blob: ccb63d0fd91d02980b4ca56d15e6416268551d0a [file] [log] [blame]
/*
*
* (C) COPYRIGHT 2010-2019 ARM Limited. All rights reserved.
*
* This program is free software and is provided to you under the terms of the
* GNU General Public License version 2 as published by the Free Software
* Foundation, and any use by you of this program is subject to the terms
* of such GNU licence.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
* SPDX-License-Identifier: GPL-2.0
*
*/
/**
* @file mali_kbase_mmu.c
* Base kernel MMU management.
*/
/* #define DEBUG 1 */
#include <linux/kernel.h>
#include <linux/dma-mapping.h>
#include <mali_kbase.h>
#include <mali_midg_regmap.h>
#include <mali_kbase_tracepoints.h>
#include <mali_kbase_instr_defs.h>
#include <mali_kbase_debug.h>
#define beenthere(kctx, f, a...) dev_dbg(kctx->kbdev->dev, "%s:" f, __func__, ##a)
#include <mali_kbase_defs.h>
#include <mali_kbase_hw.h>
#include <mali_kbase_mmu_hw.h>
#include <mali_kbase_hwaccess_jm.h>
#include <mali_kbase_hwaccess_time.h>
#include <mali_kbase_mem.h>
#include <mali_kbase_reset_gpu.h>
#define KBASE_MMU_PAGE_ENTRIES 512
/**
* kbase_mmu_flush_invalidate() - Flush and invalidate the GPU caches.
* @kctx: The KBase context.
* @vpfn: The virtual page frame number to start the flush on.
* @nr: The number of pages to flush.
* @sync: Set if the operation should be synchronous or not.
*
* Issue a cache flush + invalidate to the GPU caches and invalidate the TLBs.
*
* If sync is not set then transactions still in flight when the flush is issued
* may use the old page tables and the data they write will not be written out
* to memory, this function returns after the flush has been issued but
* before all accesses which might effect the flushed region have completed.
*
* If sync is set then accesses in the flushed region will be drained
* before data is flush and invalidated through L1, L2 and into memory,
* after which point this function will return.
*/
static void kbase_mmu_flush_invalidate(struct kbase_context *kctx,
u64 vpfn, size_t nr, bool sync);
/**
* kbase_mmu_flush_invalidate_no_ctx() - Flush and invalidate the GPU caches.
* @kbdev: Device pointer.
* @vpfn: The virtual page frame number to start the flush on.
* @nr: The number of pages to flush.
* @sync: Set if the operation should be synchronous or not.
* @as_nr: GPU address space number for which flush + invalidate is required.
*
* This is used for MMU tables which do not belong to a user space context.
*/
static void kbase_mmu_flush_invalidate_no_ctx(struct kbase_device *kbdev,
u64 vpfn, size_t nr, bool sync, int as_nr);
/**
* kbase_mmu_sync_pgd - sync page directory to memory
* @kbdev: Device pointer.
* @handle: Address of DMA region.
* @size: Size of the region to sync.
*
* This should be called after each page directory update.
*/
static void kbase_mmu_sync_pgd(struct kbase_device *kbdev,
dma_addr_t handle, size_t size)
{
/* If page table is not coherent then ensure the gpu can read
* the pages from memory
*/
if (kbdev->system_coherency != COHERENCY_ACE)
dma_sync_single_for_device(kbdev->dev, handle, size,
DMA_TO_DEVICE);
}
/*
* Definitions:
* - PGD: Page Directory.
* - PTE: Page Table Entry. A 64bit value pointing to the next
* level of translation
* - ATE: Address Transation Entry. A 64bit value pointing to
* a 4kB physical page.
*/
static void kbase_mmu_report_fault_and_kill(struct kbase_context *kctx,
struct kbase_as *as, const char *reason_str,
struct kbase_fault *fault);
static int kbase_mmu_update_pages_no_flush(struct kbase_context *kctx, u64 vpfn,
struct tagged_addr *phys, size_t nr,
unsigned long flags, int group_id);
/**
* reg_grow_calc_extra_pages() - Calculate the number of backed pages to add to
* a region on a GPU page fault
*
* @reg: The region that will be backed with more pages
* @fault_rel_pfn: PFN of the fault relative to the start of the region
*
* This calculates how much to increase the backing of a region by, based on
* where a GPU page fault occurred and the flags in the region.
*
* This can be more than the minimum number of pages that would reach
* @fault_rel_pfn, for example to reduce the overall rate of page fault
* interrupts on a region, or to ensure that the end address is aligned.
*
* Return: the number of backed pages to increase by
*/
static size_t reg_grow_calc_extra_pages(struct kbase_device *kbdev,
struct kbase_va_region *reg, size_t fault_rel_pfn)
{
size_t multiple = reg->extent;
size_t reg_current_size = kbase_reg_current_backed_size(reg);
size_t minimum_extra = fault_rel_pfn - reg_current_size + 1;
size_t remainder;
if (!multiple) {
dev_warn(kbdev->dev,
"VA Region 0x%llx extent was 0, allocator needs to set this properly for KBASE_REG_PF_GROW\n",
((unsigned long long)reg->start_pfn) << PAGE_SHIFT);
return minimum_extra;
}
/* Calculate the remainder to subtract from minimum_extra to make it
* the desired (rounded down) multiple of the extent.
* Depending on reg's flags, the base used for calculating multiples is
* different */
if (reg->flags & KBASE_REG_TILER_ALIGN_TOP) {
/* multiple is based from the top of the initial commit, which
* has been allocated in such a way that (start_pfn +
* initial_commit) is already aligned to multiple. Hence the
* pfn for the end of committed memory will also be aligned to
* multiple */
size_t initial_commit = reg->initial_commit;
if (fault_rel_pfn < initial_commit) {
/* this case is just to catch in case it's been
* recommitted by userspace to be smaller than the
* initial commit */
minimum_extra = initial_commit - reg_current_size;
remainder = 0;
} else {
/* same as calculating (fault_rel_pfn - initial_commit + 1) */
size_t pages_after_initial = minimum_extra + reg_current_size - initial_commit;
remainder = pages_after_initial % multiple;
}
} else {
/* multiple is based from the current backed size, even if the
* current backed size/pfn for end of committed memory are not
* themselves aligned to multiple */
remainder = minimum_extra % multiple;
}
if (remainder == 0)
return minimum_extra;
return minimum_extra + multiple - remainder;
}
#ifdef CONFIG_MALI_CINSTR_GWT
static void kbase_gpu_mmu_handle_write_faulting_as(
struct kbase_device *kbdev,
struct kbase_as *faulting_as,
u64 start_pfn, size_t nr, u32 op)
{
mutex_lock(&kbdev->mmu_hw_mutex);
kbase_mmu_hw_clear_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_PAGE);
kbase_mmu_hw_do_operation(kbdev, faulting_as, start_pfn,
nr, op, 1);
mutex_unlock(&kbdev->mmu_hw_mutex);
kbase_mmu_hw_enable_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_PAGE);
}
static void kbase_gpu_mmu_handle_write_fault(struct kbase_context *kctx,
struct kbase_as *faulting_as)
{
struct kbasep_gwt_list_element *pos;
struct kbase_va_region *region;
struct kbase_device *kbdev;
struct kbase_fault *fault;
u64 fault_pfn, pfn_offset;
u32 op;
int ret;
int as_no;
as_no = faulting_as->number;
kbdev = container_of(faulting_as, struct kbase_device, as[as_no]);
fault = &faulting_as->pf_data;
fault_pfn = fault->addr >> PAGE_SHIFT;
kbase_gpu_vm_lock(kctx);
/* Find region and check if it should be writable. */
region = kbase_region_tracker_find_region_enclosing_address(kctx,
fault->addr);
if (kbase_is_region_invalid_or_free(region)) {
kbase_gpu_vm_unlock(kctx);
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Memory is not mapped on the GPU",
&faulting_as->pf_data);
return;
}
if (!(region->flags & KBASE_REG_GPU_WR)) {
kbase_gpu_vm_unlock(kctx);
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Region does not have write permissions",
&faulting_as->pf_data);
return;
}
/* Capture addresses of faulting write location
* for job dumping if write tracking is enabled.
*/
if (kctx->gwt_enabled) {
u64 page_addr = fault->addr & PAGE_MASK;
bool found = false;
/* Check if this write was already handled. */
list_for_each_entry(pos, &kctx->gwt_current_list, link) {
if (page_addr == pos->page_addr) {
found = true;
break;
}
}
if (!found) {
pos = kmalloc(sizeof(*pos), GFP_KERNEL);
if (pos) {
pos->region = region;
pos->page_addr = page_addr;
pos->num_pages = 1;
list_add(&pos->link, &kctx->gwt_current_list);
} else {
dev_warn(kbdev->dev, "kmalloc failure");
}
}
}
pfn_offset = fault_pfn - region->start_pfn;
/* Now make this faulting page writable to GPU. */
ret = kbase_mmu_update_pages_no_flush(kctx, fault_pfn,
&kbase_get_gpu_phy_pages(region)[pfn_offset],
1, region->flags, region->gpu_alloc->group_id);
/* flush L2 and unlock the VA (resumes the MMU) */
if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_6367))
op = AS_COMMAND_FLUSH;
else
op = AS_COMMAND_FLUSH_PT;
kbase_gpu_mmu_handle_write_faulting_as(kbdev, faulting_as,
fault_pfn, 1, op);
kbase_gpu_vm_unlock(kctx);
}
static void kbase_gpu_mmu_handle_permission_fault(struct kbase_context *kctx,
struct kbase_as *faulting_as)
{
struct kbase_fault *fault = &faulting_as->pf_data;
switch (fault->status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) {
case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
kbase_gpu_mmu_handle_write_fault(kctx, faulting_as);
break;
case AS_FAULTSTATUS_ACCESS_TYPE_EX:
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Execute Permission fault", fault);
break;
case AS_FAULTSTATUS_ACCESS_TYPE_READ:
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Read Permission fault", fault);
break;
default:
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Unknown Permission fault", fault);
break;
}
}
#endif
#define MAX_POOL_LEVEL 2
/**
* page_fault_try_alloc - Try to allocate memory from a context pool
* @kctx: Context pointer
* @region: Region to grow
* @new_pages: Number of 4 kB pages to allocate
* @pages_to_grow: Pointer to variable to store number of outstanding pages on
* failure. This can be either 4 kB or 2 MB pages, depending on
* the number of pages requested.
* @grow_2mb_pool: Pointer to variable to store which pool needs to grow - true
* for 2 MB, false for 4 kB.
