|  | /* | 
|  | * sched_clock.c: support for extending counters to full 64-bit ns counter | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #include <linux/clocksource.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/syscore_ops.h> | 
|  | #include <linux/timer.h> | 
|  |  | 
|  | #include <asm/sched_clock.h> | 
|  |  | 
|  | struct clock_data { | 
|  | u64 epoch_ns; | 
|  | u32 epoch_cyc; | 
|  | u32 epoch_cyc_copy; | 
|  | unsigned long rate; | 
|  | u32 mult; | 
|  | u32 shift; | 
|  | bool suspended; | 
|  | bool needs_suspend; | 
|  | }; | 
|  |  | 
|  | static void sched_clock_poll(unsigned long wrap_ticks); | 
|  | static DEFINE_TIMER(sched_clock_timer, sched_clock_poll, 0, 0); | 
|  | static int irqtime = -1; | 
|  |  | 
|  | core_param(irqtime, irqtime, int, 0400); | 
|  |  | 
|  | static struct clock_data cd = { | 
|  | .mult	= NSEC_PER_SEC / HZ, | 
|  | }; | 
|  |  | 
|  | static u32 __read_mostly sched_clock_mask = 0xffffffff; | 
|  |  | 
|  | static u32 notrace jiffy_sched_clock_read(void) | 
|  | { | 
|  | return (u32)(jiffies - INITIAL_JIFFIES); | 
|  | } | 
|  |  | 
|  | static u32 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read; | 
|  |  | 
|  | static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift) | 
|  | { | 
|  | return (cyc * mult) >> shift; | 
|  | } | 
|  |  | 
|  | static unsigned long long notrace cyc_to_sched_clock(u32 cyc, u32 mask) | 
|  | { | 
|  | u64 epoch_ns; | 
|  | u32 epoch_cyc; | 
|  |  | 
|  | if (cd.suspended) | 
|  | return cd.epoch_ns; | 
|  |  | 
|  | /* | 
|  | * Load the epoch_cyc and epoch_ns atomically.  We do this by | 
|  | * ensuring that we always write epoch_cyc, epoch_ns and | 
|  | * epoch_cyc_copy in strict order, and read them in strict order. | 
|  | * If epoch_cyc and epoch_cyc_copy are not equal, then we're in | 
|  | * the middle of an update, and we should repeat the load. | 
|  | */ | 
|  | do { | 
|  | epoch_cyc = cd.epoch_cyc; | 
|  | smp_rmb(); | 
|  | epoch_ns = cd.epoch_ns; | 
|  | smp_rmb(); | 
|  | } while (epoch_cyc != cd.epoch_cyc_copy); | 
|  |  | 
|  | return epoch_ns + cyc_to_ns((cyc - epoch_cyc) & mask, cd.mult, cd.shift); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Atomically update the sched_clock epoch. | 
|  | */ | 
|  | static void notrace update_sched_clock(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | u32 cyc; | 
|  | u64 ns; | 
|  |  | 
|  | cyc = read_sched_clock(); | 
|  | ns = cd.epoch_ns + | 
|  | cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask, | 
|  | cd.mult, cd.shift); | 
|  | /* | 
|  | * Write epoch_cyc and epoch_ns in a way that the update is | 
|  | * detectable in cyc_to_fixed_sched_clock(). | 
|  | */ | 
|  | raw_local_irq_save(flags); | 
|  | cd.epoch_cyc_copy = cyc; | 
|  | smp_wmb(); | 
|  | cd.epoch_ns = ns; | 
|  | smp_wmb(); | 
|  | cd.epoch_cyc = cyc; | 
|  | raw_local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static void sched_clock_poll(unsigned long wrap_ticks) | 
|  | { | 
|  | mod_timer(&sched_clock_timer, round_jiffies(jiffies + wrap_ticks)); | 
|  | update_sched_clock(); | 
|  | } | 
|  |  | 
|  | void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate) | 
