find_text); | 
|  |  | 
|  | /** | 
|  | * skb_append_datato_frags - append the user data to a skb | 
|  | * @sk: sock  structure | 
|  | * @skb: skb structure to be appended with user data. | 
|  | * @getfrag: call back function to be used for getting the user data | 
|  | * @from: pointer to user message iov | 
|  | * @length: length of the iov message | 
|  | * | 
|  | * Description: This procedure append the user data in the fragment part | 
|  | * of the skb if any page alloc fails user this procedure returns  -ENOMEM | 
|  | */ | 
|  | int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, | 
|  | int (*getfrag)(void *from, char *to, int offset, | 
|  | int len, int odd, struct sk_buff *skb), | 
|  | void *from, int length) | 
|  | { | 
|  | int frg_cnt = skb_shinfo(skb)->nr_frags; | 
|  | int copy; | 
|  | int offset = 0; | 
|  | int ret; | 
|  | struct page_frag *pfrag = ¤t->task_frag; | 
|  |  | 
|  | do { | 
|  | /* Return error if we don't have space for new frag */ | 
|  | if (frg_cnt >= MAX_SKB_FRAGS) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | if (!sk_page_frag_refill(sk, pfrag)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* copy the user data to page */ | 
|  | copy = min_t(int, length, pfrag->size - pfrag->offset); | 
|  |  | 
|  | ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, | 
|  | offset, copy, 0, skb); | 
|  | if (ret < 0) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* copy was successful so update the size parameters */ | 
|  | skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, | 
|  | copy); | 
|  | frg_cnt++; | 
|  | pfrag->offset += copy; | 
|  | get_page(pfrag->page); | 
|  |  | 
|  | skb->truesize += copy; | 
|  | atomic_add(copy, &sk->sk_wmem_alloc); | 
|  | skb->len += copy; | 
|  | skb->data_len += copy; | 
|  | offset += copy; | 
|  | length -= copy; | 
|  |  | 
|  | } while (length > 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_append_datato_frags); | 
|  |  | 
|  | int skb_append_pagefrags(struct sk_buff *skb, struct page *page, | 
|  | int offset, size_t size) | 
|  | { | 
|  | int i = skb_shinfo(skb)->nr_frags; | 
|  |  | 
|  | if (skb_can_coalesce(skb, i, page, offset)) { | 
|  | skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); | 
|  | } else if (i < MAX_SKB_FRAGS) { | 
|  | get_page(page); | 
|  | skb_fill_page_desc(skb, i, page, offset, size); | 
|  | } else { | 
|  | return -EMSGSIZE; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_append_pagefrags); | 
|  |  | 
|  | /** | 
|  | *	skb_pull_rcsum - pull skb and update receive checksum | 
|  | *	@skb: buffer to update | 
|  | *	@len: length of data pulled | 
|  | * | 
|  | *	This function performs an skb_pull on the packet and updates | 
|  | *	the CHECKSUM_COMPLETE checksum.  It should be used on | 
|  | *	receive path processing instead of skb_pull unless you know | 
|  | *	that the checksum difference is zero (e.g., a valid IP header) | 
|  | *	or you are setting ip_summed to CHECKSUM_NONE. | 
|  | */ | 
|  | unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | BUG_ON(len > skb->len); | 
|  | skb->len -= len; | 
|  | BUG_ON(skb->len < skb->data_len); | 
|  | skb_postpull_rcsum(skb, skb->data, len); | 
|  | return skb->data += len; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_pull_rcsum); | 
|  |  | 
|  | /** | 
|  | *	skb_segment - Perform protocol segmentation on skb. | 
|  | *	@head_skb: buffer to segment | 
|  | *	@features: features for the output path (see dev->features) | 
|  | * | 
|  | *	This function performs segmentation on the given skb.  It returns | 
|  | *	a pointer to the first in a list of new skbs for the segments. | 
|  | *	In case of error it returns ERR_PTR(err). | 
|  | */ | 
|  | struct sk_buff *skb_segment(struct sk_buff *head_skb, | 
|  | netdev_features_t features) | 
|  | { | 
|  | struct sk_buff *segs = NULL; | 
|  | struct sk_buff *tail = NULL; | 
|  | struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; | 
|  | skb_frag_t *frag = skb_shinfo(head_skb)->frags; | 
|  | unsigned int mss = skb_shinfo(head_skb)->gso_size; | 
|  | unsigned int doffset = head_skb->data - skb_mac_header(head_skb); | 
|  | struct sk_buff *frag_skb = head_skb; | 
|  | unsigned int offset = doffset; | 
|  | unsigned int tnl_hlen = skb_tnl_header_len(head_skb); | 
|  | unsigned int headroom; | 
|  | unsigned int len; | 
|  | __be16 proto; | 
|  | bool csum; | 
|  | int sg = !!(features & NETIF_F_SG); | 
|  | int nfrags = skb_shinfo(head_skb)->nr_frags; | 
|  | int err = -ENOMEM; | 
|  | int i = 0; | 
|  | int pos; | 
|  | int dummy; | 
|  |  | 
|  | __skb_push(head_skb, doffset); | 
|  | proto = skb_network_protocol(head_skb, &dummy); | 
|  | if (unlikely(!proto)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | csum = !head_skb->encap_hdr_csum && | 
|  | !!can_checksum_protocol(features, proto); | 
|  |  | 
|  | headroom = skb_headroom(head_skb); | 
|  | pos = skb_headlen(head_skb); | 
|  |  | 
|  | do { | 
|  | struct sk_buff *nskb; | 
|  | skb_frag_t *nskb_frag; | 
|  | int hsize; | 
|  | int size; | 
|  |  | 
|  | len = head_skb->len - offset; | 
|  | if (len > mss) | 
|  | len = mss; | 
|  |  | 
|  | hsize = skb_headlen(head_skb) - offset; | 
|  | if (hsize < 0) | 
|  | hsize = 0; | 
|  | if (hsize > len || !sg) | 
|  | hsize = len; | 
|  |  | 
|  | if (!hsize && i >= nfrags && skb_headlen(list_skb) && | 
|  | (skb_headlen(list_skb) == len || sg)) { | 
|  | BUG_ON(skb_headlen(list_skb) > len); | 
|  |  | 
|  | i = 0; | 
|  | nfrags = skb_shinfo(list_skb)->nr_frags; | 
|  | frag = skb_shinfo(list_skb)->frags; | 
|  | frag_skb = list_skb; | 
|  | pos += skb_headlen(list_skb); | 
|  |  | 
|  | while (pos < offset + len) { | 
|  | BUG_ON(i >= nfrags); | 
|  |  | 
|  | size = skb_frag_size(frag); | 
|  | if (pos + size > offset + len) | 
|  | break; | 
|  |  | 
|  | i++; | 
|  | pos += size; | 
|  | frag++; | 
|  | } | 
|  |  | 
|  | nskb = skb_clone(list_skb, GFP_ATOMIC); | 
|  | list_skb = list_skb->next; | 
|  |  | 
|  | if (unlikely(!nskb)) | 
|  | goto err; | 
|  |  | 
|  | if (unlikely(pskb_trim(nskb, len))) { | 
