| /* |
| * |
| * Common boot and setup code. |
| * |
| * Copyright (C) 2001 PPC64 Team, IBM Corp |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/export.h> |
| #include <linux/string.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/reboot.h> |
| #include <linux/delay.h> |
| #include <linux/initrd.h> |
| #include <linux/seq_file.h> |
| #include <linux/ioport.h> |
| #include <linux/console.h> |
| #include <linux/utsname.h> |
| #include <linux/tty.h> |
| #include <linux/root_dev.h> |
| #include <linux/notifier.h> |
| #include <linux/cpu.h> |
| #include <linux/unistd.h> |
| #include <linux/serial.h> |
| #include <linux/serial_8250.h> |
| #include <linux/bootmem.h> |
| #include <linux/pci.h> |
| #include <linux/lockdep.h> |
| #include <linux/memblock.h> |
| #include <linux/memory.h> |
| #include <linux/nmi.h> |
| |
| #include <asm/debugfs.h> |
| #include <asm/io.h> |
| #include <asm/kdump.h> |
| #include <asm/prom.h> |
| #include <asm/processor.h> |
| #include <asm/pgtable.h> |
| #include <asm/smp.h> |
| #include <asm/elf.h> |
| #include <asm/machdep.h> |
| #include <asm/paca.h> |
| #include <asm/time.h> |
| #include <asm/cputable.h> |
| #include <asm/dt_cpu_ftrs.h> |
| #include <asm/sections.h> |
| #include <asm/btext.h> |
| #include <asm/nvram.h> |
| #include <asm/setup.h> |
| #include <asm/rtas.h> |
| #include <asm/iommu.h> |
| #include <asm/serial.h> |
| #include <asm/cache.h> |
| #include <asm/page.h> |
| #include <asm/mmu.h> |
| #include <asm/firmware.h> |
| #include <asm/xmon.h> |
| #include <asm/udbg.h> |
| #include <asm/kexec.h> |
| #include <asm/code-patching.h> |
| #include <asm/livepatch.h> |
| #include <asm/opal.h> |
| #include <asm/cputhreads.h> |
| #include <asm/hw_irq.h> |
| #include <asm/feature-fixups.h> |
| |
| #include "setup.h" |
| |
| #ifdef DEBUG |
| #define DBG(fmt...) udbg_printf(fmt) |
| #else |
| #define DBG(fmt...) |
| #endif |
| |
| int spinning_secondaries; |
| u64 ppc64_pft_size; |
| |
| struct ppc64_caches ppc64_caches = { |
| .l1d = { |
| .block_size = 0x40, |
| .log_block_size = 6, |
| }, |
| .l1i = { |
| .block_size = 0x40, |
| .log_block_size = 6 |
| }, |
| }; |
| EXPORT_SYMBOL_GPL(ppc64_caches); |
| |
| #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP) |
| void __init setup_tlb_core_data(void) |
| { |
| int cpu; |
| |
| BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0); |
| |
| for_each_possible_cpu(cpu) { |
| int first = cpu_first_thread_sibling(cpu); |
| |
| /* |
| * If we boot via kdump on a non-primary thread, |
| * make sure we point at the thread that actually |
| * set up this TLB. |
| */ |
| if (cpu_first_thread_sibling(boot_cpuid) == first) |
| first = boot_cpuid; |
| |
| paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd; |
| |
| /* |
| * If we have threads, we need either tlbsrx. |
| * or e6500 tablewalk mode, or else TLB handlers |
| * will be racy and could produce duplicate entries. |
| * Should we panic instead? |
| */ |
| WARN_ONCE(smt_enabled_at_boot >= 2 && |
| !mmu_has_feature(MMU_FTR_USE_TLBRSRV) && |
| book3e_htw_mode != PPC_HTW_E6500, |
| "%s: unsupported MMU configuration\n", __func__); |
| } |
| } |
| #endif |
| |
| #ifdef CONFIG_SMP |
| |
| static char *smt_enabled_cmdline; |
| |
| /* Look for ibm,smt-enabled OF option */ |
| void __init check_smt_enabled(void) |
| { |
| struct device_node *dn; |
| const char *smt_option; |
| |
| /* Default to enabling all threads */ |
| smt_enabled_at_boot = threads_per_core; |
| |
| /* Allow the command line to overrule the OF option */ |
| if (smt_enabled_cmdline) { |
| if (!strcmp(smt_enabled_cmdline, "on")) |