* @prealloc_sas: Pointer to kbase_sub_alloc structures
*
* This function will try to allocate as many pages as possible from the context
* pool, then if required will try to allocate the remaining pages from the
* device pool.
*
* This function will not allocate any new memory beyond that that is already
* present in the context or device pools. This is because it is intended to be
* called with the vm_lock held, which could cause recursive locking if the
* allocation caused the out-of-memory killer to run.
*
* If 2 MB pages are enabled and new_pages is >= 2 MB then pages_to_grow will be
* a count of 2 MB pages, otherwise it will be a count of 4 kB pages.
*
* Return: true if successful, false on failure
*/
static bool page_fault_try_alloc(struct kbase_context *kctx,
struct kbase_va_region *region, size_t new_pages,
int *pages_to_grow, bool *grow_2mb_pool,
struct kbase_sub_alloc **prealloc_sas)
{
struct tagged_addr *gpu_pages[MAX_POOL_LEVEL] = {NULL};
struct tagged_addr *cpu_pages[MAX_POOL_LEVEL] = {NULL};
size_t pages_alloced[MAX_POOL_LEVEL] = {0};
struct kbase_mem_pool *pool, *root_pool;
int pool_level = 0;
bool alloc_failed = false;
size_t pages_still_required;
if (WARN_ON(region->gpu_alloc->group_id >=
MEMORY_GROUP_MANAGER_NR_GROUPS)) {
/* Do not try to grow the memory pool */
*pages_to_grow = 0;
return false;
}
#ifdef CONFIG_MALI_2MB_ALLOC
if (new_pages >= (SZ_2M / SZ_4K)) {
root_pool = &kctx->mem_pools.large[region->gpu_alloc->group_id];
*grow_2mb_pool = true;
} else {
#endif
root_pool = &kctx->mem_pools.small[region->gpu_alloc->group_id];
*grow_2mb_pool = false;
#ifdef CONFIG_MALI_2MB_ALLOC
}
#endif
if (region->gpu_alloc != region->cpu_alloc)
new_pages *= 2;
pages_still_required = new_pages;
/* Determine how many pages are in the pools before trying to allocate.
* Don't attempt to allocate & free if the allocation can't succeed.
*/
for (pool = root_pool; pool != NULL; pool = pool->next_pool) {
size_t pool_size_4k;
kbase_mem_pool_lock(pool);
pool_size_4k = kbase_mem_pool_size(pool) << pool->order;
if (pool_size_4k >= pages_still_required)
pages_still_required = 0;
else
pages_still_required -= pool_size_4k;
kbase_mem_pool_unlock(pool);
if (!pages_still_required)
break;
}
if (pages_still_required) {
/* Insufficient pages in pools. Don't try to allocate - just
* request a grow.
*/
*pages_to_grow = pages_still_required;
return false;
}
/* Since we've dropped the pool locks, the amount of memory in the pools
* may change between the above check and the actual allocation.
*/
pool = root_pool;
for (pool_level = 0; pool_level < MAX_POOL_LEVEL; pool_level++) {
size_t pool_size_4k;
size_t pages_to_alloc_4k;
size_t pages_to_alloc_4k_per_alloc;
kbase_mem_pool_lock(pool);
/* Allocate as much as possible from this pool*/
pool_size_4k = kbase_mem_pool_size(pool) << pool->order;
pages_to_alloc_4k = MIN(new_pages, pool_size_4k);
if (region->gpu_alloc == region->cpu_alloc)
pages_to_alloc_4k_per_alloc = pages_to_alloc_4k;
else
pages_to_alloc_4k_per_alloc = pages_to_alloc_4k >> 1;
pages_alloced[pool_level] = pages_to_alloc_4k;
if (pages_to_alloc_4k) {
gpu_pages[pool_level] =
kbase_alloc_phy_pages_helper_locked(
region->gpu_alloc, pool,
pages_to_alloc_4k_per_alloc,
&prealloc_sas[0]);
if (!gpu_pages[pool_level]) {
alloc_failed = true;
} else if (region->gpu_alloc != region->cpu_alloc) {
cpu_pages[pool_level] =
kbase_alloc_phy_pages_helper_locked(
region->cpu_alloc, pool,
pages_to_alloc_4k_per_alloc,
&prealloc_sas[1]);
if (!cpu_pages[pool_level])
alloc_failed = true;
}
}
kbase_mem_pool_unlock(pool);
if (alloc_failed) {
WARN_ON(!new_pages);
WARN_ON(pages_to_alloc_4k >= new_pages);
WARN_ON(pages_to_alloc_4k_per_alloc >= new_pages);
break;
}
new_pages -= pages_to_alloc_4k;
if (!new_pages)
break;
pool = pool->next_pool;
if (!pool)
break;
}
if (new_pages) {
/* Allocation was unsuccessful */
int max_pool_level = pool_level;
pool = root_pool;
/* Free memory allocated so far */
for (pool_level = 0; pool_level <= max_pool_level;
pool_level++) {
kbase_mem_pool_lock(pool);
if (region->gpu_alloc != region->cpu_alloc) {
if (pages_alloced[pool_level] &&
cpu_pages[pool_level])
kbase_free_phy_pages_helper_locked(
region->cpu_alloc,
pool, cpu_pages[pool_level],
pages_alloced[pool_level]);
}
if (pages_alloced[pool_level] && gpu_pages[pool_level])
kbase_free_phy_pages_helper_locked(
region->gpu_alloc,
pool, gpu_pages[pool_level],
pages_alloced[pool_level]);
kbase_mem_pool_unlock(pool);
pool = pool->next_pool;
}
/*
* If the allocation failed despite there being enough memory in
* the pool, then just fail. Otherwise, try to grow the memory
* pool.
*/
if (alloc_failed)
*pages_to_grow = 0;
else
*pages_to_grow = new_pages;
return false;
}
/* Allocation was successful. No pages to grow, return success. */
*pages_to_grow = 0;
return true;
}
void page_fault_worker(struct work_struct *data)
{
u64 fault_pfn;
u32 fault_status;
size_t new_pages;
size_t fault_rel_pfn;
struct kbase_as *faulting_as;
int as_no;
struct kbase_context *kctx;
struct kbase_device *kbdev;
struct kbase_va_region *region;
struct kbase_fault *fault;
int err;
bool grown = false;
int pages_to_grow;
bool grow_2mb_pool;
struct kbase_sub_alloc *prealloc_sas[2] = { NULL, NULL };
int i;
faulting_as = container_of(data, struct kbase_as, work_pagefault);
fault = &faulting_as->pf_data;
fault_pfn = fault->addr >> PAGE_SHIFT;
as_no = faulting_as->number;
kbdev = container_of(faulting_as, struct kbase_device, as[as_no]);
/* Grab the context that was already refcounted in kbase_mmu_interrupt().
* Therefore, it cannot be scheduled out of this AS until we explicitly release it
*/
kctx = kbasep_js_runpool_lookup_ctx_noretain(kbdev, as_no);
if (WARN_ON(!kctx)) {
atomic_dec(&kbdev->faults_pending);
return;
}
KBASE_DEBUG_ASSERT(kctx->kbdev == kbdev);
if (unlikely(fault->protected_mode)) {
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Protected mode fault", fault);
kbase_mmu_hw_clear_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_PAGE);
goto fault_done;
}
fault_status = fault->status;
switch (fault_status & AS_FAULTSTATUS_EXCEPTION_CODE_MASK) {
case AS_FAULTSTATUS_EXCEPTION_CODE_TRANSLATION_FAULT:
/* need to check against the region to handle this one */
break;
case AS_FAULTSTATUS_EXCEPTION_CODE_PERMISSION_FAULT:
#ifdef CONFIG_MALI_CINSTR_GWT
/* If GWT was ever enabled then we need to handle
* write fault pages even if the feature was disabled later.
*/
if (kctx->gwt_was_enabled) {
kbase_gpu_mmu_handle_permission_fault(kctx,
faulting_as);
goto fault_done;
}
#endif
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Permission failure", fault);
goto fault_done;
case AS_FAULTSTATUS_EXCEPTION_CODE_TRANSTAB_BUS_FAULT:
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Translation table bus fault", fault);
goto fault_done;
case AS_FAULTSTATUS_EXCEPTION_CODE_ACCESS_FLAG:
/* nothing to do, but we don't expect this fault currently */
dev_warn(kbdev->dev, "Access flag unexpectedly set");
goto fault_done;
case AS_FAULTSTATUS_EXCEPTION_CODE_ADDRESS_SIZE_FAULT:
if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_AARCH64_MMU))
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Address size fault", fault);
else
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Unknown fault code", fault);
goto fault_done;
case AS_FAULTSTATUS_EXCEPTION_CODE_MEMORY_ATTRIBUTES_FAULT:
if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_AARCH64_MMU))
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Memory attributes fault", fault);
else
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Unknown fault code", fault);
goto fault_done;
default:
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Unknown fault code", fault);
goto fault_done;
}
#ifdef CONFIG_MALI_2MB_ALLOC
/* Preallocate memory for the sub-allocation structs if necessary */
for (i = 0; i != ARRAY_SIZE(prealloc_sas); ++i) {
prealloc_sas[i] = kmalloc(sizeof(*prealloc_sas[i]), GFP_KERNEL);
if (!prealloc_sas[i]) {
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Failed pre-allocating memory for sub-allocations' metadata",
fault);
goto fault_done;
}
}
#endif /* CONFIG_MALI_2MB_ALLOC */
page_fault_retry:
/* so we have a translation fault, let's see if it is for growable
* memory */
kbase_gpu_vm_lock(kctx);
region = kbase_region_tracker_find_region_enclosing_address(kctx,
fault->addr);
if (kbase_is_region_invalid_or_free(region)) {
kbase_gpu_vm_unlock(kctx);
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Memory is not mapped on the GPU", fault);
goto fault_done;
}
if (region->gpu_alloc->type == KBASE_MEM_TYPE_IMPORTED_UMM) {
kbase_gpu_vm_unlock(kctx);
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"DMA-BUF is not mapped on the GPU", fault);
goto fault_done;
}
if (region->gpu_alloc->group_id >= MEMORY_GROUP_MANAGER_NR_GROUPS) {
kbase_gpu_vm_unlock(kctx);
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Bad physical memory group ID", fault);
goto fault_done;
}
if ((region->flags & GROWABLE_FLAGS_REQUIRED)
!= GROWABLE_FLAGS_REQUIRED) {
kbase_gpu_vm_unlock(kctx);
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Memory is not growable", fault);
goto fault_done;
}
if ((region->flags & KBASE_REG_DONT_NEED)) {
kbase_gpu_vm_unlock(kctx);
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Don't need memory can't be grown", fault);
goto fault_done;
}
/* find the size we need to grow it by */
/* we know the result fit in a size_t due to kbase_region_tracker_find_region_enclosing_address
* validating the fault_adress to be within a size_t from the start_pfn */
fault_rel_pfn = fault_pfn - region->start_pfn;
if (fault_rel_pfn < kbase_reg_current_backed_size(region)) {
dev_dbg(kbdev->dev, "Page fault @ 0x%llx in allocated region 0x%llx-0x%llx of growable TMEM: Ignoring",
fault->addr, region->start_pfn,
region->start_pfn +
kbase_reg_current_backed_size(region));
mutex_lock(&kbdev->mmu_hw_mutex);
kbase_mmu_hw_clear_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_PAGE);
/* [1] in case another page fault occurred while we were
* handling the (duplicate) page fault we need to ensure we
* don't loose the other page fault as result of us clearing
* the MMU IRQ. Therefore, after we clear the MMU IRQ we send
* an UNLOCK command that will retry any stalled memory
* transaction (which should cause the other page fault to be
* raised again).
