|  | /* | 
|  | * linux/kernel/posix-timers.c | 
|  | * | 
|  | * | 
|  | * 2002-10-15  Posix Clocks & timers | 
|  | *                           by George Anzinger george@mvista.com | 
|  | * | 
|  | *			     Copyright (C) 2002 2003 by MontaVista Software. | 
|  | * | 
|  | * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. | 
|  | *			     Copyright (C) 2004 Boris Hu | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or (at | 
|  | * your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | 
|  | * General Public License for more details. | 
|  |  | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | * | 
|  | * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA | 
|  | */ | 
|  |  | 
|  | /* These are all the functions necessary to implement | 
|  | * POSIX clocks & timers | 
|  | */ | 
|  | #include <linux/mm.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/mutex.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/idr.h> | 
|  | #include <linux/posix-timers.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/module.h> | 
|  |  | 
|  | /* | 
|  | * Management arrays for POSIX timers.	 Timers are kept in slab memory | 
|  | * Timer ids are allocated by an external routine that keeps track of the | 
|  | * id and the timer.  The external interface is: | 
|  | * | 
|  | * void *idr_find(struct idr *idp, int id);           to find timer_id <id> | 
|  | * int idr_get_new(struct idr *idp, void *ptr);       to get a new id and | 
|  | *                                                    related it to <ptr> | 
|  | * void idr_remove(struct idr *idp, int id);          to release <id> | 
|  | * void idr_init(struct idr *idp);                    to initialize <idp> | 
|  | *                                                    which we supply. | 
|  | * The idr_get_new *may* call slab for more memory so it must not be | 
|  | * called under a spin lock.  Likewise idr_remore may release memory | 
|  | * (but it may be ok to do this under a lock...). | 
|  | * idr_find is just a memory look up and is quite fast.  A -1 return | 
|  | * indicates that the requested id does not exist. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Lets keep our timers in a slab cache :-) | 
|  | */ | 
|  | static struct kmem_cache *posix_timers_cache; | 
|  | static struct idr posix_timers_id; | 
|  | static DEFINE_SPINLOCK(idr_lock); | 
|  |  | 
|  | /* | 
|  | * we assume that the new SIGEV_THREAD_ID shares no bits with the other | 
|  | * SIGEV values.  Here we put out an error if this assumption fails. | 
|  | */ | 
|  | #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ | 
|  | ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) | 
|  | #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The timer ID is turned into a timer address by idr_find(). | 
|  | * Verifying a valid ID consists of: | 
|  | * | 
|  | * a) checking that idr_find() returns other than -1. | 
|  | * b) checking that the timer id matches the one in the timer itself. | 
|  | * c) that the timer owner is in the callers thread group. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * CLOCKs: The POSIX standard calls for a couple of clocks and allows us | 
|  | *	    to implement others.  This structure defines the various | 
|  | *	    clocks and allows the possibility of adding others.	 We | 
|  | *	    provide an interface to add clocks to the table and expect | 
|  | *	    the "arch" code to add at least one clock that is high | 
|  | *	    resolution.	 Here we define the standard CLOCK_REALTIME as a | 
|  | *	    1/HZ resolution clock. | 
|  | * | 
|  | * RESOLUTION: Clock resolution is used to round up timer and interval | 
|  | *	    times, NOT to report clock times, which are reported with as | 
|  | *	    much resolution as the system can muster.  In some cases this | 
|  | *	    resolution may depend on the underlying clock hardware and | 
|  | *	    may not be quantifiable until run time, and only then is the | 
|  | *	    necessary code is written.	The standard says we should say | 
|  | *	    something about this issue in the documentation... | 
|  | * | 
|  | * FUNCTIONS: The CLOCKs structure defines possible functions to handle | 
|  | *	    various clock functions.  For clocks that use the standard | 
|  | *	    system timer code these entries should be NULL.  This will | 
|  | *	    allow dispatch without the overhead of indirect function | 
