|  | /* | 
|  | * Generic pidhash and scalable, time-bounded PID allocator | 
|  | * | 
|  | * (C) 2002-2003 Nadia Yvette Chambers, IBM | 
|  | * (C) 2004 Nadia Yvette Chambers, Oracle | 
|  | * (C) 2002-2004 Ingo Molnar, Red Hat | 
|  | * | 
|  | * pid-structures are backing objects for tasks sharing a given ID to chain | 
|  | * against. There is very little to them aside from hashing them and | 
|  | * parking tasks using given ID's on a list. | 
|  | * | 
|  | * The hash is always changed with the tasklist_lock write-acquired, | 
|  | * and the hash is only accessed with the tasklist_lock at least | 
|  | * read-acquired, so there's no additional SMP locking needed here. | 
|  | * | 
|  | * We have a list of bitmap pages, which bitmaps represent the PID space. | 
|  | * Allocating and freeing PIDs is completely lockless. The worst-case | 
|  | * allocation scenario when all but one out of 1 million PIDs possible are | 
|  | * allocated already: the scanning of 32 list entries and at most PAGE_SIZE | 
|  | * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). | 
|  | * | 
|  | * Pid namespaces: | 
|  | *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. | 
|  | *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM | 
|  | *     Many thanks to Oleg Nesterov for comments and help | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/rculist.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/pid_namespace.h> | 
|  | #include <linux/init_task.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/proc_ns.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/sched/task.h> | 
|  | #include <linux/idr.h> | 
|  |  | 
|  | struct pid init_struct_pid = { | 
|  | .count 		= ATOMIC_INIT(1), | 
|  | .tasks		= { | 
|  | { .first = NULL }, | 
|  | { .first = NULL }, | 
|  | { .first = NULL }, | 
|  | }, | 
|  | .level		= 0, | 
|  | .numbers	= { { | 
|  | .nr		= 0, | 
|  | .ns		= &init_pid_ns, | 
|  | }, } | 
|  | }; | 
|  |  | 
|  | int pid_max = PID_MAX_DEFAULT; | 
|  |  | 
|  | #define RESERVED_PIDS		300 | 
|  |  | 
|  | int pid_max_min = RESERVED_PIDS + 1; | 
|  | int pid_max_max = PID_MAX_LIMIT; | 
|  |  | 
|  | /* | 
|  | * PID-map pages start out as NULL, they get allocated upon | 
|  | * first use and are never deallocated. This way a low pid_max | 
|  | * value does not cause lots of bitmaps to be allocated, but | 
|  | * the scheme scales to up to 4 million PIDs, runtime. | 
|  | */ | 
|  | struct pid_namespace init_pid_ns = { | 
|  | .kref = KREF_INIT(2), | 
|  | .idr = IDR_INIT(init_pid_ns.idr), | 
|  | .pid_allocated = PIDNS_ADDING, | 
|  | .level = 0, | 
|  | .child_reaper = &init_task, | 
|  | .user_ns = &init_user_ns, | 
|  | .ns.inum = PROC_PID_INIT_INO, | 
|  | #ifdef CONFIG_PID_NS | 
|  | .ns.ops = &pidns_operations, | 
|  | #endif | 
|  | }; | 
|  | EXPORT_SYMBOL_GPL(init_pid_ns); | 
|  |  | 
|  | /* | 
|  | * Note: disable interrupts while the pidmap_lock is held as an | 
|  | * interrupt might come in and do read_lock(&tasklist_lock). | 
|  | * | 
|  | * If we don't disable interrupts there is a nasty deadlock between | 
|  | * detach_pid()->free_pid() and another cpu that does | 
|  | * spin_lock(&pidmap_lock) followed by an interrupt routine that does | 
|  | * read_lock(&tasklist_lock); | 
|  | * | 
|  | * After we clean up the tasklist_lock and know there are no | 
|  | * irq handlers that take it we can leave the interrupts enabled. | 
|  | * For now it is easier to be safe than to prove it can't happen. | 
|  | */ | 
|  |  | 
|  | static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); | 
|  |  | 
|  | void put_pid(struct pid *pid) | 
|  | { | 