*/
kbase_mmu_hw_do_operation(kbdev, faulting_as, 0, 0,
AS_COMMAND_UNLOCK, 1);
mutex_unlock(&kbdev->mmu_hw_mutex);
kbase_mmu_hw_enable_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_PAGE);
kbase_gpu_vm_unlock(kctx);
goto fault_done;
}
new_pages = reg_grow_calc_extra_pages(kbdev, region, fault_rel_pfn);
/* cap to max vsize */
new_pages = min(new_pages, region->nr_pages - kbase_reg_current_backed_size(region));
if (0 == new_pages) {
mutex_lock(&kbdev->mmu_hw_mutex);
/* Duplicate of a fault we've already handled, nothing to do */
kbase_mmu_hw_clear_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_PAGE);
/* See comment [1] about UNLOCK usage */
kbase_mmu_hw_do_operation(kbdev, faulting_as, 0, 0,
AS_COMMAND_UNLOCK, 1);
mutex_unlock(&kbdev->mmu_hw_mutex);
kbase_mmu_hw_enable_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_PAGE);
kbase_gpu_vm_unlock(kctx);
goto fault_done;
}
pages_to_grow = 0;
spin_lock(&kctx->mem_partials_lock);
grown = page_fault_try_alloc(kctx, region, new_pages, &pages_to_grow,
&grow_2mb_pool, prealloc_sas);
spin_unlock(&kctx->mem_partials_lock);
if (grown) {
u64 pfn_offset;
u32 op;
/* alloc success */
KBASE_DEBUG_ASSERT(kbase_reg_current_backed_size(region) <= region->nr_pages);
/* set up the new pages */
pfn_offset = kbase_reg_current_backed_size(region) - new_pages;
/*
* Note:
* Issuing an MMU operation will unlock the MMU and cause the
* translation to be replayed. If the page insertion fails then
* rather then trying to continue the context should be killed
* so the no_flush version of insert_pages is used which allows
* us to unlock the MMU as we see fit.
*/
err = kbase_mmu_insert_pages_no_flush(kbdev, &kctx->mmu,
region->start_pfn + pfn_offset,
&kbase_get_gpu_phy_pages(region)[pfn_offset],
new_pages, region->flags, region->gpu_alloc->group_id);
if (err) {
kbase_free_phy_pages_helper(region->gpu_alloc, new_pages);
if (region->gpu_alloc != region->cpu_alloc)
kbase_free_phy_pages_helper(region->cpu_alloc,
new_pages);
kbase_gpu_vm_unlock(kctx);
/* The locked VA region will be unlocked and the cache invalidated in here */
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Page table update failure", fault);
goto fault_done;
}
KBASE_TLSTREAM_AUX_PAGEFAULT(kbdev, kctx->id, as_no, (u64)new_pages);
/* AS transaction begin */
mutex_lock(&kbdev->mmu_hw_mutex);
/* flush L2 and unlock the VA (resumes the MMU) */
if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_6367))
op = AS_COMMAND_FLUSH;
else
op = AS_COMMAND_FLUSH_PT;
/* clear MMU interrupt - this needs to be done after updating
* the page tables but before issuing a FLUSH command. The
* FLUSH cmd has a side effect that it restarts stalled memory
* transactions in other address spaces which may cause
* another fault to occur. If we didn't clear the interrupt at
* this stage a new IRQ might not be raised when the GPU finds
* a MMU IRQ is already pending.
*/
kbase_mmu_hw_clear_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_PAGE);
kbase_mmu_hw_do_operation(kbdev, faulting_as,
fault->addr >> PAGE_SHIFT,
new_pages, op, 1);
mutex_unlock(&kbdev->mmu_hw_mutex);
/* AS transaction end */
/* reenable this in the mask */
kbase_mmu_hw_enable_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_PAGE);
#ifdef CONFIG_MALI_CINSTR_GWT
if (kctx->gwt_enabled) {
/* GWT also tracks growable regions. */
struct kbasep_gwt_list_element *pos;
pos = kmalloc(sizeof(*pos), GFP_KERNEL);
if (pos) {
pos->region = region;
pos->page_addr = (region->start_pfn +
pfn_offset) <<
PAGE_SHIFT;
pos->num_pages = new_pages;
list_add(&pos->link,
&kctx->gwt_current_list);
} else {
dev_warn(kbdev->dev, "kmalloc failure");
}
}
#endif
kbase_gpu_vm_unlock(kctx);
} else {
int ret = -ENOMEM;
kbase_gpu_vm_unlock(kctx);
/* If the memory pool was insufficient then grow it and retry.
* Otherwise fail the allocation.
*/
if (pages_to_grow > 0) {
#ifdef CONFIG_MALI_2MB_ALLOC
if (grow_2mb_pool) {
/* Round page requirement up to nearest 2 MB */
struct kbase_mem_pool *const lp_mem_pool =
&kctx->mem_pools.large[
region->gpu_alloc->group_id];
pages_to_grow = (pages_to_grow +
((1 << lp_mem_pool->order) - 1))
>> lp_mem_pool->order;
ret = kbase_mem_pool_grow(lp_mem_pool,
pages_to_grow);
} else {
#endif
struct kbase_mem_pool *const mem_pool =
&kctx->mem_pools.small[
region->gpu_alloc->group_id];
ret = kbase_mem_pool_grow(mem_pool,
pages_to_grow);
#ifdef CONFIG_MALI_2MB_ALLOC
}
#endif
}
if (ret < 0) {
/* failed to extend, handle as a normal PF */
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Page allocation failure", fault);
} else {
goto page_fault_retry;
}
}
fault_done:
for (i = 0; i != ARRAY_SIZE(prealloc_sas); ++i)
kfree(prealloc_sas[i]);
/*
* By this point, the fault was handled in some way,
* so release the ctx refcount
*/
kbasep_js_runpool_release_ctx(kbdev, kctx);
atomic_dec(&kbdev->faults_pending);
}
static phys_addr_t kbase_mmu_alloc_pgd(struct kbase_device *kbdev,
struct kbase_mmu_table *mmut)
{
u64 *page;
int i;
struct page *p;
p = kbase_mem_pool_alloc(&kbdev->mem_pools.small[mmut->group_id]);
if (!p)
return 0;
page = kmap(p);
if (NULL == page)
goto alloc_free;
/* If the MMU tables belong to a context then account the memory usage
* to that context, otherwise the MMU tables are device wide and are
* only accounted to the device.
*/
if (mmut->kctx) {
int new_page_count;
new_page_count = atomic_add_return(1,
&mmut->kctx->used_pages);
KBASE_TLSTREAM_AUX_PAGESALLOC(
kbdev,
mmut->kctx->id,
(u64)new_page_count);
kbase_process_page_usage_inc(mmut->kctx, 1);
}
atomic_add(1, &kbdev->memdev.used_pages);
for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++)
kbdev->mmu_mode->entry_invalidate(&page[i]);
kbase_mmu_sync_pgd(kbdev, kbase_dma_addr(p), PAGE_SIZE);
kunmap(p);
return page_to_phys(p);
alloc_free:
kbase_mem_pool_free(&kbdev->mem_pools.small[mmut->group_id], p,
false);
return 0;
}
/* Given PGD PFN for level N, return PGD PFN for level N+1, allocating the
* new table from the pool if needed and possible
*/
static int mmu_get_next_pgd(struct kbase_device *kbdev,
struct kbase_mmu_table *mmut,
phys_addr_t *pgd, u64 vpfn, int level)
{
u64 *page;
phys_addr_t target_pgd;
struct page *p;
KBASE_DEBUG_ASSERT(*pgd);
lockdep_assert_held(&mmut->mmu_lock);
/*
* Architecture spec defines level-0 as being the top-most.
* This is a bit unfortunate here, but we keep the same convention.