|  | *	    calls.  CLOCKS that depend on other sources (e.g. WWV or GPS) | 
|  | *	    must supply functions here, even if the function just returns | 
|  | *	    ENOSYS.  The standard POSIX timer management code assumes the | 
|  | *	    following: 1.) The k_itimer struct (sched.h) is used for the | 
|  | *	    timer.  2.) The list, it_lock, it_clock, it_id and it_pid | 
|  | *	    fields are not modified by timer code. | 
|  | * | 
|  | *          At this time all functions EXCEPT clock_nanosleep can be | 
|  | *          redirected by the CLOCKS structure.  Clock_nanosleep is in | 
|  | *          there, but the code ignores it. | 
|  | * | 
|  | * Permissions: It is assumed that the clock_settime() function defined | 
|  | *	    for each clock will take care of permission checks.	 Some | 
|  | *	    clocks may be set able by any user (i.e. local process | 
|  | *	    clocks) others not.	 Currently the only set able clock we | 
|  | *	    have is CLOCK_REALTIME and its high res counter part, both of | 
|  | *	    which we beg off on and pass to do_sys_settimeofday(). | 
|  | */ | 
|  |  | 
|  | static struct k_clock posix_clocks[MAX_CLOCKS]; | 
|  |  | 
|  | /* | 
|  | * These ones are defined below. | 
|  | */ | 
|  | static int common_nsleep(const clockid_t, int flags, struct timespec *t, | 
|  | struct timespec __user *rmtp); | 
|  | static void common_timer_get(struct k_itimer *, struct itimerspec *); | 
|  | static int common_timer_set(struct k_itimer *, int, | 
|  | struct itimerspec *, struct itimerspec *); | 
|  | static int common_timer_del(struct k_itimer *timer); | 
|  |  | 
|  | static enum hrtimer_restart posix_timer_fn(struct hrtimer *data); | 
|  |  | 
|  | static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags); | 
|  |  | 
|  | static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) | 
|  | { | 
|  | spin_unlock_irqrestore(&timr->it_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Call the k_clock hook function if non-null, or the default function. | 
|  | */ | 
|  | #define CLOCK_DISPATCH(clock, call, arglist) \ | 
|  | ((clock) < 0 ? posix_cpu_##call arglist : \ | 
|  | (posix_clocks[clock].call != NULL \ | 
|  | ? (*posix_clocks[clock].call) arglist : common_##call arglist)) | 
|  |  | 
|  | /* | 
|  | * Default clock hook functions when the struct k_clock passed | 
|  | * to register_posix_clock leaves a function pointer null. | 
|  | * | 
|  | * The function common_CALL is the default implementation for | 
|  | * the function pointer CALL in struct k_clock. | 
|  | */ | 
|  |  | 
|  | static inline int common_clock_getres(const clockid_t which_clock, | 
|  | struct timespec *tp) | 
|  | { | 
|  | tp->tv_sec = 0; | 
|  | tp->tv_nsec = posix_clocks[which_clock].res; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get real time for posix timers | 
|  | */ | 
|  | static int common_clock_get(clockid_t which_clock, struct timespec *tp) | 
|  | { | 
|  | ktime_get_real_ts(tp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int common_clock_set(const clockid_t which_clock, | 
|  | struct timespec *tp) | 
|  | { | 
|  | return do_sys_settimeofday(tp, NULL); | 
|  | } | 
|  |  | 
|  | static int common_timer_create(struct k_itimer *new_timer) | 
|  | { | 
|  | hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int no_timer_create(struct k_itimer *new_timer) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | static int no_nsleep(const clockid_t which_clock, int flags, | 
|  | struct timespec *tsave, struct timespec __user *rmtp) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return nonzero if we know a priori this clockid_t value is bogus. | 
|  | */ | 
|  | static inline int invalid_clockid(const clockid_t which_clock) | 
|  | { | 
|  | if (which_clock < 0)	/* CPU clock, posix_cpu_* will check it */ | 
|  | return 0; | 
|  | if ((unsigned) which_clock >= MAX_CLOCKS) | 
|  | return 1; | 
|  | if (posix_clocks[which_clock].clock_getres != NULL) | 
|  | return 0; | 
|  | if (posix_clocks[which_clock].res != 0) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get monotonic time for posix timers | 
|  | */ | 
|  | static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp) | 
|  | { | 
|  | ktime_get_ts(tp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get monotonic time for posix timers | 
|  | */ | 
