| |
| #include <linux/sched.h> |
| #include <linux/sched/sysctl.h> |
| #include <linux/sched/rt.h> |
| #include <linux/mutex.h> |
| #include <linux/spinlock.h> |
| #include <linux/stop_machine.h> |
| #include <linux/tick.h> |
| |
| #include "cpupri.h" |
| #include "cpuacct.h" |
| |
| struct rq; |
| |
| extern __read_mostly int scheduler_running; |
| |
| extern unsigned long calc_load_update; |
| extern atomic_long_t calc_load_tasks; |
| |
| extern long calc_load_fold_active(struct rq *this_rq); |
| extern void update_cpu_load_active(struct rq *this_rq); |
| |
| /* |
| * Convert user-nice values [ -20 ... 0 ... 19 ] |
| * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], |
| * and back. |
| */ |
| #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) |
| #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) |
| #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) |
| |
| /* |
| * 'User priority' is the nice value converted to something we |
| * can work with better when scaling various scheduler parameters, |
| * it's a [ 0 ... 39 ] range. |
| */ |
| #define USER_PRIO(p) ((p)-MAX_RT_PRIO) |
| #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) |
| #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) |
| |
| /* |
| * Helpers for converting nanosecond timing to jiffy resolution |
| */ |
| #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) |
| |
| /* |
| * Increase resolution of nice-level calculations for 64-bit architectures. |
| * The extra resolution improves shares distribution and load balancing of |
| * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup |
| * hierarchies, especially on larger systems. This is not a user-visible change |
| * and does not change the user-interface for setting shares/weights. |
| * |
| * We increase resolution only if we have enough bits to allow this increased |
| * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution |
| * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the |
| * increased costs. |
| */ |
| #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ |
| # define SCHED_LOAD_RESOLUTION 10 |
| # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) |
| # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) |
| #else |
| # define SCHED_LOAD_RESOLUTION 0 |
| # define scale_load(w) (w) |
| # define scale_load_down(w) (w) |
| #endif |
| |
| #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) |
| #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) |
| |
| #define NICE_0_LOAD SCHED_LOAD_SCALE |
| #define NICE_0_SHIFT SCHED_LOAD_SHIFT |
| |
| /* |
| * These are the 'tuning knobs' of the scheduler: |
| */ |
| |
| /* |
| * single value that denotes runtime == period, ie unlimited time. |
| */ |
| #define RUNTIME_INF ((u64)~0ULL) |
| |
| static inline int rt_policy(int policy) |
| { |
| if (policy == SCHED_FIFO || policy == SCHED_RR) |
| return 1; |
| return 0; |
| } |
| |
| static inline int task_has_rt_policy(struct task_struct *p) |
| { |
| return rt_policy(p->policy); |
| } |
| |
| /* |
| * This is the priority-queue data structure of the RT scheduling class: |
| */ |
| struct rt_prio_array { |
| DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ |
| struct list_head queue[MAX_RT_PRIO]; |
| }; |
| |
| struct rt_bandwidth { |
| /* nests inside the rq lock: */ |
| raw_spinlock_t rt_runtime_lock; |
| ktime_t rt_period; |
| u64 rt_runtime; |
| struct hrtimer rt_period_timer; |
| }; |
| |
| extern struct mutex sched_domains_mutex; |
| |
| #ifdef CONFIG_CGROUP_SCHED |
| |
| #include <linux/cgroup.h> |
| |
| struct cfs_rq; |
| struct rt_rq; |
| |
| extern struct list_head task_groups; |
| |
| struct cfs_bandwidth { |
| #ifdef CONFIG_CFS_BANDWIDTH |
| raw_spinlock_t lock; |
| ktime_t period; |
| u64 quota, runtime; |
| s64 hierarchal_quota; |
| u64 runtime_expires; |
| |
| int idle, timer_active; |
| struct hrtimer period_timer, slack_timer; |
| struct list_head throttled_cfs_rq; |
| |
| /* statistics */ |
| int nr_periods, nr_throttled; |
| u64 throttled_time; |
| #endif |
| }; |
| |
| /* task group related information */ |
| struct task_group { |
| struct cgroup_subsys_state css; |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| /* schedulable entities of this group on each cpu */ |
| struct sched_entity **se; |
| /* runqueue "owned" by this group on each cpu */ |
| struct cfs_rq **cfs_rq; |
| unsigned long shares; |
| |
| atomic_t load_weight; |
| atomic64_t load_avg; |
| atomic_t runnable_avg; |
| #endif |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| struct sched_rt_entity **rt_se; |
| struct rt_rq **rt_rq; |
| |
| struct rt_bandwidth rt_bandwidth; |
| #endif |
| |
| struct rcu_head rcu; |
| struct list_head list; |
| |
| struct task_group *parent; |
| struct list_head siblings; |
| struct list_head children; |
| |
| #ifdef CONFIG_SCHED_AUTOGROUP |
| struct autogroup *autogroup; |
| #endif |
