| /* |
| * |
| * (C) COPYRIGHT 2010-2019 ARM Limited. All rights reserved. |
| * |
| * This program is free software and is provided to you under the terms of the |
| * GNU General Public License version 2 as published by the Free Software |
| * Foundation, and any use by you of this program is subject to the terms |
| * of such GNU licence. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, you can access it online at |
| * http://www.gnu.org/licenses/gpl-2.0.html. |
| * |
| * SPDX-License-Identifier: GPL-2.0 |
| * |
| */ |
| |
| |
| |
| /** |
| * @file mali_kbase_mmu.c |
| * Base kernel MMU management. |
| */ |
| |
| /* #define DEBUG 1 */ |
| #include <linux/kernel.h> |
| #include <linux/dma-mapping.h> |
| #include <mali_kbase.h> |
| #include <mali_midg_regmap.h> |
| #include <mali_kbase_tracepoints.h> |
| #include <mali_kbase_instr_defs.h> |
| #include <mali_kbase_debug.h> |
| |
| #define beenthere(kctx, f, a...) dev_dbg(kctx->kbdev->dev, "%s:" f, __func__, ##a) |
| |
| #include <mali_kbase_defs.h> |
| #include <mali_kbase_hw.h> |
| #include <mali_kbase_mmu_hw.h> |
| #include <mali_kbase_hwaccess_jm.h> |
| #include <mali_kbase_hwaccess_time.h> |
| #include <mali_kbase_mem.h> |
| #include <mali_kbase_reset_gpu.h> |
| |
| #define KBASE_MMU_PAGE_ENTRIES 512 |
| |
| /** |
| * kbase_mmu_flush_invalidate() - Flush and invalidate the GPU caches. |
| * @kctx: The KBase context. |
| * @vpfn: The virtual page frame number to start the flush on. |
| * @nr: The number of pages to flush. |
| * @sync: Set if the operation should be synchronous or not. |
| * |
| * Issue a cache flush + invalidate to the GPU caches and invalidate the TLBs. |
| * |
| * If sync is not set then transactions still in flight when the flush is issued |
| * may use the old page tables and the data they write will not be written out |
| * to memory, this function returns after the flush has been issued but |
| * before all accesses which might effect the flushed region have completed. |
| * |
| * If sync is set then accesses in the flushed region will be drained |
| * before data is flush and invalidated through L1, L2 and into memory, |
| * after which point this function will return. |
| */ |
| static void kbase_mmu_flush_invalidate(struct kbase_context *kctx, |
| u64 vpfn, size_t nr, bool sync); |
| |
| /** |
| * kbase_mmu_flush_invalidate_no_ctx() - Flush and invalidate the GPU caches. |
| * @kbdev: Device pointer. |
| * @vpfn: The virtual page frame number to start the flush on. |
| * @nr: The number of pages to flush. |
| * @sync: Set if the operation should be synchronous or not. |
| * @as_nr: GPU address space number for which flush + invalidate is required. |
| * |
| * This is used for MMU tables which do not belong to a user space context. |
| */ |
| static void kbase_mmu_flush_invalidate_no_ctx(struct kbase_device *kbdev, |
| u64 vpfn, size_t nr, bool sync, int as_nr); |
| |
| /** |
| * kbase_mmu_sync_pgd - sync page directory to memory |
| * @kbdev: Device pointer. |
| * @handle: Address of DMA region. |
| * @size: Size of the region to sync. |
| * |
| * This should be called after each page directory update. |
| */ |
| |
| static void kbase_mmu_sync_pgd(struct kbase_device *kbdev, |
| dma_addr_t handle, size_t size) |
| { |
| /* If page table is not coherent then ensure the gpu can read |
| * the pages from memory |
| */ |
| if (kbdev->system_coherency != COHERENCY_ACE) |
| dma_sync_single_for_device(kbdev->dev, handle, size, |
| DMA_TO_DEVICE); |
| } |
| |
| /* |
| * Definitions: |
| * - PGD: Page Directory. |
| * - PTE: Page Table Entry. A 64bit value pointing to the next |
| * level of translation |
| * - ATE: Address Transation Entry. A 64bit value pointing to |
| * a 4kB physical page. |
| */ |
| |
| static void kbase_mmu_report_fault_and_kill(struct kbase_context *kctx, |
| struct kbase_as *as, const char *reason_str, |
| struct kbase_fault *fault); |
| |
| |
| static int kbase_mmu_update_pages_no_flush(struct kbase_context *kctx, u64 vpfn, |
| struct tagged_addr *phys, size_t nr, |
| unsigned long flags, int group_id); |
| |
| /** |
| * reg_grow_calc_extra_pages() - Calculate the number of backed pages to add to |
| * a region on a GPU page fault |
| * |
| * @reg: The region that will be backed with more pages |
| * @fault_rel_pfn: PFN of the fault relative to the start of the region |
| * |
| * This calculates how much to increase the backing of a region by, based on |
| * where a GPU page fault occurred and the flags in the region. |
| * |
| * This can be more than the minimum number of pages that would reach |
| * @fault_rel_pfn, for example to reduce the overall rate of page fault |
| * interrupts on a region, or to ensure that the end address is aligned. |
| * |
| * Return: the number of backed pages to increase by |
| */ |
| static size_t reg_grow_calc_extra_pages(struct kbase_device *kbdev, |
| struct kbase_va_region *reg, size_t fault_rel_pfn) |
| { |
| size_t multiple = reg->extent; |
| size_t reg_current_size = kbase_reg_current_backed_size(reg); |
| size_t minimum_extra = fault_rel_pfn - reg_current_size + 1; |
| size_t remainder; |
| |
| if (!multiple) { |
| dev_warn(kbdev->dev, |
| "VA Region 0x%llx extent was 0, allocator needs to set this properly for KBASE_REG_PF_GROW\n", |
| ((unsigned long long)reg->start_pfn) << PAGE_SHIFT); |
| return minimum_extra; |
| } |
| |
| /* Calculate the remainder to subtract from minimum_extra to make it |
| * the desired (rounded down) multiple of the extent. |
| * Depending on reg's flags, the base used for calculating multiples is |
| * different */ |
| if (reg->flags & KBASE_REG_TILER_ALIGN_TOP) { |
| /* multiple is based from the top of the initial commit, which |
| * has been allocated in such a way that (start_pfn + |
| * initial_commit) is already aligned to multiple. Hence the |
| * pfn for the end of committed memory will also be aligned to |
| * multiple */ |
| size_t initial_commit = reg->initial_commit; |
| |
| if (fault_rel_pfn < initial_commit) { |
| /* this case is just to catch in case it's been |
| * recommitted by userspace to be smaller than the |
| * initial commit */ |
| minimum_extra = initial_commit - reg_current_size; |
| remainder = 0; |
| } else { |
| /* same as calculating (fault_rel_pfn - initial_commit + 1) */ |
| size_t pages_after_initial = minimum_extra + reg_current_size - initial_commit; |
| |
| remainder = pages_after_initial % multiple; |
| } |
| } else { |
| /* multiple is based from the current backed size, even if the |
| * current backed size/pfn for end of committed memory are not |
| * themselves aligned to multiple */ |
| remainder = minimum_extra % multiple; |
| } |
| |
| if (remainder == 0) |
| return minimum_extra; |
| |
| return minimum_extra + multiple - remainder; |
| } |
| |
| #ifdef CONFIG_MALI_CINSTR_GWT |
| static void kbase_gpu_mmu_handle_write_faulting_as( |
| struct kbase_device *kbdev, |
| struct kbase_as *faulting_as, |
| u64 start_pfn, size_t nr, u32 op) |
| { |
| mutex_lock(&kbdev->mmu_hw_mutex); |
| |
| kbase_mmu_hw_clear_fault(kbdev, faulting_as, |
| KBASE_MMU_FAULT_TYPE_PAGE); |
| kbase_mmu_hw_do_operation(kbdev, faulting_as, start_pfn, |
| nr, op, 1); |
| |
| mutex_unlock(&kbdev->mmu_hw_mutex); |
| |
| kbase_mmu_hw_enable_fault(kbdev, faulting_as, |
| KBASE_MMU_FAULT_TYPE_PAGE); |
| } |
| |
| static void kbase_gpu_mmu_handle_write_fault(struct kbase_context *kctx, |
| struct kbase_as *faulting_as) |
| { |
| struct kbasep_gwt_list_element *pos; |
| struct kbase_va_region *region; |
| struct kbase_device *kbdev; |
| struct kbase_fault *fault; |
| u64 fault_pfn, pfn_offset; |
| u32 op; |
| int ret; |
| int as_no; |
| |
| as_no = faulting_as->number; |
| kbdev = container_of(faulting_as, struct kbase_device, as[as_no]); |
| fault = &faulting_as->pf_data; |
| fault_pfn = fault->addr >> PAGE_SHIFT; |
| |
| kbase_gpu_vm_lock(kctx); |
| |
| /* Find region and check if it should be writable. */ |
| region = kbase_region_tracker_find_region_enclosing_address(kctx, |
| fault->addr); |
| if (kbase_is_region_invalid_or_free(region)) { |
| kbase_gpu_vm_unlock(kctx); |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Memory is not mapped on the GPU", |
| &faulting_as->pf_data); |
| return; |
| } |
| |
| if (!(region->flags & KBASE_REG_GPU_WR)) { |
| kbase_gpu_vm_unlock(kctx); |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Region does not have write permissions", |
| &faulting_as->pf_data); |
| return; |
| } |
| |
| /* Capture addresses of faulting write location |
| * for job dumping if write tracking is enabled. |
| */ |
| if (kctx->gwt_enabled) { |
| u64 page_addr = fault->addr & PAGE_MASK; |
| bool found = false; |
| /* Check if this write was already handled. */ |
| list_for_each_entry(pos, &kctx->gwt_current_list, link) { |
| if (page_addr == pos->page_addr) { |
| found = true; |
| break; |
| } |
| } |
| |
| if (!found) { |
| pos = kmalloc(sizeof(*pos), GFP_KERNEL); |
| if (pos) { |
| pos->region = region; |
| pos->page_addr = page_addr; |
| pos->num_pages = 1; |
| list_add(&pos->link, &kctx->gwt_current_list); |
| } else { |
| dev_warn(kbdev->dev, "kmalloc failure"); |
| } |
| } |
| } |
| |
| pfn_offset = fault_pfn - region->start_pfn; |
| /* Now make this faulting page writable to GPU. */ |
| ret = kbase_mmu_update_pages_no_flush(kctx, fault_pfn, |
| &kbase_get_gpu_phy_pages(region)[pfn_offset], |
| 1, region->flags, region->gpu_alloc->group_id); |
| |
| /* flush L2 and unlock the VA (resumes the MMU) */ |
| if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_6367)) |
| op = AS_COMMAND_FLUSH; |
| else |
| op = AS_COMMAND_FLUSH_PT; |
| |
| kbase_gpu_mmu_handle_write_faulting_as(kbdev, faulting_as, |
| fault_pfn, 1, op); |
| |
| kbase_gpu_vm_unlock(kctx); |
| } |
| |
| static void kbase_gpu_mmu_handle_permission_fault(struct kbase_context *kctx, |
| struct kbase_as *faulting_as) |
| { |
| struct kbase_fault *fault = &faulting_as->pf_data; |
| |
| switch (fault->status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) { |