|  | static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp) | 
|  | { | 
|  | getrawmonotonic(tp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp) | 
|  | { | 
|  | *tp = current_kernel_time(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int posix_get_monotonic_coarse(clockid_t which_clock, | 
|  | struct timespec *tp) | 
|  | { | 
|  | *tp = get_monotonic_coarse(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp) | 
|  | { | 
|  | *tp = ktime_to_timespec(KTIME_LOW_RES); | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * Initialize everything, well, just everything in Posix clocks/timers ;) | 
|  | */ | 
|  | static __init int init_posix_timers(void) | 
|  | { | 
|  | struct k_clock clock_realtime = { | 
|  | .clock_getres = hrtimer_get_res, | 
|  | }; | 
|  | struct k_clock clock_monotonic = { | 
|  | .clock_getres = hrtimer_get_res, | 
|  | .clock_get = posix_ktime_get_ts, | 
|  | .clock_set = do_posix_clock_nosettime, | 
|  | }; | 
|  | struct k_clock clock_monotonic_raw = { | 
|  | .clock_getres = hrtimer_get_res, | 
|  | .clock_get = posix_get_monotonic_raw, | 
|  | .clock_set = do_posix_clock_nosettime, | 
|  | .timer_create = no_timer_create, | 
|  | .nsleep = no_nsleep, | 
|  | }; | 
|  | struct k_clock clock_realtime_coarse = { | 
|  | .clock_getres = posix_get_coarse_res, | 
|  | .clock_get = posix_get_realtime_coarse, | 
|  | .clock_set = do_posix_clock_nosettime, | 
|  | .timer_create = no_timer_create, | 
|  | .nsleep = no_nsleep, | 
|  | }; | 
|  | struct k_clock clock_monotonic_coarse = { | 
|  | .clock_getres = posix_get_coarse_res, | 
|  | .clock_get = posix_get_monotonic_coarse, | 
|  | .clock_set = do_posix_clock_nosettime, | 
|  | .timer_create = no_timer_create, | 
|  | .nsleep = no_nsleep, | 
|  | }; | 
|  |  | 
|  | register_posix_clock(CLOCK_REALTIME, &clock_realtime); | 
|  | register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic); | 
|  | register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw); | 
|  | register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse); | 
|  | register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse); | 
|  |  | 
|  | posix_timers_cache = kmem_cache_create("posix_timers_cache", | 
|  | sizeof (struct k_itimer), 0, SLAB_PANIC, | 
|  | NULL); | 
|  | idr_init(&posix_timers_id); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __initcall(init_posix_timers); | 
|  |  | 
|  | static void schedule_next_timer(struct k_itimer *timr) | 
|  | { | 
|  | struct hrtimer *timer = &timr->it.real.timer; | 
|  |  | 
|  | if (timr->it.real.interval.tv64 == 0) | 
|  | return; | 
|  |  | 
|  | timr->it_overrun += (unsigned int) hrtimer_forward(timer, | 
|  | timer->base->get_time(), | 
|  | timr->it.real.interval); | 
|  |  | 
|  | timr->it_overrun_last = timr->it_overrun; | 
|  | timr->it_overrun = -1; | 
|  | ++timr->it_requeue_pending; | 
|  | hrtimer_restart(timer); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is exported for use by the signal deliver code.  It is | 
|  | * called just prior to the info block being released and passes that | 
|  | * block to us.  It's function is to update the overrun entry AND to | 
|  | * restart the timer.  It should only be called if the timer is to be | 
|  | * restarted (i.e. we have flagged this in the sys_private entry of the | 
|  | * info block). | 
|  | * | 
|  | * To protect aginst the timer going away while the interrupt is queued, | 
|  | * we require that the it_requeue_pending flag be set. | 
|  | */ | 
|  | void do_schedule_next_timer(struct siginfo *info) | 
|  | { | 
|  | struct k_itimer *timr; | 
|  | unsigned long flags; | 
|  |  | 
|  | timr = lock_timer(info->si_tid, &flags); | 
|  |  | 
|  | if (timr && timr->it_requeue_pending == info->si_sys_private) { | 
|  | if (timr->it_clock < 0) | 
|  | posix_cpu_timer_schedule(timr); | 
|  | else | 
|  | schedule_next_timer(timr); | 
|  |  | 
|  | info->si_overrun += timr->it_overrun_last; | 
|  | } | 
|  |  | 
|  | if (timr) | 
|  | unlock_timer(timr, flags); | 
|  | } | 
|  |  | 
|  | int posix_timer_event(struct k_itimer *timr, int si_private) | 
|  | { | 
|  | struct task_struct *task; | 
|  | int shared, ret = -1; | 
|  | /* | 
|  | * FIXME: if ->sigq is queued we can race with | 
|  | * dequeue_signal()->do_schedule_next_timer(). | 
|  | * | 
|  | * If dequeue_signal() sees the "right" value of | 
|  | * si_sys_private it calls do_schedule_next_timer(). | 
