blob: ba4f322d56b8c71a43419a096a06637f12c95c35 [file] [log] [blame]
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "../i915_selftest.h"
#include "mock_gem_device.h"
#include "huge_gem_object.h"
static int igt_gem_object(void *arg)
{
struct drm_i915_private *i915 = arg;
struct drm_i915_gem_object *obj;
int err = -ENOMEM;
/* Basic test to ensure we can create an object */
obj = i915_gem_object_create(i915, PAGE_SIZE);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
pr_err("i915_gem_object_create failed, err=%d\n", err);
goto out;
}
err = 0;
i915_gem_object_put(obj);
out:
return err;
}
static int igt_phys_object(void *arg)
{
struct drm_i915_private *i915 = arg;
struct drm_i915_gem_object *obj;
int err;
/* Create an object and bind it to a contiguous set of physical pages,
* i.e. exercise the i915_gem_object_phys API.
*/
obj = i915_gem_object_create(i915, PAGE_SIZE);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
pr_err("i915_gem_object_create failed, err=%d\n", err);
goto out;
}
mutex_lock(&i915->drm.struct_mutex);
err = i915_gem_object_attach_phys(obj, PAGE_SIZE);
mutex_unlock(&i915->drm.struct_mutex);
if (err) {
pr_err("i915_gem_object_attach_phys failed, err=%d\n", err);
goto out_obj;
}
if (obj->ops != &i915_gem_phys_ops) {
pr_err("i915_gem_object_attach_phys did not create a phys object\n");
err = -EINVAL;
goto out_obj;
}
if (!atomic_read(&obj->mm.pages_pin_count)) {
pr_err("i915_gem_object_attach_phys did not pin its phys pages\n");
err = -EINVAL;
goto out_obj;
}
/* Make the object dirty so that put_pages must do copy back the data */
mutex_lock(&i915->drm.struct_mutex);
err = i915_gem_object_set_to_gtt_domain(obj, true);
mutex_unlock(&i915->drm.struct_mutex);
if (err) {
pr_err("i915_gem_object_set_to_gtt_domain failed with err=%d\n",
err);
goto out_obj;
}
out_obj:
i915_gem_object_put(obj);
out:
return err;
}
static int igt_gem_huge(void *arg)
{
const unsigned int nreal = 509; /* just to be awkward */
struct drm_i915_private *i915 = arg;
struct drm_i915_gem_object *obj;
unsigned int n;
int err;
/* Basic sanitycheck of our huge fake object allocation */
obj = huge_gem_object(i915,
nreal * PAGE_SIZE,
i915->ggtt.vm.total + PAGE_SIZE);
if (IS_ERR(obj))
return PTR_ERR(obj);
err = i915_gem_object_pin_pages(obj);
if (err) {
pr_err("Failed to allocate %u pages (%lu total), err=%d\n",
nreal, obj->base.size / PAGE_SIZE, err);
goto out;
}
for (n = 0; n < obj->base.size / PAGE_SIZE; n++) {
if (i915_gem_object_get_page(obj, n) !=
i915_gem_object_get_page(obj, n % nreal)) {
pr_err("Page lookup mismatch at index %u [%u]\n",
n, n % nreal);
err = -EINVAL;
goto out_unpin;
}
}
out_unpin:
i915_gem_object_unpin_pages(obj);
out:
i915_gem_object_put(obj);
return err;
}
struct tile {
unsigned int width;
unsigned int height;
unsigned int stride;
unsigned int size;
unsigned int tiling;
unsigned int swizzle;
};
static u64 swizzle_bit(unsigned int bit, u64 offset)
{
return (offset & BIT_ULL(bit)) >> (bit - 6);
}
static u64 tiled_offset(const struct tile *tile, u64 v)
{
u64 x, y;
if (tile->tiling == I915_TILING_NONE)
return v;
y = div64_u64_rem(v, tile->stride, &x);
v = div64_u64_rem(y, tile->height, &y) * tile->stride * tile->height;
if (tile->tiling == I915_TILING_X) {
v += y * tile->width;
v += div64_u64_rem(x, tile->width, &x) << tile->size;
v += x;
} else if (tile->width == 128) {
const unsigned int ytile_span = 16;
const unsigned int ytile_height = 512;
v += y * ytile_span;
v += div64_u64_rem(x, ytile_span, &x) * ytile_height;
v += x;
} else {
const unsigned int ytile_span = 32;