| case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC: |
| case AS_FAULTSTATUS_ACCESS_TYPE_WRITE: |
| kbase_gpu_mmu_handle_write_fault(kctx, faulting_as); |
| break; |
| case AS_FAULTSTATUS_ACCESS_TYPE_EX: |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Execute Permission fault", fault); |
| break; |
| case AS_FAULTSTATUS_ACCESS_TYPE_READ: |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Read Permission fault", fault); |
| break; |
| default: |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Unknown Permission fault", fault); |
| break; |
| } |
| } |
| #endif |
| |
| #define MAX_POOL_LEVEL 2 |
| |
| /** |
| * page_fault_try_alloc - Try to allocate memory from a context pool |
| * @kctx: Context pointer |
| * @region: Region to grow |
| * @new_pages: Number of 4 kB pages to allocate |
| * @pages_to_grow: Pointer to variable to store number of outstanding pages on |
| * failure. This can be either 4 kB or 2 MB pages, depending on |
| * the number of pages requested. |
| * @grow_2mb_pool: Pointer to variable to store which pool needs to grow - true |
| * for 2 MB, false for 4 kB. |
| * @prealloc_sas: Pointer to kbase_sub_alloc structures |
| * |
| * This function will try to allocate as many pages as possible from the context |
| * pool, then if required will try to allocate the remaining pages from the |
| * device pool. |
| * |
| * This function will not allocate any new memory beyond that that is already |
| * present in the context or device pools. This is because it is intended to be |
| * called with the vm_lock held, which could cause recursive locking if the |
| * allocation caused the out-of-memory killer to run. |
| * |
| * If 2 MB pages are enabled and new_pages is >= 2 MB then pages_to_grow will be |
| * a count of 2 MB pages, otherwise it will be a count of 4 kB pages. |
| * |
| * Return: true if successful, false on failure |
| */ |
| static bool page_fault_try_alloc(struct kbase_context *kctx, |
| struct kbase_va_region *region, size_t new_pages, |
| int *pages_to_grow, bool *grow_2mb_pool, |
| struct kbase_sub_alloc **prealloc_sas) |
| { |
| struct tagged_addr *gpu_pages[MAX_POOL_LEVEL] = {NULL}; |
| struct tagged_addr *cpu_pages[MAX_POOL_LEVEL] = {NULL}; |
| size_t pages_alloced[MAX_POOL_LEVEL] = {0}; |
| struct kbase_mem_pool *pool, *root_pool; |
| int pool_level = 0; |
| bool alloc_failed = false; |
| size_t pages_still_required; |
| |
| if (WARN_ON(region->gpu_alloc->group_id >= |
| MEMORY_GROUP_MANAGER_NR_GROUPS)) { |
| /* Do not try to grow the memory pool */ |
| *pages_to_grow = 0; |
| return false; |
| } |
| |
| #ifdef CONFIG_MALI_2MB_ALLOC |
| if (new_pages >= (SZ_2M / SZ_4K)) { |
| root_pool = &kctx->mem_pools.large[region->gpu_alloc->group_id]; |
| *grow_2mb_pool = true; |
| } else { |
| #endif |
| root_pool = &kctx->mem_pools.small[region->gpu_alloc->group_id]; |
| *grow_2mb_pool = false; |
| #ifdef CONFIG_MALI_2MB_ALLOC |
| } |
| #endif |
| |
| if (region->gpu_alloc != region->cpu_alloc) |
| new_pages *= 2; |
| |
| pages_still_required = new_pages; |
| |
| /* Determine how many pages are in the pools before trying to allocate. |
| * Don't attempt to allocate & free if the allocation can't succeed. |
| */ |
| for (pool = root_pool; pool != NULL; pool = pool->next_pool) { |
| size_t pool_size_4k; |
| |
| kbase_mem_pool_lock(pool); |
| |
| pool_size_4k = kbase_mem_pool_size(pool) << pool->order; |
| if (pool_size_4k >= pages_still_required) |
| pages_still_required = 0; |
| else |
| pages_still_required -= pool_size_4k; |
| |
| kbase_mem_pool_unlock(pool); |
| |
| if (!pages_still_required) |
| break; |
| } |
| |
| if (pages_still_required) { |
| /* Insufficient pages in pools. Don't try to allocate - just |
| * request a grow. |
| */ |
| *pages_to_grow = pages_still_required; |
| |
| return false; |
| } |
| |
| /* Since we've dropped the pool locks, the amount of memory in the pools |
| * may change between the above check and the actual allocation. |
| */ |
| pool = root_pool; |
| for (pool_level = 0; pool_level < MAX_POOL_LEVEL; pool_level++) { |
| size_t pool_size_4k; |
| size_t pages_to_alloc_4k; |
| size_t pages_to_alloc_4k_per_alloc; |
| |
| kbase_mem_pool_lock(pool); |
| |
| /* Allocate as much as possible from this pool*/ |
| pool_size_4k = kbase_mem_pool_size(pool) << pool->order; |
| pages_to_alloc_4k = MIN(new_pages, pool_size_4k); |
| if (region->gpu_alloc == region->cpu_alloc) |
| pages_to_alloc_4k_per_alloc = pages_to_alloc_4k; |
| else |
| pages_to_alloc_4k_per_alloc = pages_to_alloc_4k >> 1; |
| |
| pages_alloced[pool_level] = pages_to_alloc_4k; |
| if (pages_to_alloc_4k) { |
| gpu_pages[pool_level] = |
| kbase_alloc_phy_pages_helper_locked( |
| region->gpu_alloc, pool, |
| pages_to_alloc_4k_per_alloc, |
| &prealloc_sas[0]); |
| |
| if (!gpu_pages[pool_level]) { |
| alloc_failed = true; |
| } else if (region->gpu_alloc != region->cpu_alloc) { |
| cpu_pages[pool_level] = |
| kbase_alloc_phy_pages_helper_locked( |
| region->cpu_alloc, pool, |
| pages_to_alloc_4k_per_alloc, |
| &prealloc_sas[1]); |
| |
| if (!cpu_pages[pool_level]) |
| alloc_failed = true; |
| } |
| } |
| |
| kbase_mem_pool_unlock(pool); |
| |
| if (alloc_failed) { |
| WARN_ON(!new_pages); |
| WARN_ON(pages_to_alloc_4k >= new_pages); |
| WARN_ON(pages_to_alloc_4k_per_alloc >= new_pages); |
| break; |
| } |
| |
| new_pages -= pages_to_alloc_4k; |
| |
| if (!new_pages) |
| break; |
| |
| pool = pool->next_pool; |
| if (!pool) |
| break; |
| } |
| |
| if (new_pages) { |
| /* Allocation was unsuccessful */ |
| int max_pool_level = pool_level; |
| |
| pool = root_pool; |
| |
| /* Free memory allocated so far */ |
| for (pool_level = 0; pool_level <= max_pool_level; |
| pool_level++) { |
| kbase_mem_pool_lock(pool); |
| |
| if (region->gpu_alloc != region->cpu_alloc) { |
| if (pages_alloced[pool_level] && |
| cpu_pages[pool_level]) |
| kbase_free_phy_pages_helper_locked( |
| region->cpu_alloc, |
| pool, cpu_pages[pool_level], |
| pages_alloced[pool_level]); |
| } |
| |
| if (pages_alloced[pool_level] && gpu_pages[pool_level]) |
| kbase_free_phy_pages_helper_locked( |
| region->gpu_alloc, |
| pool, gpu_pages[pool_level], |
| pages_alloced[pool_level]); |
| |
| kbase_mem_pool_unlock(pool); |
| |
| pool = pool->next_pool; |
| } |
| |
| /* |
| * If the allocation failed despite there being enough memory in |
| * the pool, then just fail. Otherwise, try to grow the memory |
| * pool. |
| */ |
| if (alloc_failed) |
| *pages_to_grow = 0; |
| else |
| *pages_to_grow = new_pages; |
| |
| return false; |
| } |
| |
| /* Allocation was successful. No pages to grow, return success. */ |
| *pages_to_grow = 0; |
| |
| return true; |
| } |
| |
| void page_fault_worker(struct work_struct *data) |
| { |
| u64 fault_pfn; |
| u32 fault_status; |
| size_t new_pages; |
| size_t fault_rel_pfn; |
| struct kbase_as *faulting_as; |
| int as_no; |
| struct kbase_context *kctx; |
| struct kbase_device *kbdev; |
| struct kbase_va_region *region; |
| struct kbase_fault *fault; |
| int err; |
| bool grown = false; |
| int pages_to_grow; |
| bool grow_2mb_pool; |
| struct kbase_sub_alloc *prealloc_sas[2] = { NULL, NULL }; |
| int i; |
| |
| faulting_as = container_of(data, struct kbase_as, work_pagefault); |
| fault = &faulting_as->pf_data; |
| fault_pfn = fault->addr >> PAGE_SHIFT; |
| as_no = faulting_as->number; |
| |
| kbdev = container_of(faulting_as, struct kbase_device, as[as_no]); |
| |
| /* Grab the context that was already refcounted in kbase_mmu_interrupt(). |
| * Therefore, it cannot be scheduled out of this AS until we explicitly release it |
| */ |
| kctx = kbasep_js_runpool_lookup_ctx_noretain(kbdev, as_no); |
| if (WARN_ON(!kctx)) { |
| atomic_dec(&kbdev->faults_pending); |
| return; |
| } |
| |
| KBASE_DEBUG_ASSERT(kctx->kbdev == kbdev); |
| |
| if (unlikely(fault->protected_mode)) { |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Protected mode fault", fault); |
| kbase_mmu_hw_clear_fault(kbdev, faulting_as, |
| KBASE_MMU_FAULT_TYPE_PAGE); |
| |
| goto fault_done; |
| } |
| |
| fault_status = fault->status; |
| switch (fault_status & AS_FAULTSTATUS_EXCEPTION_CODE_MASK) { |
| |
| case AS_FAULTSTATUS_EXCEPTION_CODE_TRANSLATION_FAULT: |
| /* need to check against the region to handle this one */ |
| break; |
| |
| case AS_FAULTSTATUS_EXCEPTION_CODE_PERMISSION_FAULT: |
| #ifdef CONFIG_MALI_CINSTR_GWT |
| /* If GWT was ever enabled then we need to handle |
| * write fault pages even if the feature was disabled later. |
| */ |
| if (kctx->gwt_was_enabled) { |
| kbase_gpu_mmu_handle_permission_fault(kctx, |
| faulting_as); |
| goto fault_done; |
| } |
| #endif |
| |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Permission failure", fault); |
| goto fault_done; |
| |
| case AS_FAULTSTATUS_EXCEPTION_CODE_TRANSTAB_BUS_FAULT: |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Translation table bus fault", fault); |
| goto fault_done; |
| |
| case AS_FAULTSTATUS_EXCEPTION_CODE_ACCESS_FLAG: |
| /* nothing to do, but we don't expect this fault currently */ |
| dev_warn(kbdev->dev, "Access flag unexpectedly set"); |
| goto fault_done; |
| |
| case AS_FAULTSTATUS_EXCEPTION_CODE_ADDRESS_SIZE_FAULT: |
| if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_AARCH64_MMU)) |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Address size fault", fault); |
| else |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Unknown fault code", fault); |
| goto fault_done; |
| |
| case AS_FAULTSTATUS_EXCEPTION_CODE_MEMORY_ATTRIBUTES_FAULT: |
| if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_AARCH64_MMU)) |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Memory attributes fault", fault); |
| else |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Unknown fault code", fault); |
| goto fault_done; |
| |
| default: |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Unknown fault code", fault); |
| goto fault_done; |
| } |
| |
| #ifdef CONFIG_MALI_2MB_ALLOC |
| /* Preallocate memory for the sub-allocation structs if necessary */ |
