blob: 01fa98299bae65a125862e57c307cdbce07c3d32 [file] [log] [blame]
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <drm/drm_print.h>
#include "intel_device_info.h"
#include "i915_drv.h"
#define PLATFORM_NAME(x) [INTEL_##x] = #x
static const char * const platform_names[] = {
PLATFORM_NAME(I830),
PLATFORM_NAME(I845G),
PLATFORM_NAME(I85X),
PLATFORM_NAME(I865G),
PLATFORM_NAME(I915G),
PLATFORM_NAME(I915GM),
PLATFORM_NAME(I945G),
PLATFORM_NAME(I945GM),
PLATFORM_NAME(G33),
PLATFORM_NAME(PINEVIEW),
PLATFORM_NAME(I965G),
PLATFORM_NAME(I965GM),
PLATFORM_NAME(G45),
PLATFORM_NAME(GM45),
PLATFORM_NAME(IRONLAKE),
PLATFORM_NAME(SANDYBRIDGE),
PLATFORM_NAME(IVYBRIDGE),
PLATFORM_NAME(VALLEYVIEW),
PLATFORM_NAME(HASWELL),
PLATFORM_NAME(BROADWELL),
PLATFORM_NAME(CHERRYVIEW),
PLATFORM_NAME(SKYLAKE),
PLATFORM_NAME(BROXTON),
PLATFORM_NAME(KABYLAKE),
PLATFORM_NAME(GEMINILAKE),
PLATFORM_NAME(COFFEELAKE),
PLATFORM_NAME(CANNONLAKE),
PLATFORM_NAME(ICELAKE),
};
#undef PLATFORM_NAME
const char *intel_platform_name(enum intel_platform platform)
{
BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
platform_names[platform] == NULL))
return "<unknown>";
return platform_names[platform];
}
void intel_device_info_dump_flags(const struct intel_device_info *info,
struct drm_printer *p)
{
#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
#undef PRINT_FLAG
}
static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
{
int s;
drm_printf(p, "slice total: %u, mask=%04x\n",
hweight8(sseu->slice_mask), sseu->slice_mask);
drm_printf(p, "subslice total: %u\n", sseu_subslice_total(sseu));
for (s = 0; s < sseu->max_slices; s++) {
drm_printf(p, "slice%d: %u subslices, mask=%04x\n",
s, hweight8(sseu->subslice_mask[s]),
sseu->subslice_mask[s]);
}
drm_printf(p, "EU total: %u\n", sseu->eu_total);
drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
drm_printf(p, "has slice power gating: %s\n",
yesno(sseu->has_slice_pg));
drm_printf(p, "has subslice power gating: %s\n",
yesno(sseu->has_subslice_pg));
drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
}
void intel_device_info_dump_runtime(const struct intel_device_info *info,
struct drm_printer *p)
{
sseu_dump(&info->sseu, p);
drm_printf(p, "CS timestamp frequency: %u kHz\n",
info->cs_timestamp_frequency_khz);
}
void intel_device_info_dump(const struct intel_device_info *info,
struct drm_printer *p)
{
struct drm_i915_private *dev_priv =
container_of(info, struct drm_i915_private, info);
drm_printf(p, "pciid=0x%04x rev=0x%02x platform=%s gen=%i\n",
INTEL_DEVID(dev_priv),
INTEL_REVID(dev_priv),
intel_platform_name(info->platform),
info->gen);
intel_device_info_dump_flags(info, p);
}
void intel_device_info_dump_topology(const struct sseu_dev_info *sseu,
struct drm_printer *p)
{
int s, ss;
if (sseu->max_slices == 0) {
drm_printf(p, "Unavailable\n");
return;
}
for (s = 0; s < sseu->max_slices; s++) {
drm_printf(p, "slice%d: %u subslice(s) (0x%hhx):\n",
s, hweight8(sseu->subslice_mask[s]),
sseu->subslice_mask[s]);
for (ss = 0; ss < sseu->max_subslices; ss++) {
u16 enabled_eus = sseu_get_eus(sseu, s, ss);
drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
ss, hweight16(enabled_eus), enabled_eus);
}
}
}
static u16 compute_eu_total(const struct sseu_dev_info *sseu)
{
u16 i, total = 0;
for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
total += hweight8(sseu->eu_mask[i]);
return total;
}
static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
{
struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
u8 s_en;
u32 ss_en, ss_en_mask;
u8 eu_en;
int s;
sseu->max_slices = 1;
sseu->max_subslices = 8;
sseu->max_eus_per_subslice = 8;
