| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * vsp1_rpf.c -- R-Car VSP1 Read Pixel Formatter |
| * |
| * Copyright (C) 2013-2014 Renesas Electronics Corporation |
| * |
| * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) |
| */ |
| |
| #include <linux/device.h> |
| |
| #include <media/v4l2-subdev.h> |
| |
| #include "vsp1.h" |
| #include "vsp1_dl.h" |
| #include "vsp1_pipe.h" |
| #include "vsp1_rwpf.h" |
| #include "vsp1_video.h" |
| |
| #define RPF_MAX_WIDTH 8190 |
| #define RPF_MAX_HEIGHT 8190 |
| |
| /* Pre extended display list command data structure. */ |
| struct vsp1_extcmd_auto_fld_body { |
| u32 top_y0; |
| u32 bottom_y0; |
| u32 top_c0; |
| u32 bottom_c0; |
| u32 top_c1; |
| u32 bottom_c1; |
| u32 reserved0; |
| u32 reserved1; |
| } __packed; |
| |
| /* ----------------------------------------------------------------------------- |
| * Device Access |
| */ |
| |
| static inline void vsp1_rpf_write(struct vsp1_rwpf *rpf, |
| struct vsp1_dl_body *dlb, u32 reg, u32 data) |
| { |
| vsp1_dl_body_write(dlb, reg + rpf->entity.index * VI6_RPF_OFFSET, |
| data); |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * V4L2 Subdevice Operations |
| */ |
| |
| static const struct v4l2_subdev_ops rpf_ops = { |
| .pad = &vsp1_rwpf_pad_ops, |
| }; |
| |
| /* ----------------------------------------------------------------------------- |
| * VSP1 Entity Operations |
| */ |
| |
| static void rpf_configure_stream(struct vsp1_entity *entity, |
| struct vsp1_pipeline *pipe, |
| struct vsp1_dl_body *dlb) |
| { |
| struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev); |
| const struct vsp1_format_info *fmtinfo = rpf->fmtinfo; |
| const struct v4l2_pix_format_mplane *format = &rpf->format; |
| const struct v4l2_mbus_framefmt *source_format; |
| const struct v4l2_mbus_framefmt *sink_format; |
| unsigned int left = 0; |
| unsigned int top = 0; |
| u32 pstride; |
| u32 infmt; |
| |
| /* Stride */ |
| pstride = format->plane_fmt[0].bytesperline |
| << VI6_RPF_SRCM_PSTRIDE_Y_SHIFT; |
| if (format->num_planes > 1) |
| pstride |= format->plane_fmt[1].bytesperline |
| << VI6_RPF_SRCM_PSTRIDE_C_SHIFT; |
| |
| /* |
| * pstride has both STRIDE_Y and STRIDE_C, but multiplying the whole |
| * of pstride by 2 is conveniently OK here as we are multiplying both |
| * values. |
| */ |
| if (pipe->interlaced) |
| pstride *= 2; |
| |
| vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_PSTRIDE, pstride); |
| |
| /* Format */ |
| sink_format = vsp1_entity_get_pad_format(&rpf->entity, |
| rpf->entity.config, |
| RWPF_PAD_SINK); |
| source_format = vsp1_entity_get_pad_format(&rpf->entity, |
| rpf->entity.config, |
| RWPF_PAD_SOURCE); |
| |
| infmt = VI6_RPF_INFMT_CIPM |
| | (fmtinfo->hwfmt << VI6_RPF_INFMT_RDFMT_SHIFT); |
| |
| if (fmtinfo->swap_yc) |
| infmt |= VI6_RPF_INFMT_SPYCS; |
| if (fmtinfo->swap_uv) |
| infmt |= VI6_RPF_INFMT_SPUVS; |
| |
| if (sink_format->code != source_format->code) |
| infmt |= VI6_RPF_INFMT_CSC; |
| |