*/
vpfn >>= (3 - level) * 9;
vpfn &= 0x1FF;
p = pfn_to_page(PFN_DOWN(*pgd));
page = kmap(p);
if (NULL == page) {
dev_warn(kbdev->dev, "%s: kmap failure\n", __func__);
return -EINVAL;
}
target_pgd = kbdev->mmu_mode->pte_to_phy_addr(page[vpfn]);
if (!target_pgd) {
target_pgd = kbase_mmu_alloc_pgd(kbdev, mmut);
if (!target_pgd) {
dev_dbg(kbdev->dev, "%s: kbase_mmu_alloc_pgd failure\n",
__func__);
kunmap(p);
return -ENOMEM;
}
kbdev->mmu_mode->entry_set_pte(&page[vpfn], target_pgd);
kbase_mmu_sync_pgd(kbdev, kbase_dma_addr(p), PAGE_SIZE);
/* Rely on the caller to update the address space flags. */
}
kunmap(p);
*pgd = target_pgd;
return 0;
}
/*
* Returns the PGD for the specified level of translation
*/
static int mmu_get_pgd_at_level(struct kbase_device *kbdev,
struct kbase_mmu_table *mmut,
u64 vpfn,
int level,
phys_addr_t *out_pgd)
{
phys_addr_t pgd;
int l;
lockdep_assert_held(&mmut->mmu_lock);
pgd = mmut->pgd;
for (l = MIDGARD_MMU_TOPLEVEL; l < level; l++) {
int err = mmu_get_next_pgd(kbdev, mmut, &pgd, vpfn, l);
/* Handle failure condition */
if (err) {
dev_dbg(kbdev->dev,
"%s: mmu_get_next_pgd failure at level %d\n",
__func__, l);
return err;
}
}
*out_pgd = pgd;
return 0;
}
static int mmu_get_bottom_pgd(struct kbase_device *kbdev,
struct kbase_mmu_table *mmut,
u64 vpfn,
phys_addr_t *out_pgd)
{
return mmu_get_pgd_at_level(kbdev, mmut, vpfn, MIDGARD_MMU_BOTTOMLEVEL,
out_pgd);
}
static void mmu_insert_pages_failure_recovery(struct kbase_device *kbdev,
struct kbase_mmu_table *mmut,
u64 from_vpfn, u64 to_vpfn)
{
phys_addr_t pgd;
u64 vpfn = from_vpfn;
struct kbase_mmu_mode const *mmu_mode;
/* 64-bit address range is the max */
KBASE_DEBUG_ASSERT(vpfn <= (U64_MAX / PAGE_SIZE));
KBASE_DEBUG_ASSERT(from_vpfn <= to_vpfn);
lockdep_assert_held(&mmut->mmu_lock);
mmu_mode = kbdev->mmu_mode;
while (vpfn < to_vpfn) {
unsigned int i;
unsigned int idx = vpfn & 0x1FF;
unsigned int count = KBASE_MMU_PAGE_ENTRIES - idx;
unsigned int pcount = 0;
unsigned int left = to_vpfn - vpfn;
int level;
u64 *page;
if (count > left)
count = left;
/* need to check if this is a 2MB page or a 4kB */
pgd = mmut->pgd;
for (level = MIDGARD_MMU_TOPLEVEL;
level <= MIDGARD_MMU_BOTTOMLEVEL; level++) {
idx = (vpfn >> ((3 - level) * 9)) & 0x1FF;
page = kmap(phys_to_page(pgd));
if (mmu_mode->ate_is_valid(page[idx], level))
break; /* keep the mapping */
kunmap(phys_to_page(pgd));
pgd = mmu_mode->pte_to_phy_addr(page[idx]);
}
switch (level) {
case MIDGARD_MMU_LEVEL(2):
/* remap to single entry to update */
pcount = 1;
break;
case MIDGARD_MMU_BOTTOMLEVEL:
/* page count is the same as the logical count */
pcount = count;
break;
default:
dev_warn(kbdev->dev, "%sNo support for ATEs at level %d\n",
__func__, level);
goto next;
}
/* Invalidate the entries we added */
for (i = 0; i < pcount; i++)
mmu_mode->entry_invalidate(&page[idx + i]);
kbase_mmu_sync_pgd(kbdev,
kbase_dma_addr(phys_to_page(pgd)) + 8 * idx,
8 * pcount);
kunmap(phys_to_page(pgd));
next:
vpfn += count;
}
}
/*
* Map the single page 'phys' 'nr' of times, starting at GPU PFN 'vpfn'
*/
int kbase_mmu_insert_single_page(struct kbase_context *kctx, u64 vpfn,
struct tagged_addr phys, size_t nr,
unsigned long flags, int const group_id)
{
phys_addr_t pgd;
u64 *pgd_page;
/* In case the insert_single_page only partially completes we need to be
* able to recover */
bool recover_required = false;
u64 recover_vpfn = vpfn;
size_t recover_count = 0;
size_t remain = nr;
int err;
struct kbase_device *kbdev;
KBASE_DEBUG_ASSERT(NULL != kctx);
/* 64-bit address range is the max */
KBASE_DEBUG_ASSERT(vpfn <= (U64_MAX / PAGE_SIZE));
kbdev = kctx->kbdev;
/* Early out if there is nothing to do */
if (nr == 0)
return 0;
mutex_lock(&kctx->mmu.mmu_lock);
while (remain) {
unsigned int i;
unsigned int index = vpfn & 0x1FF;
unsigned int count = KBASE_MMU_PAGE_ENTRIES - index;
struct page *p;
if (count > remain)
count = remain;
/*
* Repeatedly calling mmu_get_bottom_pte() is clearly
* suboptimal. We don't have to re-parse the whole tree
* each time (just cache the l0-l2 sequence).
* On the other hand, it's only a gain when we map more than
* 256 pages at once (on average). Do we really care?
*/
do {
err = mmu_get_bottom_pgd(kbdev, &kctx->mmu,
vpfn, &pgd);
if (err != -ENOMEM)
break;
/* Fill the memory pool with enough pages for
* the page walk to succeed
*/
mutex_unlock(&kctx->mmu.mmu_lock);
err = kbase_mem_pool_grow(
&kbdev->mem_pools.small[
kctx->mmu.group_id],
MIDGARD_MMU_BOTTOMLEVEL);
mutex_lock(&kctx->mmu.mmu_lock);
} while (!err);
if (err) {
dev_warn(kbdev->dev, "kbase_mmu_insert_pages: mmu_get_bottom_pgd failure\n");
if (recover_required) {
/* Invalidate the pages we have partially
* completed */
mmu_insert_pages_failure_recovery(kbdev,
&kctx->mmu,
recover_vpfn,
recover_vpfn + recover_count);
}
goto fail_unlock;
}
p = pfn_to_page(PFN_DOWN(pgd));
pgd_page = kmap(p);
if (!pgd_page) {
dev_warn(kbdev->dev, "kbase_mmu_insert_pages: kmap failure\n");
if (recover_required) {
/* Invalidate the pages we have partially
* completed */
mmu_insert_pages_failure_recovery(kbdev,
&kctx->mmu,
recover_vpfn,
recover_vpfn + recover_count);
}
err = -ENOMEM;
goto fail_unlock;
}
for (i = 0; i < count; i++) {
unsigned int ofs = index + i;
/* Fail if the current page is a valid ATE entry */
KBASE_DEBUG_ASSERT(0 == (pgd_page[ofs] & 1UL));
pgd_page[ofs] = kbase_mmu_create_ate(kbdev,
phys, flags, MIDGARD_MMU_BOTTOMLEVEL, group_id);
}
vpfn += count;
remain -= count;
kbase_mmu_sync_pgd(kbdev,
kbase_dma_addr(p) + (index * sizeof(u64)),
count * sizeof(u64));
kunmap(p);
/* We have started modifying the page table.
* If further pages need inserting and fail we need to undo what
* has already taken place */
recover_required = true;
recover_count += count;
}
mutex_unlock(&kctx->mmu.mmu_lock);
kbase_mmu_flush_invalidate(kctx, vpfn, nr, false);
return 0;
fail_unlock:
mutex_unlock(&kctx->mmu.mmu_lock);
kbase_mmu_flush_invalidate(kctx, vpfn, nr, false);
return err;
}
static inline void cleanup_empty_pte(struct kbase_device *kbdev,
struct kbase_mmu_table *mmut, u64 *pte)
{
phys_addr_t tmp_pgd;
struct page *tmp_p;
tmp_pgd = kbdev->mmu_mode->pte_to_phy_addr(*pte);
tmp_p = phys_to_page(tmp_pgd);
kbase_mem_pool_free(&kbdev->mem_pools.small[mmut->group_id],
tmp_p, false);
/* If the MMU tables belong to a context then we accounted the memory
* usage to that context, so decrement here.
*/
if (mmut->kctx) {
kbase_process_page_usage_dec(mmut->kctx, 1);
atomic_sub(1, &mmut->kctx->used_pages);
}
atomic_sub(1, &kbdev->memdev.used_pages);
}
u64 kbase_mmu_create_ate(struct kbase_device *const kbdev,
struct tagged_addr const phy, unsigned long const flags,
int const level, int const group_id)
{
u64 entry;
kbdev->mmu_mode->entry_set_ate(&entry, phy, flags, level);
return kbdev->mgm_dev->ops.mgm_update_gpu_pte(kbdev->mgm_dev,
group_id, level, entry);
}
int kbase_mmu_insert_pages_no_flush(struct kbase_device *kbdev,
struct kbase_mmu_table *mmut,
const u64 start_vpfn,
struct tagged_addr *phys, size_t nr,
unsigned long flags,
int const group_id)
{
phys_addr_t pgd;
u64 *pgd_page;
u64 insert_vpfn = start_vpfn;
size_t remain = nr;
int err;
struct kbase_mmu_mode const *mmu_mode;
/* Note that 0 is a valid start_vpfn */
/* 64-bit address range is the max */
KBASE_DEBUG_ASSERT(start_vpfn <= (U64_MAX / PAGE_SIZE));
mmu_mode = kbdev->mmu_mode;
/* Early out if there is nothing to do */
if (nr == 0)
return 0;
mutex_lock(&mmut->mmu_lock);
while (remain) {
unsigned int i;
unsigned int vindex = insert_vpfn & 0x1FF;
unsigned int count = KBASE_MMU_PAGE_ENTRIES - vindex;
struct page *p;
int cur_level;
if (count > remain)
count = remain;
if (!vindex && is_huge_head(*phys))
cur_level = MIDGARD_MMU_LEVEL(2);
else
cur_level = MIDGARD_MMU_BOTTOMLEVEL;
/*
* Repeatedly calling mmu_get_pgd_at_level() is clearly
* suboptimal. We don't have to re-parse the whole tree
* each time (just cache the l0-l2 sequence).
* On the other hand, it's only a gain when we map more than
* 256 pages at once (on average). Do we really care?
*/
do {
err = mmu_get_pgd_at_level(kbdev, mmut, insert_vpfn,
cur_level, &pgd);
if (err != -ENOMEM)
break;
/* Fill the memory pool with enough pages for
* the page walk to succeed
*/
mutex_unlock(&mmut->mmu_lock);
err = kbase_mem_pool_grow(
&kbdev->mem_pools.small[mmut->group_id],
cur_level);
mutex_lock(&mmut->mmu_lock);
} while (!err);
if (err) {
dev_warn(kbdev->dev,
"%s: mmu_get_bottom_pgd failure\n", __func__);
if (insert_vpfn != start_vpfn) {
/* Invalidate the pages we have partially
* completed */
mmu_insert_pages_failure_recovery(kbdev,
mmut, start_vpfn, insert_vpfn);
}
goto fail_unlock;
}
p = pfn_to_page(PFN_DOWN(pgd));
pgd_page = kmap(p);
if (!pgd_page) {
dev_warn(kbdev->dev, "%s: kmap failure\n",
__func__);
if (insert_vpfn != start_vpfn) {
/* Invalidate the pages we have partially
* completed */
mmu_insert_pages_failure_recovery(kbdev,
mmut, start_vpfn, insert_vpfn);
}
err = -ENOMEM;
goto fail_unlock;
}
if (cur_level == MIDGARD_MMU_LEVEL(2)) {
int level_index = (insert_vpfn >> 9) & 0x1FF;
u64 *target = &pgd_page[level_index];
if (mmu_mode->pte_is_valid(*target, cur_level))
cleanup_empty_pte(kbdev, mmut, target);
*target = kbase_mmu_create_ate(kbdev, *phys, flags,
cur_level, group_id);
} else {
for (i = 0; i < count; i++) {
unsigned int ofs = vindex + i;
u64 *target = &pgd_page[ofs];
/* Warn if the current page is a valid ATE
* entry. The page table shouldn't have anything
* in the place where we are trying to put a
* new entry. Modification to page table entries
* should be performed with
* kbase_mmu_update_pages()
*/
WARN_ON((*target & 1UL) != 0);
*target = kbase_mmu_create_ate(kbdev,
phys[i], flags, cur_level, group_id);
}
}
phys += count;
insert_vpfn += count;
remain -= count;
kbase_mmu_sync_pgd(kbdev,
kbase_dma_addr(p) + (vindex * sizeof(u64)),
count * sizeof(u64));
kunmap(p);
}
err = 0;
fail_unlock:
mutex_unlock(&mmut->mmu_lock);
return err;
}
/*
* Map 'nr' pages pointed to by 'phys' at GPU PFN 'vpfn' for GPU address space
* number 'as_nr'.