s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
ss_en_mask = BIT(sseu->max_subslices) - 1;
eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
for (s = 0; s < sseu->max_slices; s++) {
if (s_en & BIT(s)) {
int ss_idx = sseu->max_subslices * s;
int ss;
sseu->slice_mask |= BIT(s);
sseu->subslice_mask[s] = (ss_en >> ss_idx) & ss_en_mask;
for (ss = 0; ss < sseu->max_subslices; ss++) {
if (sseu->subslice_mask[s] & BIT(ss))
sseu_set_eus(sseu, s, ss, eu_en);
}
}
}
sseu->eu_per_subslice = hweight8(eu_en);
sseu->eu_total = compute_eu_total(sseu);
/* ICL has no power gating restrictions. */
sseu->has_slice_pg = 1;
sseu->has_subslice_pg = 1;
sseu->has_eu_pg = 1;
}
static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
{
struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
const u32 fuse2 = I915_READ(GEN8_FUSE2);
int s, ss;
const int eu_mask = 0xff;
u32 subslice_mask, eu_en;
sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
GEN10_F2_S_ENA_SHIFT;
sseu->max_slices = 6;
sseu->max_subslices = 4;
sseu->max_eus_per_subslice = 8;
subslice_mask = (1 << 4) - 1;
subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
GEN10_F2_SS_DIS_SHIFT);
/*
* Slice0 can have up to 3 subslices, but there are only 2 in
* slice1/2.
*/
sseu->subslice_mask[0] = subslice_mask;
for (s = 1; s < sseu->max_slices; s++)
sseu->subslice_mask[s] = subslice_mask & 0x3;
/* Slice0 */
eu_en = ~I915_READ(GEN8_EU_DISABLE0);
for (ss = 0; ss < sseu->max_subslices; ss++)
sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
/* Slice1 */
sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
eu_en = ~I915_READ(GEN8_EU_DISABLE1);
sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
/* Slice2 */
sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
/* Slice3 */
sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
eu_en = ~I915_READ(GEN8_EU_DISABLE2);
sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
/* Slice4 */
sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
/* Slice5 */
sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
eu_en = ~I915_READ(GEN10_EU_DISABLE3);
sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
/* Do a second pass where we mark the subslices disabled if all their
* eus are off.
*/
for (s = 0; s < sseu->max_slices; s++) {
for (ss = 0; ss < sseu->max_subslices; ss++) {
if (sseu_get_eus(sseu, s, ss) == 0)
sseu->subslice_mask[s] &= ~BIT(ss);
}
}
sseu->eu_total = compute_eu_total(sseu);
/*
* CNL is expected to always have a uniform distribution
* of EU across subslices with the exception that any one
* EU in any one subslice may be fused off for die
* recovery.
*/
sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
DIV_ROUND_UP(sseu->eu_total,
sseu_subslice_total(sseu)) : 0;
/* No restrictions on Power Gating */
sseu->has_slice_pg = 1;
sseu->has_subslice_pg = 1;
sseu->has_eu_pg = 1;
}
static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
{
struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
u32 fuse;
fuse = I915_READ(CHV_FUSE_GT);
sseu->slice_mask = BIT(0);
sseu->max_slices = 1;
sseu->max_subslices = 2;
sseu->max_eus_per_subslice = 8;
if (!(fuse & CHV_FGT_DISABLE_SS0)) {
u8 disabled_mask =
((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
sseu->subslice_mask[0] |= BIT(0);
sseu_set_eus(sseu, 0, 0, ~disabled_mask);
}
if (!(fuse & CHV_FGT_DISABLE_SS1)) {
u8 disabled_mask =
((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
sseu->subslice_mask[0] |= BIT(1);
sseu_set_eus(sseu, 0, 1, ~disabled_mask);
}
sseu->eu_total = compute_eu_total(sseu);
/*
* CHV expected to always have a uniform distribution of EU
* across subslices.