|  | * We re-queue ->sigq and drop ->it_lock(). | 
|  | * do_schedule_next_timer() locks the timer | 
|  | * and re-schedules it while ->sigq is pending. | 
|  | * Not really bad, but not that we want. | 
|  | */ | 
|  | timr->sigq->info.si_sys_private = si_private; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | task = pid_task(timr->it_pid, PIDTYPE_PID); | 
|  | if (task) { | 
|  | shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID); | 
|  | ret = send_sigqueue(timr->sigq, task, shared); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | /* If we failed to send the signal the timer stops. */ | 
|  | return ret > 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(posix_timer_event); | 
|  |  | 
|  | /* | 
|  | * This function gets called when a POSIX.1b interval timer expires.  It | 
|  | * is used as a callback from the kernel internal timer.  The | 
|  | * run_timer_list code ALWAYS calls with interrupts on. | 
|  |  | 
|  | * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. | 
|  | */ | 
|  | static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) | 
|  | { | 
|  | struct k_itimer *timr; | 
|  | unsigned long flags; | 
|  | int si_private = 0; | 
|  | enum hrtimer_restart ret = HRTIMER_NORESTART; | 
|  |  | 
|  | timr = container_of(timer, struct k_itimer, it.real.timer); | 
|  | spin_lock_irqsave(&timr->it_lock, flags); | 
|  |  | 
|  | if (timr->it.real.interval.tv64 != 0) | 
|  | si_private = ++timr->it_requeue_pending; | 
|  |  | 
|  | if (posix_timer_event(timr, si_private)) { | 
|  | /* | 
|  | * signal was not sent because of sig_ignor | 
|  | * we will not get a call back to restart it AND | 
|  | * it should be restarted. | 
|  | */ | 
|  | if (timr->it.real.interval.tv64 != 0) { | 
|  | ktime_t now = hrtimer_cb_get_time(timer); | 
|  |  | 
|  | /* | 
|  | * FIXME: What we really want, is to stop this | 
|  | * timer completely and restart it in case the | 
|  | * SIG_IGN is removed. This is a non trivial | 
|  | * change which involves sighand locking | 
|  | * (sigh !), which we don't want to do late in | 
|  | * the release cycle. | 
|  | * | 
|  | * For now we just let timers with an interval | 
|  | * less than a jiffie expire every jiffie to | 
|  | * avoid softirq starvation in case of SIG_IGN | 
|  | * and a very small interval, which would put | 
|  | * the timer right back on the softirq pending | 
|  | * list. By moving now ahead of time we trick | 
|  | * hrtimer_forward() to expire the timer | 
|  | * later, while we still maintain the overrun | 
|  | * accuracy, but have some inconsistency in | 
|  | * the timer_gettime() case. This is at least | 
|  | * better than a starved softirq. A more | 
|  | * complex fix which solves also another related | 
|  | * inconsistency is already in the pipeline. | 
|  | */ | 
|  | #ifdef CONFIG_HIGH_RES_TIMERS | 
|  | { | 
|  | ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ); | 
|  |  | 
|  | if (timr->it.real.interval.tv64 < kj.tv64) | 
|  | now = ktime_add(now, kj); | 
|  | } | 
|  | #endif | 
|  | timr->it_overrun += (unsigned int) | 
|  | hrtimer_forward(timer, now, | 
|  | timr->it.real.interval); | 
|  | ret = HRTIMER_RESTART; | 
|  | ++timr->it_requeue_pending; | 
|  | } | 
|  | } | 
|  |  | 
|  | unlock_timer(timr, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct pid *good_sigevent(sigevent_t * event) | 
|  | { | 
|  | struct task_struct *rtn = current->group_leader; | 
|  |  | 
|  | if ((event->sigev_notify & SIGEV_THREAD_ID ) && | 
|  | (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) || | 
|  | !same_thread_group(rtn, current) || | 
|  | (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL)) | 
|  | return NULL; | 
|  |  | 
|  | if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) && | 
|  | ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX))) | 
|  | return NULL; | 
|  |  | 
|  | return task_pid(rtn); | 
|  | } | 
|  |  | 
|  | void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock) | 
|  | { | 
|  | if ((unsigned) clock_id >= MAX_CLOCKS) { | 
|  | printk("POSIX clock register failed for clock_id %d\n", | 
|  | clock_id); | 
|  | return; | 
|  | } | 
|  |  | 
|  | posix_clocks[clock_id] = *new_clock; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(register_posix_clock); | 
|  |  | 
|  | static struct k_itimer * alloc_posix_timer(void) | 
|  | { | 