| smt_enabled_at_boot = threads_per_core; |
| else if (!strcmp(smt_enabled_cmdline, "off")) |
| smt_enabled_at_boot = 0; |
| else { |
| int smt; |
| int rc; |
| |
| rc = kstrtoint(smt_enabled_cmdline, 10, &smt); |
| if (!rc) |
| smt_enabled_at_boot = |
| min(threads_per_core, smt); |
| } |
| } else { |
| dn = of_find_node_by_path("/options"); |
| if (dn) { |
| smt_option = of_get_property(dn, "ibm,smt-enabled", |
| NULL); |
| |
| if (smt_option) { |
| if (!strcmp(smt_option, "on")) |
| smt_enabled_at_boot = threads_per_core; |
| else if (!strcmp(smt_option, "off")) |
| smt_enabled_at_boot = 0; |
| } |
| |
| of_node_put(dn); |
| } |
| } |
| } |
| |
| /* Look for smt-enabled= cmdline option */ |
| static int __init early_smt_enabled(char *p) |
| { |
| smt_enabled_cmdline = p; |
| return 0; |
| } |
| early_param("smt-enabled", early_smt_enabled); |
| |
| #endif /* CONFIG_SMP */ |
| |
| /** Fix up paca fields required for the boot cpu */ |
| static void __init fixup_boot_paca(void) |
| { |
| /* The boot cpu is started */ |
| get_paca()->cpu_start = 1; |
| /* Allow percpu accesses to work until we setup percpu data */ |
| get_paca()->data_offset = 0; |
| /* Mark interrupts disabled in PACA */ |
| irq_soft_mask_set(IRQS_DISABLED); |
| } |
| |
| static void __init configure_exceptions(void) |
| { |
| /* |
| * Setup the trampolines from the lowmem exception vectors |
| * to the kdump kernel when not using a relocatable kernel. |
| */ |
| setup_kdump_trampoline(); |
| |
| /* Under a PAPR hypervisor, we need hypercalls */ |
| if (firmware_has_feature(FW_FEATURE_SET_MODE)) { |
| /* Enable AIL if possible */ |
| pseries_enable_reloc_on_exc(); |
| |
| /* |
| * Tell the hypervisor that we want our exceptions to |
| * be taken in little endian mode. |
| * |
| * We don't call this for big endian as our calling convention |
| * makes us always enter in BE, and the call may fail under |
| * some circumstances with kdump. |
| */ |
| #ifdef __LITTLE_ENDIAN__ |
| pseries_little_endian_exceptions(); |
| #endif |
| } else { |
| /* Set endian mode using OPAL */ |
| if (firmware_has_feature(FW_FEATURE_OPAL)) |
| opal_configure_cores(); |
| |
| /* AIL on native is done in cpu_ready_for_interrupts() */ |
| } |
| } |
| |
| static void cpu_ready_for_interrupts(void) |
| { |
| /* |
| * Enable AIL if supported, and we are in hypervisor mode. This |
| * is called once for every processor. |
| * |
| * If we are not in hypervisor mode the job is done once for |
| * the whole partition in configure_exceptions(). |
| */ |
| if (cpu_has_feature(CPU_FTR_HVMODE) && |
| cpu_has_feature(CPU_FTR_ARCH_207S)) { |
| unsigned long lpcr = mfspr(SPRN_LPCR); |
| mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3); |
| } |
| |
| /* |
| * Set HFSCR:TM based on CPU features: |
| * In the special case of TM no suspend (P9N DD2.1), Linux is |
| * told TM is off via the dt-ftrs but told to (partially) use |
| * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM] |
| * will be off from dt-ftrs but we need to turn it on for the |
| * no suspend case. |
| */ |
| if (cpu_has_feature(CPU_FTR_HVMODE)) { |
| if (cpu_has_feature(CPU_FTR_TM_COMP)) |
| mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM); |
| else |
| mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM); |
| } |
| |
| /* Set IR and DR in PACA MSR */ |
| get_paca()->kernel_msr = MSR_KERNEL; |
| } |
| |
| unsigned long spr_default_dscr = 0; |
| |
| void __init record_spr_defaults(void) |
| { |
| if (early_cpu_has_feature(CPU_FTR_DSCR)) |
| spr_default_dscr = mfspr(SPRN_DSCR); |
| } |
| |
| /* |