*/
sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
sseu->eu_total / sseu_subslice_total(sseu) :
0;
/*
* CHV supports subslice power gating on devices with more than
* one subslice, and supports EU power gating on devices with
* more than one EU pair per subslice.
*/
sseu->has_slice_pg = 0;
sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1;
sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
}
static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
{
struct intel_device_info *info = mkwrite_device_info(dev_priv);
struct sseu_dev_info *sseu = &info->sseu;
int s, ss;
u32 fuse2, eu_disable, subslice_mask;
const u8 eu_mask = 0xff;
fuse2 = I915_READ(GEN8_FUSE2);
sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
/* BXT has a single slice and at most 3 subslices. */
sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3;
sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4;
sseu->max_eus_per_subslice = 8;
/*
* The subslice disable field is global, i.e. it applies
* to each of the enabled slices.
*/
subslice_mask = (1 << sseu->max_subslices) - 1;
subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
GEN9_F2_SS_DIS_SHIFT);
/*
* Iterate through enabled slices and subslices to
* count the total enabled EU.
*/
for (s = 0; s < sseu->max_slices; s++) {
if (!(sseu->slice_mask & BIT(s)))
/* skip disabled slice */
continue;
sseu->subslice_mask[s] = subslice_mask;
eu_disable = I915_READ(GEN9_EU_DISABLE(s));
for (ss = 0; ss < sseu->max_subslices; ss++) {
int eu_per_ss;
u8 eu_disabled_mask;
if (!(sseu->subslice_mask[s] & BIT(ss)))
/* skip disabled subslice */
continue;
eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
eu_per_ss = sseu->max_eus_per_subslice -
hweight8(eu_disabled_mask);
/*
* Record which subslice(s) has(have) 7 EUs. we
* can tune the hash used to spread work among
* subslices if they are unbalanced.
*/
if (eu_per_ss == 7)
sseu->subslice_7eu[s] |= BIT(ss);
}
}
sseu->eu_total = compute_eu_total(sseu);
/*
* SKL is expected to always have a uniform distribution
* of EU across subslices with the exception that any one
* EU in any one subslice may be fused off for die
* recovery. BXT is expected to be perfectly uniform in EU
* distribution.
*/
sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
DIV_ROUND_UP(sseu->eu_total,
sseu_subslice_total(sseu)) : 0;
/*
* SKL+ supports slice power gating on devices with more than
* one slice, and supports EU power gating on devices with
* more than one EU pair per subslice. BXT+ supports subslice
* power gating on devices with more than one subslice, and
* supports EU power gating on devices with more than one EU
* pair per subslice.
*/
sseu->has_slice_pg =
!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
sseu->has_subslice_pg =
IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1;
sseu->has_eu_pg = sseu->eu_per_subslice > 2;
if (IS_GEN9_LP(dev_priv)) {
#define IS_SS_DISABLED(ss) (!(sseu->subslice_mask[0] & BIT(ss)))
info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
sseu->min_eu_in_pool = 0;
if (info->has_pooled_eu) {
if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
sseu->min_eu_in_pool = 3;
else if (IS_SS_DISABLED(1))
sseu->min_eu_in_pool = 6;
else
sseu->min_eu_in_pool = 9;
}
#undef IS_SS_DISABLED
}
}
static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
{
struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
int s, ss;
u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
fuse2 = I915_READ(GEN8_FUSE2);
sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
sseu->max_slices = 3;
sseu->max_subslices = 3;
sseu->max_eus_per_subslice = 8;
/*
* The subslice disable field is global, i.e. it applies
* to each of the enabled slices.
*/
subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
GEN8_F2_SS_DIS_SHIFT);
eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
(32 - GEN8_EU_DIS0_S1_SHIFT));
eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
(32 - GEN8_EU_DIS1_S2_SHIFT));
/*
* Iterate through enabled slices and subslices to
* count the total enabled EU.
