| #ifndef _ASM_POWERPC_BOOK3S_64_PGALLOC_H |
| #define _ASM_POWERPC_BOOK3S_64_PGALLOC_H |
| /* |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/cpumask.h> |
| #include <linux/kmemleak.h> |
| #include <linux/percpu.h> |
| |
| struct vmemmap_backing { |
| struct vmemmap_backing *list; |
| unsigned long phys; |
| unsigned long virt_addr; |
| }; |
| extern struct vmemmap_backing *vmemmap_list; |
| |
| /* |
| * Functions that deal with pagetables that could be at any level of |
| * the table need to be passed an "index_size" so they know how to |
| * handle allocation. For PTE pages (which are linked to a struct |
| * page for now, and drawn from the main get_free_pages() pool), the |
| * allocation size will be (2^index_size * sizeof(pointer)) and |
| * allocations are drawn from the kmem_cache in PGT_CACHE(index_size). |
| * |
| * The maximum index size needs to be big enough to allow any |
| * pagetable sizes we need, but small enough to fit in the low bits of |
| * any page table pointer. In other words all pagetables, even tiny |
| * ones, must be aligned to allow at least enough low 0 bits to |
| * contain this value. This value is also used as a mask, so it must |
| * be one less than a power of two. |
| */ |
| #define MAX_PGTABLE_INDEX_SIZE 0xf |
| |
| extern struct kmem_cache *pgtable_cache[]; |
| #define PGT_CACHE(shift) ({ \ |
| BUG_ON(!(shift)); \ |
| pgtable_cache[(shift) - 1]; \ |
| }) |
| |
| extern pte_t *pte_fragment_alloc(struct mm_struct *, unsigned long, int); |
| extern pmd_t *pmd_fragment_alloc(struct mm_struct *, unsigned long); |
| extern void pte_fragment_free(unsigned long *, int); |
| extern void pmd_fragment_free(unsigned long *); |
| extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift); |
| #ifdef CONFIG_SMP |
| extern void __tlb_remove_table(void *_table); |
| #endif |
| |
| static inline pgd_t *radix__pgd_alloc(struct mm_struct *mm) |
| { |
| #ifdef CONFIG_PPC_64K_PAGES |
| return (pgd_t *)__get_free_page(pgtable_gfp_flags(mm, PGALLOC_GFP)); |
| #else |
| struct page *page; |
| page = alloc_pages(pgtable_gfp_flags(mm, PGALLOC_GFP | __GFP_RETRY_MAYFAIL), |
| 4); |
| if (!page) |
| return NULL; |
| return (pgd_t *) page_address(page); |
| #endif |
| } |
| |
| static inline void radix__pgd_free(struct mm_struct *mm, pgd_t *pgd) |
| { |
| #ifdef CONFIG_PPC_64K_PAGES |
| free_page((unsigned long)pgd); |
| #else |
| free_pages((unsigned long)pgd, 4); |
| #endif |
| } |
| |
| static inline pgd_t *pgd_alloc(struct mm_struct *mm) |
| { |
| pgd_t *pgd; |
| |
| if (radix_enabled()) |
| return radix__pgd_alloc(mm); |
| |
| pgd = kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE), |
| pgtable_gfp_flags(mm, GFP_KERNEL)); |
| if (unlikely(!pgd)) |
| return pgd; |
| |
| /* |
| * Don't scan the PGD for pointers, it contains references to PUDs but |
| * those references are not full pointers and so can't be recognised by |
| * kmemleak. |
| */ |
| kmemleak_no_scan(pgd); |
| |
| /* |
| * With hugetlb, we don't clear the second half of the page table. |
| * If we share the same slab cache with the pmd or pud level table, |
| * we need to make sure we zero out the full table on alloc. |
| * With 4K we don't store slot in the second half. Hence we don't |
| * need to do this for 4k. |
| */ |
| #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_PPC_64K_PAGES) && \ |
| (H_PGD_INDEX_SIZE == H_PUD_CACHE_INDEX) |
| memset(pgd, 0, PGD_TABLE_SIZE); |
| #endif |
| return pgd; |
| } |
| |
| static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd) |
| { |
| if (radix_enabled()) |
| return radix__pgd_free(mm, pgd); |
| kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd); |
| } |
| |
| static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, pud_t *pud) |
| { |
| pgd_set(pgd, __pgtable_ptr_val(pud) | PGD_VAL_BITS); |
| } |
| |
| static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) |
| { |
| pud_t *pud; |
| |
| pud = kmem_cache_alloc(PGT_CACHE(PUD_CACHE_INDEX), |
| pgtable_gfp_flags(mm, GFP_KERNEL)); |
| /* |
| * Tell kmemleak to ignore the PUD, that means don't scan it for |
| * pointers and don't consider it a leak. PUDs are typically only |
| * referred to by their PGD, but kmemleak is not able to recognise those |
| * as pointers, leading to false leak reports. |
| */ |
| kmemleak_ignore(pud); |
| |
| return pud; |
| } |
| |
| static inline void pud_free(struct mm_struct *mm, pud_t *pud) |
| { |
| kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), pud); |
| } |
| |
| static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd) |
| { |
| pud_set(pud, __pgtable_ptr_val(pmd) | PUD_VAL_BITS); |
| } |
| |
| static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud, |
| unsigned long address) |
| { |
| /* |
| * By now all the pud entries should be none entries. So go |
| * ahead and flush the page walk cache |
| */ |
| flush_tlb_pgtable(tlb, address); |
| pgtable_free_tlb(tlb, pud, PUD_INDEX); |
| } |
| |
| static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) |
| { |
| return pmd_fragment_alloc(mm, addr); |
| } |
| |
| static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd) |
| { |
| pmd_fragment_free((unsigned long *)pmd); |
| } |
| |
| static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd, |
| unsigned long address) |
| { |
| /* |
| * By now all the pud entries should be none entries. So go |
| * ahead and flush the page walk cache |
| */ |
| flush_tlb_pgtable(tlb, address); |
| return pgtable_free_tlb(tlb, pmd, PMD_INDEX); |
| } |
| |
| static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd, |
| pte_t *pte) |
| { |
| pmd_set(pmd, __pgtable_ptr_val(pte) | PMD_VAL_BITS); |
| } |
| |
| static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd, |
| pgtable_t pte_page) |
| { |
| pmd_set(pmd, __pgtable_ptr_val(pte_page) | PMD_VAL_BITS); |
| } |
| |
| static inline pgtable_t pmd_pgtable(pmd_t pmd) |
| { |
| return (pgtable_t)pmd_page_vaddr(pmd); |
| } |
| |
| static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm, |
| unsigned long address) |
| { |
| return (pte_t *)pte_fragment_alloc(mm, address, 1); |
| } |
| |
| static inline pgtable_t pte_alloc_one(struct mm_struct *mm, |
| unsigned long address) |
| { |
| return (pgtable_t)pte_fragment_alloc(mm, address, 0); |
| } |
| |
| static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte) |
| { |
| pte_fragment_free((unsigned long *)pte, 1); |
| } |
| |
| static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage) |
| { |
| pte_fragment_free((unsigned long *)ptepage, 0); |
| } |
| |
| static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table, |
| unsigned long address) |
| { |
| /* |
| * By now all the pud entries should be none entries. So go |
| * ahead and flush the page walk cache |
| */ |
| flush_tlb_pgtable(tlb, address); |
| pgtable_free_tlb(tlb, table, PTE_INDEX); |
| } |
| |
| #define check_pgt_cache() do { } while (0) |
| |
| extern atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; |
| static inline void update_page_count(int psize, long count) |
| { |
| if (IS_ENABLED(CONFIG_PROC_FS)) |
| atomic_long_add(count, &direct_pages_count[psize]); |
| } |
| |
| #endif /* _ASM_POWERPC_BOOK3S_64_PGALLOC_H */ |