|  | kfree_skb(nskb); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | hsize = skb_end_offset(nskb); | 
|  | if (skb_cow_head(nskb, doffset + headroom)) { | 
|  | kfree_skb(nskb); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | nskb->truesize += skb_end_offset(nskb) - hsize; | 
|  | skb_release_head_state(nskb); | 
|  | __skb_push(nskb, doffset); | 
|  | } else { | 
|  | nskb = __alloc_skb(hsize + doffset + headroom, | 
|  | GFP_ATOMIC, skb_alloc_rx_flag(head_skb), | 
|  | NUMA_NO_NODE); | 
|  |  | 
|  | if (unlikely(!nskb)) | 
|  | goto err; | 
|  |  | 
|  | skb_reserve(nskb, headroom); | 
|  | __skb_put(nskb, doffset); | 
|  | } | 
|  |  | 
|  | if (segs) | 
|  | tail->next = nskb; | 
|  | else | 
|  | segs = nskb; | 
|  | tail = nskb; | 
|  |  | 
|  | __copy_skb_header(nskb, head_skb); | 
|  |  | 
|  | skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); | 
|  | skb_reset_mac_len(nskb); | 
|  |  | 
|  | skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, | 
|  | nskb->data - tnl_hlen, | 
|  | doffset + tnl_hlen); | 
|  |  | 
|  | if (nskb->len == len + doffset) | 
|  | goto perform_csum_check; | 
|  |  | 
|  | if (!sg && !nskb->remcsum_offload) { | 
|  | nskb->ip_summed = CHECKSUM_NONE; | 
|  | nskb->csum = skb_copy_and_csum_bits(head_skb, offset, | 
|  | skb_put(nskb, len), | 
|  | len, 0); | 
|  | SKB_GSO_CB(nskb)->csum_start = | 
|  | skb_headroom(nskb) + doffset; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | nskb_frag = skb_shinfo(nskb)->frags; | 
|  |  | 
|  | skb_copy_from_linear_data_offset(head_skb, offset, | 
|  | skb_put(nskb, hsize), hsize); | 
|  |  | 
|  | skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags & | 
|  | SKBTX_SHARED_FRAG; | 
|  |  | 
|  | while (pos < offset + len) { | 
|  | if (i >= nfrags) { | 
|  | BUG_ON(skb_headlen(list_skb)); | 
|  |  | 
|  | i = 0; | 
|  | nfrags = skb_shinfo(list_skb)->nr_frags; | 
|  | frag = skb_shinfo(list_skb)->frags; | 
|  | frag_skb = list_skb; | 
|  |  | 
|  | BUG_ON(!nfrags); | 
|  |  | 
|  | list_skb = list_skb->next; | 
|  | } | 
|  |  | 
|  | if (unlikely(skb_shinfo(nskb)->nr_frags >= | 
|  | MAX_SKB_FRAGS)) { | 
|  | net_warn_ratelimited( | 
|  | "skb_segment: too many frags: %u %u\n", | 
|  | pos, mss); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC))) | 
|  | goto err; | 
|  |  | 
|  | *nskb_frag = *frag; | 
|  | __skb_frag_ref(nskb_frag); | 
|  | size = skb_frag_size(nskb_frag); | 
|  |  | 
|  | if (pos < offset) { | 
|  | nskb_frag->page_offset += offset - pos; | 
|  | skb_frag_size_sub(nskb_frag, offset - pos); | 
|  | } | 
|  |  | 
|  | skb_shinfo(nskb)->nr_frags++; | 
|  |  | 
|  | if (pos + size <= offset + len) { | 
|  | i++; | 
|  | frag++; | 
|  | pos += size; | 
|  | } else { | 
|  | skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); | 
|  | goto skip_fraglist; | 
|  | } | 
|  |  | 
|  | nskb_frag++; | 
|  | } | 
|  |  | 
|  | skip_fraglist: | 
|  | nskb->data_len = len - hsize; | 
|  | nskb->len += nskb->data_len; | 
|  | nskb->truesize += nskb->data_len; | 
|  |  | 
|  | perform_csum_check: | 
|  | if (!csum && !nskb->remcsum_offload) { | 
|  | nskb->csum = skb_checksum(nskb, doffset, | 
|  | nskb->len - doffset, 0); | 
|  | nskb->ip_summed = CHECKSUM_NONE; | 
|  | SKB_GSO_CB(nskb)->csum_start = | 
|  | skb_headroom(nskb) + doffset; | 
|  | } | 
|  | } while ((offset += len) < head_skb->len); | 
|  |  | 
|  | /* Some callers want to get the end of the list. | 
|  | * Put it in segs->prev to avoid walking the list. | 
|  | * (see validate_xmit_skb_list() for example) | 
|  | */ | 
|  | segs->prev = tail; | 
|  |  | 
|  | /* Following permits correct backpressure, for protocols | 
|  | * using skb_set_owner_w(). | 
|  | * Idea is to tranfert ownership from head_skb to last segment. | 
|  | */ | 
|  | if (head_skb->destructor == sock_wfree) { | 
|  | swap(tail->truesize, head_skb->truesize); | 
|  | swap(tail->destructor, head_skb->destructor); | 
|  | swap(tail->sk, head_skb->sk); | 
|  | } | 
|  | return segs; | 
|  |  | 
|  | err: | 
|  | kfree_skb_list(segs); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_segment); | 
|  |  | 
|  | int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) | 
|  | { | 
|  | struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); | 
|  | unsigned int offset = skb_gro_offset(skb); | 
|  | unsigned int headlen = skb_headlen(skb); | 
|  | unsigned int len = skb_gro_len(skb); | 
|  | struct sk_buff *lp, *p = *head; | 
|  | unsigned int delta_truesize; | 
|  |  | 
|  | if (unlikely(p->len + len >= 65536)) | 
|  | return -E2BIG; | 
|  |  | 
|  | lp = NAPI_GRO_CB(p)->last; | 
|  | pinfo = skb_shinfo(lp); | 
|  |  | 
|  | if (headlen <= offset) { | 
|  | skb_frag_t *frag; | 
|  | skb_frag_t *frag2; | 
|  | int i = skbinfo->nr_frags; | 
|  | int nr_frags = pinfo->nr_frags + i; | 
|  |  | 
|  | if (nr_frags > MAX_SKB_FRAGS) | 
|  | goto merge; | 
|  |  | 
|  | offset -= headlen; | 
|  | pinfo->nr_frags = nr_frags; | 
|  | skbinfo->nr_frags = 0; | 
|  |  | 
|  | frag = pinfo->frags + nr_frags; | 
|  | frag2 = skbinfo->frags + i; | 
|  | do { | 
|  | *--frag = *--frag2; | 
|  | } while (--i); | 
|  |  | 
|  | frag->page_offset += offset; | 
|  | skb_frag_size_sub(frag, offset); | 
|  |  | 
|  | /* all fragments truesize : remove (head size + sk_buff) */ | 
|  | delta_truesize = skb->truesize - | 
|  | SKB_TRUESIZE(skb_end_offset(skb)); | 
|  |  | 
|  | skb->truesize -= skb->data_len; | 
|  | skb->len -= skb->data_len; | 
|  | skb->data_len = 0; | 
|  |  | 
|  | NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; | 
|  | goto done; | 
|  | } else if (skb->head_frag) { | 
|  | int nr_frags = pinfo->nr_frags; | 
|  | skb_frag_t *frag = pinfo->frags + nr_frags; | 
|  | struct page *page = virt_to_head_page(skb->head); | 
|  | unsigned int first_size = headlen - offset; | 
|  | unsigned int first_offset; | 
|  |  | 
|  | if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) | 
|  | goto merge; | 
|  |  | 
|  | first_offset = skb->data - | 
|  | (unsigned char *)page_address(page) + | 
|  | offset; | 
|  |  | 
|  | pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; | 
|  |  | 
|  | frag->page.p	  = page; | 