*/
for (s = 0; s < sseu->max_slices; s++) {
if (!(sseu->slice_mask & BIT(s)))
/* skip disabled slice */
continue;
sseu->subslice_mask[s] = subslice_mask;
for (ss = 0; ss < sseu->max_subslices; ss++) {
u8 eu_disabled_mask;
u32 n_disabled;
if (!(sseu->subslice_mask[s] & BIT(ss)))
/* skip disabled subslice */
continue;
eu_disabled_mask =
eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
n_disabled = hweight8(eu_disabled_mask);
/*
* Record which subslices have 7 EUs.
*/
if (sseu->max_eus_per_subslice - n_disabled == 7)
sseu->subslice_7eu[s] |= 1 << ss;
}
}
sseu->eu_total = compute_eu_total(sseu);
/*
* BDW is expected to always have a uniform distribution of EU across
* subslices with the exception that any one EU in any one subslice may
* be fused off for die recovery.
*/
sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
DIV_ROUND_UP(sseu->eu_total,
sseu_subslice_total(sseu)) : 0;
/*
* BDW supports slice power gating on devices with more than
* one slice.
*/
sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
sseu->has_subslice_pg = 0;
sseu->has_eu_pg = 0;
}
static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
{
struct intel_device_info *info = mkwrite_device_info(dev_priv);
struct sseu_dev_info *sseu = &info->sseu;
u32 fuse1;
int s, ss;
/*
* There isn't a register to tell us how many slices/subslices. We
* work off the PCI-ids here.
*/
switch (info->gt) {
default:
MISSING_CASE(info->gt);
/* fall through */
case 1:
sseu->slice_mask = BIT(0);
sseu->subslice_mask[0] = BIT(0);
break;
case 2:
sseu->slice_mask = BIT(0);
sseu->subslice_mask[0] = BIT(0) | BIT(1);
break;
case 3:
sseu->slice_mask = BIT(0) | BIT(1);
sseu->subslice_mask[0] = BIT(0) | BIT(1);
sseu->subslice_mask[1] = BIT(0) | BIT(1);
break;
}
sseu->max_slices = hweight8(sseu->slice_mask);
sseu->max_subslices = hweight8(sseu->subslice_mask[0]);
fuse1 = I915_READ(HSW_PAVP_FUSE1);
switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
default:
MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
HSW_F1_EU_DIS_SHIFT);
/* fall through */
case HSW_F1_EU_DIS_10EUS:
sseu->eu_per_subslice = 10;
break;
case HSW_F1_EU_DIS_8EUS:
sseu->eu_per_subslice = 8;
break;
case HSW_F1_EU_DIS_6EUS:
sseu->eu_per_subslice = 6;
break;
}
sseu->max_eus_per_subslice = sseu->eu_per_subslice;
for (s = 0; s < sseu->max_slices; s++) {
for (ss = 0; ss < sseu->max_subslices; ss++) {
sseu_set_eus(sseu, s, ss,
(1UL << sseu->eu_per_subslice) - 1);
}
}
sseu->eu_total = compute_eu_total(sseu);
/* No powergating for you. */
sseu->has_slice_pg = 0;
sseu->has_subslice_pg = 0;
sseu->has_eu_pg = 0;
}
static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
{
u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
u32 base_freq, frac_freq;
base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
base_freq *= 1000;
frac_freq = ((ts_override &
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
frac_freq = 1000 / (frac_freq + 1);
return base_freq + frac_freq;
}
static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
u32 rpm_config_reg)
{
u32 f19_2_mhz = 19200;
u32 f24_mhz = 24000;
u32 crystal_clock = (rpm_config_reg &
GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
switch (crystal_clock) {
case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
return f19_2_mhz;
case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
return f24_mhz;
default:
MISSING_CASE(crystal_clock);
return 0;
}
}
static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
u32 rpm_config_reg)
{
u32 f19_2_mhz = 19200;
u32 f24_mhz = 24000;
u32 f25_mhz = 25000;
u32 f38_4_mhz = 38400;
u32 crystal_clock = (rpm_config_reg &
GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
switch (crystal_clock) {
case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
return f24_mhz;
case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
return f19_2_mhz;
case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
return f38_4_mhz;
case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
return f25_mhz;
default:
MISSING_CASE(crystal_clock);
return 0;
}
}
static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
{
u32 f12_5_mhz = 12500;
u32 f19_2_mhz = 19200;
u32 f24_mhz = 24000;
if (INTEL_GEN(dev_priv) <= 4) {
/* PRMs say:
*
* "The value in this register increments once every 16
* hclks." (through the “Clocking Configuration”
* (“CLKCFG”) MCHBAR register)
*/
return dev_priv->rawclk_freq / 16;
} else if (INTEL_GEN(dev_priv) <= 8) {
/* PRMs say:
*
* "The PCU TSC counts 10ns increments; this timestamp
* reflects bits 38:3 of the TSC (i.e. 80ns granularity,
* rolling over every 1.5 hours).