*/
int kbase_mmu_insert_pages(struct kbase_device *kbdev,
struct kbase_mmu_table *mmut, u64 vpfn,
struct tagged_addr *phys, size_t nr,
unsigned long flags, int as_nr, int const group_id)
{
int err;
err = kbase_mmu_insert_pages_no_flush(kbdev, mmut, vpfn,
phys, nr, flags, group_id);
if (mmut->kctx)
kbase_mmu_flush_invalidate(mmut->kctx, vpfn, nr, false);
else
kbase_mmu_flush_invalidate_no_ctx(kbdev, vpfn, nr, false, as_nr);
return err;
}
KBASE_EXPORT_TEST_API(kbase_mmu_insert_pages);
/**
* kbase_mmu_flush_invalidate_noretain() - Flush and invalidate the GPU caches
* without retaining the kbase context.
* @kctx: The KBase context.
* @vpfn: The virtual page frame number to start the flush on.
* @nr: The number of pages to flush.
* @sync: Set if the operation should be synchronous or not.
*
* As per kbase_mmu_flush_invalidate but doesn't retain the kctx or do any
* other locking.
*/
static void kbase_mmu_flush_invalidate_noretain(struct kbase_context *kctx,
u64 vpfn, size_t nr, bool sync)
{
struct kbase_device *kbdev = kctx->kbdev;
int err;
u32 op;
/* Early out if there is nothing to do */
if (nr == 0)
return;
if (sync)
op = AS_COMMAND_FLUSH_MEM;
else
op = AS_COMMAND_FLUSH_PT;
err = kbase_mmu_hw_do_operation(kbdev,
&kbdev->as[kctx->as_nr],
vpfn, nr, op, 0);
if (err) {
/* Flush failed to complete, assume the
* GPU has hung and perform a reset to
* recover */
dev_err(kbdev->dev, "Flush for GPU page table update did not complete. Issuing GPU soft-reset to recover\n");
if (kbase_prepare_to_reset_gpu_locked(kbdev))
kbase_reset_gpu_locked(kbdev);
}
#ifndef CONFIG_MALI_NO_MALI
/*
* As this function could be called in interrupt context the sync
* request can't block. Instead log the request and the next flush
* request will pick it up.
*/
if ((!err) && sync &&
kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_6367))
atomic_set(&kctx->drain_pending, 1);
#endif /* !CONFIG_MALI_NO_MALI */
}
/* Perform a flush/invalidate on a particular address space
*/
static void kbase_mmu_flush_invalidate_as(struct kbase_device *kbdev,
struct kbase_as *as,
u64 vpfn, size_t nr, bool sync, bool drain_pending)
{
int err;
u32 op;
if (kbase_pm_context_active_handle_suspend(kbdev,
KBASE_PM_SUSPEND_HANDLER_DONT_REACTIVATE)) {
/* GPU is off so there's no need to perform flush/invalidate */
return;
}
/* AS transaction begin */
mutex_lock(&kbdev->mmu_hw_mutex);
if (sync)
op = AS_COMMAND_FLUSH_MEM;
else
op = AS_COMMAND_FLUSH_PT;
err = kbase_mmu_hw_do_operation(kbdev,
as, vpfn, nr, op, 0);
if (err) {
/* Flush failed to complete, assume the GPU has hung and
* perform a reset to recover
*/
dev_err(kbdev->dev, "Flush for GPU page table update did not complete. Issueing GPU soft-reset to recover\n");
if (kbase_prepare_to_reset_gpu(kbdev))
kbase_reset_gpu(kbdev);
}
mutex_unlock(&kbdev->mmu_hw_mutex);
/* AS transaction end */
#ifndef CONFIG_MALI_NO_MALI
/*
* The transaction lock must be dropped before here
* as kbase_wait_write_flush could take it if
* the GPU was powered down (static analysis doesn't
* know this can't happen).
*/
drain_pending |= (!err) && sync &&
kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_6367);
if (drain_pending) {
/* Wait for GPU to flush write buffer */
kbase_wait_write_flush(kbdev);
}
#endif /* !CONFIG_MALI_NO_MALI */
kbase_pm_context_idle(kbdev);
}
static void kbase_mmu_flush_invalidate_no_ctx(struct kbase_device *kbdev,
u64 vpfn, size_t nr, bool sync, int as_nr)
{
/* Skip if there is nothing to do */
if (nr) {
kbase_mmu_flush_invalidate_as(kbdev, &kbdev->as[as_nr], vpfn,
nr, sync, false);
}
}
static void kbase_mmu_flush_invalidate(struct kbase_context *kctx,
u64 vpfn, size_t nr, bool sync)
{
struct kbase_device *kbdev;
bool ctx_is_in_runpool;
bool drain_pending = false;
#ifndef CONFIG_MALI_NO_MALI
if (atomic_xchg(&kctx->drain_pending, 0))
drain_pending = true;
#endif /* !CONFIG_MALI_NO_MALI */
/* Early out if there is nothing to do */
if (nr == 0)
return;
kbdev = kctx->kbdev;
mutex_lock(&kbdev->js_data.queue_mutex);
ctx_is_in_runpool = kbasep_js_runpool_retain_ctx(kbdev, kctx);
mutex_unlock(&kbdev->js_data.queue_mutex);
if (ctx_is_in_runpool) {
KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID);
kbase_mmu_flush_invalidate_as(kbdev, &kbdev->as[kctx->as_nr],
vpfn, nr, sync, drain_pending);
kbasep_js_runpool_release_ctx(kbdev, kctx);
}
}
void kbase_mmu_update(struct kbase_device *kbdev,
struct kbase_mmu_table *mmut,
int as_nr)
{
lockdep_assert_held(&kbdev->hwaccess_lock);
lockdep_assert_held(&kbdev->mmu_hw_mutex);
KBASE_DEBUG_ASSERT(as_nr != KBASEP_AS_NR_INVALID);
kbdev->mmu_mode->update(kbdev, mmut, as_nr);
}
KBASE_EXPORT_TEST_API(kbase_mmu_update);
void kbase_mmu_disable_as(struct kbase_device *kbdev, int as_nr)
{
lockdep_assert_held(&kbdev->hwaccess_lock);
lockdep_assert_held(&kbdev->mmu_hw_mutex);
kbdev->mmu_mode->disable_as(kbdev, as_nr);
}
void kbase_mmu_disable(struct kbase_context *kctx)
{
/* ASSERT that the context has a valid as_nr, which is only the case
* when it's scheduled in.
*
* as_nr won't change because the caller has the hwaccess_lock */
KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID);
lockdep_assert_held(&kctx->kbdev->hwaccess_lock);
/*
* The address space is being disabled, drain all knowledge of it out
* from the caches as pages and page tables might be freed after this.
*
* The job scheduler code will already be holding the locks and context
* so just do the flush.
*/
kbase_mmu_flush_invalidate_noretain(kctx, 0, ~0, true);
kctx->kbdev->mmu_mode->disable_as(kctx->kbdev, kctx->as_nr);
}
KBASE_EXPORT_TEST_API(kbase_mmu_disable);
/*
* We actually only discard the ATE, and not the page table
* pages. There is a potential DoS here, as we'll leak memory by
* having PTEs that are potentially unused. Will require physical
* page accounting, so MMU pages are part of the process allocation.
*
* IMPORTANT: This uses kbasep_js_runpool_release_ctx() when the context is
* currently scheduled into the runpool, and so potentially uses a lot of locks.
* These locks must be taken in the correct order with respect to others
* already held by the caller. Refer to kbasep_js_runpool_release_ctx() for more
* information.