|  | frag->page_offset = first_offset; | 
|  | skb_frag_size_set(frag, first_size); | 
|  |  | 
|  | memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); | 
|  | /* We dont need to clear skbinfo->nr_frags here */ | 
|  |  | 
|  | delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); | 
|  | NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | merge: | 
|  | delta_truesize = skb->truesize; | 
|  | if (offset > headlen) { | 
|  | unsigned int eat = offset - headlen; | 
|  |  | 
|  | skbinfo->frags[0].page_offset += eat; | 
|  | skb_frag_size_sub(&skbinfo->frags[0], eat); | 
|  | skb->data_len -= eat; | 
|  | skb->len -= eat; | 
|  | offset = headlen; | 
|  | } | 
|  |  | 
|  | __skb_pull(skb, offset); | 
|  |  | 
|  | if (NAPI_GRO_CB(p)->last == p) | 
|  | skb_shinfo(p)->frag_list = skb; | 
|  | else | 
|  | NAPI_GRO_CB(p)->last->next = skb; | 
|  | NAPI_GRO_CB(p)->last = skb; | 
|  | __skb_header_release(skb); | 
|  | lp = p; | 
|  |  | 
|  | done: | 
|  | NAPI_GRO_CB(p)->count++; | 
|  | p->data_len += len; | 
|  | p->truesize += delta_truesize; | 
|  | p->len += len; | 
|  | if (lp != p) { | 
|  | lp->data_len += len; | 
|  | lp->truesize += delta_truesize; | 
|  | lp->len += len; | 
|  | } | 
|  | NAPI_GRO_CB(skb)->same_flow = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __init skb_init(void) | 
|  | { | 
|  | skbuff_head_cache = kmem_cache_create("skbuff_head_cache", | 
|  | sizeof(struct sk_buff), | 
|  | 0, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC, | 
|  | NULL); | 
|  | skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", | 
|  | sizeof(struct sk_buff_fclones), | 
|  | 0, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC, | 
|  | NULL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer | 
|  | *	@skb: Socket buffer containing the buffers to be mapped | 
|  | *	@sg: The scatter-gather list to map into | 
|  | *	@offset: The offset into the buffer's contents to start mapping | 
|  | *	@len: Length of buffer space to be mapped | 
|  | * | 
|  | *	Fill the specified scatter-gather list with mappings/pointers into a | 
|  | *	region of the buffer space attached to a socket buffer. | 
|  | */ | 
|  | static int | 
|  | __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) | 
|  | { | 
|  | int start = skb_headlen(skb); | 
|  | int i, copy = start - offset; | 
|  | struct sk_buff *frag_iter; | 
|  | int elt = 0; | 
|  |  | 
|  | if (copy > 0) { | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | sg_set_buf(sg, skb->data + offset, copy); | 
|  | elt++; | 
|  | if ((len -= copy) == 0) | 
|  | return elt; | 
|  | offset += copy; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
|  | int end; | 
|  |  | 
|  | WARN_ON(start > offset + len); | 
|  |  | 
|  | end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); | 
|  | if ((copy = end - offset) > 0) { | 
|  | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
|  |  | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | sg_set_page(&sg[elt], skb_frag_page(frag), copy, | 
|  | frag->page_offset+offset-start); | 
|  | elt++; | 
|  | if (!(len -= copy)) | 
|  | return elt; | 
|  | offset += copy; | 
|  | } | 
|  | start = end; | 
|  | } | 
|  |  | 
|  | skb_walk_frags(skb, frag_iter) { | 
|  | int end; | 
|  |  | 
|  | WARN_ON(start > offset + len); | 
|  |  | 
|  | end = start + frag_iter->len; | 
|  | if ((copy = end - offset) > 0) { | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, | 
|  | copy); | 
|  | if ((len -= copy) == 0) | 
|  | return elt; | 
|  | offset += copy; | 
|  | } | 
|  | start = end; | 
|  | } | 
|  | BUG_ON(len); | 
|  | return elt; | 
|  | } | 
|  |  | 
|  | /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given | 
|  | * sglist without mark the sg which contain last skb data as the end. | 
|  | * So the caller can mannipulate sg list as will when padding new data after | 
|  | * the first call without calling sg_unmark_end to expend sg list. | 
|  | * | 
|  | * Scenario to use skb_to_sgvec_nomark: | 
|  | * 1. sg_init_table | 
|  | * 2. skb_to_sgvec_nomark(payload1) | 
|  | * 3. skb_to_sgvec_nomark(payload2) | 
|  | * | 
|  | * This is equivalent to: | 
|  | * 1. sg_init_table | 
|  | * 2. skb_to_sgvec(payload1) | 
|  | * 3. sg_unmark_end | 
|  | * 4. skb_to_sgvec(payload2) | 
|  | * | 
|  | * When mapping mutilple payload conditionally, skb_to_sgvec_nomark | 
|  | * is more preferable. | 
|  | */ | 
|  | int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, | 
|  | int offset, int len) | 
|  | { | 
|  | return __skb_to_sgvec(skb, sg, offset, len); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); | 
|  |  | 
|  | int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) | 
|  | { | 
|  | int nsg = __skb_to_sgvec(skb, sg, offset, len); | 
|  |  | 
|  | sg_mark_end(&sg[nsg - 1]); | 
|  |  | 
|  | return nsg; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_to_sgvec); | 
|  |  | 
|  | /** | 
|  | *	skb_cow_data - Check that a socket buffer's data buffers are writable | 
|  | *	@skb: The socket buffer to check. | 
|  | *	@tailbits: Amount of trailing space to be added | 
|  | *	@trailer: Returned pointer to the skb where the @tailbits space begins | 
|  | * | 
|  | *	Make sure that the data buffers attached to a socket buffer are | 
|  | *	writable. If they are not, private copies are made of the data buffers | 
|  | *	and the socket buffer is set to use these instead. | 
|  | * | 
|  | *	If @tailbits is given, make sure that there is space to write @tailbits | 
|  | *	bytes of data beyond current end of socket buffer.  @trailer will be | 
|  | *	set to point to the skb in which this space begins. | 
|  | * | 
|  | *	The number of scatterlist elements required to completely map the | 
|  | *	COW'd and extended socket buffer will be returned. | 
|  | */ | 
|  | int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) | 
|  | { | 
|  | int copyflag; | 
|  | int elt; | 
|  | struct sk_buff *skb1, **skb_p; | 
|  |  | 
|  | /* If skb is cloned or its head is paged, reallocate | 
|  | * head pulling out all the pages (pages are considered not writable | 
|  | * at the moment even if they are anonymous). | 