| * Early initialization entry point. This is called by head.S |
| * with MMU translation disabled. We rely on the "feature" of |
| * the CPU that ignores the top 2 bits of the address in real |
| * mode so we can access kernel globals normally provided we |
| * only toy with things in the RMO region. From here, we do |
| * some early parsing of the device-tree to setup out MEMBLOCK |
| * data structures, and allocate & initialize the hash table |
| * and segment tables so we can start running with translation |
| * enabled. |
| * |
| * It is this function which will call the probe() callback of |
| * the various platform types and copy the matching one to the |
| * global ppc_md structure. Your platform can eventually do |
| * some very early initializations from the probe() routine, but |
| * this is not recommended, be very careful as, for example, the |
| * device-tree is not accessible via normal means at this point. |
| */ |
| |
| void __init early_setup(unsigned long dt_ptr) |
| { |
| static __initdata struct paca_struct boot_paca; |
| |
| /* -------- printk is _NOT_ safe to use here ! ------- */ |
| |
| /* Try new device tree based feature discovery ... */ |
| if (!dt_cpu_ftrs_init(__va(dt_ptr))) |
| /* Otherwise use the old style CPU table */ |
| identify_cpu(0, mfspr(SPRN_PVR)); |
| |
| /* Assume we're on cpu 0 for now. Don't write to the paca yet! */ |
| initialise_paca(&boot_paca, 0); |
| setup_paca(&boot_paca); |
| fixup_boot_paca(); |
| |
| /* -------- printk is now safe to use ------- */ |
| |
| /* Enable early debugging if any specified (see udbg.h) */ |
| udbg_early_init(); |
| |
| DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr); |
| |
| /* |
| * Do early initialization using the flattened device |
| * tree, such as retrieving the physical memory map or |
| * calculating/retrieving the hash table size. |
| */ |
| early_init_devtree(__va(dt_ptr)); |
| |
| /* Now we know the logical id of our boot cpu, setup the paca. */ |
| if (boot_cpuid != 0) { |
| /* Poison paca_ptrs[0] again if it's not the boot cpu */ |
| memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0])); |
| } |
| setup_paca(paca_ptrs[boot_cpuid]); |
| fixup_boot_paca(); |
| |
| /* |
| * Configure exception handlers. This include setting up trampolines |
| * if needed, setting exception endian mode, etc... |
| */ |
| configure_exceptions(); |
| |
| /* Apply all the dynamic patching */ |
| apply_feature_fixups(); |
| setup_feature_keys(); |
| |
| /* Initialize the hash table or TLB handling */ |
| early_init_mmu(); |
| |
| /* |
| * After firmware and early platform setup code has set things up, |
| * we note the SPR values for configurable control/performance |
| * registers, and use those as initial defaults. |
| */ |
| record_spr_defaults(); |
| |
| /* |
| * At this point, we can let interrupts switch to virtual mode |
| * (the MMU has been setup), so adjust the MSR in the PACA to |
| * have IR and DR set and enable AIL if it exists |
| */ |
| cpu_ready_for_interrupts(); |
| |
| /* |
| * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it |
| * will only actually get enabled on the boot cpu much later once |
| * ftrace itself has been initialized. |
| */ |
| this_cpu_enable_ftrace(); |
| |
| DBG(" <- early_setup()\n"); |
| |
| #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX |
| /* |
| * This needs to be done *last* (after the above DBG() even) |
| * |
| * Right after we return from this function, we turn on the MMU |
| * which means the real-mode access trick that btext does will |
| * no longer work, it needs to switch to using a real MMU |