| vsp1_rpf_write(rpf, dlb, VI6_RPF_INFMT, infmt); |
| vsp1_rpf_write(rpf, dlb, VI6_RPF_DSWAP, fmtinfo->swap); |
| |
| /* Output location */ |
| if (pipe->brx) { |
| const struct v4l2_rect *compose; |
| |
| compose = vsp1_entity_get_pad_selection(pipe->brx, |
| pipe->brx->config, |
| rpf->brx_input, |
| V4L2_SEL_TGT_COMPOSE); |
| left = compose->left; |
| top = compose->top; |
| } |
| |
| if (pipe->interlaced) |
| top /= 2; |
| |
| vsp1_rpf_write(rpf, dlb, VI6_RPF_LOC, |
| (left << VI6_RPF_LOC_HCOORD_SHIFT) | |
| (top << VI6_RPF_LOC_VCOORD_SHIFT)); |
| |
| /* |
| * On Gen2 use the alpha channel (extended to 8 bits) when available or |
| * a fixed alpha value set through the V4L2_CID_ALPHA_COMPONENT control |
| * otherwise. |
| * |
| * The Gen3 RPF has extended alpha capability and can both multiply the |
| * alpha channel by a fixed global alpha value, and multiply the pixel |
| * components to convert the input to premultiplied alpha. |
| * |
| * As alpha premultiplication is available in the BRx for both Gen2 and |
| * Gen3 we handle it there and use the Gen3 alpha multiplier for global |
| * alpha multiplication only. This however prevents conversion to |
| * premultiplied alpha if no BRx is present in the pipeline. If that use |
| * case turns out to be useful we will revisit the implementation (for |
| * Gen3 only). |
| * |
| * We enable alpha multiplication on Gen3 using the fixed alpha value |
| * set through the V4L2_CID_ALPHA_COMPONENT control when the input |
| * contains an alpha channel. On Gen2 the global alpha is ignored in |
| * that case. |
| * |
| * In all cases, disable color keying. |
| */ |
| vsp1_rpf_write(rpf, dlb, VI6_RPF_ALPH_SEL, VI6_RPF_ALPH_SEL_AEXT_EXT | |
| (fmtinfo->alpha ? VI6_RPF_ALPH_SEL_ASEL_PACKED |
| : VI6_RPF_ALPH_SEL_ASEL_FIXED)); |
| |
| if (entity->vsp1->info->gen == 3) { |
| u32 mult; |
| |
| if (fmtinfo->alpha) { |
| /* |
| * When the input contains an alpha channel enable the |
| * alpha multiplier. If the input is premultiplied we |
| * need to multiply both the alpha channel and the pixel |
| * components by the global alpha value to keep them |
| * premultiplied. Otherwise multiply the alpha channel |
| * only. |
| */ |
| bool premultiplied = format->flags |
| & V4L2_PIX_FMT_FLAG_PREMUL_ALPHA; |
| |
| mult = VI6_RPF_MULT_ALPHA_A_MMD_RATIO |
| | (premultiplied ? |
| VI6_RPF_MULT_ALPHA_P_MMD_RATIO : |
| VI6_RPF_MULT_ALPHA_P_MMD_NONE); |
| } else { |
| /* |
| * When the input doesn't contain an alpha channel the |
| * global alpha value is applied in the unpacking unit, |
| * the alpha multiplier isn't needed and must be |
| * disabled. |
| */ |
| mult = VI6_RPF_MULT_ALPHA_A_MMD_NONE |
| | VI6_RPF_MULT_ALPHA_P_MMD_NONE; |
| } |
| |
| rpf->mult_alpha = mult; |
| } |
| |
| vsp1_rpf_write(rpf, dlb, VI6_RPF_MSK_CTRL, 0); |
| vsp1_rpf_write(rpf, dlb, VI6_RPF_CKEY_CTRL, 0); |
| |
| } |
| |
| static void vsp1_rpf_configure_autofld(struct vsp1_rwpf *rpf, |
| struct vsp1_dl_list *dl) |
| { |