|  | */ | 
|  | if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && | 
|  | __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Easy case. Most of packets will go this way. */ | 
|  | if (!skb_has_frag_list(skb)) { | 
|  | /* A little of trouble, not enough of space for trailer. | 
|  | * This should not happen, when stack is tuned to generate | 
|  | * good frames. OK, on miss we reallocate and reserve even more | 
|  | * space, 128 bytes is fair. */ | 
|  |  | 
|  | if (skb_tailroom(skb) < tailbits && | 
|  | pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Voila! */ | 
|  | *trailer = skb; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Misery. We are in troubles, going to mincer fragments... */ | 
|  |  | 
|  | elt = 1; | 
|  | skb_p = &skb_shinfo(skb)->frag_list; | 
|  | copyflag = 0; | 
|  |  | 
|  | while ((skb1 = *skb_p) != NULL) { | 
|  | int ntail = 0; | 
|  |  | 
|  | /* The fragment is partially pulled by someone, | 
|  | * this can happen on input. Copy it and everything | 
|  | * after it. */ | 
|  |  | 
|  | if (skb_shared(skb1)) | 
|  | copyflag = 1; | 
|  |  | 
|  | /* If the skb is the last, worry about trailer. */ | 
|  |  | 
|  | if (skb1->next == NULL && tailbits) { | 
|  | if (skb_shinfo(skb1)->nr_frags || | 
|  | skb_has_frag_list(skb1) || | 
|  | skb_tailroom(skb1) < tailbits) | 
|  | ntail = tailbits + 128; | 
|  | } | 
|  |  | 
|  | if (copyflag || | 
|  | skb_cloned(skb1) || | 
|  | ntail || | 
|  | skb_shinfo(skb1)->nr_frags || | 
|  | skb_has_frag_list(skb1)) { | 
|  | struct sk_buff *skb2; | 
|  |  | 
|  | /* Fuck, we are miserable poor guys... */ | 
|  | if (ntail == 0) | 
|  | skb2 = skb_copy(skb1, GFP_ATOMIC); | 
|  | else | 
|  | skb2 = skb_copy_expand(skb1, | 
|  | skb_headroom(skb1), | 
|  | ntail, | 
|  | GFP_ATOMIC); | 
|  | if (unlikely(skb2 == NULL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (skb1->sk) | 
|  | skb_set_owner_w(skb2, skb1->sk); | 
|  |  | 
|  | /* Looking around. Are we still alive? | 
|  | * OK, link new skb, drop old one */ | 
|  |  | 
|  | skb2->next = skb1->next; | 
|  | *skb_p = skb2; | 
|  | kfree_skb(skb1); | 
|  | skb1 = skb2; | 
|  | } | 
|  | elt++; | 
|  | *trailer = skb1; | 
|  | skb_p = &skb1->next; | 
|  | } | 
|  |  | 
|  | return elt; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_cow_data); | 
|  |  | 
|  | static void sock_rmem_free(struct sk_buff *skb) | 
|  | { | 
|  | struct sock *sk = skb->sk; | 
|  |  | 
|  | atomic_sub(skb->truesize, &sk->sk_rmem_alloc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: We dont mem charge error packets (no sk_forward_alloc changes) | 
|  | */ | 
|  | int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= | 
|  | (unsigned int)sk->sk_rcvbuf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | skb_orphan(skb); | 
|  | skb->sk = sk; | 
|  | skb->destructor = sock_rmem_free; | 
|  | atomic_add(skb->truesize, &sk->sk_rmem_alloc); | 
|  |  | 
|  | /* before exiting rcu section, make sure dst is refcounted */ | 
|  | skb_dst_force(skb); | 
|  |  | 
|  | skb_queue_tail(&sk->sk_error_queue, skb); | 
|  | if (!sock_flag(sk, SOCK_DEAD)) | 
|  | sk->sk_data_ready(sk); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_queue_err_skb); | 
|  |  | 
|  | struct sk_buff *sock_dequeue_err_skb(struct sock *sk) | 
|  | { | 
|  | struct sk_buff_head *q = &sk->sk_error_queue; | 
|  | struct sk_buff *skb, *skb_next; | 
|  | unsigned long flags; | 
|  | int err = 0; | 
|  |  | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | skb = __skb_dequeue(q); | 
|  | if (skb && (skb_next = skb_peek(q))) | 
|  | err = SKB_EXT_ERR(skb_next)->ee.ee_errno; | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  |  | 
|  | sk->sk_err = err; | 
|  | if (err) | 
|  | sk->sk_error_report(sk); | 
|  |  | 
|  | return skb; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_dequeue_err_skb); | 
|  |  | 
|  | /** | 
|  | * skb_clone_sk - create clone of skb, and take reference to socket | 
|  | * @skb: the skb to clone | 
|  | * | 
|  | * This function creates a clone of a buffer that holds a reference on | 
|  | * sk_refcnt.  Buffers created via this function are meant to be | 
|  | * returned using sock_queue_err_skb, or free via kfree_skb. | 
|  | * | 
|  | * When passing buffers allocated with this function to sock_queue_err_skb | 
|  | * it is necessary to wrap the call with sock_hold/sock_put in order to | 
|  | * prevent the socket from being released prior to being enqueued on | 
|  | * the sk_error_queue. | 
|  | */ | 
|  | struct sk_buff *skb_clone_sk(struct sk_buff *skb) | 
|  | { | 
|  | struct sock *sk = skb->sk; | 
|  | struct sk_buff *clone; | 
|  |  | 
|  | if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt)) | 
|  | return NULL; | 
|  |  | 
|  | clone = skb_clone(skb, GFP_ATOMIC); | 
|  | if (!clone) { | 
|  | sock_put(sk); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | clone->sk = sk; | 
|  | clone->destructor = sock_efree; | 
|  |  | 
|  | return clone; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_clone_sk); | 
|  |  | 
|  | static void __skb_complete_tx_timestamp(struct sk_buff *skb, | 
|  | struct sock *sk, | 
|  | int tstype) | 
|  | { | 
|  | struct sock_exterr_skb *serr; | 
|  | int err; | 
|  |  | 
|  | serr = SKB_EXT_ERR(skb); | 
|  | memset(serr, 0, sizeof(*serr)); | 
|  | serr->ee.ee_errno = ENOMSG; | 
|  | serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; | 
|  | serr->ee.ee_info = tstype; | 
|  | if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { | 
|  | serr->ee.ee_data = skb_shinfo(skb)->tskey; | 
|  | if (sk->sk_protocol == IPPROTO_TCP) | 
|  | serr->ee.ee_data -= sk->sk_tskey; | 
|  | } | 
|  |  | 
|  | err = sock_queue_err_skb(sk, skb); | 
|  |  | 
|  | if (err) | 
|  | kfree_skb(skb); | 
|  | } | 
|  |  | 
|  | static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) | 
|  | { | 
|  | bool ret; | 
|  |  | 
|  | if (likely(sysctl_tstamp_allow_data || tsonly)) | 
|  | return true; | 
|  |  | 
|  | read_lock_bh(&sk->sk_callback_lock); | 
|  | ret = sk->sk_socket && sk->sk_socket->file && | 
|  | file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); | 