| |
| struct cfs_bandwidth cfs_bandwidth; |
| }; |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD |
| |
| /* |
| * A weight of 0 or 1 can cause arithmetics problems. |
| * A weight of a cfs_rq is the sum of weights of which entities |
| * are queued on this cfs_rq, so a weight of a entity should not be |
| * too large, so as the shares value of a task group. |
| * (The default weight is 1024 - so there's no practical |
| * limitation from this.) |
| */ |
| #define MIN_SHARES (1UL << 1) |
| #define MAX_SHARES (1UL << 18) |
| #endif |
| |
| typedef int (*tg_visitor)(struct task_group *, void *); |
| |
| extern int walk_tg_tree_from(struct task_group *from, |
| tg_visitor down, tg_visitor up, void *data); |
| |
| /* |
| * Iterate the full tree, calling @down when first entering a node and @up when |
| * leaving it for the final time. |
| * |
| * Caller must hold rcu_lock or sufficient equivalent. |
| */ |
| static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) |
| { |
| return walk_tg_tree_from(&root_task_group, down, up, data); |
| } |
| |
| extern int tg_nop(struct task_group *tg, void *data); |
| |
| extern void free_fair_sched_group(struct task_group *tg); |
| extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); |
| extern void unregister_fair_sched_group(struct task_group *tg, int cpu); |
| extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, |
| struct sched_entity *se, int cpu, |
| struct sched_entity *parent); |
| extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); |
| extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); |
| |
| extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); |
| extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); |
| extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); |
| |
| extern void free_rt_sched_group(struct task_group *tg); |
| extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); |
| extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, |
| struct sched_rt_entity *rt_se, int cpu, |
| struct sched_rt_entity *parent); |
| |
| extern struct task_group *sched_create_group(struct task_group *parent); |
| extern void sched_online_group(struct task_group *tg, |
| struct task_group *parent); |
| extern void sched_destroy_group(struct task_group *tg); |
| extern void sched_offline_group(struct task_group *tg); |
| |
| extern void sched_move_task(struct task_struct *tsk); |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); |
| #endif |
| |
| #else /* CONFIG_CGROUP_SCHED */ |
| |
| struct cfs_bandwidth { }; |
| |
| #endif /* CONFIG_CGROUP_SCHED */ |
| |
| /* CFS-related fields in a runqueue */ |
| struct cfs_rq { |
| struct load_weight load; |
| unsigned int nr_running, h_nr_running; |
| |
| u64 exec_clock; |
| u64 min_vruntime; |
| #ifndef CONFIG_64BIT |
| u64 min_vruntime_copy; |
| #endif |
| |
| struct rb_root tasks_timeline; |
| struct rb_node *rb_leftmost; |
| |
| /* |
| * 'curr' points to currently running entity on this cfs_rq. |
| * It is set to NULL otherwise (i.e when none are currently running). |
| */ |
| struct sched_entity *curr, *next, *last, *skip; |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| unsigned int nr_spread_over; |
| #endif |
| |
| #ifdef CONFIG_SMP |
| /* |
| * CFS Load tracking |
| * Under CFS, load is tracked on a per-entity basis and aggregated up. |
| * This allows for the description of both thread and group usage (in |
| * the FAIR_GROUP_SCHED case). |
| */ |
| u64 runnable_load_avg, blocked_load_avg; |
| atomic64_t decay_counter, removed_load; |
| u64 last_decay; |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| /* Required to track per-cpu representation of a task_group */ |
| u32 tg_runnable_contrib; |
| u64 tg_load_contrib; |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| |
| /* |
| * h_load = weight * f(tg) |
| * |
| * Where f(tg) is the recursive weight fraction assigned to |
| * this group. |
| */ |
| unsigned long h_load; |
| #endif /* CONFIG_SMP */ |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ |
| |
| /* |
| * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in |
| * a hierarchy). Non-leaf lrqs hold other higher schedulable entities |
| * (like users, containers etc.) |
| * |
| * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This |
| * list is used during load balance. |
| */ |
| int on_list; |
| struct list_head leaf_cfs_rq_list; |
| struct task_group *tg; /* group that "owns" this runqueue */ |
| |
| #ifdef CONFIG_CFS_BANDWIDTH |
| int runtime_enabled; |
| u64 runtime_expires; |
| s64 runtime_remaining; |
| |
| u64 throttled_clock, throttled_clock_task; |
| u64 throttled_clock_task_time; |
| int throttled, throttle_count; |
| struct list_head throttled_list; |
| #endif /* CONFIG_CFS_BANDWIDTH */ |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| }; |
| |
| static inline int rt_bandwidth_enabled(void) |