| * mapping. This call will ensure that it does |
| */ |
| btext_map(); |
| #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */ |
| } |
| |
| #ifdef CONFIG_SMP |
| void early_setup_secondary(void) |
| { |
| /* Mark interrupts disabled in PACA */ |
| irq_soft_mask_set(IRQS_DISABLED); |
| |
| /* Initialize the hash table or TLB handling */ |
| early_init_mmu_secondary(); |
| |
| /* |
| * At this point, we can let interrupts switch to virtual mode |
| * (the MMU has been setup), so adjust the MSR in the PACA to |
| * have IR and DR set. |
| */ |
| cpu_ready_for_interrupts(); |
| } |
| |
| #endif /* CONFIG_SMP */ |
| |
| void panic_smp_self_stop(void) |
| { |
| hard_irq_disable(); |
| spin_begin(); |
| while (1) |
| spin_cpu_relax(); |
| } |
| |
| #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE) |
| static bool use_spinloop(void) |
| { |
| if (IS_ENABLED(CONFIG_PPC_BOOK3S)) { |
| /* |
| * See comments in head_64.S -- not all platforms insert |
| * secondaries at __secondary_hold and wait at the spin |
| * loop. |
| */ |
| if (firmware_has_feature(FW_FEATURE_OPAL)) |
| return false; |
| return true; |
| } |
| |
| /* |
| * When book3e boots from kexec, the ePAPR spin table does |
| * not get used. |
| */ |
| return of_property_read_bool(of_chosen, "linux,booted-from-kexec"); |
| } |
| |
| void smp_release_cpus(void) |
| { |
| unsigned long *ptr; |
| int i; |
| |
| if (!use_spinloop()) |
| return; |
| |
| DBG(" -> smp_release_cpus()\n"); |
| |
| /* All secondary cpus are spinning on a common spinloop, release them |
| * all now so they can start to spin on their individual paca |
| * spinloops. For non SMP kernels, the secondary cpus never get out |
| * of the common spinloop. |
| */ |
| |
| ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop |
| - PHYSICAL_START); |
| *ptr = ppc_function_entry(generic_secondary_smp_init); |
| |
| /* And wait a bit for them to catch up */ |
| for (i = 0; i < 100000; i++) { |
| mb(); |
| HMT_low(); |
| if (spinning_secondaries == 0) |
| break; |
| udelay(1); |
| } |
| DBG("spinning_secondaries = %d\n", spinning_secondaries); |
| |
| DBG(" <- smp_release_cpus()\n"); |
| } |
| #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */ |
| |
| /* |
| * Initialize some remaining members of the ppc64_caches and systemcfg |
| * structures |
| * (at least until we get rid of them completely). This is mostly some |
| * cache informations about the CPU that will be used by cache flush |
| * routines and/or provided to userland |
| */ |
| |
| static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize, |
| u32 bsize, u32 sets) |
| { |
| info->size = size; |
| info->sets = sets; |
| info->line_size = lsize; |
| info->block_size = bsize; |
| info->log_block_size = __ilog2(bsize); |
| if (bsize) |
| info->blocks_per_page = PAGE_SIZE / bsize; |
| else |
| info->blocks_per_page = 0; |
| |
| if (sets == 0) |
| info->assoc = 0xffff; |
| else |
| info->assoc = size / (sets * lsize); |
| } |
| |
| static bool __init parse_cache_info(struct device_node *np, |
| bool icache, |
| struct ppc_cache_info *info) |
| { |
| static const char *ipropnames[] __initdata = { |
| "i-cache-size", |
| "i-cache-sets", |
| "i-cache-block-size", |
| "i-cache-line-size", |
| }; |
| static const char *dpropnames[] __initdata = { |
| "d-cache-size", |
| "d-cache-sets", |
| "d-cache-block-size", |
| "d-cache-line-size", |
| }; |
| const char **propnames = icache ? ipropnames : dpropnames; |
| const __be32 *sizep, *lsizep, *bsizep, *setsp; |
| u32 size, lsize, bsize, sets; |
| bool success = true; |
| |
| size = 0; |
| sets = -1u; |