|  | struct k_itimer *tmr; | 
|  | tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); | 
|  | if (!tmr) | 
|  | return tmr; | 
|  | if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { | 
|  | kmem_cache_free(posix_timers_cache, tmr); | 
|  | return NULL; | 
|  | } | 
|  | memset(&tmr->sigq->info, 0, sizeof(siginfo_t)); | 
|  | return tmr; | 
|  | } | 
|  |  | 
|  | #define IT_ID_SET	1 | 
|  | #define IT_ID_NOT_SET	0 | 
|  | static void release_posix_timer(struct k_itimer *tmr, int it_id_set) | 
|  | { | 
|  | if (it_id_set) { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&idr_lock, flags); | 
|  | idr_remove(&posix_timers_id, tmr->it_id); | 
|  | spin_unlock_irqrestore(&idr_lock, flags); | 
|  | } | 
|  | put_pid(tmr->it_pid); | 
|  | sigqueue_free(tmr->sigq); | 
|  | kmem_cache_free(posix_timers_cache, tmr); | 
|  | } | 
|  |  | 
|  | /* Create a POSIX.1b interval timer. */ | 
|  |  | 
|  | SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, | 
|  | struct sigevent __user *, timer_event_spec, | 
|  | timer_t __user *, created_timer_id) | 
|  | { | 
|  | struct k_itimer *new_timer; | 
|  | int error, new_timer_id; | 
|  | sigevent_t event; | 
|  | int it_id_set = IT_ID_NOT_SET; | 
|  |  | 
|  | if (invalid_clockid(which_clock)) | 
|  | return -EINVAL; | 
|  |  | 
|  | new_timer = alloc_posix_timer(); | 
|  | if (unlikely(!new_timer)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | spin_lock_init(&new_timer->it_lock); | 
|  | retry: | 
|  | if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) { | 
|  | error = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  | spin_lock_irq(&idr_lock); | 
|  | error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id); | 
|  | spin_unlock_irq(&idr_lock); | 
|  | if (error) { | 
|  | if (error == -EAGAIN) | 
|  | goto retry; | 
|  | /* | 
|  | * Weird looking, but we return EAGAIN if the IDR is | 
|  | * full (proper POSIX return value for this) | 
|  | */ | 
|  | error = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | it_id_set = IT_ID_SET; | 
|  | new_timer->it_id = (timer_t) new_timer_id; | 
|  | new_timer->it_clock = which_clock; | 
|  | new_timer->it_overrun = -1; | 
|  |  | 
|  | if (timer_event_spec) { | 
|  | if (copy_from_user(&event, timer_event_spec, sizeof (event))) { | 
|  | error = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | rcu_read_lock(); | 
|  | new_timer->it_pid = get_pid(good_sigevent(&event)); | 
|  | rcu_read_unlock(); | 
|  | if (!new_timer->it_pid) { | 
|  | error = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | event.sigev_notify = SIGEV_SIGNAL; | 
|  | event.sigev_signo = SIGALRM; | 
|  | event.sigev_value.sival_int = new_timer->it_id; | 
|  | new_timer->it_pid = get_pid(task_tgid(current)); | 
|  | } | 
|  |  | 
|  | new_timer->it_sigev_notify     = event.sigev_notify; | 
|  | new_timer->sigq->info.si_signo = event.sigev_signo; | 
|  | new_timer->sigq->info.si_value = event.sigev_value; | 
|  | new_timer->sigq->info.si_tid   = new_timer->it_id; | 
|  | new_timer->sigq->info.si_code  = SI_TIMER; | 
|  |  | 
|  | if (copy_to_user(created_timer_id, | 
|  | &new_timer_id, sizeof (new_timer_id))) { | 
|  | error = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer)); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | new_timer->it_signal = current->signal; | 
|  | list_add(&new_timer->list, ¤t->signal->posix_timers); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | return 0; | 
|  | /* | 
|  | * In the case of the timer belonging to another task, after | 
|  | * the task is unlocked, the timer is owned by the other task | 
|  | * and may cease to exist at any time.  Don't use or modify | 
|  | * new_timer after the unlock call. | 
|  | */ | 
|  | out: | 
|  | release_posix_timer(new_timer, it_id_set); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Locking issues: We need to protect the result of the id look up until | 
|  | * we get the timer locked down so it is not deleted under us.  The | 
|  | * removal is done under the idr spinlock so we use that here to bridge | 
|  | * the find to the timer lock.  To avoid a dead lock, the timer id MUST | 
|  | * be release with out holding the timer lock. | 
|  | */ | 
|  | static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags) | 
|  | { | 
|  | struct k_itimer *timr; | 
|  | /* | 
|  | * Watch out here.  We do a irqsave on the idr_lock and pass the | 