| for (i = 0; i != ARRAY_SIZE(prealloc_sas); ++i) { |
| prealloc_sas[i] = kmalloc(sizeof(*prealloc_sas[i]), GFP_KERNEL); |
| if (!prealloc_sas[i]) { |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Failed pre-allocating memory for sub-allocations' metadata", |
| fault); |
| goto fault_done; |
| } |
| } |
| #endif /* CONFIG_MALI_2MB_ALLOC */ |
| |
| page_fault_retry: |
| /* so we have a translation fault, let's see if it is for growable |
| * memory */ |
| kbase_gpu_vm_lock(kctx); |
| |
| region = kbase_region_tracker_find_region_enclosing_address(kctx, |
| fault->addr); |
| if (kbase_is_region_invalid_or_free(region)) { |
| kbase_gpu_vm_unlock(kctx); |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Memory is not mapped on the GPU", fault); |
| goto fault_done; |
| } |
| |
| if (region->gpu_alloc->type == KBASE_MEM_TYPE_IMPORTED_UMM) { |
| kbase_gpu_vm_unlock(kctx); |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "DMA-BUF is not mapped on the GPU", fault); |
| goto fault_done; |
| } |
| |
| if (region->gpu_alloc->group_id >= MEMORY_GROUP_MANAGER_NR_GROUPS) { |
| kbase_gpu_vm_unlock(kctx); |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Bad physical memory group ID", fault); |
| goto fault_done; |
| } |
| |
| if ((region->flags & GROWABLE_FLAGS_REQUIRED) |
| != GROWABLE_FLAGS_REQUIRED) { |
| kbase_gpu_vm_unlock(kctx); |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Memory is not growable", fault); |
| goto fault_done; |
| } |
| |
| if ((region->flags & KBASE_REG_DONT_NEED)) { |
| kbase_gpu_vm_unlock(kctx); |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Don't need memory can't be grown", fault); |
| goto fault_done; |
| } |
| |
| /* find the size we need to grow it by */ |
| /* we know the result fit in a size_t due to kbase_region_tracker_find_region_enclosing_address |
| * validating the fault_adress to be within a size_t from the start_pfn */ |
| fault_rel_pfn = fault_pfn - region->start_pfn; |
| |
| if (fault_rel_pfn < kbase_reg_current_backed_size(region)) { |
| dev_dbg(kbdev->dev, "Page fault @ 0x%llx in allocated region 0x%llx-0x%llx of growable TMEM: Ignoring", |
| fault->addr, region->start_pfn, |
| region->start_pfn + |
| kbase_reg_current_backed_size(region)); |
| |
| mutex_lock(&kbdev->mmu_hw_mutex); |
| |
| kbase_mmu_hw_clear_fault(kbdev, faulting_as, |
| KBASE_MMU_FAULT_TYPE_PAGE); |
| /* [1] in case another page fault occurred while we were |
| * handling the (duplicate) page fault we need to ensure we |
| * don't loose the other page fault as result of us clearing |
| * the MMU IRQ. Therefore, after we clear the MMU IRQ we send |
| * an UNLOCK command that will retry any stalled memory |
| * transaction (which should cause the other page fault to be |
| * raised again). |
| */ |
| kbase_mmu_hw_do_operation(kbdev, faulting_as, 0, 0, |
| AS_COMMAND_UNLOCK, 1); |
| |
| mutex_unlock(&kbdev->mmu_hw_mutex); |
| |
| kbase_mmu_hw_enable_fault(kbdev, faulting_as, |
| KBASE_MMU_FAULT_TYPE_PAGE); |
| kbase_gpu_vm_unlock(kctx); |
| |
| goto fault_done; |
| } |
| |
| new_pages = reg_grow_calc_extra_pages(kbdev, region, fault_rel_pfn); |
| |
| /* cap to max vsize */ |
| new_pages = min(new_pages, region->nr_pages - kbase_reg_current_backed_size(region)); |
| |
| if (0 == new_pages) { |
| mutex_lock(&kbdev->mmu_hw_mutex); |
| |
| /* Duplicate of a fault we've already handled, nothing to do */ |
| kbase_mmu_hw_clear_fault(kbdev, faulting_as, |
| KBASE_MMU_FAULT_TYPE_PAGE); |
| /* See comment [1] about UNLOCK usage */ |
| kbase_mmu_hw_do_operation(kbdev, faulting_as, 0, 0, |
| AS_COMMAND_UNLOCK, 1); |
| |
| mutex_unlock(&kbdev->mmu_hw_mutex); |
| |
| kbase_mmu_hw_enable_fault(kbdev, faulting_as, |
| KBASE_MMU_FAULT_TYPE_PAGE); |
| kbase_gpu_vm_unlock(kctx); |
| goto fault_done; |
| } |
| |
| pages_to_grow = 0; |
| |
| spin_lock(&kctx->mem_partials_lock); |
| grown = page_fault_try_alloc(kctx, region, new_pages, &pages_to_grow, |
| &grow_2mb_pool, prealloc_sas); |
| spin_unlock(&kctx->mem_partials_lock); |
| |
| if (grown) { |
| u64 pfn_offset; |
| u32 op; |
| |
| /* alloc success */ |
| KBASE_DEBUG_ASSERT(kbase_reg_current_backed_size(region) <= region->nr_pages); |
| |
| /* set up the new pages */ |
| pfn_offset = kbase_reg_current_backed_size(region) - new_pages; |
| /* |
| * Note: |
| * Issuing an MMU operation will unlock the MMU and cause the |
| * translation to be replayed. If the page insertion fails then |
| * rather then trying to continue the context should be killed |
| * so the no_flush version of insert_pages is used which allows |
| * us to unlock the MMU as we see fit. |
| */ |
| err = kbase_mmu_insert_pages_no_flush(kbdev, &kctx->mmu, |
| region->start_pfn + pfn_offset, |
| &kbase_get_gpu_phy_pages(region)[pfn_offset], |
| new_pages, region->flags, region->gpu_alloc->group_id); |
| if (err) { |
| kbase_free_phy_pages_helper(region->gpu_alloc, new_pages); |
| if (region->gpu_alloc != region->cpu_alloc) |
| kbase_free_phy_pages_helper(region->cpu_alloc, |
| new_pages); |
| kbase_gpu_vm_unlock(kctx); |
| /* The locked VA region will be unlocked and the cache invalidated in here */ |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Page table update failure", fault); |
| goto fault_done; |
| } |
| KBASE_TLSTREAM_AUX_PAGEFAULT(kbdev, kctx->id, as_no, (u64)new_pages); |
| |
| /* AS transaction begin */ |
| mutex_lock(&kbdev->mmu_hw_mutex); |
| |
| /* flush L2 and unlock the VA (resumes the MMU) */ |
| if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_6367)) |
| op = AS_COMMAND_FLUSH; |
| else |
| op = AS_COMMAND_FLUSH_PT; |
| |
| /* clear MMU interrupt - this needs to be done after updating |
| * the page tables but before issuing a FLUSH command. The |
| * FLUSH cmd has a side effect that it restarts stalled memory |
| * transactions in other address spaces which may cause |
| * another fault to occur. If we didn't clear the interrupt at |
| * this stage a new IRQ might not be raised when the GPU finds |
| * a MMU IRQ is already pending. |
| */ |
| kbase_mmu_hw_clear_fault(kbdev, faulting_as, |
| KBASE_MMU_FAULT_TYPE_PAGE); |
| |
| kbase_mmu_hw_do_operation(kbdev, faulting_as, |
| fault->addr >> PAGE_SHIFT, |
| new_pages, op, 1); |
| |
| mutex_unlock(&kbdev->mmu_hw_mutex); |
| /* AS transaction end */ |
| |
| /* reenable this in the mask */ |
| kbase_mmu_hw_enable_fault(kbdev, faulting_as, |
| KBASE_MMU_FAULT_TYPE_PAGE); |
| |
| #ifdef CONFIG_MALI_CINSTR_GWT |
| if (kctx->gwt_enabled) { |
| /* GWT also tracks growable regions. */ |
| struct kbasep_gwt_list_element *pos; |
| |
| pos = kmalloc(sizeof(*pos), GFP_KERNEL); |
| if (pos) { |
| pos->region = region; |
| pos->page_addr = (region->start_pfn + |
| pfn_offset) << |
| PAGE_SHIFT; |
| pos->num_pages = new_pages; |
| list_add(&pos->link, |
| &kctx->gwt_current_list); |
| } else { |
| dev_warn(kbdev->dev, "kmalloc failure"); |
| } |
| } |
| #endif |
| kbase_gpu_vm_unlock(kctx); |
| } else { |
| int ret = -ENOMEM; |
| |
| kbase_gpu_vm_unlock(kctx); |
| |
| /* If the memory pool was insufficient then grow it and retry. |
| * Otherwise fail the allocation. |
| */ |
| if (pages_to_grow > 0) { |
| #ifdef CONFIG_MALI_2MB_ALLOC |
| if (grow_2mb_pool) { |
| /* Round page requirement up to nearest 2 MB */ |
| struct kbase_mem_pool *const lp_mem_pool = |
| &kctx->mem_pools.large[ |
| region->gpu_alloc->group_id]; |
| |
| pages_to_grow = (pages_to_grow + |
| ((1 << lp_mem_pool->order) - 1)) |
| >> lp_mem_pool->order; |
| |
| ret = kbase_mem_pool_grow(lp_mem_pool, |
| pages_to_grow); |
| } else { |
| #endif |
| struct kbase_mem_pool *const mem_pool = |
| &kctx->mem_pools.small[ |
| region->gpu_alloc->group_id]; |
| |
| ret = kbase_mem_pool_grow(mem_pool, |
| pages_to_grow); |
| #ifdef CONFIG_MALI_2MB_ALLOC |
| } |
| #endif |
| } |
| if (ret < 0) { |
| /* failed to extend, handle as a normal PF */ |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Page allocation failure", fault); |
| } else { |
| goto page_fault_retry; |
| } |
| } |
| |
| fault_done: |
| for (i = 0; i != ARRAY_SIZE(prealloc_sas); ++i) |
| kfree(prealloc_sas[i]); |
| |
| /* |
| * By this point, the fault was handled in some way, |
| * so release the ctx refcount |
| */ |
| kbasep_js_runpool_release_ctx(kbdev, kctx); |
| |
| atomic_dec(&kbdev->faults_pending); |
| } |
| |
| static phys_addr_t kbase_mmu_alloc_pgd(struct kbase_device *kbdev, |
| struct kbase_mmu_table *mmut) |
| { |
| u64 *page; |
| int i; |
| struct page *p; |
| |
| p = kbase_mem_pool_alloc(&kbdev->mem_pools.small[mmut->group_id]); |
| if (!p) |
| return 0; |
| |
| page = kmap(p); |
| if (NULL == page) |
| goto alloc_free; |
| |
| /* If the MMU tables belong to a context then account the memory usage |
| * to that context, otherwise the MMU tables are device wide and are |
| * only accounted to the device. |
| */ |
| if (mmut->kctx) { |
| int new_page_count; |
| |
| new_page_count = atomic_add_return(1, |
| &mmut->kctx->used_pages); |
| KBASE_TLSTREAM_AUX_PAGESALLOC( |
| kbdev, |
| mmut->kctx->id, |
| (u64)new_page_count); |
| kbase_process_page_usage_inc(mmut->kctx, 1); |
| } |
| |
| atomic_add(1, &kbdev->memdev.used_pages); |
| |
| for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++) |
| kbdev->mmu_mode->entry_invalidate(&page[i]); |
| |
| kbase_mmu_sync_pgd(kbdev, kbase_dma_addr(p), PAGE_SIZE); |
| |
| kunmap(p); |
| return page_to_phys(p); |
| |
| alloc_free: |
| kbase_mem_pool_free(&kbdev->mem_pools.small[mmut->group_id], p, |
| false); |
| |
| return 0; |
| } |
| |
| /* Given PGD PFN for level N, return PGD PFN for level N+1, allocating the |
| * new table from the pool if needed and possible |
| */ |
| static int mmu_get_next_pgd(struct kbase_device *kbdev, |
| struct kbase_mmu_table *mmut, |
| phys_addr_t *pgd, u64 vpfn, int level) |
| { |
| u64 *page; |
| phys_addr_t target_pgd; |
| struct page *p; |
| |
| KBASE_DEBUG_ASSERT(*pgd); |
| |
| lockdep_assert_held(&mmut->mmu_lock); |
| |
| /* |
| * Architecture spec defines level-0 as being the top-most. |