| lsize = bsize = cur_cpu_spec->dcache_bsize; |
| sizep = of_get_property(np, propnames[0], NULL); |
| if (sizep != NULL) |
| size = be32_to_cpu(*sizep); |
| setsp = of_get_property(np, propnames[1], NULL); |
| if (setsp != NULL) |
| sets = be32_to_cpu(*setsp); |
| bsizep = of_get_property(np, propnames[2], NULL); |
| lsizep = of_get_property(np, propnames[3], NULL); |
| if (bsizep == NULL) |
| bsizep = lsizep; |
| if (lsizep == NULL) |
| lsizep = bsizep; |
| if (lsizep != NULL) |
| lsize = be32_to_cpu(*lsizep); |
| if (bsizep != NULL) |
| bsize = be32_to_cpu(*bsizep); |
| if (sizep == NULL || bsizep == NULL || lsizep == NULL) |
| success = false; |
| |
| /* |
| * OF is weird .. it represents fully associative caches |
| * as "1 way" which doesn't make much sense and doesn't |
| * leave room for direct mapped. We'll assume that 0 |
| * in OF means direct mapped for that reason. |
| */ |
| if (sets == 1) |
| sets = 0; |
| else if (sets == 0) |
| sets = 1; |
| |
| init_cache_info(info, size, lsize, bsize, sets); |
| |
| return success; |
| } |
| |
| void __init initialize_cache_info(void) |
| { |
| struct device_node *cpu = NULL, *l2, *l3 = NULL; |
| u32 pvr; |
| |
| DBG(" -> initialize_cache_info()\n"); |
| |
| /* |
| * All shipping POWER8 machines have a firmware bug that |
| * puts incorrect information in the device-tree. This will |
| * be (hopefully) fixed for future chips but for now hard |
| * code the values if we are running on one of these |
| */ |
| pvr = PVR_VER(mfspr(SPRN_PVR)); |
| if (pvr == PVR_POWER8 || pvr == PVR_POWER8E || |
| pvr == PVR_POWER8NVL) { |
| /* size lsize blk sets */ |
| init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32); |
| init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64); |
| init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512); |
| init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192); |
| } else |
| cpu = of_find_node_by_type(NULL, "cpu"); |
| |
| /* |
| * We're assuming *all* of the CPUs have the same |
| * d-cache and i-cache sizes... -Peter |
| */ |
| if (cpu) { |
| if (!parse_cache_info(cpu, false, &ppc64_caches.l1d)) |
| DBG("Argh, can't find dcache properties !\n"); |
| |
| if (!parse_cache_info(cpu, true, &ppc64_caches.l1i)) |
| DBG("Argh, can't find icache properties !\n"); |
| |
| /* |
| * Try to find the L2 and L3 if any. Assume they are |
| * unified and use the D-side properties. |
| */ |
| l2 = of_find_next_cache_node(cpu); |
| of_node_put(cpu); |
| if (l2) { |
| parse_cache_info(l2, false, &ppc64_caches.l2); |
| l3 = of_find_next_cache_node(l2); |
| of_node_put(l2); |
| } |
| if (l3) { |
| parse_cache_info(l3, false, &ppc64_caches.l3); |
| of_node_put(l3); |
| } |
| } |
| |
| /* For use by binfmt_elf */ |
| dcache_bsize = ppc64_caches.l1d.block_size; |
| icache_bsize = ppc64_caches.l1i.block_size; |
| |
| cur_cpu_spec->dcache_bsize = dcache_bsize; |
| cur_cpu_spec->icache_bsize = icache_bsize; |
| |
| DBG(" <- initialize_cache_info()\n"); |
| } |
| |
| /* |
| * This returns the limit below which memory accesses to the linear |
| * mapping are guarnateed not to cause an architectural exception (e.g., |
| * TLB or SLB miss fault). |
| * |
| * This is used to allocate PACAs and various interrupt stacks that |
| * that are accessed early in interrupt handlers that must not cause |
| * re-entrant interrupts. |
| */ |
| __init u64 ppc64_bolted_size(void) |
| { |
| #ifdef CONFIG_PPC_BOOK3E |
| /* Freescale BookE bolts the entire linear mapping */ |
| /* XXX: BookE ppc64_rma_limit setup seems to disagree? */ |
| if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E)) |