*/
int kbase_mmu_teardown_pages(struct kbase_device *kbdev,
struct kbase_mmu_table *mmut, u64 vpfn, size_t nr, int as_nr)
{
phys_addr_t pgd;
size_t requested_nr = nr;
struct kbase_mmu_mode const *mmu_mode;
int err = -EFAULT;
if (0 == nr) {
/* early out if nothing to do */
return 0;
}
mutex_lock(&mmut->mmu_lock);
mmu_mode = kbdev->mmu_mode;
while (nr) {
unsigned int i;
unsigned int index = vpfn & 0x1FF;
unsigned int count = KBASE_MMU_PAGE_ENTRIES - index;
unsigned int pcount;
int level;
u64 *page;
if (count > nr)
count = nr;
/* need to check if this is a 2MB or a 4kB page */
pgd = mmut->pgd;
for (level = MIDGARD_MMU_TOPLEVEL;
level <= MIDGARD_MMU_BOTTOMLEVEL; level++) {
phys_addr_t next_pgd;
index = (vpfn >> ((3 - level) * 9)) & 0x1FF;
page = kmap(phys_to_page(pgd));
if (mmu_mode->ate_is_valid(page[index], level))
break; /* keep the mapping */
else if (!mmu_mode->pte_is_valid(page[index], level)) {
/* nothing here, advance */
switch (level) {
case MIDGARD_MMU_LEVEL(0):
count = 134217728;
break;
case MIDGARD_MMU_LEVEL(1):
count = 262144;
break;
case MIDGARD_MMU_LEVEL(2):
count = 512;
break;
case MIDGARD_MMU_LEVEL(3):
count = 1;
break;
}
if (count > nr)
count = nr;
goto next;
}
next_pgd = mmu_mode->pte_to_phy_addr(page[index]);
kunmap(phys_to_page(pgd));
pgd = next_pgd;
}
switch (level) {
case MIDGARD_MMU_LEVEL(0):
case MIDGARD_MMU_LEVEL(1):
dev_warn(kbdev->dev,
"%s: No support for ATEs at level %d\n",
__func__, level);
kunmap(phys_to_page(pgd));
goto out;
case MIDGARD_MMU_LEVEL(2):
/* can only teardown if count >= 512 */
if (count >= 512) {
pcount = 1;
} else {
dev_warn(kbdev->dev,
"%s: limiting teardown as it tries to do a partial 2MB teardown, need 512, but have %d to tear down\n",
__func__, count);
pcount = 0;
}
break;
case MIDGARD_MMU_BOTTOMLEVEL:
/* page count is the same as the logical count */
pcount = count;
break;
default:
dev_err(kbdev->dev,
"%s: found non-mapped memory, early out\n",
__func__);
vpfn += count;
nr -= count;
continue;
}
/* Invalidate the entries we added */
for (i = 0; i < pcount; i++)
mmu_mode->entry_invalidate(&page[index + i]);
kbase_mmu_sync_pgd(kbdev,
kbase_dma_addr(phys_to_page(pgd)) +
8 * index, 8*pcount);
next:
kunmap(phys_to_page(pgd));
vpfn += count;
nr -= count;
}
err = 0;
out:
mutex_unlock(&mmut->mmu_lock);
if (mmut->kctx)
kbase_mmu_flush_invalidate(mmut->kctx, vpfn, requested_nr, true);
else
kbase_mmu_flush_invalidate_no_ctx(kbdev, vpfn, requested_nr, true, as_nr);
return err;
}
KBASE_EXPORT_TEST_API(kbase_mmu_teardown_pages);
/**
* kbase_mmu_update_pages_no_flush() - Update page table entries on the GPU
*
* This will update page table entries that already exist on the GPU based on
* the new flags that are passed. It is used as a response to the changes of
* the memory attributes
*
* The caller is responsible for validating the memory attributes
*
* @kctx: Kbase context
* @vpfn: Virtual PFN (Page Frame Number) of the first page to update
* @phys: Tagged physical addresses of the physical pages to replace the
* current mappings
* @nr: Number of pages to update
* @flags: Flags
* @group_id: The physical memory group in which the page was allocated.
* Valid range is 0..(MEMORY_GROUP_MANAGER_NR_GROUPS-1).
*/
static int kbase_mmu_update_pages_no_flush(struct kbase_context *kctx, u64 vpfn,
struct tagged_addr *phys, size_t nr,
unsigned long flags, int const group_id)
{
phys_addr_t pgd;
u64 *pgd_page;
int err;
struct kbase_device *kbdev;
KBASE_DEBUG_ASSERT(NULL != kctx);
KBASE_DEBUG_ASSERT(vpfn <= (U64_MAX / PAGE_SIZE));
/* Early out if there is nothing to do */
if (nr == 0)
return 0;
mutex_lock(&kctx->mmu.mmu_lock);
kbdev = kctx->kbdev;
while (nr) {
unsigned int i;
unsigned int index = vpfn & 0x1FF;
size_t count = KBASE_MMU_PAGE_ENTRIES - index;
struct page *p;
if (count > nr)
count = nr;
do {
err = mmu_get_bottom_pgd(kbdev, &kctx->mmu,
vpfn, &pgd);
if (err != -ENOMEM)
break;
/* Fill the memory pool with enough pages for
* the page walk to succeed
*/
mutex_unlock(&kctx->mmu.mmu_lock);
err = kbase_mem_pool_grow(
&kbdev->mem_pools.small[
kctx->mmu.group_id],
MIDGARD_MMU_BOTTOMLEVEL);
mutex_lock(&kctx->mmu.mmu_lock);
} while (!err);
if (err) {
dev_warn(kbdev->dev,
"mmu_get_bottom_pgd failure\n");
goto fail_unlock;
}
p = pfn_to_page(PFN_DOWN(pgd));
pgd_page = kmap(p);
if (!pgd_page) {
dev_warn(kbdev->dev, "kmap failure\n");
err = -ENOMEM;
goto fail_unlock;
}
for (i = 0; i < count; i++)
pgd_page[index + i] = kbase_mmu_create_ate(kbdev,
phys[i], flags, MIDGARD_MMU_BOTTOMLEVEL,
group_id);
phys += count;
vpfn += count;
nr -= count;
kbase_mmu_sync_pgd(kbdev,
kbase_dma_addr(p) + (index * sizeof(u64)),
count * sizeof(u64));
kunmap(pfn_to_page(PFN_DOWN(pgd)));
}
mutex_unlock(&kctx->mmu.mmu_lock);
return 0;
fail_unlock:
mutex_unlock(&kctx->mmu.mmu_lock);
return err;
}
int kbase_mmu_update_pages(struct kbase_context *kctx, u64 vpfn,
struct tagged_addr *phys, size_t nr,
unsigned long flags, int const group_id)
{
int err;
err = kbase_mmu_update_pages_no_flush(kctx, vpfn, phys, nr, flags,
group_id);
kbase_mmu_flush_invalidate(kctx, vpfn, nr, true);
return err;
}
static void mmu_teardown_level(struct kbase_device *kbdev,
struct kbase_mmu_table *mmut, phys_addr_t pgd,
int level, u64 *pgd_page_buffer)
{
phys_addr_t target_pgd;
struct page *p;
u64 *pgd_page;
int i;
struct kbase_mmu_mode const *mmu_mode;
lockdep_assert_held(&mmut->mmu_lock);
pgd_page = kmap_atomic(pfn_to_page(PFN_DOWN(pgd)));
/* kmap_atomic should NEVER fail. */
KBASE_DEBUG_ASSERT(NULL != pgd_page);
/* Copy the page to our preallocated buffer so that we can minimize
* kmap_atomic usage */
memcpy(pgd_page_buffer, pgd_page, PAGE_SIZE);
kunmap_atomic(pgd_page);
pgd_page = pgd_page_buffer;
mmu_mode = kbdev->mmu_mode;
for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++) {
target_pgd = mmu_mode->pte_to_phy_addr(pgd_page[i]);
if (target_pgd) {
if (mmu_mode->pte_is_valid(pgd_page[i], level)) {
mmu_teardown_level(kbdev, mmut,
target_pgd,
level + 1,
pgd_page_buffer +
(PAGE_SIZE / sizeof(u64)));
}
}
}
p = pfn_to_page(PFN_DOWN(pgd));
kbase_mem_pool_free(&kbdev->mem_pools.small[mmut->group_id],
p, true);
atomic_sub(1, &kbdev->memdev.used_pages);
/* If MMU tables belong to a context then pages will have been accounted
* against it, so we must decrement the usage counts here.
*/
if (mmut->kctx) {
kbase_process_page_usage_dec(mmut->kctx, 1);
atomic_sub(1, &mmut->kctx->used_pages);
}
}
int kbase_mmu_init(struct kbase_device *const kbdev,
struct kbase_mmu_table *const mmut, struct kbase_context *const kctx,
int const group_id)
{
if (WARN_ON(group_id >= MEMORY_GROUP_MANAGER_NR_GROUPS) ||
WARN_ON(group_id < 0))
return -EINVAL;
mmut->group_id = group_id;
mutex_init(&mmut->mmu_lock);
mmut->kctx = kctx;
/* Preallocate MMU depth of four pages for mmu_teardown_level to use */
mmut->mmu_teardown_pages = kmalloc(PAGE_SIZE * 4, GFP_KERNEL);
if (mmut->mmu_teardown_pages == NULL)
return -ENOMEM;
mmut->pgd = 0;
/* We allocate pages into the kbdev memory pool, then
* kbase_mmu_alloc_pgd will allocate out of that pool. This is done to
* avoid allocations from the kernel happening with the lock held.