| { |
| return sysctl_sched_rt_runtime >= 0; |
| } |
| |
| /* Real-Time classes' related field in a runqueue: */ |
| struct rt_rq { |
| struct rt_prio_array active; |
| unsigned int rt_nr_running; |
| #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
| struct { |
| int curr; /* highest queued rt task prio */ |
| #ifdef CONFIG_SMP |
| int next; /* next highest */ |
| #endif |
| } highest_prio; |
| #endif |
| #ifdef CONFIG_SMP |
| unsigned long rt_nr_migratory; |
| unsigned long rt_nr_total; |
| int overloaded; |
| struct plist_head pushable_tasks; |
| #endif |
| int rt_throttled; |
| u64 rt_time; |
| u64 rt_runtime; |
| /* Nests inside the rq lock: */ |
| raw_spinlock_t rt_runtime_lock; |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| unsigned long rt_nr_boosted; |
| |
| struct rq *rq; |
| struct task_group *tg; |
| #endif |
| }; |
| |
| #ifdef CONFIG_SMP |
| |
| /* |
| * We add the notion of a root-domain which will be used to define per-domain |
| * variables. Each exclusive cpuset essentially defines an island domain by |
| * fully partitioning the member cpus from any other cpuset. Whenever a new |
| * exclusive cpuset is created, we also create and attach a new root-domain |
| * object. |
| * |
| */ |
| struct root_domain { |
| atomic_t refcount; |
| atomic_t rto_count; |
| struct rcu_head rcu; |
| cpumask_var_t span; |
| cpumask_var_t online; |
| |
| /* |
| * The "RT overload" flag: it gets set if a CPU has more than |
| * one runnable RT task. |
| */ |
| cpumask_var_t rto_mask; |
| struct cpupri cpupri; |
| }; |
| |
| extern struct root_domain def_root_domain; |
| |
| #endif /* CONFIG_SMP */ |
| |
| /* |
| * This is the main, per-CPU runqueue data structure. |
| * |
| * Locking rule: those places that want to lock multiple runqueues |
| * (such as the load balancing or the thread migration code), lock |
| * acquire operations must be ordered by ascending &runqueue. |
| */ |
| struct rq { |
| /* runqueue lock: */ |
| raw_spinlock_t lock; |
| |
| /* |
| * nr_running and cpu_load should be in the same cacheline because |
| * remote CPUs use both these fields when doing load calculation. |
| */ |
| unsigned int nr_running; |
| #define CPU_LOAD_IDX_MAX 5 |
| unsigned long cpu_load[CPU_LOAD_IDX_MAX]; |
| unsigned long last_load_update_tick; |
| #ifdef CONFIG_NO_HZ_COMMON |
| u64 nohz_stamp; |
| unsigned long nohz_flags; |
| #endif |
| #ifdef CONFIG_NO_HZ_FULL |
| unsigned long last_sched_tick; |
| #endif |
| int skip_clock_update; |
| |
| /* capture load from *all* tasks on this cpu: */ |
| struct load_weight load; |
| unsigned long nr_load_updates; |
| u64 nr_switches; |
| |
| struct cfs_rq cfs; |
| struct rt_rq rt; |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| /* list of leaf cfs_rq on this cpu: */ |
| struct list_head leaf_cfs_rq_list; |
| #ifdef CONFIG_SMP |
| unsigned long h_load_throttle; |
| #endif /* CONFIG_SMP */ |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| struct list_head leaf_rt_rq_list; |
| #endif |
| |
| /* |
| * This is part of a global counter where only the total sum |
| * over all CPUs matters. A task can increase this counter on |
| * one CPU and if it got migrated afterwards it may decrease |
| * it on another CPU. Always updated under the runqueue lock: |
| */ |
| unsigned long nr_uninterruptible; |
| |
| struct task_struct *curr, *idle, *stop; |
| unsigned long next_balance; |
| struct mm_struct *prev_mm; |
| |
| u64 clock; |
| u64 clock_task; |
| |
| atomic_t nr_iowait; |
| |
| #ifdef CONFIG_SMP |
| struct root_domain *rd; |
| struct sched_domain *sd; |
| |
| unsigned long cpu_power; |
| |
| unsigned char idle_balance; |
| /* For active balancing */ |
| int post_schedule; |
| int active_balance; |
| int push_cpu; |
| struct cpu_stop_work active_balance_work; |
| /* cpu of this runqueue: */ |
| int cpu; |
| int online; |
| |
| struct list_head cfs_tasks; |
| |
| u64 rt_avg; |
| u64 age_stamp; |
| u64 idle_stamp; |
| u64 avg_idle; |
| #endif |
| |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
| u64 prev_irq_time; |
| #endif |
| #ifdef CONFIG_PARAVIRT |
| u64 prev_steal_time; |
| #endif |
| #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING |
| u64 prev_steal_time_rq; |
| #endif |
| |
| /* calc_load related fields */ |
| unsigned long calc_load_update; |
| long calc_load_active; |
| |
| #ifdef CONFIG_SCHED_HRTICK |
| #ifdef CONFIG_SMP |
| int hrtick_csd_pending; |
| struct call_single_data hrtick_csd; |
| #endif |
| struct hrtimer hrtick_timer; |
| #endif |
| |
| #ifdef CONFIG_SCHEDSTATS |
| /* latency stats */ |
| struct sched_info rq_sched_info; |
| unsigned long long rq_cpu_time; |
| /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ |
| |
| /* sys_sched_yield() stats */ |
| unsigned int yld_count; |
| |
| /* schedule() stats */ |
| unsigned int sched_count; |
| unsigned int sched_goidle; |
| |