| return linear_map_top; |
| /* Other BookE, we assume the first GB is bolted */ |
| return 1ul << 30; |
| #else |
| /* BookS radix, does not take faults on linear mapping */ |
| if (early_radix_enabled()) |
| return ULONG_MAX; |
| |
| /* BookS hash, the first segment is bolted */ |
| if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT)) |
| return 1UL << SID_SHIFT_1T; |
| return 1UL << SID_SHIFT; |
| #endif |
| } |
| |
| static void *__init alloc_stack(unsigned long limit, int cpu) |
| { |
| unsigned long pa; |
| |
| pa = memblock_alloc_base_nid(THREAD_SIZE, THREAD_SIZE, limit, |
| early_cpu_to_node(cpu), MEMBLOCK_NONE); |
| if (!pa) { |
| pa = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit); |
| if (!pa) |
| panic("cannot allocate stacks"); |
| } |
| |
| return __va(pa); |
| } |
| |
| void __init irqstack_early_init(void) |
| { |
| u64 limit = ppc64_bolted_size(); |
| unsigned int i; |
| |
| /* |
| * Interrupt stacks must be in the first segment since we |
| * cannot afford to take SLB misses on them. They are not |
| * accessed in realmode. |
| */ |
| for_each_possible_cpu(i) { |
| softirq_ctx[i] = alloc_stack(limit, i); |
| hardirq_ctx[i] = alloc_stack(limit, i); |
| } |
| } |
| |
| #ifdef CONFIG_PPC_BOOK3E |
| void __init exc_lvl_early_init(void) |
| { |
| unsigned int i; |
| |
| for_each_possible_cpu(i) { |
| void *sp; |
| |
| sp = alloc_stack(ULONG_MAX, i); |
| critirq_ctx[i] = sp; |
| paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE; |
| |
| sp = alloc_stack(ULONG_MAX, i); |
| dbgirq_ctx[i] = sp; |
| paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE; |
| |
| sp = alloc_stack(ULONG_MAX, i); |
| mcheckirq_ctx[i] = sp; |
| paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE; |
| } |
| |
| if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) |
| patch_exception(0x040, exc_debug_debug_book3e); |
| } |
| #endif |
| |
| /* |
| * Emergency stacks are used for a range of things, from asynchronous |
| * NMIs (system reset, machine check) to synchronous, process context. |
| * We set preempt_count to zero, even though that isn't necessarily correct. To |
| * get the right value we'd need to copy it from the previous thread_info, but |
| * doing that might fault causing more problems. |
| * TODO: what to do with accounting? |
| */ |
| static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu) |
| { |
| ti->task = NULL; |
| ti->cpu = cpu; |
| ti->preempt_count = 0; |
| ti->local_flags = 0; |
| ti->flags = 0; |
| klp_init_thread_info(ti); |
| } |
| |
| /* |
| * Stack space used when we detect a bad kernel stack pointer, and |
| * early in SMP boots before relocation is enabled. Exclusive emergency |
| * stack for machine checks. |
| */ |
| void __init emergency_stack_init(void) |
| { |
| u64 limit; |
| unsigned int i; |
| |
| /* |
| * Emergency stacks must be under 256MB, we cannot afford to take |
| * SLB misses on them. The ABI also requires them to be 128-byte |
| * aligned. |
| * |
| * Since we use these as temporary stacks during secondary CPU |
| * bringup, machine check, system reset, and HMI, we need to get |
| * at them in real mode. This means they must also be within the RMO |
| * region. |
| * |
| * The IRQ stacks allocated elsewhere in this file are zeroed and |
| * initialized in kernel/irq.c. These are initialized here in order |
| * to have emergency stacks available as early as possible. |
| */ |
| limit = min(ppc64_bolted_size(), ppc64_rma_size); |
| |
| for_each_possible_cpu(i) { |
| struct thread_info *ti; |
| |
| ti = alloc_stack(limit, i); |
| memset(ti, 0, THREAD_SIZE); |