*/
return f12_5_mhz;
} else if (INTEL_GEN(dev_priv) <= 9) {
u32 ctc_reg = I915_READ(CTC_MODE);
u32 freq = 0;
if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
freq = read_reference_ts_freq(dev_priv);
} else {
freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
/* Now figure out how the command stream's timestamp
* register increments from this frequency (it might
* increment only every few clock cycle).
*/
freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
CTC_SHIFT_PARAMETER_SHIFT);
}
return freq;
} else if (INTEL_GEN(dev_priv) <= 11) {
u32 ctc_reg = I915_READ(CTC_MODE);
u32 freq = 0;
/* First figure out the reference frequency. There are 2 ways
* we can compute the frequency, either through the
* TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
* tells us which one we should use.
*/
if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
freq = read_reference_ts_freq(dev_priv);
} else {
u32 rpm_config_reg = I915_READ(RPM_CONFIG0);
if (INTEL_GEN(dev_priv) <= 10)
freq = gen10_get_crystal_clock_freq(dev_priv,
rpm_config_reg);
else
freq = gen11_get_crystal_clock_freq(dev_priv,
rpm_config_reg);
/* Now figure out how the command stream's timestamp
* register increments from this frequency (it might
* increment only every few clock cycle).
*/
freq >>= 3 - ((rpm_config_reg &
GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
}
return freq;
}
MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
return 0;
}
/**
* intel_device_info_runtime_init - initialize runtime info
* @info: intel device info struct
*
* Determine various intel_device_info fields at runtime.
*
* Use it when either:
* - it's judged too laborious to fill n static structures with the limit
* when a simple if statement does the job,
* - run-time checks (eg read fuse/strap registers) are needed.
*
* This function needs to be called:
* - after the MMIO has been setup as we are reading registers,
* - after the PCH has been detected,
* - before the first usage of the fields it can tweak.
*/
void intel_device_info_runtime_init(struct intel_device_info *info)
{
struct drm_i915_private *dev_priv =
container_of(info, struct drm_i915_private, info);
enum pipe pipe;
if (INTEL_GEN(dev_priv) >= 10) {
for_each_pipe(dev_priv, pipe)
info->num_scalers[pipe] = 2;
} else if (INTEL_GEN(dev_priv) == 9) {
info->num_scalers[PIPE_A] = 2;
info->num_scalers[PIPE_B] = 2;
info->num_scalers[PIPE_C] = 1;
}
BUILD_BUG_ON(I915_NUM_ENGINES >
sizeof(intel_ring_mask_t) * BITS_PER_BYTE);
/*
* Skylake and Broxton currently don't expose the topmost plane as its
* use is exclusive with the legacy cursor and we only want to expose
* one of those, not both. Until we can safely expose the topmost plane
* as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
* we don't expose the topmost plane at all to prevent ABI breakage
* down the line.
*/
if (IS_GEN10(dev_priv) || IS_GEMINILAKE(dev_priv))
for_each_pipe(dev_priv, pipe)
info->num_sprites[pipe] = 3;
else if (IS_BROXTON(dev_priv)) {
info->num_sprites[PIPE_A] = 2;
info->num_sprites[PIPE_B] = 2;
info->num_sprites[PIPE_C] = 1;
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
for_each_pipe(dev_priv, pipe)
info->num_sprites[pipe] = 2;
} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
for_each_pipe(dev_priv, pipe)
info->num_sprites[pipe] = 1;
}
if (i915_modparams.disable_display) {
DRM_INFO("Display disabled (module parameter)\n");
info->num_pipes = 0;
} else if (info->num_pipes > 0 &&
(IS_GEN7(dev_priv) || IS_GEN8(dev_priv)) &&
HAS_PCH_SPLIT(dev_priv)) {
u32 fuse_strap = I915_READ(FUSE_STRAP);
u32 sfuse_strap = I915_READ(SFUSE_STRAP);
/*
* SFUSE_STRAP is supposed to have a bit signalling the display
* is fused off. Unfortunately it seems that, at least in
* certain cases, fused off display means that PCH display
* reads don't land anywhere. In that case, we read 0s.