const unsigned int ytile_height = 256;
v += y * ytile_span;
v += div64_u64_rem(x, ytile_span, &x) * ytile_height;
v += x;
}
switch (tile->swizzle) {
case I915_BIT_6_SWIZZLE_9:
v ^= swizzle_bit(9, v);
break;
case I915_BIT_6_SWIZZLE_9_10:
v ^= swizzle_bit(9, v) ^ swizzle_bit(10, v);
break;
case I915_BIT_6_SWIZZLE_9_11:
v ^= swizzle_bit(9, v) ^ swizzle_bit(11, v);
break;
case I915_BIT_6_SWIZZLE_9_10_11:
v ^= swizzle_bit(9, v) ^ swizzle_bit(10, v) ^ swizzle_bit(11, v);
break;
}
return v;
}
static int check_partial_mapping(struct drm_i915_gem_object *obj,
const struct tile *tile,
unsigned long end_time)
{
const unsigned int nreal = obj->scratch / PAGE_SIZE;
const unsigned long npages = obj->base.size / PAGE_SIZE;
struct i915_vma *vma;
unsigned long page;
int err;
if (igt_timeout(end_time,
"%s: timed out before tiling=%d stride=%d\n",
__func__, tile->tiling, tile->stride))
return -EINTR;
err = i915_gem_object_set_tiling(obj, tile->tiling, tile->stride);
if (err) {
pr_err("Failed to set tiling mode=%u, stride=%u, err=%d\n",
tile->tiling, tile->stride, err);
return err;
}
GEM_BUG_ON(i915_gem_object_get_tiling(obj) != tile->tiling);
GEM_BUG_ON(i915_gem_object_get_stride(obj) != tile->stride);
for_each_prime_number_from(page, 1, npages) {
struct i915_ggtt_view view =
compute_partial_view(obj, page, MIN_CHUNK_PAGES);
u32 __iomem *io;
struct page *p;
unsigned int n;
u64 offset;
u32 *cpu;
GEM_BUG_ON(view.partial.size > nreal);
err = i915_gem_object_set_to_gtt_domain(obj, true);
if (err) {
pr_err("Failed to flush to GTT write domain; err=%d\n",
err);
return err;
}
vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
if (IS_ERR(vma)) {
pr_err("Failed to pin partial view: offset=%lu; err=%d\n",
page, (int)PTR_ERR(vma));
return PTR_ERR(vma);
}
n = page - view.partial.offset;
GEM_BUG_ON(n >= view.partial.size);
io = i915_vma_pin_iomap(vma);
i915_vma_unpin(vma);
if (IS_ERR(io)) {
pr_err("Failed to iomap partial view: offset=%lu; err=%d\n",
page, (int)PTR_ERR(io));
return PTR_ERR(io);
}
iowrite32(page, io + n * PAGE_SIZE/sizeof(*io));
i915_vma_unpin_iomap(vma);
offset = tiled_offset(tile, page << PAGE_SHIFT);
if (offset >= obj->base.size)
continue;
flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
p = i915_gem_object_get_page(obj, offset >> PAGE_SHIFT);
cpu = kmap(p) + offset_in_page(offset);
drm_clflush_virt_range(cpu, sizeof(*cpu));
if (*cpu != (u32)page) {
pr_err("Partial view for %lu [%u] (offset=%llu, size=%u [%llu, row size %u], fence=%d, tiling=%d, stride=%d) misalignment, expected write to page (%llu + %u [0x%llx]) of 0x%x, found 0x%x\n",
page, n,
view.partial.offset,
view.partial.size,
vma->size >> PAGE_SHIFT,
tile_row_pages(obj),
vma->fence ? vma->fence->id : -1, tile->tiling, tile->stride,
offset >> PAGE_SHIFT,
(unsigned int)offset_in_page(offset),
offset,
(u32)page, *cpu);
err = -EINVAL;
}
*cpu = 0;
drm_clflush_virt_range(cpu, sizeof(*cpu));
kunmap(p);
if (err)
return err;
i915_vma_destroy(vma);
}
return 0;
}
static int igt_partial_tiling(void *arg)
{
const unsigned int nreal = 1 << 12; /* largest tile row x2 */
struct drm_i915_private *i915 = arg;
struct drm_i915_gem_object *obj;
int tiling;
int err;
/* We want to check the page mapping and fencing of a large object
* mmapped through the GTT. The object we create is larger than can
* possibly be mmaped as a whole, and so we must use partial GGTT vma.
* We then check that a write through each partial GGTT vma ends up
* in the right set of pages within the object, and with the expected
* tiling, which we verify by manual swizzling.