*/
while (!mmut->pgd) {
int err;
err = kbase_mem_pool_grow(
&kbdev->mem_pools.small[mmut->group_id],
MIDGARD_MMU_BOTTOMLEVEL);
if (err) {
kbase_mmu_term(kbdev, mmut);
return -ENOMEM;
}
mutex_lock(&mmut->mmu_lock);
mmut->pgd = kbase_mmu_alloc_pgd(kbdev, mmut);
mutex_unlock(&mmut->mmu_lock);
}
return 0;
}
void kbase_mmu_term(struct kbase_device *kbdev, struct kbase_mmu_table *mmut)
{
if (mmut->pgd) {
mutex_lock(&mmut->mmu_lock);
mmu_teardown_level(kbdev, mmut, mmut->pgd, MIDGARD_MMU_TOPLEVEL,
mmut->mmu_teardown_pages);
mutex_unlock(&mmut->mmu_lock);
if (mmut->kctx)
KBASE_TLSTREAM_AUX_PAGESALLOC(kbdev, mmut->kctx->id, 0);
}
kfree(mmut->mmu_teardown_pages);
mutex_destroy(&mmut->mmu_lock);
}
static size_t kbasep_mmu_dump_level(struct kbase_context *kctx, phys_addr_t pgd, int level, char ** const buffer, size_t *size_left)
{
phys_addr_t target_pgd;
u64 *pgd_page;
int i;
size_t size = KBASE_MMU_PAGE_ENTRIES * sizeof(u64) + sizeof(u64);
size_t dump_size;
struct kbase_device *kbdev;
struct kbase_mmu_mode const *mmu_mode;
KBASE_DEBUG_ASSERT(NULL != kctx);
lockdep_assert_held(&kctx->mmu.mmu_lock);
kbdev = kctx->kbdev;
mmu_mode = kbdev->mmu_mode;
pgd_page = kmap(pfn_to_page(PFN_DOWN(pgd)));
if (!pgd_page) {
dev_warn(kbdev->dev, "%s: kmap failure\n", __func__);
return 0;
}
if (*size_left >= size) {
/* A modified physical address that contains the page table level */
u64 m_pgd = pgd | level;
/* Put the modified physical address in the output buffer */
memcpy(*buffer, &m_pgd, sizeof(m_pgd));
*buffer += sizeof(m_pgd);
/* Followed by the page table itself */
memcpy(*buffer, pgd_page, sizeof(u64) * KBASE_MMU_PAGE_ENTRIES);
*buffer += sizeof(u64) * KBASE_MMU_PAGE_ENTRIES;
*size_left -= size;
}
if (level < MIDGARD_MMU_BOTTOMLEVEL) {
for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++) {
if (mmu_mode->pte_is_valid(pgd_page[i], level)) {
target_pgd = mmu_mode->pte_to_phy_addr(
pgd_page[i]);
dump_size = kbasep_mmu_dump_level(kctx,
target_pgd, level + 1,
buffer, size_left);
if (!dump_size) {
kunmap(pfn_to_page(PFN_DOWN(pgd)));
return 0;
}
size += dump_size;
}
}
}
kunmap(pfn_to_page(PFN_DOWN(pgd)));
return size;
}
void *kbase_mmu_dump(struct kbase_context *kctx, int nr_pages)
{
void *kaddr;
size_t size_left;
KBASE_DEBUG_ASSERT(kctx);
if (0 == nr_pages) {
/* can't dump in a 0 sized buffer, early out */
return NULL;
}
size_left = nr_pages * PAGE_SIZE;
KBASE_DEBUG_ASSERT(0 != size_left);
kaddr = vmalloc_user(size_left);
mutex_lock(&kctx->mmu.mmu_lock);
if (kaddr) {
u64 end_marker = 0xFFULL;
char *buffer;
char *mmu_dump_buffer;
u64 config[3];
size_t dump_size, size = 0;
struct kbase_mmu_setup as_setup;
buffer = (char *)kaddr;
mmu_dump_buffer = buffer;
kctx->kbdev->mmu_mode->get_as_setup(&kctx->mmu,
&as_setup);
config[0] = as_setup.transtab;
config[1] = as_setup.memattr;
config[2] = as_setup.transcfg;
memcpy(buffer, &config, sizeof(config));
mmu_dump_buffer += sizeof(config);
size_left -= sizeof(config);
size += sizeof(config);
dump_size = kbasep_mmu_dump_level(kctx,
kctx->mmu.pgd,
MIDGARD_MMU_TOPLEVEL,
&mmu_dump_buffer,
&size_left);
if (!dump_size)
goto fail_free;
size += dump_size;
/* Add on the size for the end marker */
size += sizeof(u64);
if (size > (nr_pages * PAGE_SIZE)) {
/* The buffer isn't big enough - free the memory and return failure */
goto fail_free;
}
/* Add the end marker */
memcpy(mmu_dump_buffer, &end_marker, sizeof(u64));
}
mutex_unlock(&kctx->mmu.mmu_lock);
return kaddr;
fail_free:
vfree(kaddr);
mutex_unlock(&kctx->mmu.mmu_lock);
return NULL;
}
KBASE_EXPORT_TEST_API(kbase_mmu_dump);
void bus_fault_worker(struct work_struct *data)
{
struct kbase_as *faulting_as;
int as_no;
struct kbase_context *kctx;
struct kbase_device *kbdev;
struct kbase_fault *fault;
bool reset_status = false;
faulting_as = container_of(data, struct kbase_as, work_busfault);
fault = &faulting_as->bf_data;
/* Ensure that any pending page fault worker has completed */
flush_work(&faulting_as->work_pagefault);
as_no = faulting_as->number;
kbdev = container_of(faulting_as, struct kbase_device, as[as_no]);
/* Grab the context, already refcounted in kbase_mmu_interrupt() on
* flagging of the bus-fault. Therefore, it cannot be scheduled out of
* this AS until we explicitly release it
*/
kctx = kbasep_js_runpool_lookup_ctx_noretain(kbdev, as_no);
if (WARN_ON(!kctx)) {
atomic_dec(&kbdev->faults_pending);
return;
}
if (unlikely(fault->protected_mode)) {
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Permission failure", fault);
kbase_mmu_hw_clear_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_BUS_UNEXPECTED);
kbasep_js_runpool_release_ctx(kbdev, kctx);
atomic_dec(&kbdev->faults_pending);
return;
}
if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_8245)) {
/* Due to H/W issue 8245 we need to reset the GPU after using UNMAPPED mode.
* We start the reset before switching to UNMAPPED to ensure that unrelated jobs
* are evicted from the GPU before the switch.
*/
dev_err(kbdev->dev, "GPU bus error occurred. For this GPU version we now soft-reset as part of bus error recovery\n");
reset_status = kbase_prepare_to_reset_gpu(kbdev);
}
/* NOTE: If GPU already powered off for suspend, we don't need to switch to unmapped */
if (!kbase_pm_context_active_handle_suspend(kbdev, KBASE_PM_SUSPEND_HANDLER_DONT_REACTIVATE)) {
unsigned long flags;
/* switch to UNMAPPED mode, will abort all jobs and stop any hw counter dumping */
/* AS transaction begin */
mutex_lock(&kbdev->mmu_hw_mutex);
/* Set the MMU into unmapped mode */
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
kbase_mmu_disable(kctx);
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
mutex_unlock(&kbdev->mmu_hw_mutex);
/* AS transaction end */
kbase_mmu_hw_clear_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_BUS_UNEXPECTED);
kbase_mmu_hw_enable_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_BUS_UNEXPECTED);
kbase_pm_context_idle(kbdev);
}
if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_8245) && reset_status)
kbase_reset_gpu(kbdev);
kbasep_js_runpool_release_ctx(kbdev, kctx);
atomic_dec(&kbdev->faults_pending);
}
const char *kbase_exception_name(struct kbase_device *kbdev, u32 exception_code)
{
const char *e;
switch (exception_code) {
/* Non-Fault Status code */
case 0x00:
e = "NOT_STARTED/IDLE/OK";
break;
case 0x01:
e = "DONE";
break;
case 0x02:
e = "INTERRUPTED";
break;
case 0x03:
e = "STOPPED";
break;
case 0x04:
e = "TERMINATED";
break;
case 0x08:
e = "ACTIVE";
break;
/* Job exceptions */
case 0x40:
e = "JOB_CONFIG_FAULT";
break;
case 0x41:
e = "JOB_POWER_FAULT";
break;
case 0x42:
e = "JOB_READ_FAULT";
break;
case 0x43:
e = "JOB_WRITE_FAULT";
break;
case 0x44:
e = "JOB_AFFINITY_FAULT";
break;
case 0x48:
e = "JOB_BUS_FAULT";
break;
case 0x50:
e = "INSTR_INVALID_PC";
break;
case 0x51:
e = "INSTR_INVALID_ENC";
break;
case 0x52:
e = "INSTR_TYPE_MISMATCH";
break;
case 0x53:
e = "INSTR_OPERAND_FAULT";
break;
case 0x54:
e = "INSTR_TLS_FAULT";
break;
case 0x55:
e = "INSTR_BARRIER_FAULT";
break;
case 0x56:
e = "INSTR_ALIGN_FAULT";
break;
case 0x58:
e = "DATA_INVALID_FAULT";
break;
case 0x59:
e = "TILE_RANGE_FAULT";
break;
case 0x5A:
e = "ADDR_RANGE_FAULT";
break;
case 0x60:
e = "OUT_OF_MEMORY";
break;
/* GPU exceptions */
case 0x80:
e = "DELAYED_BUS_FAULT";
break;
case 0x88:
e = "SHAREABILITY_FAULT";
break;
/* MMU exceptions */
case 0xC0:
case 0xC1:
case 0xC2:
case 0xC3:
case 0xC4:
case 0xC5:
case 0xC6:
case 0xC7:
e = "TRANSLATION_FAULT";
break;
case 0xC8:
e = "PERMISSION_FAULT";
break;
case 0xC9:
case 0xCA:
case 0xCB:
case 0xCC:
case 0xCD:
case 0xCE:
case 0xCF:
if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_AARCH64_MMU))
e = "PERMISSION_FAULT";
else
e = "UNKNOWN";
break;
case 0xD0:
case 0xD1:
case 0xD2:
case 0xD3:
case 0xD4:
case 0xD5:
case 0xD6:
case 0xD7:
e = "TRANSTAB_BUS_FAULT";
break;
case 0xD8:
e = "ACCESS_FLAG";
break;
case 0xD9:
case 0xDA:
case 0xDB:
case 0xDC:
case 0xDD:
case 0xDE:
case 0xDF:
if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_AARCH64_MMU))
e = "ACCESS_FLAG";
else
e = "UNKNOWN";
break;
case 0xE0:
case 0xE1:
case 0xE2:
case 0xE3:
case 0xE4:
case 0xE5:
case 0xE6:
case 0xE7:
if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_AARCH64_MMU))
e = "ADDRESS_SIZE_FAULT";
else
e = "UNKNOWN";
break;
case 0xE8:
case 0xE9:
case 0xEA:
case 0xEB:
case 0xEC:
case 0xED:
case 0xEE:
case 0xEF:
if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_AARCH64_MMU))
e = "MEMORY_ATTRIBUTES_FAULT";
else
e = "UNKNOWN";
break;
default:
e = "UNKNOWN";
break;
};
return e;
}
static const char *access_type_name(struct kbase_device *kbdev,
u32 fault_status)
{
switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) {
case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_AARCH64_MMU))
return "ATOMIC";
else
return "UNKNOWN";
case AS_FAULTSTATUS_ACCESS_TYPE_READ:
return "READ";
case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
return "WRITE";
case AS_FAULTSTATUS_ACCESS_TYPE_EX:
return "EXECUTE";
default:
WARN_ON(1);
return NULL;
}
}
/**
* The caller must ensure it's retained the ctx to prevent it from being scheduled out whilst it's being worked on.
*/
static void kbase_mmu_report_fault_and_kill(struct kbase_context *kctx,
struct kbase_as *as, const char *reason_str,
struct kbase_fault *fault)
{
unsigned long flags;
int exception_type;
int access_type;
int source_id;
int as_no;
struct kbase_device *kbdev;
struct kbasep_js_device_data *js_devdata;
bool reset_status = false;
as_no = as->number;
kbdev = kctx->kbdev;
js_devdata = &kbdev->js_data;
/* ASSERT that the context won't leave the runpool */
KBASE_DEBUG_ASSERT(atomic_read(&kctx->refcount) > 0);
/* decode the fault status */
exception_type = fault->status & 0xFF;
access_type = (fault->status >> 8) & 0x3;
source_id = (fault->status >> 16);
/* terminal fault, print info about the fault */
dev_err(kbdev->dev,
"Unhandled Page fault in AS%d at VA 0x%016llX\n"
"Reason: %s\n"
"raw fault status: 0x%X\n"
"decoded fault status: %s\n"
"exception type 0x%X: %s\n"
"access type 0x%X: %s\n"
"source id 0x%X\n"
"pid: %d\n",
as_no, fault->addr,
reason_str,
fault->status,
(fault->status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"),
exception_type, kbase_exception_name(kbdev, exception_type),
access_type, access_type_name(kbdev, fault->status),
source_id,
kctx->pid);
/* hardware counters dump fault handling */
if ((kbdev->hwcnt.kctx) && (kbdev->hwcnt.kctx->as_nr == as_no) &&
(kbdev->hwcnt.backend.state ==
KBASE_INSTR_STATE_DUMPING)) {
if ((fault->addr >= kbdev->hwcnt.addr) &&
(fault->addr < (kbdev->hwcnt.addr +
kbdev->hwcnt.addr_bytes)))
kbdev->hwcnt.backend.state = KBASE_INSTR_STATE_FAULT;
}
/* Stop the kctx from submitting more jobs and cause it to be scheduled
* out/rescheduled - this will occur on releasing the context's refcount */
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
kbasep_js_clear_submit_allowed(js_devdata, kctx);
/* Kill any running jobs from the context. Submit is disallowed, so no more jobs from this
* context can appear in the job slots from this point on */
kbase_backend_jm_kill_running_jobs_from_kctx(kctx);
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
/* AS transaction begin */
mutex_lock(&kbdev->mmu_hw_mutex);
if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_8245)) {
/* Due to H/W issue 8245 we need to reset the GPU after using UNMAPPED mode.