|  | struct pid_namespace *ns; | 
|  |  | 
|  | if (!pid) | 
|  | return; | 
|  |  | 
|  | ns = pid->numbers[pid->level].ns; | 
|  | if ((atomic_read(&pid->count) == 1) || | 
|  | atomic_dec_and_test(&pid->count)) { | 
|  | kmem_cache_free(ns->pid_cachep, pid); | 
|  | put_pid_ns(ns); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(put_pid); | 
|  |  | 
|  | static void delayed_put_pid(struct rcu_head *rhp) | 
|  | { | 
|  | struct pid *pid = container_of(rhp, struct pid, rcu); | 
|  | put_pid(pid); | 
|  | } | 
|  |  | 
|  | void free_pid(struct pid *pid) | 
|  | { | 
|  | /* We can be called with write_lock_irq(&tasklist_lock) held */ | 
|  | int i; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&pidmap_lock, flags); | 
|  | for (i = 0; i <= pid->level; i++) { | 
|  | struct upid *upid = pid->numbers + i; | 
|  | struct pid_namespace *ns = upid->ns; | 
|  | switch (--ns->pid_allocated) { | 
|  | case 2: | 
|  | case 1: | 
|  | /* When all that is left in the pid namespace | 
|  | * is the reaper wake up the reaper.  The reaper | 
|  | * may be sleeping in zap_pid_ns_processes(). | 
|  | */ | 
|  | wake_up_process(ns->child_reaper); | 
|  | break; | 
|  | case PIDNS_ADDING: | 
|  | /* Handle a fork failure of the first process */ | 
|  | WARN_ON(ns->child_reaper); | 
|  | ns->pid_allocated = 0; | 
|  | /* fall through */ | 
|  | case 0: | 
|  | schedule_work(&ns->proc_work); | 
|  | break; | 
|  | } | 
|  |  | 
|  | idr_remove(&ns->idr, upid->nr); | 
|  | } | 
|  | spin_unlock_irqrestore(&pidmap_lock, flags); | 
|  |  | 
|  | call_rcu(&pid->rcu, delayed_put_pid); | 
|  | } | 
|  |  | 
|  | struct pid *alloc_pid(struct pid_namespace *ns) | 
|  | { | 
|  | struct pid *pid; | 
|  | enum pid_type type; | 
|  | int i, nr; | 
|  | struct pid_namespace *tmp; | 
|  | struct upid *upid; | 
|  | int retval = -ENOMEM; | 
|  |  | 
|  | pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); | 
|  | if (!pid) | 
|  | return ERR_PTR(retval); | 
|  |  | 
|  | tmp = ns; | 
|  | pid->level = ns->level; | 
|  |  | 
|  | for (i = ns->level; i >= 0; i--) { | 
|  | int pid_min = 1; | 
|  |  | 
|  | idr_preload(GFP_KERNEL); | 
|  | spin_lock_irq(&pidmap_lock); | 
|  |  | 
|  | /* | 
|  | * init really needs pid 1, but after reaching the maximum | 
|  | * wrap back to RESERVED_PIDS | 
|  | */ | 
|  | if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) | 
|  | pid_min = RESERVED_PIDS; | 
|  |  | 
|  | /* | 
|  | * Store a null pointer so find_pid_ns does not find | 
|  | * a partially initialized PID (see below). | 
|  | */ | 
|  | nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, | 
|  | pid_max, GFP_ATOMIC); | 
|  | spin_unlock_irq(&pidmap_lock); | 
|  | idr_preload_end(); | 
|  |  | 
|  | if (nr < 0) { | 
|  | retval = nr; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | pid->numbers[i].nr = nr; | 
|  | pid->numbers[i].ns = tmp; | 
|  | tmp = tmp->parent; | 
|  | } | 
|  |  | 
|  | if (unlikely(is_child_reaper(pid))) { | 
|  | if (pid_ns_prepare_proc(ns)) | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | get_pid_ns(ns); | 
|  | atomic_set(&pid->count, 1); | 
|  | for (type = 0; type < PIDTYPE_MAX; ++type) | 
|  | INIT_HLIST_HEAD(&pid->tasks[type]); | 
|  |  | 
|  | upid = pid->numbers + ns->level; | 
|  | spin_lock_irq(&pidmap_lock); | 
|  | if (!(ns->pid_allocated & PIDNS_ADDING)) | 
|  | goto out_unlock; | 
|  | for ( ; upid >= pid->numbers; --upid) { | 
|  | /* Make the PID visible to find_pid_ns. */ | 
|  | idr_replace(&upid->ns->idr, pid, upid->nr); | 
|  | upid->ns->pid_allocated++; | 
|  | } | 
|  | spin_unlock_irq(&pidmap_lock); | 
|  |  | 