*/
obj = huge_gem_object(i915,
nreal << PAGE_SHIFT,
(1 + next_prime_number(i915->ggtt.vm.total >> PAGE_SHIFT)) << PAGE_SHIFT);
if (IS_ERR(obj))
return PTR_ERR(obj);
err = i915_gem_object_pin_pages(obj);
if (err) {
pr_err("Failed to allocate %u pages (%lu total), err=%d\n",
nreal, obj->base.size / PAGE_SIZE, err);
goto out;
}
mutex_lock(&i915->drm.struct_mutex);
intel_runtime_pm_get(i915);
if (1) {
IGT_TIMEOUT(end);
struct tile tile;
tile.height = 1;
tile.width = 1;
tile.size = 0;
tile.stride = 0;
tile.swizzle = I915_BIT_6_SWIZZLE_NONE;
tile.tiling = I915_TILING_NONE;
err = check_partial_mapping(obj, &tile, end);
if (err && err != -EINTR)
goto out_unlock;
}
for (tiling = I915_TILING_X; tiling <= I915_TILING_Y; tiling++) {
IGT_TIMEOUT(end);
unsigned int max_pitch;
unsigned int pitch;
struct tile tile;
if (i915->quirks & QUIRK_PIN_SWIZZLED_PAGES)
/*
* The swizzling pattern is actually unknown as it
* varies based on physical address of each page.
* See i915_gem_detect_bit_6_swizzle().
*/
break;
tile.tiling = tiling;
switch (tiling) {
case I915_TILING_X:
tile.swizzle = i915->mm.bit_6_swizzle_x;
break;
case I915_TILING_Y:
tile.swizzle = i915->mm.bit_6_swizzle_y;
break;
}
GEM_BUG_ON(tile.swizzle == I915_BIT_6_SWIZZLE_UNKNOWN);
if (tile.swizzle == I915_BIT_6_SWIZZLE_9_17 ||
tile.swizzle == I915_BIT_6_SWIZZLE_9_10_17)
continue;
if (INTEL_GEN(i915) <= 2) {
tile.height = 16;
tile.width = 128;
tile.size = 11;
} else if (tile.tiling == I915_TILING_Y &&
HAS_128_BYTE_Y_TILING(i915)) {
tile.height = 32;
tile.width = 128;
tile.size = 12;
} else {
tile.height = 8;
tile.width = 512;
tile.size = 12;
}
if (INTEL_GEN(i915) < 4)
max_pitch = 8192 / tile.width;
else if (INTEL_GEN(i915) < 7)
max_pitch = 128 * I965_FENCE_MAX_PITCH_VAL / tile.width;
else
max_pitch = 128 * GEN7_FENCE_MAX_PITCH_VAL / tile.width;
for (pitch = max_pitch; pitch; pitch >>= 1) {
tile.stride = tile.width * pitch;
err = check_partial_mapping(obj, &tile, end);
if (err == -EINTR)
goto next_tiling;
if (err)
goto out_unlock;
if (pitch > 2 && INTEL_GEN(i915) >= 4) {
tile.stride = tile.width * (pitch - 1);
err = check_partial_mapping(obj, &tile, end);
if (err == -EINTR)
goto next_tiling;
if (err)
goto out_unlock;
}
if (pitch < max_pitch && INTEL_GEN(i915) >= 4) {
tile.stride = tile.width * (pitch + 1);
err = check_partial_mapping(obj, &tile, end);
if (err == -EINTR)
goto next_tiling;
if (err)
goto out_unlock;
}
}
if (INTEL_GEN(i915) >= 4) {
for_each_prime_number(pitch, max_pitch) {
tile.stride = tile.width * pitch;
err = check_partial_mapping(obj, &tile, end);
if (err == -EINTR)
goto next_tiling;
if (err)
goto out_unlock;
}
}
next_tiling: ;
}
out_unlock:
intel_runtime_pm_put(i915);
mutex_unlock(&i915->drm.struct_mutex);
i915_gem_object_unpin_pages(obj);
out:
i915_gem_object_put(obj);
return err;
}
static int make_obj_busy(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct i915_request *rq;
struct i915_vma *vma;
int err;
vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
if (IS_ERR(vma))
return PTR_ERR(vma);
err = i915_vma_pin(vma, 0, 0, PIN_USER);
if (err)
return err;
rq = i915_request_alloc(i915->engine[RCS], i915->kernel_context);
if (IS_ERR(rq)) {
i915_vma_unpin(vma);
return PTR_ERR(rq);
}
err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
i915_request_add(rq);
__i915_gem_object_release_unless_active(obj);
i915_vma_unpin(vma);
return err;
}
static bool assert_mmap_offset(struct drm_i915_private *i915,
unsigned long size,
int expected)
{
struct drm_i915_gem_object *obj;
int err;
obj = i915_gem_object_create_internal(i915, size);