| /* try_to_wake_up() stats */ |
| unsigned int ttwu_count; |
| unsigned int ttwu_local; |
| #endif |
| |
| #ifdef CONFIG_SMP |
| struct llist_head wake_list; |
| #endif |
| |
| struct sched_avg avg; |
| }; |
| |
| static inline int cpu_of(struct rq *rq) |
| { |
| #ifdef CONFIG_SMP |
| return rq->cpu; |
| #else |
| return 0; |
| #endif |
| } |
| |
| DECLARE_PER_CPU(struct rq, runqueues); |
| |
| #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) |
| #define this_rq() (&__get_cpu_var(runqueues)) |
| #define task_rq(p) cpu_rq(task_cpu(p)) |
| #define cpu_curr(cpu) (cpu_rq(cpu)->curr) |
| #define raw_rq() (&__raw_get_cpu_var(runqueues)) |
| |
| static inline u64 rq_clock(struct rq *rq) |
| { |
| return rq->clock; |
| } |
| |
| static inline u64 rq_clock_task(struct rq *rq) |
| { |
| return rq->clock_task; |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| #define rcu_dereference_check_sched_domain(p) \ |
| rcu_dereference_check((p), \ |
| lockdep_is_held(&sched_domains_mutex)) |
| |
| /* |
| * The domain tree (rq->sd) is protected by RCU's quiescent state transition. |
| * See detach_destroy_domains: synchronize_sched for details. |
| * |
| * The domain tree of any CPU may only be accessed from within |
| * preempt-disabled sections. |
| */ |
| #define for_each_domain(cpu, __sd) \ |
| for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ |
| __sd; __sd = __sd->parent) |
| |
| #define for_each_lower_domain(sd) for (; sd; sd = sd->child) |
| |
| /** |
| * highest_flag_domain - Return highest sched_domain containing flag. |
| * @cpu: The cpu whose highest level of sched domain is to |
| * be returned. |
| * @flag: The flag to check for the highest sched_domain |
| * for the given cpu. |
| * |
| * Returns the highest sched_domain of a cpu which contains the given flag. |
| */ |
| static inline struct sched_domain *highest_flag_domain(int cpu, int flag) |
| { |
| struct sched_domain *sd, *hsd = NULL; |
| |
| for_each_domain(cpu, sd) { |
| if (!(sd->flags & flag)) |
| break; |
| hsd = sd; |
| } |
| |
| return hsd; |
| } |
| |
| DECLARE_PER_CPU(struct sched_domain *, sd_llc); |
| DECLARE_PER_CPU(int, sd_llc_id); |
| |
| struct sched_group_power { |
| atomic_t ref; |
| /* |
| * CPU power of this group, SCHED_LOAD_SCALE being max power for a |
| * single CPU. |
| */ |
| unsigned int power, power_orig; |
| unsigned long next_update; |
| /* |
| * Number of busy cpus in this group. |
| */ |
| atomic_t nr_busy_cpus; |
| |
| unsigned long cpumask[0]; /* iteration mask */ |
| }; |
| |
| struct sched_group { |
| struct sched_group *next; /* Must be a circular list */ |
| atomic_t ref; |
| |
| unsigned int group_weight; |
| struct sched_group_power *sgp; |
| |
| /* |
| * The CPUs this group covers. |
| * |
| * NOTE: this field is variable length. (Allocated dynamically |
| * by attaching extra space to the end of the structure, |
| * depending on how many CPUs the kernel has booted up with) |
| */ |
| unsigned long cpumask[0]; |
| }; |
| |
| static inline struct cpumask *sched_group_cpus(struct sched_group *sg) |
| { |
| return to_cpumask(sg->cpumask); |
| } |
| |
| /* |
| * cpumask masking which cpus in the group are allowed to iterate up the domain |
| * tree. |
| */ |
| static inline struct cpumask *sched_group_mask(struct sched_group *sg) |
| { |
| return to_cpumask(sg->sgp->cpumask); |
| } |
| |
| /** |
| * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. |
| * @group: The group whose first cpu is to be returned. |
| */ |
| static inline unsigned int group_first_cpu(struct sched_group *group) |
| { |
| return cpumask_first(sched_group_cpus(group)); |
| } |
| |
| extern int group_balance_cpu(struct sched_group *sg); |
| |
| #endif /* CONFIG_SMP */ |
| |
| #include "stats.h" |
| #include "auto_group.h" |
| |
| #ifdef CONFIG_CGROUP_SCHED |
| |
| /* |
| * Return the group to which this tasks belongs. |
| * |
| * We cannot use task_subsys_state() and friends because the cgroup |
| * subsystem changes that value before the cgroup_subsys::attach() method |
| * is called, therefore we cannot pin it and might observe the wrong value. |
| * |
| * The same is true for autogroup's p->signal->autogroup->tg, the autogroup |
| * core changes this before calling sched_move_task(). |
| * |
| * Instead we use a 'copy' which is updated from sched_move_task() while |
| * holding both task_struct::pi_lock and rq::lock. |
| */ |
| static inline struct task_group *task_group(struct task_struct *p) |
| { |
| return p->sched_task_group; |
| } |
| |
| /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ |
| static inline void set_task_rq(struct task_struct *p, unsigned int cpu) |
| { |
| #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) |
| struct task_group *tg = task_group(p); |
| #endif |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| p->se.cfs_rq = tg->cfs_rq[cpu]; |
| p->se.parent = tg->se[cpu]; |