| * This is a bit unfortunate here, but we keep the same convention. |
| */ |
| vpfn >>= (3 - level) * 9; |
| vpfn &= 0x1FF; |
| |
| p = pfn_to_page(PFN_DOWN(*pgd)); |
| page = kmap(p); |
| if (NULL == page) { |
| dev_warn(kbdev->dev, "%s: kmap failure\n", __func__); |
| return -EINVAL; |
| } |
| |
| target_pgd = kbdev->mmu_mode->pte_to_phy_addr(page[vpfn]); |
| |
| if (!target_pgd) { |
| target_pgd = kbase_mmu_alloc_pgd(kbdev, mmut); |
| if (!target_pgd) { |
| dev_dbg(kbdev->dev, "%s: kbase_mmu_alloc_pgd failure\n", |
| __func__); |
| kunmap(p); |
| return -ENOMEM; |
| } |
| |
| kbdev->mmu_mode->entry_set_pte(&page[vpfn], target_pgd); |
| |
| kbase_mmu_sync_pgd(kbdev, kbase_dma_addr(p), PAGE_SIZE); |
| /* Rely on the caller to update the address space flags. */ |
| } |
| |
| kunmap(p); |
| *pgd = target_pgd; |
| |
| return 0; |
| } |
| |
| /* |
| * Returns the PGD for the specified level of translation |
| */ |
| static int mmu_get_pgd_at_level(struct kbase_device *kbdev, |
| struct kbase_mmu_table *mmut, |
| u64 vpfn, |
| int level, |
| phys_addr_t *out_pgd) |
| { |
| phys_addr_t pgd; |
| int l; |
| |
| lockdep_assert_held(&mmut->mmu_lock); |
| pgd = mmut->pgd; |
| |
| for (l = MIDGARD_MMU_TOPLEVEL; l < level; l++) { |
| int err = mmu_get_next_pgd(kbdev, mmut, &pgd, vpfn, l); |
| /* Handle failure condition */ |
| if (err) { |
| dev_dbg(kbdev->dev, |
| "%s: mmu_get_next_pgd failure at level %d\n", |
| __func__, l); |
| return err; |
| } |
| } |
| |
| *out_pgd = pgd; |
| |
| return 0; |
| } |
| |
| static int mmu_get_bottom_pgd(struct kbase_device *kbdev, |
| struct kbase_mmu_table *mmut, |
| u64 vpfn, |
| phys_addr_t *out_pgd) |
| { |
| return mmu_get_pgd_at_level(kbdev, mmut, vpfn, MIDGARD_MMU_BOTTOMLEVEL, |
| out_pgd); |
| } |
| |
| static void mmu_insert_pages_failure_recovery(struct kbase_device *kbdev, |
| struct kbase_mmu_table *mmut, |
| u64 from_vpfn, u64 to_vpfn) |
| { |
| phys_addr_t pgd; |
| u64 vpfn = from_vpfn; |
| struct kbase_mmu_mode const *mmu_mode; |
| |
| /* 64-bit address range is the max */ |
| KBASE_DEBUG_ASSERT(vpfn <= (U64_MAX / PAGE_SIZE)); |
| KBASE_DEBUG_ASSERT(from_vpfn <= to_vpfn); |
| |
| lockdep_assert_held(&mmut->mmu_lock); |
| |
| mmu_mode = kbdev->mmu_mode; |
| |
| while (vpfn < to_vpfn) { |
| unsigned int i; |
| unsigned int idx = vpfn & 0x1FF; |
| unsigned int count = KBASE_MMU_PAGE_ENTRIES - idx; |
| unsigned int pcount = 0; |
| unsigned int left = to_vpfn - vpfn; |
| int level; |
| u64 *page; |
| |
| if (count > left) |
| count = left; |
| |
| /* need to check if this is a 2MB page or a 4kB */ |
| pgd = mmut->pgd; |
| |
| for (level = MIDGARD_MMU_TOPLEVEL; |
| level <= MIDGARD_MMU_BOTTOMLEVEL; level++) { |
| idx = (vpfn >> ((3 - level) * 9)) & 0x1FF; |
| page = kmap(phys_to_page(pgd)); |
| if (mmu_mode->ate_is_valid(page[idx], level)) |
| break; /* keep the mapping */ |
| kunmap(phys_to_page(pgd)); |
| pgd = mmu_mode->pte_to_phy_addr(page[idx]); |
| } |
| |
| switch (level) { |
| case MIDGARD_MMU_LEVEL(2): |
| /* remap to single entry to update */ |
| pcount = 1; |
| break; |
| case MIDGARD_MMU_BOTTOMLEVEL: |
| /* page count is the same as the logical count */ |
| pcount = count; |
| break; |
| default: |
| dev_warn(kbdev->dev, "%sNo support for ATEs at level %d\n", |
| __func__, level); |
| goto next; |
| } |
| |
| /* Invalidate the entries we added */ |
| for (i = 0; i < pcount; i++) |
| mmu_mode->entry_invalidate(&page[idx + i]); |
| |
| kbase_mmu_sync_pgd(kbdev, |
| kbase_dma_addr(phys_to_page(pgd)) + 8 * idx, |
| 8 * pcount); |
| kunmap(phys_to_page(pgd)); |
| |
| next: |
| vpfn += count; |
| } |
| } |
| |
| /* |
| * Map the single page 'phys' 'nr' of times, starting at GPU PFN 'vpfn' |
| */ |
| int kbase_mmu_insert_single_page(struct kbase_context *kctx, u64 vpfn, |
| struct tagged_addr phys, size_t nr, |
| unsigned long flags, int const group_id) |
| { |
| phys_addr_t pgd; |
| u64 *pgd_page; |
| /* In case the insert_single_page only partially completes we need to be |
| * able to recover */ |
| bool recover_required = false; |
| u64 recover_vpfn = vpfn; |
| size_t recover_count = 0; |
| size_t remain = nr; |
| int err; |
| struct kbase_device *kbdev; |
| |
| KBASE_DEBUG_ASSERT(NULL != kctx); |
| /* 64-bit address range is the max */ |
| KBASE_DEBUG_ASSERT(vpfn <= (U64_MAX / PAGE_SIZE)); |
| |
| kbdev = kctx->kbdev; |
| |
| /* Early out if there is nothing to do */ |
| if (nr == 0) |
| return 0; |
| |
| mutex_lock(&kctx->mmu.mmu_lock); |
| |
| while (remain) { |
| unsigned int i; |
| unsigned int index = vpfn & 0x1FF; |
| unsigned int count = KBASE_MMU_PAGE_ENTRIES - index; |
| struct page *p; |
| |
| if (count > remain) |
| count = remain; |
| |
| /* |
| * Repeatedly calling mmu_get_bottom_pte() is clearly |
| * suboptimal. We don't have to re-parse the whole tree |
| * each time (just cache the l0-l2 sequence). |
| * On the other hand, it's only a gain when we map more than |
| * 256 pages at once (on average). Do we really care? |
| */ |
| do { |
| err = mmu_get_bottom_pgd(kbdev, &kctx->mmu, |
| vpfn, &pgd); |
| if (err != -ENOMEM) |
| break; |
| /* Fill the memory pool with enough pages for |
| * the page walk to succeed |
| */ |
| mutex_unlock(&kctx->mmu.mmu_lock); |
| err = kbase_mem_pool_grow( |
| &kbdev->mem_pools.small[ |
| kctx->mmu.group_id], |
| MIDGARD_MMU_BOTTOMLEVEL); |
| mutex_lock(&kctx->mmu.mmu_lock); |
| } while (!err); |
| if (err) { |
| dev_warn(kbdev->dev, "kbase_mmu_insert_pages: mmu_get_bottom_pgd failure\n"); |
| if (recover_required) { |
| /* Invalidate the pages we have partially |
| * completed */ |
| mmu_insert_pages_failure_recovery(kbdev, |
| &kctx->mmu, |
| recover_vpfn, |
| recover_vpfn + recover_count); |
| } |
| goto fail_unlock; |
| } |
| |
| p = pfn_to_page(PFN_DOWN(pgd)); |
| pgd_page = kmap(p); |
| if (!pgd_page) { |
| dev_warn(kbdev->dev, "kbase_mmu_insert_pages: kmap failure\n"); |
| if (recover_required) { |
| /* Invalidate the pages we have partially |
| * completed */ |
| mmu_insert_pages_failure_recovery(kbdev, |
| &kctx->mmu, |
| recover_vpfn, |
| recover_vpfn + recover_count); |
| } |
| err = -ENOMEM; |
| goto fail_unlock; |
| } |
| |
| for (i = 0; i < count; i++) { |
| unsigned int ofs = index + i; |
| |
| /* Fail if the current page is a valid ATE entry */ |
| KBASE_DEBUG_ASSERT(0 == (pgd_page[ofs] & 1UL)); |
| |
| pgd_page[ofs] = kbase_mmu_create_ate(kbdev, |
| phys, flags, MIDGARD_MMU_BOTTOMLEVEL, group_id); |
| } |
| |
| vpfn += count; |
| remain -= count; |
| |
| kbase_mmu_sync_pgd(kbdev, |
| kbase_dma_addr(p) + (index * sizeof(u64)), |
| count * sizeof(u64)); |
| |
| kunmap(p); |
| /* We have started modifying the page table. |
| * If further pages need inserting and fail we need to undo what |
| * has already taken place */ |
| recover_required = true; |
| recover_count += count; |
| } |
| mutex_unlock(&kctx->mmu.mmu_lock); |
| kbase_mmu_flush_invalidate(kctx, vpfn, nr, false); |
| return 0; |
| |
| fail_unlock: |
| mutex_unlock(&kctx->mmu.mmu_lock); |
| kbase_mmu_flush_invalidate(kctx, vpfn, nr, false); |
| return err; |
| } |
| |
| static inline void cleanup_empty_pte(struct kbase_device *kbdev, |
| struct kbase_mmu_table *mmut, u64 *pte) |
| { |
| phys_addr_t tmp_pgd; |
| struct page *tmp_p; |
| |
| tmp_pgd = kbdev->mmu_mode->pte_to_phy_addr(*pte); |
| tmp_p = phys_to_page(tmp_pgd); |
| kbase_mem_pool_free(&kbdev->mem_pools.small[mmut->group_id], |
| tmp_p, false); |
| |
| /* If the MMU tables belong to a context then we accounted the memory |
| * usage to that context, so decrement here. |
| */ |
| if (mmut->kctx) { |
| kbase_process_page_usage_dec(mmut->kctx, 1); |
| atomic_sub(1, &mmut->kctx->used_pages); |
| } |
| atomic_sub(1, &kbdev->memdev.used_pages); |
| } |
| |
| u64 kbase_mmu_create_ate(struct kbase_device *const kbdev, |
| struct tagged_addr const phy, unsigned long const flags, |
| int const level, int const group_id) |
| { |
| u64 entry; |
| |
| kbdev->mmu_mode->entry_set_ate(&entry, phy, flags, level); |
| return kbdev->mgm_dev->ops.mgm_update_gpu_pte(kbdev->mgm_dev, |
| group_id, level, entry); |
| } |
| |
| int kbase_mmu_insert_pages_no_flush(struct kbase_device *kbdev, |
| struct kbase_mmu_table *mmut, |
| const u64 start_vpfn, |
| struct tagged_addr *phys, size_t nr, |
| unsigned long flags, |
| int const group_id) |
| { |
| phys_addr_t pgd; |
| u64 *pgd_page; |
| u64 insert_vpfn = start_vpfn; |
| size_t remain = nr; |
| int err; |
| struct kbase_mmu_mode const *mmu_mode; |
| |
| /* Note that 0 is a valid start_vpfn */ |
| /* 64-bit address range is the max */ |
| KBASE_DEBUG_ASSERT(start_vpfn <= (U64_MAX / PAGE_SIZE)); |
| |
| mmu_mode = kbdev->mmu_mode; |
| |
| /* Early out if there is nothing to do */ |
| if (nr == 0) |
| return 0; |
| |
| mutex_lock(&mmut->mmu_lock); |
| |
| while (remain) { |
| unsigned int i; |
| unsigned int vindex = insert_vpfn & 0x1FF; |
| unsigned int count = KBASE_MMU_PAGE_ENTRIES - vindex; |
| struct page *p; |
| int cur_level; |
| |
| if (count > remain) |
| count = remain; |
| |
| if (!vindex && is_huge_head(*phys)) |
| cur_level = MIDGARD_MMU_LEVEL(2); |
| else |
| cur_level = MIDGARD_MMU_BOTTOMLEVEL; |
| |
| /* |
| * Repeatedly calling mmu_get_pgd_at_level() is clearly |
| * suboptimal. We don't have to re-parse the whole tree |
| * each time (just cache the l0-l2 sequence). |
| * On the other hand, it's only a gain when we map more than |
| * 256 pages at once (on average). Do we really care? |
| */ |
| do { |
| err = mmu_get_pgd_at_level(kbdev, mmut, insert_vpfn, |
| cur_level, &pgd); |
| if (err != -ENOMEM) |
| break; |
| /* Fill the memory pool with enough pages for |
| * the page walk to succeed |
| */ |
| mutex_unlock(&mmut->mmu_lock); |
| err = kbase_mem_pool_grow( |
| &kbdev->mem_pools.small[mmut->group_id], |
| cur_level); |
| mutex_lock(&mmut->mmu_lock); |
| } while (!err); |
| |
| if (err) { |
| dev_warn(kbdev->dev, |
| "%s: mmu_get_bottom_pgd failure\n", __func__); |
| if (insert_vpfn != start_vpfn) { |
| /* Invalidate the pages we have partially |