|  | return pid; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock_irq(&pidmap_lock); | 
|  | put_pid_ns(ns); | 
|  |  | 
|  | out_free: | 
|  | spin_lock_irq(&pidmap_lock); | 
|  | while (++i <= ns->level) | 
|  | idr_remove(&ns->idr, (pid->numbers + i)->nr); | 
|  |  | 
|  | /* On failure to allocate the first pid, reset the state */ | 
|  | if (ns->pid_allocated == PIDNS_ADDING) | 
|  | idr_set_cursor(&ns->idr, 0); | 
|  |  | 
|  | spin_unlock_irq(&pidmap_lock); | 
|  |  | 
|  | kmem_cache_free(ns->pid_cachep, pid); | 
|  | return ERR_PTR(retval); | 
|  | } | 
|  |  | 
|  | void disable_pid_allocation(struct pid_namespace *ns) | 
|  | { | 
|  | spin_lock_irq(&pidmap_lock); | 
|  | ns->pid_allocated &= ~PIDNS_ADDING; | 
|  | spin_unlock_irq(&pidmap_lock); | 
|  | } | 
|  |  | 
|  | struct pid *find_pid_ns(int nr, struct pid_namespace *ns) | 
|  | { | 
|  | return idr_find(&ns->idr, nr); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(find_pid_ns); | 
|  |  | 
|  | struct pid *find_vpid(int nr) | 
|  | { | 
|  | return find_pid_ns(nr, task_active_pid_ns(current)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(find_vpid); | 
|  |  | 
|  | /* | 
|  | * attach_pid() must be called with the tasklist_lock write-held. | 
|  | */ | 
|  | void attach_pid(struct task_struct *task, enum pid_type type) | 
|  | { | 
|  | struct pid_link *link = &task->pids[type]; | 
|  | hlist_add_head_rcu(&link->node, &link->pid->tasks[type]); | 
|  | } | 
|  |  | 
|  | static void __change_pid(struct task_struct *task, enum pid_type type, | 
|  | struct pid *new) | 
|  | { | 
|  | struct pid_link *link; | 
|  | struct pid *pid; | 
|  | int tmp; | 
|  |  | 
|  | link = &task->pids[type]; | 
|  | pid = link->pid; | 
|  |  | 
|  | hlist_del_rcu(&link->node); | 
|  | link->pid = new; | 
|  |  | 
|  | for (tmp = PIDTYPE_MAX; --tmp >= 0; ) | 
|  | if (!hlist_empty(&pid->tasks[tmp])) | 
|  | return; | 
|  |  | 
|  | free_pid(pid); | 
|  | } | 
|  |  | 
|  | void detach_pid(struct task_struct *task, enum pid_type type) | 
|  | { | 
|  | __change_pid(task, type, NULL); | 
|  | } | 
|  |  | 
|  | void change_pid(struct task_struct *task, enum pid_type type, | 
|  | struct pid *pid) | 
|  | { | 
|  | __change_pid(task, type, pid); | 
|  | attach_pid(task, type); | 
|  | } | 
|  |  | 
|  | /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ | 
|  | void transfer_pid(struct task_struct *old, struct task_struct *new, | 
|  | enum pid_type type) | 
|  | { | 
|  | new->pids[type].pid = old->pids[type].pid; | 
|  | hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); | 
|  | } | 
|  |  | 
|  | struct task_struct *pid_task(struct pid *pid, enum pid_type type) | 
|  | { | 
|  | struct task_struct *result = NULL; | 
|  | if (pid) { | 
|  | struct hlist_node *first; | 
|  | first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), | 
|  | lockdep_tasklist_lock_is_held()); | 
|  | if (first) | 
|  | result = hlist_entry(first, struct task_struct, pids[(type)].node); | 
|  | } | 
|  | return result; | 
|  | } | 
|  | EXPORT_SYMBOL(pid_task); | 
|  |  | 
|  | /* | 
|  | * Must be called under rcu_read_lock(). | 
|  | */ | 
|  | struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) | 
|  | { | 
|  | RCU_LOCKDEP_WARN(!rcu_read_lock_held(), | 
|  | "find_task_by_pid_ns() needs rcu_read_lock() protection"); | 
|  | return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); | 
|  | } | 
|  |  | 
|  | struct task_struct *find_task_by_vpid(pid_t vnr) | 
|  | { | 
|  | return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); | 
|  | } | 
|  |  | 
|  | struct task_struct *find_get_task_by_vpid(pid_t nr) | 
|  | { | 
|  | struct task_struct *task; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | task = find_task_by_vpid(nr); | 
|  | if (task) | 
|  | get_task_struct(task); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return task; | 
|  | } | 
|  |  | 
|  | struct pid *get_task_pid(struct task_struct *task, enum pid_type type) | 
|  | { | 
|  | struct pid *pid; | 
|  | rcu_read_lock(); | 
|  | if (type != PIDTYPE_PID) | 
|  | task = task->group_leader; | 
|  | pid = get_pid(rcu_dereference(task->pids[type].pid)); | 
|  | rcu_read_unlock(); | 
|  | return pid; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(get_task_pid); | 
|  |  | 
|  | struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) | 
|  | { | 
|  | struct task_struct *result; | 
|  | rcu_read_lock(); | 
|  | result = pid_task(pid, type); | 
|  | if (result) | 
|  | get_task_struct(result); | 
|  | rcu_read_unlock(); | 
|  | return result; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(get_pid_task); | 
|  |  | 
|  | struct pid *find_get_pid(pid_t nr) | 
|  | { | 
|  | struct pid *pid; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | pid = get_pid(find_vpid(nr)); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return pid; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(find_get_pid); | 
|  |  | 
|  | pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) | 
|  | { | 
|  | struct upid *upid; | 
|  | pid_t nr = 0; | 
|  |  | 
|  | if (pid && ns->level <= pid->level) { | 
|  | upid = &pid->numbers[ns->level]; | 
|  | if (upid->ns == ns) | 
|  | nr = upid->nr; | 
|  | } | 
|  | return nr; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pid_nr_ns); | 
|  |  | 
|  | pid_t pid_vnr(struct pid *pid) | 
|  | { | 
|  | return pid_nr_ns(pid, task_active_pid_ns(current)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pid_vnr); | 
|  |  | 
|  | pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, | 
|  | struct pid_namespace *ns) | 
|  | { | 
|  | pid_t nr = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (!ns) | 
|  | ns = task_active_pid_ns(current); | 
|  | if (likely(pid_alive(task))) { | 
|  | if (type != PIDTYPE_PID) { | 
|  | if (type == __PIDTYPE_TGID) | 
|  | type = PIDTYPE_PID; | 
|  |  | 
|  | task = task->group_leader; | 
|  | } | 
|  | nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return nr; | 
|  | } | 
|  | EXPORT_SYMBOL(__task_pid_nr_ns); | 
|  |  | 
|  | struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) | 
|  | { | 
|  | return ns_of_pid(task_pid(tsk)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(task_active_pid_ns); | 
|  |  | 
|  | /* | 
|  | * Used by proc to find the first pid that is greater than or equal to nr. | 
|  | * | 
|  | * If there is a pid at nr this function is exactly the same as find_pid_ns. | 
|  | */ | 
|  | struct pid *find_ge_pid(int nr, struct pid_namespace *ns) | 
|  | { | 
|  | return idr_get_next(&ns->idr, &nr); | 
|  | } | 
|  |  | 
|  | void __init pid_idr_init(void) | 
|  | { | 
|  | /* Verify no one has done anything silly: */ | 
|  | BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); | 
|  |  | 
|  | /* bump default and minimum pid_max based on number of cpus */ | 
|  | pid_max = min(pid_max_max, max_t(int, pid_max, | 
|  | PIDS_PER_CPU_DEFAULT * num_possible_cpus())); | 
|  | pid_max_min = max_t(int, pid_max_min, | 
|  | PIDS_PER_CPU_MIN * num_possible_cpus()); | 
|  | pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); | 
|  |  | 
|  | idr_init(&init_pid_ns.idr); | 
|  |  | 
|  | init_pid_ns.pid_cachep = KMEM_CACHE(pid, | 
|  | SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); | 
|  | } |