| /* |
| * Copyright (C) 1991, 1992 Linus Torvalds |
| * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs |
| * |
| * Pentium III FXSR, SSE support |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| */ |
| |
| /* |
| * Handle hardware traps and faults. |
| */ |
| #include <linux/interrupt.h> |
| #include <linux/kallsyms.h> |
| #include <linux/spinlock.h> |
| #include <linux/kprobes.h> |
| #include <linux/uaccess.h> |
| #include <linux/kdebug.h> |
| #include <linux/kgdb.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/ptrace.h> |
| #include <linux/string.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/kexec.h> |
| #include <linux/sched.h> |
| #include <linux/timer.h> |
| #include <linux/init.h> |
| #include <linux/bug.h> |
| #include <linux/nmi.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/io.h> |
| |
| #ifdef CONFIG_EISA |
| #include <linux/ioport.h> |
| #include <linux/eisa.h> |
| #endif |
| |
| #ifdef CONFIG_MCA |
| #include <linux/mca.h> |
| #endif |
| |
| #if defined(CONFIG_EDAC) |
| #include <linux/edac.h> |
| #endif |
| |
| #include <asm/kmemcheck.h> |
| #include <asm/stacktrace.h> |
| #include <asm/processor.h> |
| #include <asm/debugreg.h> |
| #include <asm/atomic.h> |
| #include <asm/system.h> |
| #include <asm/traps.h> |
| #include <asm/desc.h> |
| #include <asm/i387.h> |
| #include <asm/mce.h> |
| |
| #include <asm/mach_traps.h> |
| |
| #ifdef CONFIG_X86_64 |
| #include <asm/x86_init.h> |
| #include <asm/pgalloc.h> |
| #include <asm/proto.h> |
| #else |
| #include <asm/processor-flags.h> |
| #include <asm/setup.h> |
| |
| asmlinkage int system_call(void); |
| |
| /* Do we ignore FPU interrupts ? */ |
| char ignore_fpu_irq; |
| |
| /* |
| * The IDT has to be page-aligned to simplify the Pentium |
| * F0 0F bug workaround. |
| */ |
| gate_desc idt_table[NR_VECTORS] __page_aligned_data = { { { { 0, 0 } } }, }; |
| #endif |
| |
| DECLARE_BITMAP(used_vectors, NR_VECTORS); |
| EXPORT_SYMBOL_GPL(used_vectors); |
| |
| static int ignore_nmis; |
| |
| int unknown_nmi_panic; |
| /* |
| * Prevent NMI reason port (0x61) being accessed simultaneously, can |
| * only be used in NMI handler. |
| */ |
| static DEFINE_RAW_SPINLOCK(nmi_reason_lock); |
| |
| static inline void conditional_sti(struct pt_regs *regs) |
| { |
| if (regs->flags & X86_EFLAGS_IF) |
| local_irq_enable(); |
| } |
| |
| static inline void preempt_conditional_sti(struct pt_regs *regs) |
| { |
| inc_preempt_count(); |
| if (regs->flags & X86_EFLAGS_IF) |
| local_irq_enable(); |
| } |
| |
| static inline void conditional_cli(struct pt_regs *regs) |
| { |
| if (regs->flags & X86_EFLAGS_IF) |
| local_irq_disable(); |
| } |
| |
| static inline void preempt_conditional_cli(struct pt_regs *regs) |
| { |
| if (regs->flags & X86_EFLAGS_IF) |
| local_irq_disable(); |
| dec_preempt_count(); |
| } |
| |
| static void __kprobes |
| do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, |
| long error_code, siginfo_t *info) |
| { |
| struct task_struct *tsk = current; |
| |
| #ifdef CONFIG_X86_32 |
| if (regs->flags & X86_VM_MASK) { |
| /* |
| * traps 0, 1, 3, 4, and 5 should be forwarded to vm86. |
| * On nmi (interrupt 2), do_trap should not be called. |
| */ |
| if (trapnr < 6) |
| goto vm86_trap; |
| goto trap_signal; |
| } |
| #endif |
| |
| if (!user_mode(regs)) |
| goto kernel_trap; |
| |
| #ifdef CONFIG_X86_32 |
| trap_signal: |
| #endif |
| /* |
| * We want error_code and trap_no set for userspace faults and |
| * kernelspace faults which result in die(), but not |
| * kernelspace faults which are fixed up. die() gives the |
| * process no chance to handle the signal and notice the |
| * kernel fault information, so that won't result in polluting |
| * the information about previously queued, but not yet |
| * delivered, faults. See also do_general_protection below. |
| */ |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_no = trapnr; |
| |
| #ifdef CONFIG_X86_64 |
| if (show_unhandled_signals && unhandled_signal(tsk, signr) && |
| printk_ratelimit()) { |
| printk(KERN_INFO |
| "%s[%d] trap %s ip:%lx sp:%lx error:%lx", |
| tsk->comm, tsk->pid, str, |
| regs->ip, regs->sp, error_code); |
| print_vma_addr(" in ", regs->ip); |
| printk("\n"); |
| } |
| #endif |
| |
| if (info) |
| force_sig_info(signr, info, tsk); |
| else |
| force_sig(signr, tsk); |
| return; |
| |
| kernel_trap: |
| if (!fixup_exception(regs)) { |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_no = trapnr; |
| die(str, regs, error_code); |
| } |
| return; |
| |
| #ifdef CONFIG_X86_32 |
| vm86_trap: |
| if (handle_vm86_trap((struct kernel_vm86_regs *) regs, |
| error_code, trapnr)) |
| goto trap_signal; |
| return; |
| #endif |
| } |
| |
| #define DO_ERROR(trapnr, signr, str, name) \ |
| dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ |
| { \ |
| if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ |
| == NOTIFY_STOP) \ |
| return; \ |
| conditional_sti(regs); \ |
| do_trap(trapnr, signr, str, regs, error_code, NULL); \ |
| } |
| |
| #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \ |
| dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ |
| { \ |
| siginfo_t info; \ |
| info.si_signo = signr; \ |
| info.si_errno = 0; \ |
| info.si_code = sicode; \ |
| info.si_addr = (void __user *)siaddr; \ |
| if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ |
| == NOTIFY_STOP) \ |
| return; \ |
| conditional_sti(regs); \ |
| do_trap(trapnr, signr, str, regs, error_code, &info); \ |
| } |
| |
| DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip) |
| DO_ERROR(4, SIGSEGV, "overflow", overflow) |
| DO_ERROR(5, SIGSEGV, "bounds", bounds) |
| DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip) |
| DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun) |
| DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS) |
| DO_ERROR(11, SIGBUS, "segment not present", segment_not_present) |
| #ifdef CONFIG_X86_32 |
| DO_ERROR(12, SIGBUS, "stack segment", stack_segment) |
| #endif |
| DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0) |
| |
| #ifdef CONFIG_X86_64 |
| /* Runs on IST stack */ |
| dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code) |
| { |
| if (notify_die(DIE_TRAP, "stack segment", regs, error_code, |
| 12, SIGBUS) == NOTIFY_STOP) |
| return; |
| preempt_conditional_sti(regs); |
| do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL); |
| preempt_conditional_cli(regs); |
| } |
| |
| dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) |
| { |
| static const char str[] = "double fault"; |
| struct task_struct *tsk = current; |
| |
| /* Return not checked because double check cannot be ignored */ |
| notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV); |
| |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_no = 8; |
| |
| /* |
| * This is always a kernel trap and never fixable (and thus must |
| * never return). |
| */ |
| for (;;) |
| die(str, regs, error_code); |
| } |
| #endif |
| |
| dotraplinkage void __kprobes |
| do_general_protection(struct pt_regs *regs, long error_code) |
| { |
| struct task_struct *tsk; |
| |
| conditional_sti(regs); |
| |
| #ifdef CONFIG_X86_32 |
| if (regs->flags & X86_VM_MASK) |
| goto gp_in_vm86; |
| #endif |
| |
| tsk = current; |
| if (!user_mode(regs)) |
| goto gp_in_kernel; |
| |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_no = 13; |
| |
| if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && |
| printk_ratelimit()) { |
| printk(KERN_INFO |
| "%s[%d] general protection ip:%lx sp:%lx error:%lx", |
| tsk->comm, task_pid_nr(tsk), |
| regs->ip, regs->sp, error_code); |
| print_vma_addr(" in ", regs->ip); |
| printk("\n"); |
| } |
| |
| force_sig(SIGSEGV, tsk); |
| return; |
| |
| #ifdef CONFIG_X86_32 |
| gp_in_vm86: |
| local_irq_enable(); |
| handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); |
| return; |
| #endif |
| |
| gp_in_kernel: |
| if (fixup_exception(regs)) |
| return; |
| |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_no = 13; |
| if (notify_die(DIE_GPF, "general protection fault", regs, |
| error_code, 13, SIGSEGV) == NOTIFY_STOP) |
| return; |
| die("general protection fault", regs, error_code); |
| } |
| |
| static int __init setup_unknown_nmi_panic(char *str) |
| { |
| unknown_nmi_panic = 1; |
| return 1; |
| } |
| __setup("unknown_nmi_panic", setup_unknown_nmi_panic); |
| |
| static notrace __kprobes void |
| pci_serr_error(unsigned char reason, struct pt_regs *regs) |
| { |
| pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n", |
| reason, smp_processor_id()); |
| |
| /* |
| * On some machines, PCI SERR line is used to report memory |
| * errors. EDAC makes use of it. |
| */ |
| #if defined(CONFIG_EDAC) |
| if (edac_handler_set()) { |
| edac_atomic_assert_error(); |
| return; |
| } |
| #endif |
| |
| if (panic_on_unrecovered_nmi) |
| panic("NMI: Not continuing"); |
| |
| pr_emerg("Dazed and confused, but trying to continue\n"); |
| |
| /* Clear and disable the PCI SERR error line. */ |
| reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR; |
| outb(reason, NMI_REASON_PORT); |
| } |
| |
| static notrace __kprobes void |
| io_check_error(unsigned char reason, struct pt_regs *regs) |
| { |
| unsigned long i; |
| |
| pr_emerg( |
| "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n", |
| reason, smp_processor_id()); |
| show_registers(regs); |
| |
| if (panic_on_io_nmi) |
| panic("NMI IOCK error: Not continuing"); |
| |
| /* Re-enable the IOCK line, wait for a few seconds */ |
| reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK; |
| outb(reason, NMI_REASON_PORT); |
| |
| i = 20000; |
| while (--i) { |
| touch_nmi_watchdog(); |
| udelay(100); |
| } |
| |
| reason &= ~NMI_REASON_CLEAR_IOCHK; |
| outb(reason, NMI_REASON_PORT); |
| } |
| |
| static notrace __kprobes void |
| unknown_nmi_error(unsigned char reason, struct pt_regs *regs) |
| { |
| if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) == |
| NOTIFY_STOP) |
| return; |
| #ifdef CONFIG_MCA |
| /* |
| * Might actually be able to figure out what the guilty party |
| * is: |
| */ |
| if (MCA_bus) { |
| mca_handle_nmi(); |
| return; |
| } |
| #endif |
| pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", |
| reason, smp_processor_id()); |
| |
| pr_emerg("Do you have a strange power saving mode enabled?\n"); |
| if (unknown_nmi_panic || panic_on_unrecovered_nmi) |
| panic("NMI: Not continuing"); |
| |
| pr_emerg("Dazed and confused, but trying to continue\n"); |
| } |
| |
| static notrace __kprobes void default_do_nmi(struct pt_regs *regs) |
| { |
| unsigned char reason = 0; |
| |
| /* |
| * CPU-specific NMI must be processed before non-CPU-specific |
| * NMI, otherwise we may lose it, because the CPU-specific |
| * NMI can not be detected/processed on other CPUs. |
| */ |
| if (notify_die(DIE_NMI, "nmi", regs, 0, 2, SIGINT) == NOTIFY_STOP) |
| return; |
| |
| /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */ |
| raw_spin_lock(&nmi_reason_lock); |
| reason = get_nmi_reason(); |
| |
| if (reason & NMI_REASON_MASK) { |
| if (reason & NMI_REASON_SERR) |
| pci_serr_error(reason, regs); |
| else if (reason & NMI_REASON_IOCHK) |
| io_check_error(reason, regs); |
| #ifdef CONFIG_X86_32 |
| /* |
| * Reassert NMI in case it became active |
| * meanwhile as it's edge-triggered: |
| */ |
| reassert_nmi(); |
| #endif |
| raw_spin_unlock(&nmi_reason_lock); |
| return; |
| } |
| raw_spin_unlock(&nmi_reason_lock); |
| |
| unknown_nmi_error(reason, regs); |
| } |
| |
| dotraplinkage notrace __kprobes void |
| do_nmi(struct pt_regs *regs, long error_code) |
| { |
| nmi_enter(); |
| |
| inc_irq_stat(__nmi_count); |
| |
| if (!ignore_nmis) |
| default_do_nmi(regs); |
| |
| nmi_exit(); |
| } |
| |
| void stop_nmi(void) |
| { |
| ignore_nmis++; |
| } |
| |
| void restart_nmi(void) |
| { |
| ignore_nmis--; |
| } |
| |
| /* May run on IST stack. */ |
| dotraplinkage void __kprobes do_int3(struct pt_regs *regs, long error_code) |
| { |
| #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP |
| if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) |
| == NOTIFY_STOP) |
| return; |
| #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ |
| #ifdef CONFIG_KPROBES |
| if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) |
| == NOTIFY_STOP) |
| return; |
| #else |
| if (notify_die(DIE_TRAP, "int3", regs, error_code, 3, SIGTRAP) |
| == NOTIFY_STOP) |
| return; |
| #endif |
| |
| preempt_conditional_sti(regs); |
| do_trap(3, SIGTRAP, "int3", regs, error_code, NULL); |
| preempt_conditional_cli(regs); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| /* |
| * Help handler running on IST stack to switch back to user stack |
| * for scheduling or signal handling. The actual stack switch is done in |
| * entry.S |
| */ |
| asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs) |
| { |
| struct pt_regs *regs = eregs; |
| /* Did already sync */ |
| if (eregs == (struct pt_regs *)eregs->sp) |
| ; |
| /* Exception from user space */ |
| else if (user_mode(eregs)) |
| regs = task_pt_regs(current); |
| /* |
| * Exception from kernel and interrupts are enabled. Move to |
| * kernel process stack. |
| */ |
| else if (eregs->flags & X86_EFLAGS_IF) |
| regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs)); |
| if (eregs != regs) |
| *regs = *eregs; |
| return regs; |
| } |
| #endif |
| |
| /* |
| * Our handling of the processor debug registers is non-trivial. |
| * We do not clear them on entry and exit from the kernel. Therefore |
| * it is possible to get a watchpoint trap here from inside the kernel. |
| * However, the code in ./ptrace.c has ensured that the user can |
| * only set watchpoints on userspace addresses. Therefore the in-kernel |
| * watchpoint trap can only occur in code which is reading/writing |
| * from user space. Such code must not hold kernel locks (since it |
| * can equally take a page fault), therefore it is safe to call |
| * force_sig_info even though that claims and releases locks. |
| * |
| * Code in ./signal.c ensures that the debug control register |
| * is restored before we deliver any signal, and therefore that |
| * user code runs with the correct debug control register even though |
| * we clear it here. |
| * |
| * Being careful here means that we don't have to be as careful in a |
| * lot of more complicated places (task switching can be a bit lazy |
| * about restoring all the debug state, and ptrace doesn't have to |
| * find every occurrence of the TF bit that could be saved away even |
| * by user code) |
| * |
| * May run on IST stack. |
| */ |
| dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code) |
| { |
| struct task_struct *tsk = current; |
| int user_icebp = 0; |
| unsigned long dr6; |
| int si_code; |
| |
| get_debugreg(dr6, 6); |
| |
| /* Filter out all the reserved bits which are preset to 1 */ |
| dr6 &= ~DR6_RESERVED; |
| |
| /* |
| * If dr6 has no reason to give us about the origin of this trap, |
| * then it's very likely the result of an icebp/int01 trap. |
| * User wants a sigtrap for that. |
| */ |
| if (!dr6 && user_mode(regs)) |
| user_icebp = 1; |
| |
| /* Catch kmemcheck conditions first of all! */ |
| if ((dr6 & DR_STEP) && kmemcheck_trap(regs)) |
| return; |
| |
| /* DR6 may or may not be cleared by the CPU */ |
| set_debugreg(0, 6); |
| |
| /* |
| * The processor cleared BTF, so don't mark that we need it set. |
| */ |
| clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); |
| |
| /* Store the virtualized DR6 value */ |
| tsk->thread.debugreg6 = dr6; |
| |
| if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code, |
| SIGTRAP) == NOTIFY_STOP) |
| return; |
| |
| /* It's safe to allow irq's after DR6 has been saved */ |
| preempt_conditional_sti(regs); |
| |
| if (regs->flags & X86_VM_MASK) { |
| handle_vm86_trap((struct kernel_vm86_regs *) regs, |
| error_code, 1); |
| preempt_conditional_cli(regs); |
| return; |
| } |
| |
| /* |
| * Single-stepping through system calls: ignore any exceptions in |
| * kernel space, but re-enable TF when returning to user mode. |
| * |
| * We already checked v86 mode above, so we can check for kernel mode |
| * by just checking the CPL of CS. |
| */ |
| if ((dr6 & DR_STEP) && !user_mode(regs)) { |
| tsk->thread.debugreg6 &= ~DR_STEP; |
| set_tsk_thread_flag(tsk, TIF_SINGLESTEP); |
| regs->flags &= ~X86_EFLAGS_TF; |
| } |
| si_code = get_si_code(tsk->thread.debugreg6); |
| if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) |
| send_sigtrap(tsk, regs, error_code, si_code); |
| preempt_conditional_cli(regs); |
| |
| return; |
| } |
| |
| /* |
| * Note that we play around with the 'TS' bit in an attempt to get |
| * the correct behaviour even in the presence of the asynchronous |
| * IRQ13 behaviour |
| */ |
| void math_error(struct pt_regs *regs, int error_code, int trapnr) |
| { |
| struct task_struct *task = current; |
| siginfo_t info; |
| unsigned short err; |
| char *str = (trapnr == 16) ? "fpu exception" : "simd exception"; |
| |
| if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP) |
| return; |
| conditional_sti(regs); |
| |
| if (!user_mode_vm(regs)) |
| { |
| if (!fixup_exception(regs)) { |
| task->thread.error_code = error_code; |
| task->thread.trap_no = trapnr; |
| die(str, regs, error_code); |
| } |
| return; |
| } |
| |
| /* |
| * Save the info for the exception handler and clear the error. |
| */ |
| save_init_fpu(task); |
| task->thread.trap_no = trapnr; |
| task->thread.error_code = error_code; |
| info.si_signo = SIGFPE; |
| info.si_errno = 0; |
| info.si_addr = (void __user *)regs->ip; |
| if (trapnr == 16) { |
| unsigned short cwd, swd; |
| /* |
| * (~cwd & swd) will mask out exceptions that are not set to unmasked |
| * status. 0x3f is the exception bits in these regs, 0x200 is the |
| * C1 reg you need in case of a stack fault, 0x040 is the stack |
| * fault bit. We should only be taking one exception at a time, |
| * so if this combination doesn't produce any single exception, |
| * then we have a bad program that isn't synchronizing its FPU usage |
| * and it will suffer the consequences since we won't be able to |
| * fully reproduce the context of the exception |
| */ |
| cwd = get_fpu_cwd(task); |
| swd = get_fpu_swd(task); |
| |
| err = swd & ~cwd; |
| } else { |
| /* |
| * The SIMD FPU exceptions are handled a little differently, as there |
| * is only a single status/control register. Thus, to determine which |
| * unmasked exception was caught we must mask the exception mask bits |
| * at 0x1f80, and then use these to mask the exception bits at 0x3f. |
| */ |
| unsigned short mxcsr = get_fpu_mxcsr(task); |
| err = ~(mxcsr >> 7) & mxcsr; |
| } |
| |
| if (err & 0x001) { /* Invalid op */ |
| /* |
| * swd & 0x240 == 0x040: Stack Underflow |
| * swd & 0x240 == 0x240: Stack Overflow |
| * User must clear the SF bit (0x40) if set |
| */ |
| info.si_code = FPE_FLTINV; |
| } else if (err & 0x004) { /* Divide by Zero */ |
| info.si_code = FPE_FLTDIV; |
| } else if (err & 0x008) { /* Overflow */ |
| info.si_code = FPE_FLTOVF; |
| } else if (err & 0x012) { /* Denormal, Underflow */ |
| info.si_code = FPE_FLTUND; |
| } else if (err & 0x020) { /* Precision */ |
| info.si_code = FPE_FLTRES; |
| } else { |
| /* |
| * If we're using IRQ 13, or supposedly even some trap 16 |
| * implementations, it's possible we get a spurious trap... |
| */ |
| return; /* Spurious trap, no error */ |
| } |
| force_sig_info(SIGFPE, &info, task); |
| } |
| |
| dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) |
| { |
| #ifdef CONFIG_X86_32 |
| ignore_fpu_irq = 1; |
| #endif |
| |
| math_error(regs, error_code, 16); |
| } |
| |
| dotraplinkage void |
| do_simd_coprocessor_error(struct pt_regs *regs, long error_code) |
| { |
| math_error(regs, error_code, 19); |
| } |
| |
| dotraplinkage void |
| do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) |
| { |
| conditional_sti(regs); |
| #if 0 |
| /* No need to warn about this any longer. */ |
| printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n"); |
| #endif |
| } |
| |
| asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void) |
| { |
| } |
| |
| asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void) |
| { |
| } |
| |
| /* |
| * __math_state_restore assumes that cr0.TS is already clear and the |
| * fpu state is all ready for use. Used during context switch. |
| */ |
| void __math_state_restore(void) |
| { |
| struct thread_info *thread = current_thread_info(); |
| struct task_struct *tsk = thread->task; |
| |
| /* |
| * Paranoid restore. send a SIGSEGV if we fail to restore the state. |
| */ |
| if (unlikely(restore_fpu_checking(tsk))) { |
| stts(); |
| force_sig(SIGSEGV, tsk); |
| return; |
| } |
| |
| thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */ |
| tsk->fpu_counter++; |
| } |
| |
| /* |
| * 'math_state_restore()' saves the current math information in the |
| * old math state array, and gets the new ones from the current task |
| * |
| * Careful.. There are problems with IBM-designed IRQ13 behaviour. |
| * Don't touch unless you *really* know how it works. |
| * |
| * Must be called with kernel preemption disabled (in this case, |
| * local interrupts are disabled at the call-site in entry.S). |
| */ |
| asmlinkage void math_state_restore(void) |
| { |
| struct thread_info *thread = current_thread_info(); |
| struct task_struct *tsk = thread->task; |
| |
| if (!tsk_used_math(tsk)) { |
| local_irq_enable(); |
| /* |
| * does a slab alloc which can sleep |
| */ |
| if (init_fpu(tsk)) { |
| /* |
| * ran out of memory! |
| */ |
| do_group_exit(SIGKILL); |
| return; |
| } |
| local_irq_disable(); |
| } |
| |
| clts(); /* Allow maths ops (or we recurse) */ |
| |
| __math_state_restore(); |
| } |
| EXPORT_SYMBOL_GPL(math_state_restore); |
| |
| dotraplinkage void __kprobes |
| do_device_not_available(struct pt_regs *regs, long error_code) |
| { |
| #ifdef CONFIG_MATH_EMULATION |
| if (read_cr0() & X86_CR0_EM) { |
| struct math_emu_info info = { }; |
| |
| conditional_sti(regs); |
| |
| info.regs = regs; |
| math_emulate(&info); |
| return; |
| } |
| #endif |
| math_state_restore(); /* interrupts still off */ |
| #ifdef CONFIG_X86_32 |
| conditional_sti(regs); |
| #endif |
| } |
| |
| #ifdef CONFIG_X86_32 |
| dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) |
| { |
| siginfo_t info; |
| local_irq_enable(); |
| |
| info.si_signo = SIGILL; |
| info.si_errno = 0; |
| info.si_code = ILL_BADSTK; |
| info.si_addr = NULL; |
| if (notify_die(DIE_TRAP, "iret exception", |
| regs, error_code, 32, SIGILL) == NOTIFY_STOP) |
| return; |
| do_trap(32, SIGILL, "iret exception", regs, error_code, &info); |
| } |
| #endif |
| |
| /* Set of traps needed for early debugging. */ |
| void __init early_trap_init(void) |
| { |
| set_intr_gate_ist(1, &debug, DEBUG_STACK); |
| /* int3 can be called from all */ |
| set_system_intr_gate_ist(3, &int3, DEBUG_STACK); |
| set_intr_gate(14, &page_fault); |
| load_idt(&idt_descr); |
| } |
| |
| void __init trap_init(void) |
| { |
| int i; |
| |
| #ifdef CONFIG_EISA |
| void __iomem *p = early_ioremap(0x0FFFD9, 4); |
| |
| if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24)) |
| EISA_bus = 1; |
| early_iounmap(p, 4); |
| #endif |
| |
| set_intr_gate(0, ÷_error); |
| set_intr_gate_ist(2, &nmi, NMI_STACK); |
| /* int4 can be called from all */ |
| set_system_intr_gate(4, &overflow); |
| set_intr_gate(5, &bounds); |
| set_intr_gate(6, &invalid_op); |
| set_intr_gate(7, &device_not_available); |
| #ifdef CONFIG_X86_32 |
| set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS); |
| #else |
| set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK); |
| #endif |
| set_intr_gate(9, &coprocessor_segment_overrun); |
| set_intr_gate(10, &invalid_TSS); |
| set_intr_gate(11, &segment_not_present); |
| set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK); |
| set_intr_gate(13, &general_protection); |
| set_intr_gate(15, &spurious_interrupt_bug); |
| set_intr_gate(16, &coprocessor_error); |
| set_intr_gate(17, &alignment_check); |
| #ifdef CONFIG_X86_MCE |
| set_intr_gate_ist(18, &machine_check, MCE_STACK); |
| #endif |
| set_intr_gate(19, &simd_coprocessor_error); |
| |
| /* Reserve all the builtin and the syscall vector: */ |
| for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++) |
| set_bit(i, used_vectors); |
| |
| #ifdef CONFIG_IA32_EMULATION |
| set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall); |
| set_bit(IA32_SYSCALL_VECTOR, used_vectors); |
| #endif |
| |
| #ifdef CONFIG_X86_32 |
| set_system_trap_gate(SYSCALL_VECTOR, &system_call); |
| set_bit(SYSCALL_VECTOR, used_vectors); |
| #endif |
| |
| #ifdef CONFIG_X86_64 |
| BUG_ON(test_bit(VSYSCALL_EMU_VECTOR, used_vectors)); |
| set_system_intr_gate(VSYSCALL_EMU_VECTOR, &emulate_vsyscall); |
| set_bit(VSYSCALL_EMU_VECTOR, used_vectors); |
| #endif |
| |
| /* |
| * Should be a barrier for any external CPU state: |
| */ |
| cpu_init(); |
| |
| x86_init.irqs.trap_init(); |
| } |