*
* On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
* should be set when taking over after the firmware.
*/
if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
(HAS_PCH_CPT(dev_priv) &&
!(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
DRM_INFO("Display fused off, disabling\n");
info->num_pipes = 0;
} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
DRM_INFO("PipeC fused off\n");
info->num_pipes -= 1;
}
} else if (info->num_pipes > 0 && IS_GEN9(dev_priv)) {
u32 dfsm = I915_READ(SKL_DFSM);
u8 disabled_mask = 0;
bool invalid;
int num_bits;
if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
disabled_mask |= BIT(PIPE_A);
if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
disabled_mask |= BIT(PIPE_B);
if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
disabled_mask |= BIT(PIPE_C);
num_bits = hweight8(disabled_mask);
switch (disabled_mask) {
case BIT(PIPE_A):
case BIT(PIPE_B):
case BIT(PIPE_A) | BIT(PIPE_B):
case BIT(PIPE_A) | BIT(PIPE_C):
invalid = true;
break;
default:
invalid = false;
}
if (num_bits > info->num_pipes || invalid)
DRM_ERROR("invalid pipe fuse configuration: 0x%x\n",
disabled_mask);
else
info->num_pipes -= num_bits;
}
/* Initialize slice/subslice/EU info */
if (IS_HASWELL(dev_priv))
haswell_sseu_info_init(dev_priv);
else if (IS_CHERRYVIEW(dev_priv))
cherryview_sseu_info_init(dev_priv);
else if (IS_BROADWELL(dev_priv))
broadwell_sseu_info_init(dev_priv);
else if (INTEL_GEN(dev_priv) == 9)
gen9_sseu_info_init(dev_priv);
else if (INTEL_GEN(dev_priv) == 10)
gen10_sseu_info_init(dev_priv);
else if (INTEL_GEN(dev_priv) >= 11)
gen11_sseu_info_init(dev_priv);
/* Initialize command stream timestamp frequency */
info->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
}
void intel_driver_caps_print(const struct intel_driver_caps *caps,
struct drm_printer *p)
{
drm_printf(p, "Has logical contexts? %s\n",
yesno(caps->has_logical_contexts));
drm_printf(p, "scheduler: %x\n", caps->scheduler);
}
/*
* Determine which engines are fused off in our particular hardware. Since the
* fuse register is in the blitter powerwell, we need forcewake to be ready at
* this point (but later we need to prune the forcewake domains for engines that
* are indeed fused off).
*/
void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
{
struct intel_device_info *info = mkwrite_device_info(dev_priv);
u8 vdbox_disable, vebox_disable;
u32 media_fuse;
int i;
if (INTEL_GEN(dev_priv) < 11)
return;
media_fuse = I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
vdbox_disable = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
vebox_disable = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
GEN11_GT_VEBOX_DISABLE_SHIFT;
DRM_DEBUG_DRIVER("vdbox disable: %04x\n", vdbox_disable);
for (i = 0; i < I915_MAX_VCS; i++) {
if (!HAS_ENGINE(dev_priv, _VCS(i)))
continue;
if (!(BIT(i) & vdbox_disable))
continue;
info->ring_mask &= ~ENGINE_MASK(_VCS(i));
DRM_DEBUG_DRIVER("vcs%u fused off\n", i);
}
DRM_DEBUG_DRIVER("vebox disable: %04x\n", vebox_disable);
for (i = 0; i < I915_MAX_VECS; i++) {
if (!HAS_ENGINE(dev_priv, _VECS(i)))
continue;
if (!(BIT(i) & vebox_disable))
continue;
info->ring_mask &= ~ENGINE_MASK(_VECS(i));
DRM_DEBUG_DRIVER("vecs%u fused off\n", i);
}
}