|  | { | 
|  | unsigned long r, w; | 
|  | u64 res, wrap; | 
|  | char r_unit; | 
|  |  | 
|  | if (cd.rate > rate) | 
|  | return; | 
|  |  | 
|  | BUG_ON(bits > 32); | 
|  | WARN_ON(!irqs_disabled()); | 
|  | read_sched_clock = read; | 
|  | sched_clock_mask = (1 << bits) - 1; | 
|  | cd.rate = rate; | 
|  |  | 
|  | /* calculate the mult/shift to convert counter ticks to ns. */ | 
|  | clocks_calc_mult_shift(&cd.mult, &cd.shift, rate, NSEC_PER_SEC, 0); | 
|  |  | 
|  | r = rate; | 
|  | if (r >= 4000000) { | 
|  | r /= 1000000; | 
|  | r_unit = 'M'; | 
|  | } else if (r >= 1000) { | 
|  | r /= 1000; | 
|  | r_unit = 'k'; | 
|  | } else | 
|  | r_unit = ' '; | 
|  |  | 
|  | /* calculate how many ns until we wrap */ | 
|  | wrap = cyc_to_ns((1ULL << bits) - 1, cd.mult, cd.shift); | 
|  | do_div(wrap, NSEC_PER_MSEC); | 
|  | w = wrap; | 
|  |  | 
|  | /* calculate the ns resolution of this counter */ | 
|  | res = cyc_to_ns(1ULL, cd.mult, cd.shift); | 
|  | pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lums\n", | 
|  | bits, r, r_unit, res, w); | 
|  |  | 
|  | /* | 
|  | * Start the timer to keep sched_clock() properly updated and | 
|  | * sets the initial epoch. | 
|  | */ | 
|  | sched_clock_timer.data = msecs_to_jiffies(w - (w / 10)); | 
|  | update_sched_clock(); | 
|  |  | 
|  | /* | 
|  | * Ensure that sched_clock() starts off at 0ns | 
|  | */ | 
|  | cd.epoch_ns = 0; | 
|  |  | 
|  | /* Enable IRQ time accounting if we have a fast enough sched_clock */ | 
|  | if (irqtime > 0 || (irqtime == -1 && rate >= 1000000)) | 
|  | enable_sched_clock_irqtime(); | 
|  |  | 
|  | pr_debug("Registered %pF as sched_clock source\n", read); | 
|  | } | 
|  |  | 
|  | static unsigned long long notrace sched_clock_32(void) | 
|  | { | 
|  | u32 cyc = read_sched_clock(); | 
|  | return cyc_to_sched_clock(cyc, sched_clock_mask); | 
|  | } | 
|  |  | 
|  | unsigned long long __read_mostly (*sched_clock_func)(void) = sched_clock_32; | 
|  |  | 
|  | unsigned long long notrace sched_clock(void) | 
|  | { | 
|  | return sched_clock_func(); | 
|  | } | 
|  |  | 
|  | void __init sched_clock_postinit(void) | 
|  | { | 
|  | /* | 
|  | * If no sched_clock function has been provided at that point, | 
|  | * make it the final one one. | 
|  | */ | 
|  | if (read_sched_clock == jiffy_sched_clock_read) | 
|  | setup_sched_clock(jiffy_sched_clock_read, 32, HZ); | 
|  |  | 
|  | sched_clock_poll(sched_clock_timer.data); | 
|  | } | 
|  |  | 
|  | static int sched_clock_suspend(void) | 
|  | { | 
|  | sched_clock_poll(sched_clock_timer.data); | 
|  | cd.suspended = true; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sched_clock_resume(void) | 
|  | { | 
|  | cd.epoch_cyc = read_sched_clock(); | 
|  | cd.epoch_cyc_copy = cd.epoch_cyc; | 
|  | cd.suspended = false; | 
|  | } | 
|  |  | 
|  | static struct syscore_ops sched_clock_ops = { | 
|  | .suspend = sched_clock_suspend, | 
|  | .resume = sched_clock_resume, | 
|  | }; | 
|  |  | 
|  | static int __init sched_clock_syscore_init(void) | 
|  | { | 
|  | register_syscore_ops(&sched_clock_ops); | 
|  | return 0; | 
|  | } | 
|  | device_initcall(sched_clock_syscore_init); |