| #endif |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| p->rt.rt_rq = tg->rt_rq[cpu]; |
| p->rt.parent = tg->rt_se[cpu]; |
| #endif |
| } |
| |
| #else /* CONFIG_CGROUP_SCHED */ |
| |
| static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
| static inline struct task_group *task_group(struct task_struct *p) |
| { |
| return NULL; |
| } |
| |
| #endif /* CONFIG_CGROUP_SCHED */ |
| |
| static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) |
| { |
| set_task_rq(p, cpu); |
| #ifdef CONFIG_SMP |
| /* |
| * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be |
| * successfuly executed on another CPU. We must ensure that updates of |
| * per-task data have been completed by this moment. |
| */ |
| smp_wmb(); |
| task_thread_info(p)->cpu = cpu; |
| #endif |
| } |
| |
| /* |
| * Tunables that become constants when CONFIG_SCHED_DEBUG is off: |
| */ |
| #ifdef CONFIG_SCHED_DEBUG |
| # include <linux/static_key.h> |
| # define const_debug __read_mostly |
| #else |
| # define const_debug const |
| #endif |
| |
| extern const_debug unsigned int sysctl_sched_features; |
| |
| #define SCHED_FEAT(name, enabled) \ |
| __SCHED_FEAT_##name , |
| |
| enum { |
| #include "features.h" |
| __SCHED_FEAT_NR, |
| }; |
| |
| #undef SCHED_FEAT |
| |
| #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) |
| static __always_inline bool static_branch__true(struct static_key *key) |
| { |
| return static_key_true(key); /* Not out of line branch. */ |
| } |
| |
| static __always_inline bool static_branch__false(struct static_key *key) |
| { |
| return static_key_false(key); /* Out of line branch. */ |
| } |
| |
| #define SCHED_FEAT(name, enabled) \ |
| static __always_inline bool static_branch_##name(struct static_key *key) \ |
| { \ |
| return static_branch__##enabled(key); \ |
| } |
| |
| #include "features.h" |
| |
| #undef SCHED_FEAT |
| |
| extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; |
| #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) |
| #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ |
| #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) |
| #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| #define sched_feat_numa(x) sched_feat(x) |
| #ifdef CONFIG_SCHED_DEBUG |
| #define numabalancing_enabled sched_feat_numa(NUMA) |
| #else |
| extern bool numabalancing_enabled; |
| #endif /* CONFIG_SCHED_DEBUG */ |
| #else |
| #define sched_feat_numa(x) (0) |
| #define numabalancing_enabled (0) |
| #endif /* CONFIG_NUMA_BALANCING */ |
| |
| static inline u64 global_rt_period(void) |
| { |
| return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; |
| } |
| |
| static inline u64 global_rt_runtime(void) |
| { |
| if (sysctl_sched_rt_runtime < 0) |
| return RUNTIME_INF; |
| |
| return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; |
| } |
| |
| |
| |
| static inline int task_current(struct rq *rq, struct task_struct *p) |
| { |
| return rq->curr == p; |
| } |
| |
| static inline int task_running(struct rq *rq, struct task_struct *p) |
| { |
| #ifdef CONFIG_SMP |
| return p->on_cpu; |
| #else |
| return task_current(rq, p); |
| #endif |
| } |
| |
| |
| #ifndef prepare_arch_switch |
| # define prepare_arch_switch(next) do { } while (0) |
| #endif |
| #ifndef finish_arch_switch |
| # define finish_arch_switch(prev) do { } while (0) |
| #endif |
| #ifndef finish_arch_post_lock_switch |
| # define finish_arch_post_lock_switch() do { } while (0) |
| #endif |
| |
| #ifndef __ARCH_WANT_UNLOCKED_CTXSW |
| static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
| { |
| #ifdef CONFIG_SMP |
| /* |
| * We can optimise this out completely for !SMP, because the |
| * SMP rebalancing from interrupt is the only thing that cares |
| * here. |
| */ |
| next->on_cpu = 1; |
| #endif |
| } |
| |
| static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
| { |
| #ifdef CONFIG_SMP |
| /* |
| * After ->on_cpu is cleared, the task can be moved to a different CPU. |
| * We must ensure this doesn't happen until the switch is completely |
| * finished. |
| */ |
| smp_wmb(); |
| prev->on_cpu = 0; |
| #endif |
| #ifdef CONFIG_DEBUG_SPINLOCK |
| /* this is a valid case when another task releases the spinlock */ |
| rq->lock.owner = current; |
| #endif |
| /* |
| * If we are tracking spinlock dependencies then we have to |
| * fix up the runqueue lock - which gets 'carried over' from |
| * prev into current: |
| */ |
| spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); |
| |
| raw_spin_unlock_irq(&rq->lock); |
| } |
| |
| #else /* __ARCH_WANT_UNLOCKED_CTXSW */ |
| static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
| { |
| #ifdef CONFIG_SMP |
| /* |
| * We can optimise this out completely for !SMP, because the |
| * SMP rebalancing from interrupt is the only thing that cares |
| * here. |
| */ |
| next->on_cpu = 1; |
| #endif |
| raw_spin_unlock(&rq->lock); |
| } |
| |