|  | read_unlock_bh(&sk->sk_callback_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void skb_complete_tx_timestamp(struct sk_buff *skb, | 
|  | struct skb_shared_hwtstamps *hwtstamps) | 
|  | { | 
|  | struct sock *sk = skb->sk; | 
|  |  | 
|  | if (!skb_may_tx_timestamp(sk, false)) | 
|  | return; | 
|  |  | 
|  | /* take a reference to prevent skb_orphan() from freeing the socket */ | 
|  | sock_hold(sk); | 
|  |  | 
|  | *skb_hwtstamps(skb) = *hwtstamps; | 
|  | __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND); | 
|  |  | 
|  | sock_put(sk); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); | 
|  |  | 
|  | void __skb_tstamp_tx(struct sk_buff *orig_skb, | 
|  | struct skb_shared_hwtstamps *hwtstamps, | 
|  | struct sock *sk, int tstype) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | bool tsonly; | 
|  |  | 
|  | if (!sk) | 
|  | return; | 
|  |  | 
|  | tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; | 
|  | if (!skb_may_tx_timestamp(sk, tsonly)) | 
|  | return; | 
|  |  | 
|  | if (tsonly) | 
|  | skb = alloc_skb(0, GFP_ATOMIC); | 
|  | else | 
|  | skb = skb_clone(orig_skb, GFP_ATOMIC); | 
|  | if (!skb) | 
|  | return; | 
|  |  | 
|  | if (tsonly) { | 
|  | skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags; | 
|  | skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; | 
|  | } | 
|  |  | 
|  | if (hwtstamps) | 
|  | *skb_hwtstamps(skb) = *hwtstamps; | 
|  | else | 
|  | skb->tstamp = ktime_get_real(); | 
|  |  | 
|  | __skb_complete_tx_timestamp(skb, sk, tstype); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__skb_tstamp_tx); | 
|  |  | 
|  | void skb_tstamp_tx(struct sk_buff *orig_skb, | 
|  | struct skb_shared_hwtstamps *hwtstamps) | 
|  | { | 
|  | return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, | 
|  | SCM_TSTAMP_SND); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_tstamp_tx); | 
|  |  | 
|  | void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) | 
|  | { | 
|  | struct sock *sk = skb->sk; | 
|  | struct sock_exterr_skb *serr; | 
|  | int err; | 
|  |  | 
|  | skb->wifi_acked_valid = 1; | 
|  | skb->wifi_acked = acked; | 
|  |  | 
|  | serr = SKB_EXT_ERR(skb); | 
|  | memset(serr, 0, sizeof(*serr)); | 
|  | serr->ee.ee_errno = ENOMSG; | 
|  | serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; | 
|  |  | 
|  | /* take a reference to prevent skb_orphan() from freeing the socket */ | 
|  | sock_hold(sk); | 
|  |  | 
|  | err = sock_queue_err_skb(sk, skb); | 
|  | if (err) | 
|  | kfree_skb(skb); | 
|  |  | 
|  | sock_put(sk); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); | 
|  |  | 
|  | /** | 
|  | * skb_partial_csum_set - set up and verify partial csum values for packet | 
|  | * @skb: the skb to set | 
|  | * @start: the number of bytes after skb->data to start checksumming. | 
|  | * @off: the offset from start to place the checksum. | 
|  | * | 
|  | * For untrusted partially-checksummed packets, we need to make sure the values | 
|  | * for skb->csum_start and skb->csum_offset are valid so we don't oops. | 
|  | * | 
|  | * This function checks and sets those values and skb->ip_summed: if this | 
|  | * returns false you should drop the packet. | 
|  | */ | 
|  | bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) | 
|  | { | 
|  | if (unlikely(start > skb_headlen(skb)) || | 
|  | unlikely((int)start + off > skb_headlen(skb) - 2)) { | 
|  | net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", | 
|  | start, off, skb_headlen(skb)); | 
|  | return false; | 
|  | } | 
|  | skb->ip_summed = CHECKSUM_PARTIAL; | 
|  | skb->csum_start = skb_headroom(skb) + start; | 
|  | skb->csum_offset = off; | 
|  | skb_set_transport_header(skb, start); | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_partial_csum_set); | 
|  |  | 
|  | static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, | 
|  | unsigned int max) | 
|  | { | 
|  | if (skb_headlen(skb) >= len) | 
|  | return 0; | 
|  |  | 
|  | /* If we need to pullup then pullup to the max, so we | 
|  | * won't need to do it again. | 
|  | */ | 
|  | if (max > skb->len) | 
|  | max = skb->len; | 
|  |  | 
|  | if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (skb_headlen(skb) < len) | 
|  | return -EPROTO; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define MAX_TCP_HDR_LEN (15 * 4) | 
|  |  | 
|  | static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, | 
|  | typeof(IPPROTO_IP) proto, | 
|  | unsigned int off) | 
|  | { | 
|  | switch (proto) { | 
|  | int err; | 
|  |  | 
|  | case IPPROTO_TCP: | 
|  | err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), | 
|  | off + MAX_TCP_HDR_LEN); | 
|  | if (!err && !skb_partial_csum_set(skb, off, | 
|  | offsetof(struct tcphdr, | 
|  | check))) | 
|  | err = -EPROTO; | 
|  | return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; | 
|  |  | 
|  | case IPPROTO_UDP: | 
|  | err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), | 
|  | off + sizeof(struct udphdr)); | 
|  | if (!err && !skb_partial_csum_set(skb, off, | 
|  | offsetof(struct udphdr, | 
|  | check))) | 
|  | err = -EPROTO; | 
|  | return err ? ERR_PTR(err) : &udp_hdr(skb)->check; | 
|  | } | 
|  |  | 
|  | return ERR_PTR(-EPROTO); | 
|  | } | 
|  |  | 
|  | /* This value should be large enough to cover a tagged ethernet header plus | 
|  | * maximally sized IP and TCP or UDP headers. | 
|  | */ | 
|  | #define MAX_IP_HDR_LEN 128 | 
|  |  | 
|  | static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) | 
|  | { | 
|  | unsigned int off; | 
|  | bool fragment; | 
|  | __sum16 *csum; | 
|  | int err; | 
|  |  | 
|  | fragment = false; | 
|  |  | 
|  | err = skb_maybe_pull_tail(skb, | 
|  | sizeof(struct iphdr), | 
|  | MAX_IP_HDR_LEN); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) | 
|  | fragment = true; | 
|  |  | 
|  | off = ip_hdrlen(skb); | 
|  |  | 
|  | err = -EPROTO; | 
|  |  | 
|  | if (fragment) | 
|  | goto out; | 
|  |  | 
|  | csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); | 
|  | if (IS_ERR(csum)) | 
|  | return PTR_ERR(csum); | 
|  |  | 
|  | if (recalculate) | 