| emerg_stack_init_thread_info(ti, i); |
| paca_ptrs[i]->emergency_sp = (void *)ti + THREAD_SIZE; |
| |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| /* emergency stack for NMI exception handling. */ |
| ti = alloc_stack(limit, i); |
| memset(ti, 0, THREAD_SIZE); |
| emerg_stack_init_thread_info(ti, i); |
| paca_ptrs[i]->nmi_emergency_sp = (void *)ti + THREAD_SIZE; |
| |
| /* emergency stack for machine check exception handling. */ |
| ti = alloc_stack(limit, i); |
| memset(ti, 0, THREAD_SIZE); |
| emerg_stack_init_thread_info(ti, i); |
| paca_ptrs[i]->mc_emergency_sp = (void *)ti + THREAD_SIZE; |
| #endif |
| } |
| } |
| |
| #ifdef CONFIG_SMP |
| #define PCPU_DYN_SIZE () |
| |
| static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) |
| { |
| return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align, |
| __pa(MAX_DMA_ADDRESS)); |
| } |
| |
| static void __init pcpu_fc_free(void *ptr, size_t size) |
| { |
| free_bootmem(__pa(ptr), size); |
| } |
| |
| static int pcpu_cpu_distance(unsigned int from, unsigned int to) |
| { |
| if (early_cpu_to_node(from) == early_cpu_to_node(to)) |
| return LOCAL_DISTANCE; |
| else |
| return REMOTE_DISTANCE; |
| } |
| |
| unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; |
| EXPORT_SYMBOL(__per_cpu_offset); |
| |
| void __init setup_per_cpu_areas(void) |
| { |
| const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; |
| size_t atom_size; |
| unsigned long delta; |
| unsigned int cpu; |
| int rc; |
| |
| /* |
| * Linear mapping is one of 4K, 1M and 16M. For 4K, no need |
| * to group units. For larger mappings, use 1M atom which |
| * should be large enough to contain a number of units. |
| */ |
| if (mmu_linear_psize == MMU_PAGE_4K) |
| atom_size = PAGE_SIZE; |
| else |
| atom_size = 1 << 20; |
| |
| rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance, |
| pcpu_fc_alloc, pcpu_fc_free); |
| if (rc < 0) |
| panic("cannot initialize percpu area (err=%d)", rc); |
| |
| delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; |
| for_each_possible_cpu(cpu) { |
| __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; |
| paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu]; |
| } |
| } |
| #endif |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE |
| unsigned long memory_block_size_bytes(void) |
| { |
| if (ppc_md.memory_block_size) |
| return ppc_md.memory_block_size(); |
| |
| return MIN_MEMORY_BLOCK_SIZE; |
| } |
| #endif |
| |
| #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) |
| struct ppc_pci_io ppc_pci_io; |
| EXPORT_SYMBOL(ppc_pci_io); |
| #endif |
| |
| #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF |
| u64 hw_nmi_get_sample_period(int watchdog_thresh) |
| { |
| return ppc_proc_freq * watchdog_thresh; |
| } |
| #endif |
| |
| /* |
| * The perf based hardlockup detector breaks PMU event based branches, so |
| * disable it by default. Book3S has a soft-nmi hardlockup detector based |
| * on the decrementer interrupt, so it does not suffer from this problem. |
| * |
| * It is likely to get false positives in VM guests, so disable it there |
| * by default too. |
| */ |
| static int __init disable_hardlockup_detector(void) |
| { |
| #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF |
| hardlockup_detector_disable(); |
| #else |
| if (firmware_has_feature(FW_FEATURE_LPAR)) |
| hardlockup_detector_disable(); |
| #endif |
| |
| return 0; |
| } |
| early_initcall(disable_hardlockup_detector); |
| |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| static enum l1d_flush_type enabled_flush_types; |
| static void *l1d_flush_fallback_area; |
| static bool no_rfi_flush; |
| bool rfi_flush; |
| |
| static int __init handle_no_rfi_flush(char *p) |
| { |
| pr_info("rfi-flush: disabled on command line."); |
| no_rfi_flush = true; |
| return 0; |
| } |
| early_param("no_rfi_flush", handle_no_rfi_flush); |
| |
| /* |
| * The RFI flush is not KPTI, but because users will see doco that says to use |
| * nopti we hijack that option here to also disable the RFI flush. |
| */ |
| static int __init handle_no_pti(char *p) |
| { |
| pr_info("rfi-flush: disabling due to 'nopti' on command line.\n"); |
| handle_no_rfi_flush(NULL); |
| return 0; |
| } |
| early_param("nopti", handle_no_pti); |
| |
| static void do_nothing(void *unused) |
| { |
| /* |
| * We don't need to do the flush explicitly, just enter+exit kernel is |
| * sufficient, the RFI exit handlers will do the right thing. |
| */ |
| } |
| |
| void rfi_flush_enable(bool enable) |
| { |
| if (enable) { |
| do_rfi_flush_fixups(enabled_flush_types); |
| on_each_cpu(do_nothing, NULL, 1); |
| } else |
| do_rfi_flush_fixups(L1D_FLUSH_NONE); |
| |
| rfi_flush = enable; |
| } |
| |
| static void __ref init_fallback_flush(void) |
| { |
| u64 l1d_size, limit; |
| int cpu; |
| |
| /* Only allocate the fallback flush area once (at boot time). */ |
| if (l1d_flush_fallback_area) |
| return; |
| |
| l1d_size = ppc64_caches.l1d.size; |
| |
| /* |
| * If there is no d-cache-size property in the device tree, l1d_size |
| * could be zero. That leads to the loop in the asm wrapping around to |
| * 2^64-1, and then walking off the end of the fallback area and |
| * eventually causing a page fault which is fatal. Just default to |
| * something vaguely sane. |
| */ |
| if (!l1d_size) |
| l1d_size = (64 * 1024); |
| |
| limit = min(ppc64_bolted_size(), ppc64_rma_size); |
| |
| /* |
| * Align to L1d size, and size it at 2x L1d size, to catch possible |
| * hardware prefetch runoff. We don't have a recipe for load patterns to |
| * reliably avoid the prefetcher. |
| */ |
| l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit)); |
| memset(l1d_flush_fallback_area, 0, l1d_size * 2); |
| |
| for_each_possible_cpu(cpu) { |
| struct paca_struct *paca = paca_ptrs[cpu]; |
| paca->rfi_flush_fallback_area = l1d_flush_fallback_area; |
| paca->l1d_flush_size = l1d_size; |
| } |
| } |
| |
| void setup_rfi_flush(enum l1d_flush_type types, bool enable) |
| { |
| if (types & L1D_FLUSH_FALLBACK) { |
| pr_info("rfi-flush: fallback displacement flush available\n"); |
| init_fallback_flush(); |
| } |
| |
| if (types & L1D_FLUSH_ORI) |
| pr_info("rfi-flush: ori type flush available\n"); |
| |
| if (types & L1D_FLUSH_MTTRIG) |
| pr_info("rfi-flush: mttrig type flush available\n"); |
| |
| enabled_flush_types = types; |
| |
| if (!no_rfi_flush && !cpu_mitigations_off()) |
| rfi_flush_enable(enable); |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| static int rfi_flush_set(void *data, u64 val) |
| { |
| bool enable; |
| |
| if (val == 1) |
| enable = true; |
| else if (val == 0) |
| enable = false; |
| else |
| return -EINVAL; |
| |
| /* Only do anything if we're changing state */ |
| if (enable != rfi_flush) |
| rfi_flush_enable(enable); |
| |
| return 0; |
| } |
| |
| static int rfi_flush_get(void *data, u64 *val) |
| { |
| *val = rfi_flush ? 1 : 0; |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n"); |
| |
| static __init int rfi_flush_debugfs_init(void) |
| { |
| debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush); |
| return 0; |
| } |
| device_initcall(rfi_flush_debugfs_init); |
| #endif |
| #endif /* CONFIG_PPC_BOOK3S_64 */ |