| * completed */ |
| mmu_insert_pages_failure_recovery(kbdev, |
| mmut, start_vpfn, insert_vpfn); |
| } |
| goto fail_unlock; |
| } |
| |
| p = pfn_to_page(PFN_DOWN(pgd)); |
| pgd_page = kmap(p); |
| if (!pgd_page) { |
| dev_warn(kbdev->dev, "%s: kmap failure\n", |
| __func__); |
| if (insert_vpfn != start_vpfn) { |
| /* Invalidate the pages we have partially |
| * completed */ |
| mmu_insert_pages_failure_recovery(kbdev, |
| mmut, start_vpfn, insert_vpfn); |
| } |
| err = -ENOMEM; |
| goto fail_unlock; |
| } |
| |
| if (cur_level == MIDGARD_MMU_LEVEL(2)) { |
| int level_index = (insert_vpfn >> 9) & 0x1FF; |
| u64 *target = &pgd_page[level_index]; |
| |
| if (mmu_mode->pte_is_valid(*target, cur_level)) |
| cleanup_empty_pte(kbdev, mmut, target); |
| *target = kbase_mmu_create_ate(kbdev, *phys, flags, |
| cur_level, group_id); |
| } else { |
| for (i = 0; i < count; i++) { |
| unsigned int ofs = vindex + i; |
| u64 *target = &pgd_page[ofs]; |
| |
| /* Warn if the current page is a valid ATE |
| * entry. The page table shouldn't have anything |
| * in the place where we are trying to put a |
| * new entry. Modification to page table entries |
| * should be performed with |
| * kbase_mmu_update_pages() |
| */ |
| WARN_ON((*target & 1UL) != 0); |
| |
| *target = kbase_mmu_create_ate(kbdev, |
| phys[i], flags, cur_level, group_id); |
| } |
| } |
| |
| phys += count; |
| insert_vpfn += count; |
| remain -= count; |
| |
| kbase_mmu_sync_pgd(kbdev, |
| kbase_dma_addr(p) + (vindex * sizeof(u64)), |
| count * sizeof(u64)); |
| |
| kunmap(p); |
| } |
| |
| err = 0; |
| |
| fail_unlock: |
| mutex_unlock(&mmut->mmu_lock); |
| return err; |
| } |
| |
| /* |
| * Map 'nr' pages pointed to by 'phys' at GPU PFN 'vpfn' for GPU address space |
| * number 'as_nr'. |
| */ |
| int kbase_mmu_insert_pages(struct kbase_device *kbdev, |
| struct kbase_mmu_table *mmut, u64 vpfn, |
| struct tagged_addr *phys, size_t nr, |
| unsigned long flags, int as_nr, int const group_id) |
| { |
| int err; |
| |
| err = kbase_mmu_insert_pages_no_flush(kbdev, mmut, vpfn, |
| phys, nr, flags, group_id); |
| |
| if (mmut->kctx) |
| kbase_mmu_flush_invalidate(mmut->kctx, vpfn, nr, false); |
| else |
| kbase_mmu_flush_invalidate_no_ctx(kbdev, vpfn, nr, false, as_nr); |
| |
| return err; |
| } |
| |
| KBASE_EXPORT_TEST_API(kbase_mmu_insert_pages); |
| |
| /** |
| * kbase_mmu_flush_invalidate_noretain() - Flush and invalidate the GPU caches |
| * without retaining the kbase context. |
| * @kctx: The KBase context. |
| * @vpfn: The virtual page frame number to start the flush on. |
| * @nr: The number of pages to flush. |
| * @sync: Set if the operation should be synchronous or not. |
| * |
| * As per kbase_mmu_flush_invalidate but doesn't retain the kctx or do any |
| * other locking. |
| */ |
| static void kbase_mmu_flush_invalidate_noretain(struct kbase_context *kctx, |
| u64 vpfn, size_t nr, bool sync) |
| { |
| struct kbase_device *kbdev = kctx->kbdev; |
| int err; |
| u32 op; |
| |
| /* Early out if there is nothing to do */ |
| if (nr == 0) |
| return; |
| |
| if (sync) |
| op = AS_COMMAND_FLUSH_MEM; |
| else |
| op = AS_COMMAND_FLUSH_PT; |
| |
| err = kbase_mmu_hw_do_operation(kbdev, |
| &kbdev->as[kctx->as_nr], |
| vpfn, nr, op, 0); |
| if (err) { |
| /* Flush failed to complete, assume the |
| * GPU has hung and perform a reset to |
| * recover */ |
| dev_err(kbdev->dev, "Flush for GPU page table update did not complete. Issuing GPU soft-reset to recover\n"); |
| |
| if (kbase_prepare_to_reset_gpu_locked(kbdev)) |
| kbase_reset_gpu_locked(kbdev); |
| } |
| |
| #ifndef CONFIG_MALI_NO_MALI |
| /* |
| * As this function could be called in interrupt context the sync |
| * request can't block. Instead log the request and the next flush |
| * request will pick it up. |
| */ |
| if ((!err) && sync && |
| kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_6367)) |
| atomic_set(&kctx->drain_pending, 1); |
| #endif /* !CONFIG_MALI_NO_MALI */ |
| } |
| |
| /* Perform a flush/invalidate on a particular address space |
| */ |
| static void kbase_mmu_flush_invalidate_as(struct kbase_device *kbdev, |
| struct kbase_as *as, |
| u64 vpfn, size_t nr, bool sync, bool drain_pending) |
| { |
| int err; |
| u32 op; |
| |
| if (kbase_pm_context_active_handle_suspend(kbdev, |
| KBASE_PM_SUSPEND_HANDLER_DONT_REACTIVATE)) { |
| /* GPU is off so there's no need to perform flush/invalidate */ |
| return; |
| } |
| |
| /* AS transaction begin */ |
| mutex_lock(&kbdev->mmu_hw_mutex); |
| |
| if (sync) |
| op = AS_COMMAND_FLUSH_MEM; |
| else |
| op = AS_COMMAND_FLUSH_PT; |
| |
| err = kbase_mmu_hw_do_operation(kbdev, |
| as, vpfn, nr, op, 0); |
| |
| if (err) { |
| /* Flush failed to complete, assume the GPU has hung and |
| * perform a reset to recover |
| */ |
| dev_err(kbdev->dev, "Flush for GPU page table update did not complete. Issueing GPU soft-reset to recover\n"); |
| |
| if (kbase_prepare_to_reset_gpu(kbdev)) |
| kbase_reset_gpu(kbdev); |
| } |
| |
| mutex_unlock(&kbdev->mmu_hw_mutex); |
| /* AS transaction end */ |
| |
| #ifndef CONFIG_MALI_NO_MALI |
| /* |
| * The transaction lock must be dropped before here |
| * as kbase_wait_write_flush could take it if |
| * the GPU was powered down (static analysis doesn't |
| * know this can't happen). |
| */ |
| drain_pending |= (!err) && sync && |
| kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_6367); |
| if (drain_pending) { |
| /* Wait for GPU to flush write buffer */ |
| kbase_wait_write_flush(kbdev); |
| } |
| #endif /* !CONFIG_MALI_NO_MALI */ |
| |
| kbase_pm_context_idle(kbdev); |
| } |
| |
| static void kbase_mmu_flush_invalidate_no_ctx(struct kbase_device *kbdev, |
| u64 vpfn, size_t nr, bool sync, int as_nr) |
| { |
| /* Skip if there is nothing to do */ |
| if (nr) { |
| kbase_mmu_flush_invalidate_as(kbdev, &kbdev->as[as_nr], vpfn, |
| nr, sync, false); |
| } |
| } |
| |
| static void kbase_mmu_flush_invalidate(struct kbase_context *kctx, |
| u64 vpfn, size_t nr, bool sync) |
| { |
| struct kbase_device *kbdev; |
| bool ctx_is_in_runpool; |
| bool drain_pending = false; |
| |
| #ifndef CONFIG_MALI_NO_MALI |
| if (atomic_xchg(&kctx->drain_pending, 0)) |
| drain_pending = true; |
| #endif /* !CONFIG_MALI_NO_MALI */ |
| |
| /* Early out if there is nothing to do */ |
| if (nr == 0) |
| return; |
| |
| kbdev = kctx->kbdev; |
| mutex_lock(&kbdev->js_data.queue_mutex); |
| ctx_is_in_runpool = kbasep_js_runpool_retain_ctx(kbdev, kctx); |
| mutex_unlock(&kbdev->js_data.queue_mutex); |
| |
| if (ctx_is_in_runpool) { |
| KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID); |
| |
| kbase_mmu_flush_invalidate_as(kbdev, &kbdev->as[kctx->as_nr], |
| vpfn, nr, sync, drain_pending); |
| |
| kbasep_js_runpool_release_ctx(kbdev, kctx); |
| } |
| } |
| |
| void kbase_mmu_update(struct kbase_device *kbdev, |
| struct kbase_mmu_table *mmut, |
| int as_nr) |
| { |
| lockdep_assert_held(&kbdev->hwaccess_lock); |
| lockdep_assert_held(&kbdev->mmu_hw_mutex); |
| KBASE_DEBUG_ASSERT(as_nr != KBASEP_AS_NR_INVALID); |
| |
| kbdev->mmu_mode->update(kbdev, mmut, as_nr); |
| } |
| KBASE_EXPORT_TEST_API(kbase_mmu_update); |
| |
| void kbase_mmu_disable_as(struct kbase_device *kbdev, int as_nr) |
| { |
| lockdep_assert_held(&kbdev->hwaccess_lock); |
| lockdep_assert_held(&kbdev->mmu_hw_mutex); |
| |
| kbdev->mmu_mode->disable_as(kbdev, as_nr); |
| } |
| |
| void kbase_mmu_disable(struct kbase_context *kctx) |
| { |
| /* ASSERT that the context has a valid as_nr, which is only the case |
| * when it's scheduled in. |
| * |
| * as_nr won't change because the caller has the hwaccess_lock */ |
| KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID); |
| |
| lockdep_assert_held(&kctx->kbdev->hwaccess_lock); |
| |
| /* |
| * The address space is being disabled, drain all knowledge of it out |
| * from the caches as pages and page tables might be freed after this. |
| * |
| * The job scheduler code will already be holding the locks and context |
| * so just do the flush. |
| */ |
| kbase_mmu_flush_invalidate_noretain(kctx, 0, ~0, true); |
| |
| kctx->kbdev->mmu_mode->disable_as(kctx->kbdev, kctx->as_nr); |
| } |
| KBASE_EXPORT_TEST_API(kbase_mmu_disable); |
| |
| /* |
| * We actually only discard the ATE, and not the page table |
| * pages. There is a potential DoS here, as we'll leak memory by |
| * having PTEs that are potentially unused. Will require physical |
| * page accounting, so MMU pages are part of the process allocation. |
| * |
| * IMPORTANT: This uses kbasep_js_runpool_release_ctx() when the context is |
| * currently scheduled into the runpool, and so potentially uses a lot of locks. |
| * These locks must be taken in the correct order with respect to others |
| * already held by the caller. Refer to kbasep_js_runpool_release_ctx() for more |
| * information. |
| */ |
| int kbase_mmu_teardown_pages(struct kbase_device *kbdev, |
| struct kbase_mmu_table *mmut, u64 vpfn, size_t nr, int as_nr) |
| { |
| phys_addr_t pgd; |
| size_t requested_nr = nr; |
| struct kbase_mmu_mode const *mmu_mode; |
| int err = -EFAULT; |
| |
| if (0 == nr) { |
| /* early out if nothing to do */ |
| return 0; |
| } |
| |
| mutex_lock(&mmut->mmu_lock); |
| |
| mmu_mode = kbdev->mmu_mode; |
| |
| while (nr) { |
| unsigned int i; |
| unsigned int index = vpfn & 0x1FF; |
| unsigned int count = KBASE_MMU_PAGE_ENTRIES - index; |
| unsigned int pcount; |
| int level; |
| u64 *page; |
| |
| if (count > nr) |
| count = nr; |
| |
| /* need to check if this is a 2MB or a 4kB page */ |
| pgd = mmut->pgd; |
| |
| for (level = MIDGARD_MMU_TOPLEVEL; |
| level <= MIDGARD_MMU_BOTTOMLEVEL; level++) { |
| phys_addr_t next_pgd; |
| |
| index = (vpfn >> ((3 - level) * 9)) & 0x1FF; |
| page = kmap(phys_to_page(pgd)); |
| if (mmu_mode->ate_is_valid(page[index], level)) |
| break; /* keep the mapping */ |
| else if (!mmu_mode->pte_is_valid(page[index], level)) { |
| /* nothing here, advance */ |
| switch (level) { |
| case MIDGARD_MMU_LEVEL(0): |
| count = 134217728; |