|  | * flags part over to the timer lock.  Must not let interrupts in | 
|  | * while we are moving the lock. | 
|  | */ | 
|  | spin_lock_irqsave(&idr_lock, *flags); | 
|  | timr = idr_find(&posix_timers_id, (int)timer_id); | 
|  | if (timr) { | 
|  | spin_lock(&timr->it_lock); | 
|  | if (timr->it_signal == current->signal) { | 
|  | spin_unlock(&idr_lock); | 
|  | return timr; | 
|  | } | 
|  | spin_unlock(&timr->it_lock); | 
|  | } | 
|  | spin_unlock_irqrestore(&idr_lock, *flags); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the time remaining on a POSIX.1b interval timer.  This function | 
|  | * is ALWAYS called with spin_lock_irq on the timer, thus it must not | 
|  | * mess with irq. | 
|  | * | 
|  | * We have a couple of messes to clean up here.  First there is the case | 
|  | * of a timer that has a requeue pending.  These timers should appear to | 
|  | * be in the timer list with an expiry as if we were to requeue them | 
|  | * now. | 
|  | * | 
|  | * The second issue is the SIGEV_NONE timer which may be active but is | 
|  | * not really ever put in the timer list (to save system resources). | 
|  | * This timer may be expired, and if so, we will do it here.  Otherwise | 
|  | * it is the same as a requeue pending timer WRT to what we should | 
|  | * report. | 
|  | */ | 
|  | static void | 
|  | common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) | 
|  | { | 
|  | ktime_t now, remaining, iv; | 
|  | struct hrtimer *timer = &timr->it.real.timer; | 
|  |  | 
|  | memset(cur_setting, 0, sizeof(struct itimerspec)); | 
|  |  | 
|  | iv = timr->it.real.interval; | 
|  |  | 
|  | /* interval timer ? */ | 
|  | if (iv.tv64) | 
|  | cur_setting->it_interval = ktime_to_timespec(iv); | 
|  | else if (!hrtimer_active(timer) && | 
|  | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) | 
|  | return; | 
|  |  | 
|  | now = timer->base->get_time(); | 
|  |  | 
|  | /* | 
|  | * When a requeue is pending or this is a SIGEV_NONE | 
|  | * timer move the expiry time forward by intervals, so | 
|  | * expiry is > now. | 
|  | */ | 
|  | if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING || | 
|  | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) | 
|  | timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv); | 
|  |  | 
|  | remaining = ktime_sub(hrtimer_get_expires(timer), now); | 
|  | /* Return 0 only, when the timer is expired and not pending */ | 
|  | if (remaining.tv64 <= 0) { | 
|  | /* | 
|  | * A single shot SIGEV_NONE timer must return 0, when | 
|  | * it is expired ! | 
|  | */ | 
|  | if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) | 
|  | cur_setting->it_value.tv_nsec = 1; | 
|  | } else | 
|  | cur_setting->it_value = ktime_to_timespec(remaining); | 
|  | } | 
|  |  | 
|  | /* Get the time remaining on a POSIX.1b interval timer. */ | 
|  | SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, | 
|  | struct itimerspec __user *, setting) | 
|  | { | 
|  | struct k_itimer *timr; | 
|  | struct itimerspec cur_setting; | 
|  | unsigned long flags; | 
|  |  | 
|  | timr = lock_timer(timer_id, &flags); | 
|  | if (!timr) | 
|  | return -EINVAL; | 
|  |  | 
|  | CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting)); | 
|  |  | 
|  | unlock_timer(timr, flags); | 
|  |  | 
|  | if (copy_to_user(setting, &cur_setting, sizeof (cur_setting))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the number of overruns of a POSIX.1b interval timer.  This is to | 
|  | * be the overrun of the timer last delivered.  At the same time we are | 
|  | * accumulating overruns on the next timer.  The overrun is frozen when | 
|  | * the signal is delivered, either at the notify time (if the info block | 
|  | * is not queued) or at the actual delivery time (as we are informed by | 
|  | * the call back to do_schedule_next_timer().  So all we need to do is | 
|  | * to pick up the frozen overrun. | 
|  | */ | 
|  | SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) | 
|  | { | 
|  | struct k_itimer *timr; | 
|  | int overrun; | 
|  | unsigned long flags; | 
|  |  | 
|  | timr = lock_timer(timer_id, &flags); | 
|  | if (!timr) | 
|  | return -EINVAL; | 
|  |  | 
|  | overrun = timr->it_overrun_last; | 
|  | unlock_timer(timr, flags); | 
|  |  | 
|  | return overrun; | 
|  | } | 
|  |  | 
|  | /* Set a POSIX.1b interval timer. */ | 