| static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
| { |
| #ifdef CONFIG_SMP |
| /* |
| * After ->on_cpu is cleared, the task can be moved to a different CPU. |
| * We must ensure this doesn't happen until the switch is completely |
| * finished. |
| */ |
| smp_wmb(); |
| prev->on_cpu = 0; |
| #endif |
| local_irq_enable(); |
| } |
| #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ |
| |
| /* |
| * wake flags |
| */ |
| #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */ |
| #define WF_FORK 0x02 /* child wakeup after fork */ |
| #define WF_MIGRATED 0x4 /* internal use, task got migrated */ |
| |
| /* |
| * To aid in avoiding the subversion of "niceness" due to uneven distribution |
| * of tasks with abnormal "nice" values across CPUs the contribution that |
| * each task makes to its run queue's load is weighted according to its |
| * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a |
| * scaled version of the new time slice allocation that they receive on time |
| * slice expiry etc. |
| */ |
| |
| #define WEIGHT_IDLEPRIO 3 |
| #define WMULT_IDLEPRIO 1431655765 |
| |
| /* |
| * Nice levels are multiplicative, with a gentle 10% change for every |
| * nice level changed. I.e. when a CPU-bound task goes from nice 0 to |
| * nice 1, it will get ~10% less CPU time than another CPU-bound task |
| * that remained on nice 0. |
| * |
| * The "10% effect" is relative and cumulative: from _any_ nice level, |
| * if you go up 1 level, it's -10% CPU usage, if you go down 1 level |
| * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. |
| * If a task goes up by ~10% and another task goes down by ~10% then |
| * the relative distance between them is ~25%.) |
| */ |
| static const int prio_to_weight[40] = { |
| /* -20 */ 88761, 71755, 56483, 46273, 36291, |
| /* -15 */ 29154, 23254, 18705, 14949, 11916, |
| /* -10 */ 9548, 7620, 6100, 4904, 3906, |
| /* -5 */ 3121, 2501, 1991, 1586, 1277, |
| /* 0 */ 1024, 820, 655, 526, 423, |
| /* 5 */ 335, 272, 215, 172, 137, |
| /* 10 */ 110, 87, 70, 56, 45, |
| /* 15 */ 36, 29, 23, 18, 15, |
| }; |
| |
| /* |
| * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. |
| * |
| * In cases where the weight does not change often, we can use the |
| * precalculated inverse to speed up arithmetics by turning divisions |
| * into multiplications: |
| */ |
| static const u32 prio_to_wmult[40] = { |
| /* -20 */ 48388, 59856, 76040, 92818, 118348, |
| /* -15 */ 147320, 184698, 229616, 287308, 360437, |
| /* -10 */ 449829, 563644, 704093, 875809, 1099582, |
| /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, |
| /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, |
| /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, |
| /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, |
| /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, |
| }; |
| |
| #define ENQUEUE_WAKEUP 1 |
| #define ENQUEUE_HEAD 2 |
| #ifdef CONFIG_SMP |
| #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ |
| #else |
| #define ENQUEUE_WAKING 0 |
| #endif |
| |
| #define DEQUEUE_SLEEP 1 |
| |
| struct sched_class { |
| const struct sched_class *next; |
| |
| void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); |
| void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); |
| void (*yield_task) (struct rq *rq); |
| bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); |
| |
| void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); |
| |
| struct task_struct * (*pick_next_task) (struct rq *rq); |
| void (*put_prev_task) (struct rq *rq, struct task_struct *p); |
| |
| #ifdef CONFIG_SMP |
| int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); |
| void (*migrate_task_rq)(struct task_struct *p, int next_cpu); |
| |
| void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); |
| void (*post_schedule) (struct rq *this_rq); |
| void (*task_waking) (struct task_struct *task); |
| void (*task_woken) (struct rq *this_rq, struct task_struct *task); |
| |
| void (*set_cpus_allowed)(struct task_struct *p, |
| const struct cpumask *newmask); |
| |
| void (*rq_online)(struct rq *rq); |
| void (*rq_offline)(struct rq *rq); |
| #endif |
| |
| void (*set_curr_task) (struct rq *rq); |
| void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); |
| void (*task_fork) (struct task_struct *p); |
| |
| void (*switched_from) (struct rq *this_rq, struct task_struct *task); |
| void (*switched_to) (struct rq *this_rq, struct task_struct *task); |
| void (*prio_changed) (struct rq *this_rq, struct task_struct *task, |
| int oldprio); |
| |
| unsigned int (*get_rr_interval) (struct rq *rq, |
| struct task_struct *task); |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| void (*task_move_group) (struct task_struct *p, int on_rq); |
| #endif |
| }; |
| |
| #define sched_class_highest (&stop_sched_class) |
| #define for_each_class(class) \ |