if (IS_ERR(obj))
return PTR_ERR(obj);
err = i915_gem_object_create_mmap_offset(obj);
i915_gem_object_put(obj);
return err == expected;
}
static void disable_retire_worker(struct drm_i915_private *i915)
{
mutex_lock(&i915->drm.struct_mutex);
if (!i915->gt.active_requests++) {
intel_runtime_pm_get(i915);
i915_gem_unpark(i915);
intel_runtime_pm_put(i915);
}
mutex_unlock(&i915->drm.struct_mutex);
cancel_delayed_work_sync(&i915->gt.retire_work);
cancel_delayed_work_sync(&i915->gt.idle_work);
}
static int igt_mmap_offset_exhaustion(void *arg)
{
struct drm_i915_private *i915 = arg;
struct drm_mm *mm = &i915->drm.vma_offset_manager->vm_addr_space_mm;
struct drm_i915_gem_object *obj;
struct drm_mm_node resv, *hole;
u64 hole_start, hole_end;
int loop, err;
/* Disable background reaper */
disable_retire_worker(i915);
GEM_BUG_ON(!i915->gt.awake);
/* Trim the device mmap space to only a page */
memset(&resv, 0, sizeof(resv));
drm_mm_for_each_hole(hole, mm, hole_start, hole_end) {
resv.start = hole_start;
resv.size = hole_end - hole_start - 1; /* PAGE_SIZE units */
err = drm_mm_reserve_node(mm, &resv);
if (err) {
pr_err("Failed to trim VMA manager, err=%d\n", err);
goto out_park;
}
break;
}
/* Just fits! */
if (!assert_mmap_offset(i915, PAGE_SIZE, 0)) {
pr_err("Unable to insert object into single page hole\n");
err = -EINVAL;
goto out;
}
/* Too large */
if (!assert_mmap_offset(i915, 2*PAGE_SIZE, -ENOSPC)) {
pr_err("Unexpectedly succeeded in inserting too large object into single page hole\n");
err = -EINVAL;
goto out;
}
/* Fill the hole, further allocation attempts should then fail */
obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
goto out;
}
err = i915_gem_object_create_mmap_offset(obj);
if (err) {
pr_err("Unable to insert object into reclaimed hole\n");
goto err_obj;
}
if (!assert_mmap_offset(i915, PAGE_SIZE, -ENOSPC)) {
pr_err("Unexpectedly succeeded in inserting object into no holes!\n");
err = -EINVAL;
goto err_obj;
}
i915_gem_object_put(obj);
/* Now fill with busy dead objects that we expect to reap */
for (loop = 0; loop < 3; loop++) {
if (i915_terminally_wedged(&i915->gpu_error))
break;
obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
goto out;
}
mutex_lock(&i915->drm.struct_mutex);
intel_runtime_pm_get(i915);
err = make_obj_busy(obj);
intel_runtime_pm_put(i915);
mutex_unlock(&i915->drm.struct_mutex);
if (err) {
pr_err("[loop %d] Failed to busy the object\n", loop);
goto err_obj;
}
/* NB we rely on the _active_ reference to access obj now */
GEM_BUG_ON(!i915_gem_object_is_active(obj));
err = i915_gem_object_create_mmap_offset(obj);
if (err) {
pr_err("[loop %d] i915_gem_object_create_mmap_offset failed with err=%d\n",
loop, err);
goto out;
}
}
out:
drm_mm_remove_node(&resv);
out_park:
mutex_lock(&i915->drm.struct_mutex);
if (--i915->gt.active_requests)
queue_delayed_work(i915->wq, &i915->gt.retire_work, 0);
else
queue_delayed_work(i915->wq, &i915->gt.idle_work, 0);
mutex_unlock(&i915->drm.struct_mutex);
return err;
err_obj:
i915_gem_object_put(obj);
goto out;
}
int i915_gem_object_mock_selftests(void)
{
static const struct i915_subtest tests[] = {
SUBTEST(igt_gem_object),
SUBTEST(igt_phys_object),
};
struct drm_i915_private *i915;
int err;
i915 = mock_gem_device();
if (!i915)
return -ENOMEM;
err = i915_subtests(tests, i915);
drm_dev_put(&i915->drm);
return err;
}
int i915_gem_object_live_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(igt_gem_huge),
SUBTEST(igt_partial_tiling),
SUBTEST(igt_mmap_offset_exhaustion),
};
return i915_subtests(tests, i915);
}