| break; |
| case MIDGARD_MMU_LEVEL(1): |
| count = 262144; |
| break; |
| case MIDGARD_MMU_LEVEL(2): |
| count = 512; |
| break; |
| case MIDGARD_MMU_LEVEL(3): |
| count = 1; |
| break; |
| } |
| if (count > nr) |
| count = nr; |
| goto next; |
| } |
| next_pgd = mmu_mode->pte_to_phy_addr(page[index]); |
| kunmap(phys_to_page(pgd)); |
| pgd = next_pgd; |
| } |
| |
| switch (level) { |
| case MIDGARD_MMU_LEVEL(0): |
| case MIDGARD_MMU_LEVEL(1): |
| dev_warn(kbdev->dev, |
| "%s: No support for ATEs at level %d\n", |
| __func__, level); |
| kunmap(phys_to_page(pgd)); |
| goto out; |
| case MIDGARD_MMU_LEVEL(2): |
| /* can only teardown if count >= 512 */ |
| if (count >= 512) { |
| pcount = 1; |
| } else { |
| dev_warn(kbdev->dev, |
| "%s: limiting teardown as it tries to do a partial 2MB teardown, need 512, but have %d to tear down\n", |
| __func__, count); |
| pcount = 0; |
| } |
| break; |
| case MIDGARD_MMU_BOTTOMLEVEL: |
| /* page count is the same as the logical count */ |
| pcount = count; |
| break; |
| default: |
| dev_err(kbdev->dev, |
| "%s: found non-mapped memory, early out\n", |
| __func__); |
| vpfn += count; |
| nr -= count; |
| continue; |
| } |
| |
| /* Invalidate the entries we added */ |
| for (i = 0; i < pcount; i++) |
| mmu_mode->entry_invalidate(&page[index + i]); |
| |
| kbase_mmu_sync_pgd(kbdev, |
| kbase_dma_addr(phys_to_page(pgd)) + |
| 8 * index, 8*pcount); |
| |
| next: |
| kunmap(phys_to_page(pgd)); |
| vpfn += count; |
| nr -= count; |
| } |
| err = 0; |
| out: |
| mutex_unlock(&mmut->mmu_lock); |
| |
| if (mmut->kctx) |
| kbase_mmu_flush_invalidate(mmut->kctx, vpfn, requested_nr, true); |
| else |
| kbase_mmu_flush_invalidate_no_ctx(kbdev, vpfn, requested_nr, true, as_nr); |
| |
| return err; |
| } |
| |
| KBASE_EXPORT_TEST_API(kbase_mmu_teardown_pages); |
| |
| /** |
| * kbase_mmu_update_pages_no_flush() - Update page table entries on the GPU |
| * |
| * This will update page table entries that already exist on the GPU based on |
| * the new flags that are passed. It is used as a response to the changes of |
| * the memory attributes |
| * |
| * The caller is responsible for validating the memory attributes |
| * |
| * @kctx: Kbase context |
| * @vpfn: Virtual PFN (Page Frame Number) of the first page to update |
| * @phys: Tagged physical addresses of the physical pages to replace the |
| * current mappings |
| * @nr: Number of pages to update |
| * @flags: Flags |
| * @group_id: The physical memory group in which the page was allocated. |
| * Valid range is 0..(MEMORY_GROUP_MANAGER_NR_GROUPS-1). |
| */ |
| static int kbase_mmu_update_pages_no_flush(struct kbase_context *kctx, u64 vpfn, |
| struct tagged_addr *phys, size_t nr, |
| unsigned long flags, int const group_id) |
| { |
| phys_addr_t pgd; |
| u64 *pgd_page; |
| int err; |
| struct kbase_device *kbdev; |
| |
| KBASE_DEBUG_ASSERT(NULL != kctx); |
| KBASE_DEBUG_ASSERT(vpfn <= (U64_MAX / PAGE_SIZE)); |
| |
| /* Early out if there is nothing to do */ |
| if (nr == 0) |
| return 0; |
| |
| mutex_lock(&kctx->mmu.mmu_lock); |
| |
| kbdev = kctx->kbdev; |
| |
| while (nr) { |
| unsigned int i; |
| unsigned int index = vpfn & 0x1FF; |
| size_t count = KBASE_MMU_PAGE_ENTRIES - index; |
| struct page *p; |
| |
| if (count > nr) |
| count = nr; |
| |
| do { |
| err = mmu_get_bottom_pgd(kbdev, &kctx->mmu, |
| vpfn, &pgd); |
| if (err != -ENOMEM) |
| break; |
| /* Fill the memory pool with enough pages for |
| * the page walk to succeed |
| */ |
| mutex_unlock(&kctx->mmu.mmu_lock); |
| err = kbase_mem_pool_grow( |
| &kbdev->mem_pools.small[ |
| kctx->mmu.group_id], |
| MIDGARD_MMU_BOTTOMLEVEL); |
| mutex_lock(&kctx->mmu.mmu_lock); |
| } while (!err); |
| if (err) { |
| dev_warn(kbdev->dev, |
| "mmu_get_bottom_pgd failure\n"); |
| goto fail_unlock; |
| } |
| |
| p = pfn_to_page(PFN_DOWN(pgd)); |
| pgd_page = kmap(p); |
| if (!pgd_page) { |
| dev_warn(kbdev->dev, "kmap failure\n"); |
| err = -ENOMEM; |
| goto fail_unlock; |
| } |
| |
| for (i = 0; i < count; i++) |
| pgd_page[index + i] = kbase_mmu_create_ate(kbdev, |
| phys[i], flags, MIDGARD_MMU_BOTTOMLEVEL, |
| group_id); |
| |
| phys += count; |
| vpfn += count; |
| nr -= count; |
| |
| kbase_mmu_sync_pgd(kbdev, |
| kbase_dma_addr(p) + (index * sizeof(u64)), |
| count * sizeof(u64)); |
| |
| kunmap(pfn_to_page(PFN_DOWN(pgd))); |
| } |
| |
| mutex_unlock(&kctx->mmu.mmu_lock); |
| return 0; |
| |
| fail_unlock: |
| mutex_unlock(&kctx->mmu.mmu_lock); |
| return err; |
| } |
| |
| int kbase_mmu_update_pages(struct kbase_context *kctx, u64 vpfn, |
| struct tagged_addr *phys, size_t nr, |
| unsigned long flags, int const group_id) |
| { |
| int err; |
| |
| err = kbase_mmu_update_pages_no_flush(kctx, vpfn, phys, nr, flags, |
| group_id); |
| kbase_mmu_flush_invalidate(kctx, vpfn, nr, true); |
| return err; |
| } |
| |
| static void mmu_teardown_level(struct kbase_device *kbdev, |
| struct kbase_mmu_table *mmut, phys_addr_t pgd, |
| int level, u64 *pgd_page_buffer) |
| { |
| phys_addr_t target_pgd; |
| struct page *p; |
| u64 *pgd_page; |
| int i; |
| struct kbase_mmu_mode const *mmu_mode; |
| |
| lockdep_assert_held(&mmut->mmu_lock); |
| |
| pgd_page = kmap_atomic(pfn_to_page(PFN_DOWN(pgd))); |
| /* kmap_atomic should NEVER fail. */ |
| KBASE_DEBUG_ASSERT(NULL != pgd_page); |
| /* Copy the page to our preallocated buffer so that we can minimize |
| * kmap_atomic usage */ |
| memcpy(pgd_page_buffer, pgd_page, PAGE_SIZE); |
| kunmap_atomic(pgd_page); |
| pgd_page = pgd_page_buffer; |
| |
| mmu_mode = kbdev->mmu_mode; |
| |
| for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++) { |
| target_pgd = mmu_mode->pte_to_phy_addr(pgd_page[i]); |
| |
| if (target_pgd) { |
| if (mmu_mode->pte_is_valid(pgd_page[i], level)) { |
| mmu_teardown_level(kbdev, mmut, |
| target_pgd, |
| level + 1, |
| pgd_page_buffer + |
| (PAGE_SIZE / sizeof(u64))); |
| } |
| } |
| } |
| |
| p = pfn_to_page(PFN_DOWN(pgd)); |
| |
| kbase_mem_pool_free(&kbdev->mem_pools.small[mmut->group_id], |
| p, true); |
| |
| atomic_sub(1, &kbdev->memdev.used_pages); |
| |
| /* If MMU tables belong to a context then pages will have been accounted |
| * against it, so we must decrement the usage counts here. |
| */ |
| if (mmut->kctx) { |
| kbase_process_page_usage_dec(mmut->kctx, 1); |
| atomic_sub(1, &mmut->kctx->used_pages); |
| } |
| } |
| |
| int kbase_mmu_init(struct kbase_device *const kbdev, |
| struct kbase_mmu_table *const mmut, struct kbase_context *const kctx, |
| int const group_id) |
| { |
| if (WARN_ON(group_id >= MEMORY_GROUP_MANAGER_NR_GROUPS) || |
| WARN_ON(group_id < 0)) |
| return -EINVAL; |
| |
| mmut->group_id = group_id; |
| mutex_init(&mmut->mmu_lock); |
| mmut->kctx = kctx; |
| |
| /* Preallocate MMU depth of four pages for mmu_teardown_level to use */ |
| mmut->mmu_teardown_pages = kmalloc(PAGE_SIZE * 4, GFP_KERNEL); |
| |
| if (mmut->mmu_teardown_pages == NULL) |
| return -ENOMEM; |
| |
| mmut->pgd = 0; |
| /* We allocate pages into the kbdev memory pool, then |
| * kbase_mmu_alloc_pgd will allocate out of that pool. This is done to |
| * avoid allocations from the kernel happening with the lock held. |
| */ |
| while (!mmut->pgd) { |
| int err; |
| |
| err = kbase_mem_pool_grow( |
| &kbdev->mem_pools.small[mmut->group_id], |
| MIDGARD_MMU_BOTTOMLEVEL); |
| if (err) { |
| kbase_mmu_term(kbdev, mmut); |
| return -ENOMEM; |
| } |
| |
| mutex_lock(&mmut->mmu_lock); |
| mmut->pgd = kbase_mmu_alloc_pgd(kbdev, mmut); |
| mutex_unlock(&mmut->mmu_lock); |
| } |
| |
| return 0; |
| } |
| |
| void kbase_mmu_term(struct kbase_device *kbdev, struct kbase_mmu_table *mmut) |
| { |
| if (mmut->pgd) { |
| mutex_lock(&mmut->mmu_lock); |
| mmu_teardown_level(kbdev, mmut, mmut->pgd, MIDGARD_MMU_TOPLEVEL, |
| mmut->mmu_teardown_pages); |
| mutex_unlock(&mmut->mmu_lock); |
| |
| if (mmut->kctx) |
| KBASE_TLSTREAM_AUX_PAGESALLOC(kbdev, mmut->kctx->id, 0); |
| } |
| |
| kfree(mmut->mmu_teardown_pages); |
| mutex_destroy(&mmut->mmu_lock); |
| } |
| |
| static size_t kbasep_mmu_dump_level(struct kbase_context *kctx, phys_addr_t pgd, int level, char ** const buffer, size_t *size_left) |
| { |
| phys_addr_t target_pgd; |
| u64 *pgd_page; |
| int i; |
| size_t size = KBASE_MMU_PAGE_ENTRIES * sizeof(u64) + sizeof(u64); |
| size_t dump_size; |
| struct kbase_device *kbdev; |
| struct kbase_mmu_mode const *mmu_mode; |
| |
| KBASE_DEBUG_ASSERT(NULL != kctx); |
| lockdep_assert_held(&kctx->mmu.mmu_lock); |
| |
| kbdev = kctx->kbdev; |
| mmu_mode = kbdev->mmu_mode; |
| |
| pgd_page = kmap(pfn_to_page(PFN_DOWN(pgd))); |
| if (!pgd_page) { |
| dev_warn(kbdev->dev, "%s: kmap failure\n", __func__); |
| return 0; |
| } |
| |
| if (*size_left >= size) { |
| /* A modified physical address that contains the page table level */ |
| u64 m_pgd = pgd | level; |
| |
| /* Put the modified physical address in the output buffer */ |
| memcpy(*buffer, &m_pgd, sizeof(m_pgd)); |
| *buffer += sizeof(m_pgd); |
| |
| /* Followed by the page table itself */ |
| memcpy(*buffer, pgd_page, sizeof(u64) * KBASE_MMU_PAGE_ENTRIES); |
| *buffer += sizeof(u64) * KBASE_MMU_PAGE_ENTRIES; |
| |
| *size_left -= size; |
| } |
| |
| if (level < MIDGARD_MMU_BOTTOMLEVEL) { |
| for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++) { |
| if (mmu_mode->pte_is_valid(pgd_page[i], level)) { |
| target_pgd = mmu_mode->pte_to_phy_addr( |
| pgd_page[i]); |
| |
| dump_size = kbasep_mmu_dump_level(kctx, |
| target_pgd, level + 1, |
| buffer, size_left); |
| if (!dump_size) { |
| kunmap(pfn_to_page(PFN_DOWN(pgd))); |
| return 0; |
| } |
| size += dump_size; |
| } |
| } |
| } |
| |
| kunmap(pfn_to_page(PFN_DOWN(pgd))); |
| |
| return size; |
| } |
| |
| void *kbase_mmu_dump(struct kbase_context *kctx, int nr_pages) |
| { |
| void *kaddr; |
| size_t size_left; |
| |
| KBASE_DEBUG_ASSERT(kctx); |
| |
| if (0 == nr_pages) { |
| /* can't dump in a 0 sized buffer, early out */ |
| return NULL; |
| } |
| |
| size_left = nr_pages * PAGE_SIZE; |
| |
| KBASE_DEBUG_ASSERT(0 != size_left); |