| for (class = sched_class_highest; class; class = class->next) |
| |
| extern const struct sched_class stop_sched_class; |
| extern const struct sched_class rt_sched_class; |
| extern const struct sched_class fair_sched_class; |
| extern const struct sched_class idle_sched_class; |
| |
| |
| #ifdef CONFIG_SMP |
| |
| extern void update_group_power(struct sched_domain *sd, int cpu); |
| |
| extern void trigger_load_balance(struct rq *rq, int cpu); |
| extern void idle_balance(int this_cpu, struct rq *this_rq); |
| |
| extern void idle_enter_fair(struct rq *this_rq); |
| extern void idle_exit_fair(struct rq *this_rq); |
| |
| #else /* CONFIG_SMP */ |
| |
| static inline void idle_balance(int cpu, struct rq *rq) |
| { |
| } |
| |
| #endif |
| |
| extern void sysrq_sched_debug_show(void); |
| extern void sched_init_granularity(void); |
| extern void update_max_interval(void); |
| extern void init_sched_rt_class(void); |
| extern void init_sched_fair_class(void); |
| |
| extern void resched_task(struct task_struct *p); |
| extern void resched_cpu(int cpu); |
| |
| extern struct rt_bandwidth def_rt_bandwidth; |
| extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); |
| |
| extern void update_idle_cpu_load(struct rq *this_rq); |
| |
| #ifdef CONFIG_PARAVIRT |
| static inline u64 steal_ticks(u64 steal) |
| { |
| if (unlikely(steal > NSEC_PER_SEC)) |
| return div_u64(steal, TICK_NSEC); |
| |
| return __iter_div_u64_rem(steal, TICK_NSEC, &steal); |
| } |
| #endif |
| |
| static inline void inc_nr_running(struct rq *rq) |
| { |
| rq->nr_running++; |
| |
| #ifdef CONFIG_NO_HZ_FULL |
| if (rq->nr_running == 2) { |
| if (tick_nohz_full_cpu(rq->cpu)) { |
| /* Order rq->nr_running write against the IPI */ |
| smp_wmb(); |
| smp_send_reschedule(rq->cpu); |
| } |
| } |
| #endif |
| } |
| |
| static inline void dec_nr_running(struct rq *rq) |
| { |
| rq->nr_running--; |
| } |
| |
| static inline void rq_last_tick_reset(struct rq *rq) |
| { |
| #ifdef CONFIG_NO_HZ_FULL |
| rq->last_sched_tick = jiffies; |
| #endif |
| } |
| |
| extern void update_rq_clock(struct rq *rq); |
| |
| extern void activate_task(struct rq *rq, struct task_struct *p, int flags); |
| extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); |
| |
| extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); |
| |
| extern const_debug unsigned int sysctl_sched_time_avg; |
| extern const_debug unsigned int sysctl_sched_nr_migrate; |
| extern const_debug unsigned int sysctl_sched_migration_cost; |
| |
| static inline u64 sched_avg_period(void) |
| { |
| return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; |
| } |
| |
| #ifdef CONFIG_SCHED_HRTICK |
| |
| /* |
| * Use hrtick when: |
| * - enabled by features |
| * - hrtimer is actually high res |
| */ |
| static inline int hrtick_enabled(struct rq *rq) |
| { |
| if (!sched_feat(HRTICK)) |
| return 0; |
| if (!cpu_active(cpu_of(rq))) |
| return 0; |
| return hrtimer_is_hres_active(&rq->hrtick_timer); |
| } |
| |
| void hrtick_start(struct rq *rq, u64 delay); |
| |
| #else |
| |
| static inline int hrtick_enabled(struct rq *rq) |
| { |
| return 0; |
| } |
| |
| #endif /* CONFIG_SCHED_HRTICK */ |
| |
| #ifdef CONFIG_SMP |
| extern void sched_avg_update(struct rq *rq); |
| static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) |
| { |
| rq->rt_avg += rt_delta; |
| sched_avg_update(rq); |
| } |
| #else |
| static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } |
| static inline void sched_avg_update(struct rq *rq) { } |
| #endif |
| |
| extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); |
| |
| #ifdef CONFIG_SMP |
| #ifdef CONFIG_PREEMPT |
| |
| static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); |
| |
| /* |
| * fair double_lock_balance: Safely acquires both rq->locks in a fair |
| * way at the expense of forcing extra atomic operations in all |
| * invocations. This assures that the double_lock is acquired using the |
| * same underlying policy as the spinlock_t on this architecture, which |
| * reduces latency compared to the unfair variant below. However, it |
| * also adds more overhead and therefore may reduce throughput. |
| */ |
| static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| __releases(this_rq->lock) |
| __acquires(busiest->lock) |
| __acquires(this_rq->lock) |
| { |
| raw_spin_unlock(&this_rq->lock); |
| double_rq_lock(this_rq, busiest); |
| |
| return 1; |
| } |
| |
| #else |
| /* |
| * Unfair double_lock_balance: Optimizes throughput at the expense of |
| * latency by eliminating extra atomic operations when the locks are |
| * already in proper order on entry. This favors lower cpu-ids and will |
| * grant the double lock to lower cpus over higher ids under contention, |
| * regardless of entry order into the function. |
| */ |
| static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| __releases(this_rq->lock) |
| __acquires(busiest->lock) |