|  | /* timr->it_lock is taken. */ | 
|  | static int | 
|  | common_timer_set(struct k_itimer *timr, int flags, | 
|  | struct itimerspec *new_setting, struct itimerspec *old_setting) | 
|  | { | 
|  | struct hrtimer *timer = &timr->it.real.timer; | 
|  | enum hrtimer_mode mode; | 
|  |  | 
|  | if (old_setting) | 
|  | common_timer_get(timr, old_setting); | 
|  |  | 
|  | /* disable the timer */ | 
|  | timr->it.real.interval.tv64 = 0; | 
|  | /* | 
|  | * careful here.  If smp we could be in the "fire" routine which will | 
|  | * be spinning as we hold the lock.  But this is ONLY an SMP issue. | 
|  | */ | 
|  | if (hrtimer_try_to_cancel(timer) < 0) | 
|  | return TIMER_RETRY; | 
|  |  | 
|  | timr->it_requeue_pending = (timr->it_requeue_pending + 2) & | 
|  | ~REQUEUE_PENDING; | 
|  | timr->it_overrun_last = 0; | 
|  |  | 
|  | /* switch off the timer when it_value is zero */ | 
|  | if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) | 
|  | return 0; | 
|  |  | 
|  | mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; | 
|  | hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); | 
|  | timr->it.real.timer.function = posix_timer_fn; | 
|  |  | 
|  | hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value)); | 
|  |  | 
|  | /* Convert interval */ | 
|  | timr->it.real.interval = timespec_to_ktime(new_setting->it_interval); | 
|  |  | 
|  | /* SIGEV_NONE timers are not queued ! See common_timer_get */ | 
|  | if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) { | 
|  | /* Setup correct expiry time for relative timers */ | 
|  | if (mode == HRTIMER_MODE_REL) { | 
|  | hrtimer_add_expires(timer, timer->base->get_time()); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | hrtimer_start_expires(timer, mode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Set a POSIX.1b interval timer */ | 
|  | SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, | 
|  | const struct itimerspec __user *, new_setting, | 
|  | struct itimerspec __user *, old_setting) | 
|  | { | 
|  | struct k_itimer *timr; | 
|  | struct itimerspec new_spec, old_spec; | 
|  | int error = 0; | 
|  | unsigned long flag; | 
|  | struct itimerspec *rtn = old_setting ? &old_spec : NULL; | 
|  |  | 
|  | if (!new_setting) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (!timespec_valid(&new_spec.it_interval) || | 
|  | !timespec_valid(&new_spec.it_value)) | 
|  | return -EINVAL; | 
|  | retry: | 
|  | timr = lock_timer(timer_id, &flag); | 
|  | if (!timr) | 
|  | return -EINVAL; | 
|  |  | 
|  | error = CLOCK_DISPATCH(timr->it_clock, timer_set, | 
|  | (timr, flags, &new_spec, rtn)); | 
|  |  | 
|  | unlock_timer(timr, flag); | 
|  | if (error == TIMER_RETRY) { | 
|  | rtn = NULL;	// We already got the old time... | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (old_setting && !error && | 
|  | copy_to_user(old_setting, &old_spec, sizeof (old_spec))) | 
|  | error = -EFAULT; | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static inline int common_timer_del(struct k_itimer *timer) | 
|  | { | 
|  | timer->it.real.interval.tv64 = 0; | 
|  |  | 
|  | if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0) | 
|  | return TIMER_RETRY; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int timer_delete_hook(struct k_itimer *timer) | 
|  | { | 
|  | return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer)); | 
|  | } | 
|  |  | 
|  | /* Delete a POSIX.1b interval timer. */ | 
|  | SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) | 
|  | { | 
|  | struct k_itimer *timer; | 
|  | unsigned long flags; | 
|  |  | 
|  | retry_delete: | 
|  | timer = lock_timer(timer_id, &flags); | 
|  | if (!timer) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (timer_delete_hook(timer) == TIMER_RETRY) { | 
|  | unlock_timer(timer, flags); | 
|  | goto retry_delete; | 
|  | } | 
|  |  | 
|  | spin_lock(¤t->sighand->siglock); | 
|  | list_del(&timer->list); | 
|  | spin_unlock(¤t->sighand->siglock); | 
|  | /* | 
|  | * This keeps any tasks waiting on the spin lock from thinking | 
|  | * they got something (see the lock code above). | 
|  | */ | 
|  | timer->it_signal = NULL; | 
|  |  | 
|  | unlock_timer(timer, flags); | 
|  | release_posix_timer(timer, IT_ID_SET); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return timer owned by the process, used by exit_itimers | 
|  | */ | 