| const struct v4l2_pix_format_mplane *format = &rpf->format; |
| struct vsp1_dl_ext_cmd *cmd; |
| struct vsp1_extcmd_auto_fld_body *auto_fld; |
| u32 offset_y, offset_c; |
| |
| cmd = vsp1_dl_get_pre_cmd(dl); |
| if (WARN_ONCE(!cmd, "Failed to obtain an autofld cmd")) |
| return; |
| |
| /* Re-index our auto_fld to match the current RPF. */ |
| auto_fld = cmd->data; |
| auto_fld = &auto_fld[rpf->entity.index]; |
| |
| auto_fld->top_y0 = rpf->mem.addr[0]; |
| auto_fld->top_c0 = rpf->mem.addr[1]; |
| auto_fld->top_c1 = rpf->mem.addr[2]; |
| |
| offset_y = format->plane_fmt[0].bytesperline; |
| offset_c = format->plane_fmt[1].bytesperline; |
| |
| auto_fld->bottom_y0 = rpf->mem.addr[0] + offset_y; |
| auto_fld->bottom_c0 = rpf->mem.addr[1] + offset_c; |
| auto_fld->bottom_c1 = rpf->mem.addr[2] + offset_c; |
| |
| cmd->flags |= VI6_DL_EXT_AUTOFLD_INT | BIT(16 + rpf->entity.index); |
| } |
| |
| static void rpf_configure_frame(struct vsp1_entity *entity, |
| struct vsp1_pipeline *pipe, |
| struct vsp1_dl_list *dl, |
| struct vsp1_dl_body *dlb) |
| { |
| struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev); |
| |
| vsp1_rpf_write(rpf, dlb, VI6_RPF_VRTCOL_SET, |
| rpf->alpha << VI6_RPF_VRTCOL_SET_LAYA_SHIFT); |
| vsp1_rpf_write(rpf, dlb, VI6_RPF_MULT_ALPHA, rpf->mult_alpha | |
| (rpf->alpha << VI6_RPF_MULT_ALPHA_RATIO_SHIFT)); |
| |
| vsp1_pipeline_propagate_alpha(pipe, dlb, rpf->alpha); |
| } |
| |
| static void rpf_configure_partition(struct vsp1_entity *entity, |
| struct vsp1_pipeline *pipe, |
| struct vsp1_dl_list *dl, |
| struct vsp1_dl_body *dlb) |
| { |
| struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev); |
| struct vsp1_rwpf_memory mem = rpf->mem; |
| struct vsp1_device *vsp1 = rpf->entity.vsp1; |
| const struct vsp1_format_info *fmtinfo = rpf->fmtinfo; |
| const struct v4l2_pix_format_mplane *format = &rpf->format; |
| struct v4l2_rect crop; |
| |
| /* |
| * Source size and crop offsets. |
| * |
| * The crop offsets correspond to the location of the crop |
| * rectangle top left corner in the plane buffer. Only two |
| * offsets are needed, as planes 2 and 3 always have identical |
| * strides. |
| */ |
| crop = *vsp1_rwpf_get_crop(rpf, rpf->entity.config); |
| |
| /* |
| * Partition Algorithm Control |
| * |
| * The partition algorithm can split this frame into multiple |
| * slices. We must scale our partition window based on the pipe |
| * configuration to match the destination partition window. |
| * To achieve this, we adjust our crop to provide a 'sub-crop' |
| * matching the expected partition window. Only 'left' and |
| * 'width' need to be adjusted. |
| */ |
| if (pipe->partitions > 1) { |
| crop.width = pipe->partition->rpf.width; |
| crop.left += pipe->partition->rpf.left; |
| } |
| |
| if (pipe->interlaced) { |
| crop.height = round_down(crop.height / 2, fmtinfo->vsub); |
| crop.top = round_down(crop.top / 2, fmtinfo->vsub); |
| } |
| |
| vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_BSIZE, |