| kaddr = vmalloc_user(size_left); |
| |
| mutex_lock(&kctx->mmu.mmu_lock); |
| |
| if (kaddr) { |
| u64 end_marker = 0xFFULL; |
| char *buffer; |
| char *mmu_dump_buffer; |
| u64 config[3]; |
| size_t dump_size, size = 0; |
| struct kbase_mmu_setup as_setup; |
| |
| buffer = (char *)kaddr; |
| mmu_dump_buffer = buffer; |
| |
| kctx->kbdev->mmu_mode->get_as_setup(&kctx->mmu, |
| &as_setup); |
| config[0] = as_setup.transtab; |
| config[1] = as_setup.memattr; |
| config[2] = as_setup.transcfg; |
| memcpy(buffer, &config, sizeof(config)); |
| mmu_dump_buffer += sizeof(config); |
| size_left -= sizeof(config); |
| size += sizeof(config); |
| |
| dump_size = kbasep_mmu_dump_level(kctx, |
| kctx->mmu.pgd, |
| MIDGARD_MMU_TOPLEVEL, |
| &mmu_dump_buffer, |
| &size_left); |
| |
| if (!dump_size) |
| goto fail_free; |
| |
| size += dump_size; |
| |
| /* Add on the size for the end marker */ |
| size += sizeof(u64); |
| |
| if (size > (nr_pages * PAGE_SIZE)) { |
| /* The buffer isn't big enough - free the memory and return failure */ |
| goto fail_free; |
| } |
| |
| /* Add the end marker */ |
| memcpy(mmu_dump_buffer, &end_marker, sizeof(u64)); |
| } |
| |
| mutex_unlock(&kctx->mmu.mmu_lock); |
| return kaddr; |
| |
| fail_free: |
| vfree(kaddr); |
| mutex_unlock(&kctx->mmu.mmu_lock); |
| return NULL; |
| } |
| KBASE_EXPORT_TEST_API(kbase_mmu_dump); |
| |
| void bus_fault_worker(struct work_struct *data) |
| { |
| struct kbase_as *faulting_as; |
| int as_no; |
| struct kbase_context *kctx; |
| struct kbase_device *kbdev; |
| struct kbase_fault *fault; |
| bool reset_status = false; |
| |
| faulting_as = container_of(data, struct kbase_as, work_busfault); |
| fault = &faulting_as->bf_data; |
| |
| /* Ensure that any pending page fault worker has completed */ |
| flush_work(&faulting_as->work_pagefault); |
| |
| as_no = faulting_as->number; |
| |
| kbdev = container_of(faulting_as, struct kbase_device, as[as_no]); |
| |
| /* Grab the context, already refcounted in kbase_mmu_interrupt() on |
| * flagging of the bus-fault. Therefore, it cannot be scheduled out of |
| * this AS until we explicitly release it |
| */ |
| kctx = kbasep_js_runpool_lookup_ctx_noretain(kbdev, as_no); |
| if (WARN_ON(!kctx)) { |
| atomic_dec(&kbdev->faults_pending); |
| return; |
| } |
| |
| if (unlikely(fault->protected_mode)) { |
| kbase_mmu_report_fault_and_kill(kctx, faulting_as, |
| "Permission failure", fault); |
| kbase_mmu_hw_clear_fault(kbdev, faulting_as, |
| KBASE_MMU_FAULT_TYPE_BUS_UNEXPECTED); |
| kbasep_js_runpool_release_ctx(kbdev, kctx); |
| atomic_dec(&kbdev->faults_pending); |
| return; |
| |
| } |
| |
| if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_8245)) { |
| /* Due to H/W issue 8245 we need to reset the GPU after using UNMAPPED mode. |
| * We start the reset before switching to UNMAPPED to ensure that unrelated jobs |
| * are evicted from the GPU before the switch. |
| */ |
| dev_err(kbdev->dev, "GPU bus error occurred. For this GPU version we now soft-reset as part of bus error recovery\n"); |
| reset_status = kbase_prepare_to_reset_gpu(kbdev); |
| } |
| /* NOTE: If GPU already powered off for suspend, we don't need to switch to unmapped */ |
| if (!kbase_pm_context_active_handle_suspend(kbdev, KBASE_PM_SUSPEND_HANDLER_DONT_REACTIVATE)) { |
| unsigned long flags; |
| |
| /* switch to UNMAPPED mode, will abort all jobs and stop any hw counter dumping */ |
| /* AS transaction begin */ |
| mutex_lock(&kbdev->mmu_hw_mutex); |
| |
| /* Set the MMU into unmapped mode */ |
| spin_lock_irqsave(&kbdev->hwaccess_lock, flags); |
| kbase_mmu_disable(kctx); |
| spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags); |
| |
| mutex_unlock(&kbdev->mmu_hw_mutex); |
| /* AS transaction end */ |
| |
| kbase_mmu_hw_clear_fault(kbdev, faulting_as, |
| KBASE_MMU_FAULT_TYPE_BUS_UNEXPECTED); |
| kbase_mmu_hw_enable_fault(kbdev, faulting_as, |
| KBASE_MMU_FAULT_TYPE_BUS_UNEXPECTED); |
| |
| kbase_pm_context_idle(kbdev); |
| } |
| |
| if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_8245) && reset_status) |
| kbase_reset_gpu(kbdev); |
| |
| kbasep_js_runpool_release_ctx(kbdev, kctx); |
| |
| atomic_dec(&kbdev->faults_pending); |
| } |
| |
| const char *kbase_exception_name(struct kbase_device *kbdev, u32 exception_code) |
| { |
| const char *e; |
| |
| switch (exception_code) { |
| /* Non-Fault Status code */ |
| case 0x00: |
| e = "NOT_STARTED/IDLE/OK"; |
| break; |
| case 0x01: |
| e = "DONE"; |
| break; |
| case 0x02: |
| e = "INTERRUPTED"; |
| break; |
| case 0x03: |
| e = "STOPPED"; |
| break; |
| case 0x04: |
| e = "TERMINATED"; |
| break; |
| case 0x08: |
| e = "ACTIVE"; |
| break; |
| /* Job exceptions */ |
| case 0x40: |
| e = "JOB_CONFIG_FAULT"; |
| break; |
| case 0x41: |
| e = "JOB_POWER_FAULT"; |
| break; |
| case 0x42: |
| e = "JOB_READ_FAULT"; |
| break; |
| case 0x43: |
| e = "JOB_WRITE_FAULT"; |
| break; |
| case 0x44: |
| e = "JOB_AFFINITY_FAULT"; |
| break; |
| case 0x48: |
| e = "JOB_BUS_FAULT"; |
| break; |
| case 0x50: |
| e = "INSTR_INVALID_PC"; |
| break; |
| case 0x51: |
| e = "INSTR_INVALID_ENC"; |
| break; |
| case 0x52: |
| e = "INSTR_TYPE_MISMATCH"; |
| break; |
| case 0x53: |
| e = "INSTR_OPERAND_FAULT"; |
| break; |
| case 0x54: |
| e = "INSTR_TLS_FAULT"; |
| break; |
| case 0x55: |
| e = "INSTR_BARRIER_FAULT"; |
| break; |
| case 0x56: |
| e = "INSTR_ALIGN_FAULT"; |
| break; |
| case 0x58: |
| e = "DATA_INVALID_FAULT"; |
| break; |
| case 0x59: |
| e = "TILE_RANGE_FAULT"; |
| break; |
| case 0x5A: |
| e = "ADDR_RANGE_FAULT"; |
| break; |
| case 0x60: |
| e = "OUT_OF_MEMORY"; |
| break; |
| /* GPU exceptions */ |
| case 0x80: |
| e = "DELAYED_BUS_FAULT"; |
| break; |
| case 0x88: |
| e = "SHAREABILITY_FAULT"; |
| break; |
| /* MMU exceptions */ |
| case 0xC0: |
| case 0xC1: |
| case 0xC2: |
| case 0xC3: |
| case 0xC4: |
| case 0xC5: |
| case 0xC6: |
| case 0xC7: |
| e = "TRANSLATION_FAULT"; |
| break; |
| case 0xC8: |
| e = "PERMISSION_FAULT"; |
| break; |
| case 0xC9: |
| case 0xCA: |
| case 0xCB: |
| case 0xCC: |
| case 0xCD: |
| case 0xCE: |
| case 0xCF: |
| if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_AARCH64_MMU)) |
| e = "PERMISSION_FAULT"; |
| else |
| e = "UNKNOWN"; |
| break; |
| case 0xD0: |
| case 0xD1: |
| case 0xD2: |
| case 0xD3: |
| case 0xD4: |
| case 0xD5: |
| case 0xD6: |
| case 0xD7: |
| e = "TRANSTAB_BUS_FAULT"; |
| break; |
| case 0xD8: |
| e = "ACCESS_FLAG"; |
| break; |
| case 0xD9: |
| case 0xDA: |
| case 0xDB: |
| case 0xDC: |
| case 0xDD: |
| case 0xDE: |
| case 0xDF: |
| if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_AARCH64_MMU)) |
| e = "ACCESS_FLAG"; |
| else |
| e = "UNKNOWN"; |
| break; |
| case 0xE0: |
| case 0xE1: |
| case 0xE2: |
| case 0xE3: |
| case 0xE4: |
| case 0xE5: |
| case 0xE6: |
| case 0xE7: |
| if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_AARCH64_MMU)) |
| e = "ADDRESS_SIZE_FAULT"; |
| else |
| e = "UNKNOWN"; |
| break; |
| case 0xE8: |
| case 0xE9: |
| case 0xEA: |
| case 0xEB: |
| case 0xEC: |
| case 0xED: |
| case 0xEE: |
| case 0xEF: |
| if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_AARCH64_MMU)) |
| e = "MEMORY_ATTRIBUTES_FAULT"; |
| else |
| e = "UNKNOWN"; |
| break; |
| default: |
| e = "UNKNOWN"; |
| break; |
| }; |
| |
| return e; |
| } |
| |
| static const char *access_type_name(struct kbase_device *kbdev, |
| u32 fault_status) |
| { |
| switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) { |
| case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC: |
| if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_AARCH64_MMU)) |
| return "ATOMIC"; |
| else |
| return "UNKNOWN"; |
| case AS_FAULTSTATUS_ACCESS_TYPE_READ: |
| return "READ"; |
| case AS_FAULTSTATUS_ACCESS_TYPE_WRITE: |
| return "WRITE"; |
| case AS_FAULTSTATUS_ACCESS_TYPE_EX: |
| return "EXECUTE"; |
| default: |
| WARN_ON(1); |
| return NULL; |
| } |
| } |
| |
| |
| /** |
| * The caller must ensure it's retained the ctx to prevent it from being scheduled out whilst it's being worked on. |
| */ |
| static void kbase_mmu_report_fault_and_kill(struct kbase_context *kctx, |
| struct kbase_as *as, const char *reason_str, |
| struct kbase_fault *fault) |
| { |
| unsigned long flags; |
| int exception_type; |
| int access_type; |
| int source_id; |
| int as_no; |
| struct kbase_device *kbdev; |
| struct kbasep_js_device_data *js_devdata; |
| |
| bool reset_status = false; |
| |
| as_no = as->number; |
| kbdev = kctx->kbdev; |
| js_devdata = &kbdev->js_data; |
| |
| /* ASSERT that the context won't leave the runpool */ |
| KBASE_DEBUG_ASSERT(atomic_read(&kctx->refcount) > 0); |
| |
| /* decode the fault status */ |
| exception_type = fault->status & 0xFF; |
| access_type = (fault->status >> 8) & 0x3; |
| source_id = (fault->status >> 16); |
| |
| /* terminal fault, print info about the fault */ |
| dev_err(kbdev->dev, |
| "Unhandled Page fault in AS%d at VA 0x%016llX\n" |
| "Reason: %s\n" |
| "raw fault status: 0x%X\n" |
| "decoded fault status: %s\n" |
| "exception type 0x%X: %s\n" |
| "access type 0x%X: %s\n" |
| "source id 0x%X\n" |
| "pid: %d\n", |
| as_no, fault->addr, |
| reason_str, |
| fault->status, |
| (fault->status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"), |
| exception_type, kbase_exception_name(kbdev, exception_type), |
| access_type, access_type_name(kbdev, fault->status), |
| source_id, |
| kctx->pid); |
| |
| /* hardware counters dump fault handling */ |
| if ((kbdev->hwcnt.kctx) && (kbdev->hwcnt.kctx->as_nr == as_no) && |
| (kbdev->hwcnt.backend.state == |
| KBASE_INSTR_STATE_DUMPING)) { |
| if ((fault->addr >= kbdev->hwcnt.addr) && |
| (fault->addr < (kbdev->hwcnt.addr + |
| kbdev->hwcnt.addr_bytes))) |
| kbdev->hwcnt.backend.state = KBASE_INSTR_STATE_FAULT; |
| } |
| |
| /* Stop the kctx from submitting more jobs and cause it to be scheduled |
| * out/rescheduled - this will occur on releasing the context's refcount */ |
| spin_lock_irqsave(&kbdev->hwaccess_lock, flags); |
| kbasep_js_clear_submit_allowed(js_devdata, kctx); |