* We start the reset before switching to UNMAPPED to ensure that unrelated jobs
* are evicted from the GPU before the switch.
*/
dev_err(kbdev->dev, "Unhandled page fault. For this GPU version we now soft-reset the GPU as part of page fault recovery.");
reset_status = kbase_prepare_to_reset_gpu(kbdev);
}
/* switch to UNMAPPED mode, will abort all jobs and stop any hw counter dumping */
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
kbase_mmu_disable(kctx);
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
mutex_unlock(&kbdev->mmu_hw_mutex);
/* AS transaction end */
/* Clear down the fault */
kbase_mmu_hw_clear_fault(kbdev, as,
KBASE_MMU_FAULT_TYPE_PAGE_UNEXPECTED);
kbase_mmu_hw_enable_fault(kbdev, as,
KBASE_MMU_FAULT_TYPE_PAGE_UNEXPECTED);
if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_8245) && reset_status)
kbase_reset_gpu(kbdev);
}
void kbasep_as_do_poke(struct work_struct *work)
{
struct kbase_as *as;
struct kbase_device *kbdev;
unsigned long flags;
KBASE_DEBUG_ASSERT(work);
as = container_of(work, struct kbase_as, poke_work);
kbdev = container_of(as, struct kbase_device, as[as->number]);
KBASE_DEBUG_ASSERT(as->poke_state & KBASE_AS_POKE_STATE_IN_FLIGHT);
/* GPU power will already be active by virtue of the caller holding a JS
* reference on the address space, and will not release it until this worker
* has finished */
/* Further to the comment above, we know that while this function is running
* the AS will not be released as before the atom is released this workqueue
* is flushed (in kbase_as_poking_timer_release_atom)
*/
/* AS transaction begin */
mutex_lock(&kbdev->mmu_hw_mutex);
/* Force a uTLB invalidate */
kbase_mmu_hw_do_operation(kbdev, as, 0, 0,
AS_COMMAND_UNLOCK, 0);
mutex_unlock(&kbdev->mmu_hw_mutex);
/* AS transaction end */
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
if (as->poke_refcount &&
!(as->poke_state & KBASE_AS_POKE_STATE_KILLING_POKE)) {
/* Only queue up the timer if we need it, and we're not trying to kill it */
hrtimer_start(&as->poke_timer, HR_TIMER_DELAY_MSEC(5), HRTIMER_MODE_REL);
}
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
}
enum hrtimer_restart kbasep_as_poke_timer_callback(struct hrtimer *timer)
{
struct kbase_as *as;
int queue_work_ret;
KBASE_DEBUG_ASSERT(NULL != timer);
as = container_of(timer, struct kbase_as, poke_timer);
KBASE_DEBUG_ASSERT(as->poke_state & KBASE_AS_POKE_STATE_IN_FLIGHT);
queue_work_ret = queue_work(as->poke_wq, &as->poke_work);
KBASE_DEBUG_ASSERT(queue_work_ret);
return HRTIMER_NORESTART;
}
/**
* Retain the poking timer on an atom's context (if the atom hasn't already
* done so), and start the timer (if it's not already started).
*
* This must only be called on a context that's scheduled in, and an atom
* that's running on the GPU.
*
* The caller must hold hwaccess_lock
*
* This can be called safely from atomic context
*/
void kbase_as_poking_timer_retain_atom(struct kbase_device *kbdev, struct kbase_context *kctx, struct kbase_jd_atom *katom)
{
struct kbase_as *as;
KBASE_DEBUG_ASSERT(kbdev);
KBASE_DEBUG_ASSERT(kctx);
KBASE_DEBUG_ASSERT(katom);
KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID);
lockdep_assert_held(&kbdev->hwaccess_lock);
if (katom->poking)
return;
katom->poking = 1;
/* It's safe to work on the as/as_nr without an explicit reference,
* because the caller holds the hwaccess_lock, and the atom itself
* was also running and had already taken a reference */
as = &kbdev->as[kctx->as_nr];
if (++(as->poke_refcount) == 1) {
/* First refcount for poke needed: check if not already in flight */
if (!as->poke_state) {
/* need to start poking */
as->poke_state |= KBASE_AS_POKE_STATE_IN_FLIGHT;
queue_work(as->poke_wq, &as->poke_work);
}
}
}
/**
* If an atom holds a poking timer, release it and wait for it to finish
*
* This must only be called on a context that's scheduled in, and an atom
* that still has a JS reference on the context
*
* This must \b not be called from atomic context, since it can sleep.
*/
void kbase_as_poking_timer_release_atom(struct kbase_device *kbdev, struct kbase_context *kctx, struct kbase_jd_atom *katom)
{
struct kbase_as *as;
unsigned long flags;
KBASE_DEBUG_ASSERT(kbdev);
KBASE_DEBUG_ASSERT(kctx);
KBASE_DEBUG_ASSERT(katom);
KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID);
if (!katom->poking)
return;
as = &kbdev->as[kctx->as_nr];
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
KBASE_DEBUG_ASSERT(as->poke_refcount > 0);
KBASE_DEBUG_ASSERT(as->poke_state & KBASE_AS_POKE_STATE_IN_FLIGHT);
if (--(as->poke_refcount) == 0) {
as->poke_state |= KBASE_AS_POKE_STATE_KILLING_POKE;
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
hrtimer_cancel(&as->poke_timer);
flush_workqueue(as->poke_wq);
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
/* Re-check whether it's still needed */
if (as->poke_refcount) {
int queue_work_ret;
/* Poking still needed:
* - Another retain will not be starting the timer or queueing work,
* because it's still marked as in-flight
* - The hrtimer has finished, and has not started a new timer or
* queued work because it's been marked as killing
*
* So whatever happens now, just queue the work again */
as->poke_state &= ~((kbase_as_poke_state)KBASE_AS_POKE_STATE_KILLING_POKE);
queue_work_ret = queue_work(as->poke_wq, &as->poke_work);
KBASE_DEBUG_ASSERT(queue_work_ret);
} else {
/* It isn't - so mark it as not in flight, and not killing */
as->poke_state = 0u;
/* The poke associated with the atom has now finished. If this is
* also the last atom on the context, then we can guarentee no more
* pokes (and thus no more poking register accesses) will occur on
* the context until new atoms are run */
}
}
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
katom->poking = 0;
}
void kbase_mmu_interrupt_process(struct kbase_device *kbdev,
struct kbase_context *kctx, struct kbase_as *as,
struct kbase_fault *fault)
{
lockdep_assert_held(&kbdev->hwaccess_lock);
if (!kctx) {
dev_warn(kbdev->dev, "%s in AS%d at 0x%016llx with no context present! Spurious IRQ or SW Design Error?\n",
kbase_as_has_bus_fault(as, fault) ?
"Bus error" : "Page fault",
as->number, fault->addr);
/* Since no ctx was found, the MMU must be disabled. */
WARN_ON(as->current_setup.transtab);
if (kbase_as_has_bus_fault(as, fault)) {
kbase_mmu_hw_clear_fault(kbdev, as,
KBASE_MMU_FAULT_TYPE_BUS_UNEXPECTED);
kbase_mmu_hw_enable_fault(kbdev, as,
KBASE_MMU_FAULT_TYPE_BUS_UNEXPECTED);
} else if (kbase_as_has_page_fault(as, fault)) {
kbase_mmu_hw_clear_fault(kbdev, as,
KBASE_MMU_FAULT_TYPE_PAGE_UNEXPECTED);
kbase_mmu_hw_enable_fault(kbdev, as,
KBASE_MMU_FAULT_TYPE_PAGE_UNEXPECTED);
}
if (kbase_as_has_bus_fault(as, fault) &&
kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_8245)) {
bool reset_status;
/*
* Reset the GPU, like in bus_fault_worker, in case an
* earlier error hasn't been properly cleared by this
* point.
*/
dev_err(kbdev->dev, "GPU bus error occurred. For this GPU version we now soft-reset as part of bus error recovery\n");
reset_status = kbase_prepare_to_reset_gpu_locked(kbdev);
if (reset_status)
kbase_reset_gpu_locked(kbdev);
}
return;
}
if (kbase_as_has_bus_fault(as, fault)) {
struct kbasep_js_device_data *js_devdata = &kbdev->js_data;
/*
* hw counters dumping in progress, signal the
* other thread that it failed
*/
if ((kbdev->hwcnt.kctx == kctx) &&
(kbdev->hwcnt.backend.state ==
KBASE_INSTR_STATE_DUMPING))
kbdev->hwcnt.backend.state =
KBASE_INSTR_STATE_FAULT;
/*
* Stop the kctx from submitting more jobs and cause it
* to be scheduled out/rescheduled when all references
* to it are released
*/
kbasep_js_clear_submit_allowed(js_devdata, kctx);
if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_AARCH64_MMU))
dev_warn(kbdev->dev,
"Bus error in AS%d at VA=0x%016llx, IPA=0x%016llx\n",
as->number, fault->addr,
fault->extra_addr);
else
dev_warn(kbdev->dev, "Bus error in AS%d at 0x%016llx\n",
as->number, fault->addr);
/*
* We need to switch to UNMAPPED mode - but we do this in a
* worker so that we can sleep
*/
WARN_ON(!queue_work(as->pf_wq, &as->work_busfault));
atomic_inc(&kbdev->faults_pending);
} else {
WARN_ON(!queue_work(as->pf_wq, &as->work_pagefault));
atomic_inc(&kbdev->faults_pending);
}
}
void kbase_flush_mmu_wqs(struct kbase_device *kbdev)
{
int i;
for (i = 0; i < kbdev->nr_hw_address_spaces; i++) {
struct kbase_as *as = &kbdev->as[i];
flush_workqueue(as->pf_wq);
}
}