|  | *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, | 
|  | ip_hdr(skb)->daddr, | 
|  | skb->len - off, | 
|  | ip_hdr(skb)->protocol, 0); | 
|  | err = 0; | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* This value should be large enough to cover a tagged ethernet header plus | 
|  | * an IPv6 header, all options, and a maximal TCP or UDP header. | 
|  | */ | 
|  | #define MAX_IPV6_HDR_LEN 256 | 
|  |  | 
|  | #define OPT_HDR(type, skb, off) \ | 
|  | (type *)(skb_network_header(skb) + (off)) | 
|  |  | 
|  | static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) | 
|  | { | 
|  | int err; | 
|  | u8 nexthdr; | 
|  | unsigned int off; | 
|  | unsigned int len; | 
|  | bool fragment; | 
|  | bool done; | 
|  | __sum16 *csum; | 
|  |  | 
|  | fragment = false; | 
|  | done = false; | 
|  |  | 
|  | off = sizeof(struct ipv6hdr); | 
|  |  | 
|  | err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | nexthdr = ipv6_hdr(skb)->nexthdr; | 
|  |  | 
|  | len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); | 
|  | while (off <= len && !done) { | 
|  | switch (nexthdr) { | 
|  | case IPPROTO_DSTOPTS: | 
|  | case IPPROTO_HOPOPTS: | 
|  | case IPPROTO_ROUTING: { | 
|  | struct ipv6_opt_hdr *hp; | 
|  |  | 
|  | err = skb_maybe_pull_tail(skb, | 
|  | off + | 
|  | sizeof(struct ipv6_opt_hdr), | 
|  | MAX_IPV6_HDR_LEN); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); | 
|  | nexthdr = hp->nexthdr; | 
|  | off += ipv6_optlen(hp); | 
|  | break; | 
|  | } | 
|  | case IPPROTO_AH: { | 
|  | struct ip_auth_hdr *hp; | 
|  |  | 
|  | err = skb_maybe_pull_tail(skb, | 
|  | off + | 
|  | sizeof(struct ip_auth_hdr), | 
|  | MAX_IPV6_HDR_LEN); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | hp = OPT_HDR(struct ip_auth_hdr, skb, off); | 
|  | nexthdr = hp->nexthdr; | 
|  | off += ipv6_authlen(hp); | 
|  | break; | 
|  | } | 
|  | case IPPROTO_FRAGMENT: { | 
|  | struct frag_hdr *hp; | 
|  |  | 
|  | err = skb_maybe_pull_tail(skb, | 
|  | off + | 
|  | sizeof(struct frag_hdr), | 
|  | MAX_IPV6_HDR_LEN); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | hp = OPT_HDR(struct frag_hdr, skb, off); | 
|  |  | 
|  | if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) | 
|  | fragment = true; | 
|  |  | 
|  | nexthdr = hp->nexthdr; | 
|  | off += sizeof(struct frag_hdr); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | done = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | err = -EPROTO; | 
|  |  | 
|  | if (!done || fragment) | 
|  | goto out; | 
|  |  | 
|  | csum = skb_checksum_setup_ip(skb, nexthdr, off); | 
|  | if (IS_ERR(csum)) | 
|  | return PTR_ERR(csum); | 
|  |  | 
|  | if (recalculate) | 
|  | *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | 
|  | &ipv6_hdr(skb)->daddr, | 
|  | skb->len - off, nexthdr, 0); | 
|  | err = 0; | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_checksum_setup - set up partial checksum offset | 
|  | * @skb: the skb to set up | 
|  | * @recalculate: if true the pseudo-header checksum will be recalculated | 
|  | */ | 
|  | int skb_checksum_setup(struct sk_buff *skb, bool recalculate) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | switch (skb->protocol) { | 
|  | case htons(ETH_P_IP): | 
|  | err = skb_checksum_setup_ipv4(skb, recalculate); | 
|  | break; | 
|  |  | 
|  | case htons(ETH_P_IPV6): | 
|  | err = skb_checksum_setup_ipv6(skb, recalculate); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | err = -EPROTO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_checksum_setup); | 
|  |  | 
|  | /** | 
|  | * skb_checksum_maybe_trim - maybe trims the given skb | 
|  | * @skb: the skb to check | 
|  | * @transport_len: the data length beyond the network header | 
|  | * | 
|  | * Checks whether the given skb has data beyond the given transport length. | 
|  | * If so, returns a cloned skb trimmed to this transport length. | 
|  | * Otherwise returns the provided skb. Returns NULL in error cases | 
|  | * (e.g. transport_len exceeds skb length or out-of-memory). | 
|  | * | 
|  | * Caller needs to set the skb transport header and release the returned skb. | 
|  | * Provided skb is consumed. | 
|  | */ | 
|  | static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, | 
|  | unsigned int transport_len) | 
|  | { | 
|  | struct sk_buff *skb_chk; | 
|  | unsigned int len = skb_transport_offset(skb) + transport_len; | 
|  | int ret; | 
|  |  | 
|  | if (skb->len < len) { | 
|  | kfree_skb(skb); | 
|  | return NULL; | 
|  | } else if (skb->len == len) { | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | skb_chk = skb_clone(skb, GFP_ATOMIC); | 
|  | kfree_skb(skb); | 
|  |  | 
|  | if (!skb_chk) | 
|  | return NULL; | 
|  |  | 
|  | ret = pskb_trim_rcsum(skb_chk, len); | 
|  | if (ret) { | 
|  | kfree_skb(skb_chk); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return skb_chk; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_checksum_trimmed - validate checksum of an skb | 
|  | * @skb: the skb to check | 
|  | * @transport_len: the data length beyond the network header | 
|  | * @skb_chkf: checksum function to use | 
|  | * | 
|  | * Applies the given checksum function skb_chkf to the provided skb. | 
|  | * Returns a checked and maybe trimmed skb. Returns NULL on error. | 
|  | * | 
|  | * If the skb has data beyond the given transport length, then a | 
|  | * trimmed & cloned skb is checked and returned. | 
|  | * | 
|  | * Caller needs to set the skb transport header and release the returned skb. | 
|  | * Provided skb is consumed. | 
|  | */ | 
|  | struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, | 
|  | unsigned int transport_len, | 
|  | __sum16(*skb_chkf)(struct sk_buff *skb)) | 
|  | { | 
|  | struct sk_buff *skb_chk; | 
|  | unsigned int offset = skb_transport_offset(skb); | 
|  | __sum16 ret; | 
|  |  | 
|  | skb_chk = skb_checksum_maybe_trim(skb, transport_len); | 
|  | if (!skb_chk) | 
|  | return NULL; | 
|  |  | 
|  | if (!pskb_may_pull(skb_chk, offset)) { | 
|  | kfree_skb(skb_chk); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | __skb_pull(skb_chk, offset); | 
|  | ret = skb_chkf(skb_chk); | 
|  | __skb_push(skb_chk, offset); | 
|  |  | 
|  | if (ret) { | 
|  | kfree_skb(skb_chk); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return skb_chk; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_checksum_trimmed); | 
|  |  | 
|  | void __skb_warn_lro_forwarding(const struct sk_buff *skb) | 
|  | { | 
|  | net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", | 
|  | skb->dev->name); | 
|  | } | 
|  | EXPORT_SYMBOL(__skb_warn_lro_forwarding); | 
|  |  | 
|  | void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) | 
|  | { | 
|  | if (head_stolen) { | 
|  | skb_release_head_state(skb); | 
|  | kmem_cache_free(skbuff_head_cache, skb); | 
|  | } else { | 
|  | __kfree_skb(skb); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(kfree_skb_partial); | 
|  |  | 
|  | /** | 
|  | * skb_try_coalesce - try to merge skb to prior one | 
|  | * @to: prior buffer | 
|  | * @from: buffer to add | 
|  | * @fragstolen: pointer to boolean | 
|  | * @delta_truesize: how much more was allocated than was requested | 
|  | */ | 
|  | bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, | 
|  | bool *fragstolen, int *delta_truesize) | 
|  | { | 
|  | int i, delta, len = from->len; | 
|  |  | 
|  | *fragstolen = false; | 
|  |  | 
|  | if (skb_cloned(to)) | 
|  | return false; | 
|  |  | 
|  | if (len <= skb_tailroom(to)) { | 
|  | if (len) | 
|  | BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); | 
|  | *delta_truesize = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (skb_has_frag_list(to) || skb_has_frag_list(from)) | 
|  | return false; | 
|  |  | 
|  | if (skb_headlen(from) != 0) { | 
|  | struct page *page; | 
|  | unsigned int offset; | 
|  |  | 
|  | if (skb_shinfo(to)->nr_frags + | 
|  | skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) | 
|  | return false; | 
|  |  | 
|  | if (skb_head_is_locked(from)) | 
|  | return false; | 
|  |  | 
|  | delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); | 
|  |  | 
|  | page = virt_to_head_page(from->head); | 
|  | offset = from->data - (unsigned char *)page_address(page); | 
|  |  | 
|  | skb_fill_page_desc(to, skb_shinfo(to)->nr_frags, | 
|  | page, offset, skb_headlen(from)); | 
|  | *fragstolen = true; | 
|  | } else { | 
|  | if (skb_shinfo(to)->nr_frags + | 
|  | skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS) | 
|  | return false; | 
|  |  | 
|  | delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); | 
|  | } | 
|  |  | 
|  | WARN_ON_ONCE(delta < len); | 
|  |  | 
|  | memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags, | 
|  | skb_shinfo(from)->frags, | 
|  | skb_shinfo(from)->nr_frags * sizeof(skb_frag_t)); | 
|  | skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags; | 
|  |  | 
|  | if (!skb_cloned(from)) | 
|  | skb_shinfo(from)->nr_frags = 0; | 
|  |  | 
|  | /* if the skb is not cloned this does nothing | 
|  | * since we set nr_frags to 0. | 
|  | */ | 
|  | for (i = 0; i < skb_shinfo(from)->nr_frags; i++) | 
|  | skb_frag_ref(from, i); | 
|  |  | 
|  | to->truesize += delta; | 
|  | to->len += len; | 
|  | to->data_len += len; | 
|  |  | 
|  | *delta_truesize = delta; | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_try_coalesce); | 
|  |  | 
|  | /** | 
|  | * skb_scrub_packet - scrub an skb | 
|  | * | 
|  | * @skb: buffer to clean | 
|  | * @xnet: packet is crossing netns | 
|  | * | 
|  | * skb_scrub_packet can be used after encapsulating or decapsulting a packet | 
|  | * into/from a tunnel. Some information have to be cleared during these | 
|  | * operations. | 
|  | * skb_scrub_packet can also be used to clean a skb before injecting it in | 
|  | * another namespace (@xnet == true). We have to clear all information in the | 
|  | * skb that could impact namespace isolation. | 
|  | */ | 
|  | void skb_scrub_packet(struct sk_buff *skb, bool xnet) | 
|  | { | 
|  | skb->tstamp.tv64 = 0; | 
|  | skb->pkt_type = PACKET_HOST; | 
|  | skb->skb_iif = 0; | 
|  | skb->ignore_df = 0; | 
|  | skb_dst_drop(skb); | 
|  | skb_sender_cpu_clear(skb); | 
|  | secpath_reset(skb); | 
|  | nf_reset(skb); | 
|  | nf_reset_trace(skb); | 
|  |  | 
|  | if (!xnet) | 
|  | return; | 
|  |  | 
|  | skb_orphan(skb); | 
|  | skb->mark = 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_scrub_packet); | 
|  |  | 
|  | /** | 
|  | * skb_gso_transport_seglen - Return length of individual segments of a gso packet | 
|  | * | 
|  | * @skb: GSO skb | 
|  | * | 
|  | * skb_gso_transport_seglen is used to determine the real size of the | 
|  | * individual segments, including Layer4 headers (TCP/UDP). | 
|  | * | 
|  | * The MAC/L2 or network (IP, IPv6) headers are not accounted for. | 
|  | */ | 
|  | unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) | 
|  | { | 
|  | const struct skb_shared_info *shinfo = skb_shinfo(skb); | 
|  | unsigned int thlen = 0; | 
|  |  | 
|  | if (skb->encapsulation) { | 
|  | thlen = skb_inner_transport_header(skb) - | 
|  | skb_transport_header(skb); | 
|  |  | 
|  | if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) | 
|  | thlen += inner_tcp_hdrlen(skb); | 
|  | } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { | 
|  | thlen = tcp_hdrlen(skb); | 
|  | } | 
|  | /* UFO sets gso_size to the size of the fragmentation | 
|  | * payload, i.e. the size of the L4 (UDP) header is already | 
|  | * accounted for. | 
|  | */ | 
|  | return thlen + shinfo->gso_size; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_gso_transport_seglen); | 
|  |  | 
|  | static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) | 
|  | { | 
|  | if (skb_cow(skb, skb_headroom(skb)) < 0) { | 
|  | kfree_skb(skb); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | memmove(skb->data - ETH_HLEN, skb->data - VLAN_ETH_HLEN, 2 * ETH_ALEN); | 
|  | skb->mac_header += VLAN_HLEN; | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | struct sk_buff *skb_vlan_untag(struct sk_buff *skb) | 
|  | { | 
|  | struct vlan_hdr *vhdr; | 
|  | u16 vlan_tci; | 
|  |  | 
|  | if (unlikely(skb_vlan_tag_present(skb))) { | 
|  | /* vlan_tci is already set-up so leave this for another time */ | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | skb = skb_share_check(skb, GFP_ATOMIC); | 
|  | if (unlikely(!skb)) | 
|  | goto err_free; | 
|  |  | 
|  | if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) | 
|  | goto err_free; | 
|  |  | 
|  | vhdr = (struct vlan_hdr *)skb->data; | 
|  | vlan_tci = ntohs(vhdr->h_vlan_TCI); | 
|  | __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); | 
|  |  | 
|  | skb_pull_rcsum(skb, VLAN_HLEN); | 
|  | vlan_set_encap_proto(skb, vhdr); | 
|  |  | 
|  | skb = skb_reorder_vlan_header(skb); | 
|  | if (unlikely(!skb)) | 
|  | goto err_free; | 
|  |  | 
|  | skb_reset_network_header(skb); | 
|  | skb_reset_transport_header(skb); | 
|  | skb_reset_mac_len(skb); | 
|  |  | 
|  | return skb; | 
|  |  | 
|  | err_free: | 
|  | kfree_skb(skb); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_vlan_untag); | 
|  |  | 
|  | int skb_ensure_writable(struct sk_buff *skb, int write_len) | 
|  | { | 
|  | if (!pskb_may_pull(skb, write_len)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) | 
|  | return 0; | 
|  |  | 
|  | return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_ensure_writable); | 
|  |  | 
|  | /* remove VLAN header from packet and update csum accordingly. */ | 
|  | static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) | 
|  | { | 
|  | struct vlan_hdr *vhdr; | 
|  | unsigned int offset = skb->data - skb_mac_header(skb); | 
|  | int err; | 
|  |  | 
|  | __skb_push(skb, offset); | 
|  | err = skb_ensure_writable(skb, VLAN_ETH_HLEN); | 
|  | if (unlikely(err)) | 
|  | goto pull; | 
|  |  | 
|  | skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); | 
|  |  | 
|  | vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); | 
|  | *vlan_tci = ntohs(vhdr->h_vlan_TCI); | 
|  |  | 
|  | memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); | 
|  | __skb_pull(skb, VLAN_HLEN); | 
|  |  | 
|  | vlan_set_encap_proto(skb, vhdr); | 
|  | skb->mac_header += VLAN_HLEN; | 
|  |  | 
|  | if (skb_network_offset(skb) < ETH_HLEN) | 
|  | skb_set_network_header(skb, ETH_HLEN); | 
|  |  | 
|  | skb_reset_mac_len(skb); | 
|  | pull: | 
|  | __skb_pull(skb, offset); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int skb_vlan_pop(struct sk_buff *skb) | 
|  | { | 
|  | u16 vlan_tci; | 
|  | __be16 vlan_proto; | 
|  | int err; | 
|  |  | 
|  | if (likely(skb_vlan_tag_present(skb))) { | 
|  | skb->vlan_tci = 0; | 
|  | } else { | 
|  | if (unlikely((skb->protocol != htons(ETH_P_8021Q) && | 
|  | skb->protocol != htons(ETH_P_8021AD)) || | 
|  | skb->len < VLAN_ETH_HLEN)) | 
|  | return 0; | 
|  |  | 
|  | err = __skb_vlan_pop(skb, &vlan_tci); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | /* move next vlan tag to hw accel tag */ | 
|  | if (likely((skb->protocol != htons(ETH_P_8021Q) && | 
|  | skb->protocol != htons(ETH_P_8021AD)) || | 
|  | skb->len < VLAN_ETH_HLEN)) | 
|  | return 0; | 
|  |  | 
|  | vlan_proto = skb->protocol; | 
|  | err = __skb_vlan_pop(skb, &vlan_tci); | 
|  | if (unlikely(err)) | 
|  | return err; | 
|  |  | 
|  | __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_vlan_pop); | 
|  |  | 
|  | int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) | 
|  | { | 
|  | if (skb_vlan_tag_present(skb)) { | 
|  | unsigned int offset = skb->data - skb_mac_header(skb); | 
|  | int err; | 
|  |  | 
|  | /* __vlan_insert_tag expect skb->data pointing to mac header. | 
|  | * So change skb->data before calling it and change back to | 
|  | * original position later | 
|  | */ | 
|  | __skb_push(skb, offset); | 
|  | err = __vlan_insert_tag(skb, skb->vlan_proto, | 
|  | skb_vlan_tag_get(skb)); | 
|  | if (err) | 
|  | return err; | 
|  | skb->protocol = skb->vlan_proto; | 
|  | skb->mac_len += VLAN_HLEN; | 
|  | __skb_pull(skb, offset); | 
|  |  | 
|  | if (skb->ip_summed == CHECKSUM_COMPLETE) | 
|  | skb->csum = csum_add(skb->csum, csum_partial(skb->data | 
|  | + (2 * ETH_ALEN), VLAN_HLEN, 0)); | 
|  | } | 
|  | __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_vlan_push); | 
|  |  | 
|  | /** | 
|  | * alloc_skb_with_frags - allocate skb with page frags | 
|  | * | 
|  | * @header_len: size of linear part | 
|  | * @data_len: needed length in frags | 
|  | * @max_page_order: max page order desired. | 
|  | * @errcode: pointer to error code if any | 
|  | * @gfp_mask: allocation mask | 
|  | * | 
|  | * This can be used to allocate a paged skb, given a maximal order for frags. | 
|  | */ | 
|  | struct sk_buff *alloc_skb_with_frags(unsigned long header_len, | 
|  | unsigned long data_len, | 
|  | int max_page_order, | 
|  | int *errcode, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; | 
|  | unsigned long chunk; | 
|  | struct sk_buff *skb; | 
|  | struct page *page; | 
|  | gfp_t gfp_head; | 
|  | int i; | 
|  |  | 
|  | *errcode = -EMSGSIZE; | 
|  | /* Note this test could be relaxed, if we succeed to allocate | 
|  | * high order pages... | 
|  | */ | 
|  | if (npages > MAX_SKB_FRAGS) | 
|  | return NULL; | 
|  |  | 
|  | gfp_head = gfp_mask; | 
|  | if (gfp_head & __GFP_WAIT) | 
|  | gfp_head |= __GFP_REPEAT; | 
|  |  | 
|  | *errcode = -ENOBUFS; | 
|  | skb = alloc_skb(header_len, gfp_head); | 
|  | if (!skb) | 
|  | return NULL; | 
|  |  | 
|  | skb->truesize += npages << PAGE_SHIFT; | 
|  |  | 
|  | for (i = 0; npages > 0; i++) { | 
|  | int order = max_page_order; | 
|  |  | 
|  | while (order) { | 
|  | if (npages >= 1 << order) { | 
|  | page = alloc_pages((gfp_mask & ~__GFP_WAIT) | | 
|  | __GFP_COMP | | 
|  | __GFP_NOWARN | | 
|  | __GFP_NORETRY, | 
|  | order); | 
|  | if (page) | 
|  | goto fill_page; | 
|  | /* Do not retry other high order allocations */ | 
|  | order = 1; | 
|  | max_page_order = 0; | 
|  | } | 
|  | order--; | 
|  | } | 
|  | page = alloc_page(gfp_mask); | 
|  | if (!page) | 
|  | goto failure; | 
|  | fill_page: | 
|  | chunk = min_t(unsigned long, data_len, | 
|  | PAGE_SIZE << order); | 
|  | skb_fill_page_desc(skb, i, page, 0, chunk); | 
|  | data_len -= chunk; | 
|  | npages -= 1 << order; | 
|  | } | 
|  | return skb; | 
|  |  | 
|  | failure: | 
|  | kfree_skb(skb); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(alloc_skb_with_frags); |