| |
| /* Kill any running jobs from the context. Submit is disallowed, so no more jobs from this |
| * context can appear in the job slots from this point on */ |
| kbase_backend_jm_kill_running_jobs_from_kctx(kctx); |
| spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags); |
| |
| /* AS transaction begin */ |
| mutex_lock(&kbdev->mmu_hw_mutex); |
| if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_8245)) { |
| /* Due to H/W issue 8245 we need to reset the GPU after using UNMAPPED mode. |
| * We start the reset before switching to UNMAPPED to ensure that unrelated jobs |
| * are evicted from the GPU before the switch. |
| */ |
| dev_err(kbdev->dev, "Unhandled page fault. For this GPU version we now soft-reset the GPU as part of page fault recovery."); |
| reset_status = kbase_prepare_to_reset_gpu(kbdev); |
| } |
| /* switch to UNMAPPED mode, will abort all jobs and stop any hw counter dumping */ |
| spin_lock_irqsave(&kbdev->hwaccess_lock, flags); |
| kbase_mmu_disable(kctx); |
| spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags); |
| |
| mutex_unlock(&kbdev->mmu_hw_mutex); |
| |
| |
| /* AS transaction end */ |
| /* Clear down the fault */ |
| kbase_mmu_hw_clear_fault(kbdev, as, |
| KBASE_MMU_FAULT_TYPE_PAGE_UNEXPECTED); |
| kbase_mmu_hw_enable_fault(kbdev, as, |
| KBASE_MMU_FAULT_TYPE_PAGE_UNEXPECTED); |
| |
| if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_8245) && reset_status) |
| kbase_reset_gpu(kbdev); |
| } |
| |
| void kbasep_as_do_poke(struct work_struct *work) |
| { |
| struct kbase_as *as; |
| struct kbase_device *kbdev; |
| unsigned long flags; |
| |
| KBASE_DEBUG_ASSERT(work); |
| as = container_of(work, struct kbase_as, poke_work); |
| kbdev = container_of(as, struct kbase_device, as[as->number]); |
| KBASE_DEBUG_ASSERT(as->poke_state & KBASE_AS_POKE_STATE_IN_FLIGHT); |
| |
| /* GPU power will already be active by virtue of the caller holding a JS |
| * reference on the address space, and will not release it until this worker |
| * has finished */ |
| |
| /* Further to the comment above, we know that while this function is running |
| * the AS will not be released as before the atom is released this workqueue |
| * is flushed (in kbase_as_poking_timer_release_atom) |
| */ |
| |
| /* AS transaction begin */ |
| mutex_lock(&kbdev->mmu_hw_mutex); |
| /* Force a uTLB invalidate */ |
| kbase_mmu_hw_do_operation(kbdev, as, 0, 0, |
| AS_COMMAND_UNLOCK, 0); |
| mutex_unlock(&kbdev->mmu_hw_mutex); |
| /* AS transaction end */ |
| |
| spin_lock_irqsave(&kbdev->hwaccess_lock, flags); |
| if (as->poke_refcount && |
| !(as->poke_state & KBASE_AS_POKE_STATE_KILLING_POKE)) { |
| /* Only queue up the timer if we need it, and we're not trying to kill it */ |
| hrtimer_start(&as->poke_timer, HR_TIMER_DELAY_MSEC(5), HRTIMER_MODE_REL); |
| } |
| spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags); |
| } |
| |
| enum hrtimer_restart kbasep_as_poke_timer_callback(struct hrtimer *timer) |
| { |
| struct kbase_as *as; |
| int queue_work_ret; |
| |
| KBASE_DEBUG_ASSERT(NULL != timer); |
| as = container_of(timer, struct kbase_as, poke_timer); |
| KBASE_DEBUG_ASSERT(as->poke_state & KBASE_AS_POKE_STATE_IN_FLIGHT); |
| |
| queue_work_ret = queue_work(as->poke_wq, &as->poke_work); |
| KBASE_DEBUG_ASSERT(queue_work_ret); |
| return HRTIMER_NORESTART; |
| } |
| |
| /** |
| * Retain the poking timer on an atom's context (if the atom hasn't already |
| * done so), and start the timer (if it's not already started). |
| * |
| * This must only be called on a context that's scheduled in, and an atom |
| * that's running on the GPU. |
| * |
| * The caller must hold hwaccess_lock |
| * |
| * This can be called safely from atomic context |
| */ |
| void kbase_as_poking_timer_retain_atom(struct kbase_device *kbdev, struct kbase_context *kctx, struct kbase_jd_atom *katom) |
| { |
| struct kbase_as *as; |
| |
| KBASE_DEBUG_ASSERT(kbdev); |
| KBASE_DEBUG_ASSERT(kctx); |
| KBASE_DEBUG_ASSERT(katom); |
| KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID); |
| lockdep_assert_held(&kbdev->hwaccess_lock); |
| |
| if (katom->poking) |
| return; |
| |
| katom->poking = 1; |
| |
| /* It's safe to work on the as/as_nr without an explicit reference, |
| * because the caller holds the hwaccess_lock, and the atom itself |
| * was also running and had already taken a reference */ |
| as = &kbdev->as[kctx->as_nr]; |
| |
| if (++(as->poke_refcount) == 1) { |
| /* First refcount for poke needed: check if not already in flight */ |
| if (!as->poke_state) { |
| /* need to start poking */ |
| as->poke_state |= KBASE_AS_POKE_STATE_IN_FLIGHT; |
| queue_work(as->poke_wq, &as->poke_work); |
| } |
| } |
| } |
| |
| /** |
| * If an atom holds a poking timer, release it and wait for it to finish |
| * |
| * This must only be called on a context that's scheduled in, and an atom |
| * that still has a JS reference on the context |
| * |
| * This must \b not be called from atomic context, since it can sleep. |
| */ |
| void kbase_as_poking_timer_release_atom(struct kbase_device *kbdev, struct kbase_context *kctx, struct kbase_jd_atom *katom) |
| { |
| struct kbase_as *as; |
| unsigned long flags; |
| |
| KBASE_DEBUG_ASSERT(kbdev); |
| KBASE_DEBUG_ASSERT(kctx); |
| KBASE_DEBUG_ASSERT(katom); |
| KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID); |
| |
| if (!katom->poking) |
| return; |
| |
| as = &kbdev->as[kctx->as_nr]; |
| |
| spin_lock_irqsave(&kbdev->hwaccess_lock, flags); |
| KBASE_DEBUG_ASSERT(as->poke_refcount > 0); |
| KBASE_DEBUG_ASSERT(as->poke_state & KBASE_AS_POKE_STATE_IN_FLIGHT); |
| |
| if (--(as->poke_refcount) == 0) { |
| as->poke_state |= KBASE_AS_POKE_STATE_KILLING_POKE; |
| spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags); |
| |
| hrtimer_cancel(&as->poke_timer); |
| flush_workqueue(as->poke_wq); |
| |
| spin_lock_irqsave(&kbdev->hwaccess_lock, flags); |
| |
| /* Re-check whether it's still needed */ |
| if (as->poke_refcount) { |
| int queue_work_ret; |
| /* Poking still needed: |
| * - Another retain will not be starting the timer or queueing work, |
| * because it's still marked as in-flight |
| * - The hrtimer has finished, and has not started a new timer or |
| * queued work because it's been marked as killing |
| * |
| * So whatever happens now, just queue the work again */ |
| as->poke_state &= ~((kbase_as_poke_state)KBASE_AS_POKE_STATE_KILLING_POKE); |
| queue_work_ret = queue_work(as->poke_wq, &as->poke_work); |
| KBASE_DEBUG_ASSERT(queue_work_ret); |
| } else { |
| /* It isn't - so mark it as not in flight, and not killing */ |
| as->poke_state = 0u; |
| |
| /* The poke associated with the atom has now finished. If this is |
| * also the last atom on the context, then we can guarentee no more |
| * pokes (and thus no more poking register accesses) will occur on |
| * the context until new atoms are run */ |
| } |
| } |
| spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags); |
| |
| katom->poking = 0; |
| } |
| |
| void kbase_mmu_interrupt_process(struct kbase_device *kbdev, |
| struct kbase_context *kctx, struct kbase_as *as, |
| struct kbase_fault *fault) |
| { |
| lockdep_assert_held(&kbdev->hwaccess_lock); |
| |
| if (!kctx) { |
| dev_warn(kbdev->dev, "%s in AS%d at 0x%016llx with no context present! Spurious IRQ or SW Design Error?\n", |
| kbase_as_has_bus_fault(as, fault) ? |
| "Bus error" : "Page fault", |
| as->number, fault->addr); |
| |
| /* Since no ctx was found, the MMU must be disabled. */ |
| WARN_ON(as->current_setup.transtab); |
| |
| if (kbase_as_has_bus_fault(as, fault)) { |
| kbase_mmu_hw_clear_fault(kbdev, as, |
| KBASE_MMU_FAULT_TYPE_BUS_UNEXPECTED); |
| kbase_mmu_hw_enable_fault(kbdev, as, |
| KBASE_MMU_FAULT_TYPE_BUS_UNEXPECTED); |
| } else if (kbase_as_has_page_fault(as, fault)) { |
| kbase_mmu_hw_clear_fault(kbdev, as, |
| KBASE_MMU_FAULT_TYPE_PAGE_UNEXPECTED); |
| kbase_mmu_hw_enable_fault(kbdev, as, |
| KBASE_MMU_FAULT_TYPE_PAGE_UNEXPECTED); |
| } |
| |
| if (kbase_as_has_bus_fault(as, fault) && |
| kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_8245)) { |
| bool reset_status; |
| /* |
| * Reset the GPU, like in bus_fault_worker, in case an |
| * earlier error hasn't been properly cleared by this |
| * point. |
| */ |
| dev_err(kbdev->dev, "GPU bus error occurred. For this GPU version we now soft-reset as part of bus error recovery\n"); |
| reset_status = kbase_prepare_to_reset_gpu_locked(kbdev); |
| if (reset_status) |
| kbase_reset_gpu_locked(kbdev); |
| } |
| |
| return; |
| } |
| |
| if (kbase_as_has_bus_fault(as, fault)) { |
| struct kbasep_js_device_data *js_devdata = &kbdev->js_data; |
| |
| /* |
| * hw counters dumping in progress, signal the |
| * other thread that it failed |
| */ |
| if ((kbdev->hwcnt.kctx == kctx) && |
| (kbdev->hwcnt.backend.state == |
| KBASE_INSTR_STATE_DUMPING)) |
| kbdev->hwcnt.backend.state = |
| KBASE_INSTR_STATE_FAULT; |
| |
| /* |
| * Stop the kctx from submitting more jobs and cause it |
| * to be scheduled out/rescheduled when all references |
| * to it are released |
| */ |
| kbasep_js_clear_submit_allowed(js_devdata, kctx); |
| |
| if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_AARCH64_MMU)) |
| dev_warn(kbdev->dev, |
| "Bus error in AS%d at VA=0x%016llx, IPA=0x%016llx\n", |
| as->number, fault->addr, |
| fault->extra_addr); |
| else |
| dev_warn(kbdev->dev, "Bus error in AS%d at 0x%016llx\n", |
| as->number, fault->addr); |
| |
| /* |
| * We need to switch to UNMAPPED mode - but we do this in a |
| * worker so that we can sleep |
| */ |
| WARN_ON(!queue_work(as->pf_wq, &as->work_busfault)); |
| atomic_inc(&kbdev->faults_pending); |
| } else { |
| WARN_ON(!queue_work(as->pf_wq, &as->work_pagefault)); |
| atomic_inc(&kbdev->faults_pending); |
| } |
| } |
| |
| void kbase_flush_mmu_wqs(struct kbase_device *kbdev) |
| { |
| int i; |
| |
| for (i = 0; i < kbdev->nr_hw_address_spaces; i++) { |
| struct kbase_as *as = &kbdev->as[i]; |
| |
| flush_workqueue(as->pf_wq); |
| } |
| } |