|  | static void itimer_delete(struct k_itimer *timer) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | retry_delete: | 
|  | spin_lock_irqsave(&timer->it_lock, flags); | 
|  |  | 
|  | if (timer_delete_hook(timer) == TIMER_RETRY) { | 
|  | unlock_timer(timer, flags); | 
|  | goto retry_delete; | 
|  | } | 
|  | list_del(&timer->list); | 
|  | /* | 
|  | * This keeps any tasks waiting on the spin lock from thinking | 
|  | * they got something (see the lock code above). | 
|  | */ | 
|  | timer->it_signal = NULL; | 
|  |  | 
|  | unlock_timer(timer, flags); | 
|  | release_posix_timer(timer, IT_ID_SET); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called by do_exit or de_thread, only when there are no more | 
|  | * references to the shared signal_struct. | 
|  | */ | 
|  | void exit_itimers(struct signal_struct *sig) | 
|  | { | 
|  | struct k_itimer *tmr; | 
|  |  | 
|  | while (!list_empty(&sig->posix_timers)) { | 
|  | tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); | 
|  | itimer_delete(tmr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Not available / possible... functions */ | 
|  | int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(do_posix_clock_nosettime); | 
|  |  | 
|  | int do_posix_clock_nonanosleep(const clockid_t clock, int flags, | 
|  | struct timespec *t, struct timespec __user *r) | 
|  | { | 
|  | #ifndef ENOTSUP | 
|  | return -EOPNOTSUPP;	/* aka ENOTSUP in userland for POSIX */ | 
|  | #else  /*  parisc does define it separately.  */ | 
|  | return -ENOTSUP; | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep); | 
|  |  | 
|  | SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, | 
|  | const struct timespec __user *, tp) | 
|  | { | 
|  | struct timespec new_tp; | 
|  |  | 
|  | if (invalid_clockid(which_clock)) | 
|  | return -EINVAL; | 
|  | if (copy_from_user(&new_tp, tp, sizeof (*tp))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp)); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, | 
|  | struct timespec __user *,tp) | 
|  | { | 
|  | struct timespec kernel_tp; | 
|  | int error; | 
|  |  | 
|  | if (invalid_clockid(which_clock)) | 
|  | return -EINVAL; | 
|  | error = CLOCK_DISPATCH(which_clock, clock_get, | 
|  | (which_clock, &kernel_tp)); | 
|  | if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp))) | 
|  | error = -EFAULT; | 
|  |  | 
|  | return error; | 
|  |  | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, | 
|  | struct timespec __user *, tp) | 
|  | { | 
|  | struct timespec rtn_tp; | 
|  | int error; | 
|  |  | 
|  | if (invalid_clockid(which_clock)) | 
|  | return -EINVAL; | 
|  |  | 
|  | error = CLOCK_DISPATCH(which_clock, clock_getres, | 
|  | (which_clock, &rtn_tp)); | 
|  |  | 
|  | if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) { | 
|  | error = -EFAULT; | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * nanosleep for monotonic and realtime clocks | 
|  | */ | 
|  | static int common_nsleep(const clockid_t which_clock, int flags, | 
|  | struct timespec *tsave, struct timespec __user *rmtp) | 
|  | { | 
|  | return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ? | 
|  | HRTIMER_MODE_ABS : HRTIMER_MODE_REL, | 
|  | which_clock); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, | 
|  | const struct timespec __user *, rqtp, | 
|  | struct timespec __user *, rmtp) | 
|  | { | 
|  | struct timespec t; | 
|  |  | 
|  | if (invalid_clockid(which_clock)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_user(&t, rqtp, sizeof (struct timespec))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (!timespec_valid(&t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return CLOCK_DISPATCH(which_clock, nsleep, | 
|  | (which_clock, flags, &t, rmtp)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * nanosleep_restart for monotonic and realtime clocks | 
|  | */ | 
|  | static int common_nsleep_restart(struct restart_block *restart_block) | 
|  | { | 
|  | return hrtimer_nanosleep_restart(restart_block); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This will restart clock_nanosleep. This is required only by | 
|  | * compat_clock_nanosleep_restart for now. | 
|  | */ | 
|  | long | 
|  | clock_nanosleep_restart(struct restart_block *restart_block) | 
|  | { | 
|  | clockid_t which_clock = restart_block->arg0; | 
|  |  | 
|  | return CLOCK_DISPATCH(which_clock, nsleep_restart, | 
|  | (restart_block)); | 
|  | } |