| (crop.width << VI6_RPF_SRC_BSIZE_BHSIZE_SHIFT) | |
| (crop.height << VI6_RPF_SRC_BSIZE_BVSIZE_SHIFT)); |
| vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_ESIZE, |
| (crop.width << VI6_RPF_SRC_ESIZE_EHSIZE_SHIFT) | |
| (crop.height << VI6_RPF_SRC_ESIZE_EVSIZE_SHIFT)); |
| |
| mem.addr[0] += crop.top * format->plane_fmt[0].bytesperline |
| + crop.left * fmtinfo->bpp[0] / 8; |
| |
| if (format->num_planes > 1) { |
| unsigned int offset; |
| |
| offset = crop.top * format->plane_fmt[1].bytesperline |
| + crop.left / fmtinfo->hsub |
| * fmtinfo->bpp[1] / 8; |
| mem.addr[1] += offset; |
| mem.addr[2] += offset; |
| } |
| |
| /* |
| * On Gen3 hardware the SPUVS bit has no effect on 3-planar |
| * formats. Swap the U and V planes manually in that case. |
| */ |
| if (vsp1->info->gen == 3 && format->num_planes == 3 && |
| fmtinfo->swap_uv) |
| swap(mem.addr[1], mem.addr[2]); |
| |
| /* |
| * Interlaced pipelines will use the extended pre-cmd to process |
| * SRCM_ADDR_{Y,C0,C1} |
| */ |
| if (pipe->interlaced) { |
| vsp1_rpf_configure_autofld(rpf, dl); |
| } else { |
| vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_Y, mem.addr[0]); |
| vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C0, mem.addr[1]); |
| vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C1, mem.addr[2]); |
| } |
| } |
| |
| static void rpf_partition(struct vsp1_entity *entity, |
| struct vsp1_pipeline *pipe, |
| struct vsp1_partition *partition, |
| unsigned int partition_idx, |
| struct vsp1_partition_window *window) |
| { |
| partition->rpf = *window; |
| } |
| |
| static const struct vsp1_entity_operations rpf_entity_ops = { |
| .configure_stream = rpf_configure_stream, |
| .configure_frame = rpf_configure_frame, |
| .configure_partition = rpf_configure_partition, |
| .partition = rpf_partition, |
| }; |
| |
| /* ----------------------------------------------------------------------------- |
| * Initialization and Cleanup |
| */ |
| |
| struct vsp1_rwpf *vsp1_rpf_create(struct vsp1_device *vsp1, unsigned int index) |
| { |
| struct vsp1_rwpf *rpf; |
| char name[6]; |
| int ret; |
| |
| rpf = devm_kzalloc(vsp1->dev, sizeof(*rpf), GFP_KERNEL); |
| if (rpf == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| rpf->max_width = RPF_MAX_WIDTH; |
| rpf->max_height = RPF_MAX_HEIGHT; |
| |
| rpf->entity.ops = &rpf_entity_ops; |
| rpf->entity.type = VSP1_ENTITY_RPF; |
| rpf->entity.index = index; |
| |
| sprintf(name, "rpf.%u", index); |
| ret = vsp1_entity_init(vsp1, &rpf->entity, name, 2, &rpf_ops, |
| MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER); |
| if (ret < 0) |
| return ERR_PTR(ret); |
| |
| /* Initialize the control handler. */ |
| ret = vsp1_rwpf_init_ctrls(rpf, 0); |
| if (ret < 0) { |
| dev_err(vsp1->dev, "rpf%u: failed to initialize controls\n", |
| index); |
| goto error; |
| } |
| |
| v4l2_ctrl_handler_setup(&rpf->ctrls); |
| |
| return rpf; |
| |
| error: |
| vsp1_entity_destroy(&rpf->entity); |
| return ERR_PTR(ret); |
| } |