| __acquires(this_rq->lock) |
| { |
| int ret = 0; |
| |
| if (unlikely(!raw_spin_trylock(&busiest->lock))) { |
| if (busiest < this_rq) { |
| raw_spin_unlock(&this_rq->lock); |
| raw_spin_lock(&busiest->lock); |
| raw_spin_lock_nested(&this_rq->lock, |
| SINGLE_DEPTH_NESTING); |
| ret = 1; |
| } else |
| raw_spin_lock_nested(&busiest->lock, |
| SINGLE_DEPTH_NESTING); |
| } |
| return ret; |
| } |
| |
| #endif /* CONFIG_PREEMPT */ |
| |
| /* |
| * double_lock_balance - lock the busiest runqueue, this_rq is locked already. |
| */ |
| static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| { |
| if (unlikely(!irqs_disabled())) { |
| /* printk() doesn't work good under rq->lock */ |
| raw_spin_unlock(&this_rq->lock); |
| BUG_ON(1); |
| } |
| |
| return _double_lock_balance(this_rq, busiest); |
| } |
| |
| static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) |
| __releases(busiest->lock) |
| { |
| raw_spin_unlock(&busiest->lock); |
| lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); |
| } |
| |
| /* |
| * double_rq_lock - safely lock two runqueues |
| * |
| * Note this does not disable interrupts like task_rq_lock, |
| * you need to do so manually before calling. |
| */ |
| static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) |
| __acquires(rq1->lock) |
| __acquires(rq2->lock) |
| { |
| BUG_ON(!irqs_disabled()); |
| if (rq1 == rq2) { |
| raw_spin_lock(&rq1->lock); |
| __acquire(rq2->lock); /* Fake it out ;) */ |
| } else { |
| if (rq1 < rq2) { |
| raw_spin_lock(&rq1->lock); |
| raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); |
| } else { |
| raw_spin_lock(&rq2->lock); |
| raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); |
| } |
| } |
| } |
| |
| /* |
| * double_rq_unlock - safely unlock two runqueues |
| * |
| * Note this does not restore interrupts like task_rq_unlock, |
| * you need to do so manually after calling. |
| */ |
| static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
| __releases(rq1->lock) |
| __releases(rq2->lock) |
| { |
| raw_spin_unlock(&rq1->lock); |
| if (rq1 != rq2) |
| raw_spin_unlock(&rq2->lock); |
| else |
| __release(rq2->lock); |
| } |
| |
| #else /* CONFIG_SMP */ |
| |
| /* |
| * double_rq_lock - safely lock two runqueues |
| * |
| * Note this does not disable interrupts like task_rq_lock, |
| * you need to do so manually before calling. |
| */ |
| static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) |
| __acquires(rq1->lock) |
| __acquires(rq2->lock) |
| { |
| BUG_ON(!irqs_disabled()); |
| BUG_ON(rq1 != rq2); |
| raw_spin_lock(&rq1->lock); |
| __acquire(rq2->lock); /* Fake it out ;) */ |
| } |
| |
| /* |
| * double_rq_unlock - safely unlock two runqueues |
| * |
| * Note this does not restore interrupts like task_rq_unlock, |
| * you need to do so manually after calling. |
| */ |
| static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
| __releases(rq1->lock) |
| __releases(rq2->lock) |
| { |
| BUG_ON(rq1 != rq2); |
| raw_spin_unlock(&rq1->lock); |
| __release(rq2->lock); |
| } |
| |
| #endif |
| |
| extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); |
| extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); |
| extern void print_cfs_stats(struct seq_file *m, int cpu); |
| extern void print_rt_stats(struct seq_file *m, int cpu); |
| |
| extern void init_cfs_rq(struct cfs_rq *cfs_rq); |
| extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); |
| |
| extern void account_cfs_bandwidth_used(int enabled, int was_enabled); |
| |
| #ifdef CONFIG_NO_HZ_COMMON |
| enum rq_nohz_flag_bits { |
| NOHZ_TICK_STOPPED, |
| NOHZ_BALANCE_KICK, |
| }; |
| |
| #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) |
| #endif |
| |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
| |
| DECLARE_PER_CPU(u64, cpu_hardirq_time); |
| DECLARE_PER_CPU(u64, cpu_softirq_time); |
| |
| #ifndef CONFIG_64BIT |
| DECLARE_PER_CPU(seqcount_t, irq_time_seq); |
| |
| static inline void irq_time_write_begin(void) |
| { |
| __this_cpu_inc(irq_time_seq.sequence); |
| smp_wmb(); |
| } |
| |
| static inline void irq_time_write_end(void) |
| { |
| smp_wmb(); |
| __this_cpu_inc(irq_time_seq.sequence); |
| } |
| |
| static inline u64 irq_time_read(int cpu) |
| { |
| u64 irq_time; |
| unsigned seq; |
| |
| do { |
| seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); |
| irq_time = per_cpu(cpu_softirq_time, cpu) + |
| per_cpu(cpu_hardirq_time, cpu); |
| } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); |
| |
| return irq_time; |
| } |
| #else /* CONFIG_64BIT */ |
| static inline void irq_time_write_begin(void) |
| { |
| } |
| |
| static inline void irq_time_write_end(void) |
| { |
| } |
| |
| static inline u64 irq_time_read(int cpu) |
| { |
| return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); |
| } |
| #endif /* CONFIG_64BIT */ |
| #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ |