| /* linux/drivers/mtd/nand/s3c2410.c | 
 |  * | 
 |  * Copyright © 2004-2008 Simtec Electronics | 
 |  *	http://armlinux.simtec.co.uk/ | 
 |  *	Ben Dooks <ben@simtec.co.uk> | 
 |  * | 
 |  * Samsung S3C2410/S3C2440/S3C2412 NAND driver | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
 | */ | 
 |  | 
 | #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG | 
 | #define DEBUG | 
 | #endif | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/types.h> | 
 | #include <linux/init.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/string.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/err.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/clk.h> | 
 | #include <linux/cpufreq.h> | 
 |  | 
 | #include <linux/mtd/mtd.h> | 
 | #include <linux/mtd/nand.h> | 
 | #include <linux/mtd/nand_ecc.h> | 
 | #include <linux/mtd/partitions.h> | 
 |  | 
 | #include <asm/io.h> | 
 |  | 
 | #include <plat/regs-nand.h> | 
 | #include <plat/nand.h> | 
 |  | 
 | #ifdef CONFIG_MTD_NAND_S3C2410_HWECC | 
 | static int hardware_ecc = 1; | 
 | #else | 
 | static int hardware_ecc = 0; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP | 
 | static const int clock_stop = 1; | 
 | #else | 
 | static const int clock_stop = 0; | 
 | #endif | 
 |  | 
 |  | 
 | /* new oob placement block for use with hardware ecc generation | 
 |  */ | 
 |  | 
 | static struct nand_ecclayout nand_hw_eccoob = { | 
 | 	.eccbytes = 3, | 
 | 	.eccpos = {0, 1, 2}, | 
 | 	.oobfree = {{8, 8}} | 
 | }; | 
 |  | 
 | /* controller and mtd information */ | 
 |  | 
 | struct s3c2410_nand_info; | 
 |  | 
 | /** | 
 |  * struct s3c2410_nand_mtd - driver MTD structure | 
 |  * @mtd: The MTD instance to pass to the MTD layer. | 
 |  * @chip: The NAND chip information. | 
 |  * @set: The platform information supplied for this set of NAND chips. | 
 |  * @info: Link back to the hardware information. | 
 |  * @scan_res: The result from calling nand_scan_ident(). | 
 | */ | 
 | struct s3c2410_nand_mtd { | 
 | 	struct mtd_info			mtd; | 
 | 	struct nand_chip		chip; | 
 | 	struct s3c2410_nand_set		*set; | 
 | 	struct s3c2410_nand_info	*info; | 
 | 	int				scan_res; | 
 | }; | 
 |  | 
 | enum s3c_cpu_type { | 
 | 	TYPE_S3C2410, | 
 | 	TYPE_S3C2412, | 
 | 	TYPE_S3C2440, | 
 | }; | 
 |  | 
 | enum s3c_nand_clk_state { | 
 | 	CLOCK_DISABLE	= 0, | 
 | 	CLOCK_ENABLE, | 
 | 	CLOCK_SUSPEND, | 
 | }; | 
 |  | 
 | /* overview of the s3c2410 nand state */ | 
 |  | 
 | /** | 
 |  * struct s3c2410_nand_info - NAND controller state. | 
 |  * @mtds: An array of MTD instances on this controoler. | 
 |  * @platform: The platform data for this board. | 
 |  * @device: The platform device we bound to. | 
 |  * @area: The IO area resource that came from request_mem_region(). | 
 |  * @clk: The clock resource for this controller. | 
 |  * @regs: The area mapped for the hardware registers described by @area. | 
 |  * @sel_reg: Pointer to the register controlling the NAND selection. | 
 |  * @sel_bit: The bit in @sel_reg to select the NAND chip. | 
 |  * @mtd_count: The number of MTDs created from this controller. | 
 |  * @save_sel: The contents of @sel_reg to be saved over suspend. | 
 |  * @clk_rate: The clock rate from @clk. | 
 |  * @clk_state: The current clock state. | 
 |  * @cpu_type: The exact type of this controller. | 
 |  */ | 
 | struct s3c2410_nand_info { | 
 | 	/* mtd info */ | 
 | 	struct nand_hw_control		controller; | 
 | 	struct s3c2410_nand_mtd		*mtds; | 
 | 	struct s3c2410_platform_nand	*platform; | 
 |  | 
 | 	/* device info */ | 
 | 	struct device			*device; | 
 | 	struct resource			*area; | 
 | 	struct clk			*clk; | 
 | 	void __iomem			*regs; | 
 | 	void __iomem			*sel_reg; | 
 | 	int				sel_bit; | 
 | 	int				mtd_count; | 
 | 	unsigned long			save_sel; | 
 | 	unsigned long			clk_rate; | 
 | 	enum s3c_nand_clk_state		clk_state; | 
 |  | 
 | 	enum s3c_cpu_type		cpu_type; | 
 |  | 
 | #ifdef CONFIG_CPU_FREQ | 
 | 	struct notifier_block	freq_transition; | 
 | #endif | 
 | }; | 
 |  | 
 | /* conversion functions */ | 
 |  | 
 | static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd) | 
 | { | 
 | 	return container_of(mtd, struct s3c2410_nand_mtd, mtd); | 
 | } | 
 |  | 
 | static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd) | 
 | { | 
 | 	return s3c2410_nand_mtd_toours(mtd)->info; | 
 | } | 
 |  | 
 | static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev) | 
 | { | 
 | 	return platform_get_drvdata(dev); | 
 | } | 
 |  | 
 | static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev) | 
 | { | 
 | 	return dev->dev.platform_data; | 
 | } | 
 |  | 
 | static inline int allow_clk_suspend(struct s3c2410_nand_info *info) | 
 | { | 
 | 	return clock_stop; | 
 | } | 
 |  | 
 | /** | 
 |  * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock. | 
 |  * @info: The controller instance. | 
 |  * @new_state: State to which clock should be set. | 
 |  */ | 
 | static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info, | 
 | 		enum s3c_nand_clk_state new_state) | 
 | { | 
 | 	if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND) | 
 | 		return; | 
 |  | 
 | 	if (info->clk_state == CLOCK_ENABLE) { | 
 | 		if (new_state != CLOCK_ENABLE) | 
 | 			clk_disable(info->clk); | 
 | 	} else { | 
 | 		if (new_state == CLOCK_ENABLE) | 
 | 			clk_enable(info->clk); | 
 | 	} | 
 |  | 
 | 	info->clk_state = new_state; | 
 | } | 
 |  | 
 | /* timing calculations */ | 
 |  | 
 | #define NS_IN_KHZ 1000000 | 
 |  | 
 | /** | 
 |  * s3c_nand_calc_rate - calculate timing data. | 
 |  * @wanted: The cycle time in nanoseconds. | 
 |  * @clk: The clock rate in kHz. | 
 |  * @max: The maximum divider value. | 
 |  * | 
 |  * Calculate the timing value from the given parameters. | 
 |  */ | 
 | static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max) | 
 | { | 
 | 	int result; | 
 |  | 
 | 	result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ); | 
 |  | 
 | 	pr_debug("result %d from %ld, %d\n", result, clk, wanted); | 
 |  | 
 | 	if (result > max) { | 
 | 		printk("%d ns is too big for current clock rate %ld\n", wanted, clk); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	if (result < 1) | 
 | 		result = 1; | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 | #define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk)) | 
 |  | 
 | /* controller setup */ | 
 |  | 
 | /** | 
 |  * s3c2410_nand_setrate - setup controller timing information. | 
 |  * @info: The controller instance. | 
 |  * | 
 |  * Given the information supplied by the platform, calculate and set | 
 |  * the necessary timing registers in the hardware to generate the | 
 |  * necessary timing cycles to the hardware. | 
 |  */ | 
 | static int s3c2410_nand_setrate(struct s3c2410_nand_info *info) | 
 | { | 
 | 	struct s3c2410_platform_nand *plat = info->platform; | 
 | 	int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4; | 
 | 	int tacls, twrph0, twrph1; | 
 | 	unsigned long clkrate = clk_get_rate(info->clk); | 
 | 	unsigned long uninitialized_var(set), cfg, uninitialized_var(mask); | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* calculate the timing information for the controller */ | 
 |  | 
 | 	info->clk_rate = clkrate; | 
 | 	clkrate /= 1000;	/* turn clock into kHz for ease of use */ | 
 |  | 
 | 	if (plat != NULL) { | 
 | 		tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max); | 
 | 		twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8); | 
 | 		twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8); | 
 | 	} else { | 
 | 		/* default timings */ | 
 | 		tacls = tacls_max; | 
 | 		twrph0 = 8; | 
 | 		twrph1 = 8; | 
 | 	} | 
 |  | 
 | 	if (tacls < 0 || twrph0 < 0 || twrph1 < 0) { | 
 | 		dev_err(info->device, "cannot get suitable timings\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n", | 
 | 	       tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate)); | 
 |  | 
 | 	switch (info->cpu_type) { | 
 | 	case TYPE_S3C2410: | 
 | 		mask = (S3C2410_NFCONF_TACLS(3) | | 
 | 			S3C2410_NFCONF_TWRPH0(7) | | 
 | 			S3C2410_NFCONF_TWRPH1(7)); | 
 | 		set = S3C2410_NFCONF_EN; | 
 | 		set |= S3C2410_NFCONF_TACLS(tacls - 1); | 
 | 		set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1); | 
 | 		set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1); | 
 | 		break; | 
 |  | 
 | 	case TYPE_S3C2440: | 
 | 	case TYPE_S3C2412: | 
 | 		mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) | | 
 | 			S3C2440_NFCONF_TWRPH0(7) | | 
 | 			S3C2440_NFCONF_TWRPH1(7)); | 
 |  | 
 | 		set = S3C2440_NFCONF_TACLS(tacls - 1); | 
 | 		set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1); | 
 | 		set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	cfg = readl(info->regs + S3C2410_NFCONF); | 
 | 	cfg &= ~mask; | 
 | 	cfg |= set; | 
 | 	writel(cfg, info->regs + S3C2410_NFCONF); | 
 |  | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * s3c2410_nand_inithw - basic hardware initialisation | 
 |  * @info: The hardware state. | 
 |  * | 
 |  * Do the basic initialisation of the hardware, using s3c2410_nand_setrate() | 
 |  * to setup the hardware access speeds and set the controller to be enabled. | 
 | */ | 
 | static int s3c2410_nand_inithw(struct s3c2410_nand_info *info) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = s3c2410_nand_setrate(info); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 |  	switch (info->cpu_type) { | 
 |  	case TYPE_S3C2410: | 
 | 	default: | 
 | 		break; | 
 |  | 
 |  	case TYPE_S3C2440: | 
 |  	case TYPE_S3C2412: | 
 | 		/* enable the controller and de-assert nFCE */ | 
 |  | 
 | 		writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * s3c2410_nand_select_chip - select the given nand chip | 
 |  * @mtd: The MTD instance for this chip. | 
 |  * @chip: The chip number. | 
 |  * | 
 |  * This is called by the MTD layer to either select a given chip for the | 
 |  * @mtd instance, or to indicate that the access has finished and the | 
 |  * chip can be de-selected. | 
 |  * | 
 |  * The routine ensures that the nFCE line is correctly setup, and any | 
 |  * platform specific selection code is called to route nFCE to the specific | 
 |  * chip. | 
 |  */ | 
 | static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip) | 
 | { | 
 | 	struct s3c2410_nand_info *info; | 
 | 	struct s3c2410_nand_mtd *nmtd; | 
 | 	struct nand_chip *this = mtd->priv; | 
 | 	unsigned long cur; | 
 |  | 
 | 	nmtd = this->priv; | 
 | 	info = nmtd->info; | 
 |  | 
 | 	if (chip != -1) | 
 | 		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); | 
 |  | 
 | 	cur = readl(info->sel_reg); | 
 |  | 
 | 	if (chip == -1) { | 
 | 		cur |= info->sel_bit; | 
 | 	} else { | 
 | 		if (nmtd->set != NULL && chip > nmtd->set->nr_chips) { | 
 | 			dev_err(info->device, "invalid chip %d\n", chip); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		if (info->platform != NULL) { | 
 | 			if (info->platform->select_chip != NULL) | 
 | 				(info->platform->select_chip) (nmtd->set, chip); | 
 | 		} | 
 |  | 
 | 		cur &= ~info->sel_bit; | 
 | 	} | 
 |  | 
 | 	writel(cur, info->sel_reg); | 
 |  | 
 | 	if (chip == -1) | 
 | 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); | 
 | } | 
 |  | 
 | /* s3c2410_nand_hwcontrol | 
 |  * | 
 |  * Issue command and address cycles to the chip | 
 | */ | 
 |  | 
 | static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd, | 
 | 				   unsigned int ctrl) | 
 | { | 
 | 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
 |  | 
 | 	if (cmd == NAND_CMD_NONE) | 
 | 		return; | 
 |  | 
 | 	if (ctrl & NAND_CLE) | 
 | 		writeb(cmd, info->regs + S3C2410_NFCMD); | 
 | 	else | 
 | 		writeb(cmd, info->regs + S3C2410_NFADDR); | 
 | } | 
 |  | 
 | /* command and control functions */ | 
 |  | 
 | static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd, | 
 | 				   unsigned int ctrl) | 
 | { | 
 | 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
 |  | 
 | 	if (cmd == NAND_CMD_NONE) | 
 | 		return; | 
 |  | 
 | 	if (ctrl & NAND_CLE) | 
 | 		writeb(cmd, info->regs + S3C2440_NFCMD); | 
 | 	else | 
 | 		writeb(cmd, info->regs + S3C2440_NFADDR); | 
 | } | 
 |  | 
 | /* s3c2410_nand_devready() | 
 |  * | 
 |  * returns 0 if the nand is busy, 1 if it is ready | 
 | */ | 
 |  | 
 | static int s3c2410_nand_devready(struct mtd_info *mtd) | 
 | { | 
 | 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
 | 	return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY; | 
 | } | 
 |  | 
 | static int s3c2440_nand_devready(struct mtd_info *mtd) | 
 | { | 
 | 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
 | 	return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY; | 
 | } | 
 |  | 
 | static int s3c2412_nand_devready(struct mtd_info *mtd) | 
 | { | 
 | 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
 | 	return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY; | 
 | } | 
 |  | 
 | /* ECC handling functions */ | 
 |  | 
 | static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat, | 
 | 				     u_char *read_ecc, u_char *calc_ecc) | 
 | { | 
 | 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
 | 	unsigned int diff0, diff1, diff2; | 
 | 	unsigned int bit, byte; | 
 |  | 
 | 	pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc); | 
 |  | 
 | 	diff0 = read_ecc[0] ^ calc_ecc[0]; | 
 | 	diff1 = read_ecc[1] ^ calc_ecc[1]; | 
 | 	diff2 = read_ecc[2] ^ calc_ecc[2]; | 
 |  | 
 | 	pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n", | 
 | 		 __func__, | 
 | 		 read_ecc[0], read_ecc[1], read_ecc[2], | 
 | 		 calc_ecc[0], calc_ecc[1], calc_ecc[2], | 
 | 		 diff0, diff1, diff2); | 
 |  | 
 | 	if (diff0 == 0 && diff1 == 0 && diff2 == 0) | 
 | 		return 0;		/* ECC is ok */ | 
 |  | 
 | 	/* sometimes people do not think about using the ECC, so check | 
 | 	 * to see if we have an 0xff,0xff,0xff read ECC and then ignore | 
 | 	 * the error, on the assumption that this is an un-eccd page. | 
 | 	 */ | 
 | 	if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff | 
 | 	    && info->platform->ignore_unset_ecc) | 
 | 		return 0; | 
 |  | 
 | 	/* Can we correct this ECC (ie, one row and column change). | 
 | 	 * Note, this is similar to the 256 error code on smartmedia */ | 
 |  | 
 | 	if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 && | 
 | 	    ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 && | 
 | 	    ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) { | 
 | 		/* calculate the bit position of the error */ | 
 |  | 
 | 		bit  = ((diff2 >> 3) & 1) | | 
 | 		       ((diff2 >> 4) & 2) | | 
 | 		       ((diff2 >> 5) & 4); | 
 |  | 
 | 		/* calculate the byte position of the error */ | 
 |  | 
 | 		byte = ((diff2 << 7) & 0x100) | | 
 | 		       ((diff1 << 0) & 0x80)  | | 
 | 		       ((diff1 << 1) & 0x40)  | | 
 | 		       ((diff1 << 2) & 0x20)  | | 
 | 		       ((diff1 << 3) & 0x10)  | | 
 | 		       ((diff0 >> 4) & 0x08)  | | 
 | 		       ((diff0 >> 3) & 0x04)  | | 
 | 		       ((diff0 >> 2) & 0x02)  | | 
 | 		       ((diff0 >> 1) & 0x01); | 
 |  | 
 | 		dev_dbg(info->device, "correcting error bit %d, byte %d\n", | 
 | 			bit, byte); | 
 |  | 
 | 		dat[byte] ^= (1 << bit); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* if there is only one bit difference in the ECC, then | 
 | 	 * one of only a row or column parity has changed, which | 
 | 	 * means the error is most probably in the ECC itself */ | 
 |  | 
 | 	diff0 |= (diff1 << 8); | 
 | 	diff0 |= (diff2 << 16); | 
 |  | 
 | 	if ((diff0 & ~(1<<fls(diff0))) == 0) | 
 | 		return 1; | 
 |  | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* ECC functions | 
 |  * | 
 |  * These allow the s3c2410 and s3c2440 to use the controller's ECC | 
 |  * generator block to ECC the data as it passes through] | 
 | */ | 
 |  | 
 | static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode) | 
 | { | 
 | 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
 | 	unsigned long ctrl; | 
 |  | 
 | 	ctrl = readl(info->regs + S3C2410_NFCONF); | 
 | 	ctrl |= S3C2410_NFCONF_INITECC; | 
 | 	writel(ctrl, info->regs + S3C2410_NFCONF); | 
 | } | 
 |  | 
 | static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode) | 
 | { | 
 | 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
 | 	unsigned long ctrl; | 
 |  | 
 | 	ctrl = readl(info->regs + S3C2440_NFCONT); | 
 | 	writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT); | 
 | } | 
 |  | 
 | static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode) | 
 | { | 
 | 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
 | 	unsigned long ctrl; | 
 |  | 
 | 	ctrl = readl(info->regs + S3C2440_NFCONT); | 
 | 	writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT); | 
 | } | 
 |  | 
 | static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) | 
 | { | 
 | 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
 |  | 
 | 	ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0); | 
 | 	ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1); | 
 | 	ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2); | 
 |  | 
 | 	pr_debug("%s: returning ecc %02x%02x%02x\n", __func__, | 
 | 		 ecc_code[0], ecc_code[1], ecc_code[2]); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) | 
 | { | 
 | 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
 | 	unsigned long ecc = readl(info->regs + S3C2412_NFMECC0); | 
 |  | 
 | 	ecc_code[0] = ecc; | 
 | 	ecc_code[1] = ecc >> 8; | 
 | 	ecc_code[2] = ecc >> 16; | 
 |  | 
 | 	pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) | 
 | { | 
 | 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
 | 	unsigned long ecc = readl(info->regs + S3C2440_NFMECC0); | 
 |  | 
 | 	ecc_code[0] = ecc; | 
 | 	ecc_code[1] = ecc >> 8; | 
 | 	ecc_code[2] = ecc >> 16; | 
 |  | 
 | 	pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* over-ride the standard functions for a little more speed. We can | 
 |  * use read/write block to move the data buffers to/from the controller | 
 | */ | 
 |  | 
 | static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) | 
 | { | 
 | 	struct nand_chip *this = mtd->priv; | 
 | 	readsb(this->IO_ADDR_R, buf, len); | 
 | } | 
 |  | 
 | static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) | 
 | { | 
 | 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
 |  | 
 | 	readsl(info->regs + S3C2440_NFDATA, buf, len >> 2); | 
 |  | 
 | 	/* cleanup if we've got less than a word to do */ | 
 | 	if (len & 3) { | 
 | 		buf += len & ~3; | 
 |  | 
 | 		for (; len & 3; len--) | 
 | 			*buf++ = readb(info->regs + S3C2440_NFDATA); | 
 | 	} | 
 | } | 
 |  | 
 | static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) | 
 | { | 
 | 	struct nand_chip *this = mtd->priv; | 
 | 	writesb(this->IO_ADDR_W, buf, len); | 
 | } | 
 |  | 
 | static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) | 
 | { | 
 | 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
 |  | 
 | 	writesl(info->regs + S3C2440_NFDATA, buf, len >> 2); | 
 |  | 
 | 	/* cleanup any fractional write */ | 
 | 	if (len & 3) { | 
 | 		buf += len & ~3; | 
 |  | 
 | 		for (; len & 3; len--, buf++) | 
 | 			writeb(*buf, info->regs + S3C2440_NFDATA); | 
 | 	} | 
 | } | 
 |  | 
 | /* cpufreq driver support */ | 
 |  | 
 | #ifdef CONFIG_CPU_FREQ | 
 |  | 
 | static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb, | 
 | 					  unsigned long val, void *data) | 
 | { | 
 | 	struct s3c2410_nand_info *info; | 
 | 	unsigned long newclk; | 
 |  | 
 | 	info = container_of(nb, struct s3c2410_nand_info, freq_transition); | 
 | 	newclk = clk_get_rate(info->clk); | 
 |  | 
 | 	if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) || | 
 | 	    (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) { | 
 | 		s3c2410_nand_setrate(info); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) | 
 | { | 
 | 	info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition; | 
 |  | 
 | 	return cpufreq_register_notifier(&info->freq_transition, | 
 | 					 CPUFREQ_TRANSITION_NOTIFIER); | 
 | } | 
 |  | 
 | static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) | 
 | { | 
 | 	cpufreq_unregister_notifier(&info->freq_transition, | 
 | 				    CPUFREQ_TRANSITION_NOTIFIER); | 
 | } | 
 |  | 
 | #else | 
 | static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | /* device management functions */ | 
 |  | 
 | static int s3c24xx_nand_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct s3c2410_nand_info *info = to_nand_info(pdev); | 
 |  | 
 | 	platform_set_drvdata(pdev, NULL); | 
 |  | 
 | 	if (info == NULL) | 
 | 		return 0; | 
 |  | 
 | 	s3c2410_nand_cpufreq_deregister(info); | 
 |  | 
 | 	/* Release all our mtds  and their partitions, then go through | 
 | 	 * freeing the resources used | 
 | 	 */ | 
 |  | 
 | 	if (info->mtds != NULL) { | 
 | 		struct s3c2410_nand_mtd *ptr = info->mtds; | 
 | 		int mtdno; | 
 |  | 
 | 		for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) { | 
 | 			pr_debug("releasing mtd %d (%p)\n", mtdno, ptr); | 
 | 			nand_release(&ptr->mtd); | 
 | 		} | 
 |  | 
 | 		kfree(info->mtds); | 
 | 	} | 
 |  | 
 | 	/* free the common resources */ | 
 |  | 
 | 	if (!IS_ERR(info->clk)) { | 
 | 		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE); | 
 | 		clk_put(info->clk); | 
 | 	} | 
 |  | 
 | 	if (info->regs != NULL) { | 
 | 		iounmap(info->regs); | 
 | 		info->regs = NULL; | 
 | 	} | 
 |  | 
 | 	if (info->area != NULL) { | 
 | 		release_resource(info->area); | 
 | 		kfree(info->area); | 
 | 		info->area = NULL; | 
 | 	} | 
 |  | 
 | 	kfree(info); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info, | 
 | 				      struct s3c2410_nand_mtd *mtd, | 
 | 				      struct s3c2410_nand_set *set) | 
 | { | 
 | 	if (set) | 
 | 		mtd->mtd.name = set->name; | 
 |  | 
 | 	return mtd_device_parse_register(&mtd->mtd, NULL, 0, | 
 | 			set->partitions, set->nr_partitions); | 
 | } | 
 |  | 
 | /** | 
 |  * s3c2410_nand_init_chip - initialise a single instance of an chip | 
 |  * @info: The base NAND controller the chip is on. | 
 |  * @nmtd: The new controller MTD instance to fill in. | 
 |  * @set: The information passed from the board specific platform data. | 
 |  * | 
 |  * Initialise the given @nmtd from the information in @info and @set. This | 
 |  * readies the structure for use with the MTD layer functions by ensuring | 
 |  * all pointers are setup and the necessary control routines selected. | 
 |  */ | 
 | static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info, | 
 | 				   struct s3c2410_nand_mtd *nmtd, | 
 | 				   struct s3c2410_nand_set *set) | 
 | { | 
 | 	struct nand_chip *chip = &nmtd->chip; | 
 | 	void __iomem *regs = info->regs; | 
 |  | 
 | 	chip->write_buf    = s3c2410_nand_write_buf; | 
 | 	chip->read_buf     = s3c2410_nand_read_buf; | 
 | 	chip->select_chip  = s3c2410_nand_select_chip; | 
 | 	chip->chip_delay   = 50; | 
 | 	chip->priv	   = nmtd; | 
 | 	chip->options	   = set->options; | 
 | 	chip->controller   = &info->controller; | 
 |  | 
 | 	switch (info->cpu_type) { | 
 | 	case TYPE_S3C2410: | 
 | 		chip->IO_ADDR_W = regs + S3C2410_NFDATA; | 
 | 		info->sel_reg   = regs + S3C2410_NFCONF; | 
 | 		info->sel_bit	= S3C2410_NFCONF_nFCE; | 
 | 		chip->cmd_ctrl  = s3c2410_nand_hwcontrol; | 
 | 		chip->dev_ready = s3c2410_nand_devready; | 
 | 		break; | 
 |  | 
 | 	case TYPE_S3C2440: | 
 | 		chip->IO_ADDR_W = regs + S3C2440_NFDATA; | 
 | 		info->sel_reg   = regs + S3C2440_NFCONT; | 
 | 		info->sel_bit	= S3C2440_NFCONT_nFCE; | 
 | 		chip->cmd_ctrl  = s3c2440_nand_hwcontrol; | 
 | 		chip->dev_ready = s3c2440_nand_devready; | 
 | 		chip->read_buf  = s3c2440_nand_read_buf; | 
 | 		chip->write_buf	= s3c2440_nand_write_buf; | 
 | 		break; | 
 |  | 
 | 	case TYPE_S3C2412: | 
 | 		chip->IO_ADDR_W = regs + S3C2440_NFDATA; | 
 | 		info->sel_reg   = regs + S3C2440_NFCONT; | 
 | 		info->sel_bit	= S3C2412_NFCONT_nFCE0; | 
 | 		chip->cmd_ctrl  = s3c2440_nand_hwcontrol; | 
 | 		chip->dev_ready = s3c2412_nand_devready; | 
 |  | 
 | 		if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT) | 
 | 			dev_info(info->device, "System booted from NAND\n"); | 
 |  | 
 | 		break; | 
 |   	} | 
 |  | 
 | 	chip->IO_ADDR_R = chip->IO_ADDR_W; | 
 |  | 
 | 	nmtd->info	   = info; | 
 | 	nmtd->mtd.priv	   = chip; | 
 | 	nmtd->mtd.owner    = THIS_MODULE; | 
 | 	nmtd->set	   = set; | 
 |  | 
 | 	if (hardware_ecc) { | 
 | 		chip->ecc.calculate = s3c2410_nand_calculate_ecc; | 
 | 		chip->ecc.correct   = s3c2410_nand_correct_data; | 
 | 		chip->ecc.mode	    = NAND_ECC_HW; | 
 |  | 
 | 		switch (info->cpu_type) { | 
 | 		case TYPE_S3C2410: | 
 | 			chip->ecc.hwctl	    = s3c2410_nand_enable_hwecc; | 
 | 			chip->ecc.calculate = s3c2410_nand_calculate_ecc; | 
 | 			break; | 
 |  | 
 | 		case TYPE_S3C2412: | 
 |   			chip->ecc.hwctl     = s3c2412_nand_enable_hwecc; | 
 |   			chip->ecc.calculate = s3c2412_nand_calculate_ecc; | 
 | 			break; | 
 |  | 
 | 		case TYPE_S3C2440: | 
 |   			chip->ecc.hwctl     = s3c2440_nand_enable_hwecc; | 
 |   			chip->ecc.calculate = s3c2440_nand_calculate_ecc; | 
 | 			break; | 
 |  | 
 | 		} | 
 | 	} else { | 
 | 		chip->ecc.mode	    = NAND_ECC_SOFT; | 
 | 	} | 
 |  | 
 | 	if (set->ecc_layout != NULL) | 
 | 		chip->ecc.layout = set->ecc_layout; | 
 |  | 
 | 	if (set->disable_ecc) | 
 | 		chip->ecc.mode	= NAND_ECC_NONE; | 
 |  | 
 | 	switch (chip->ecc.mode) { | 
 | 	case NAND_ECC_NONE: | 
 | 		dev_info(info->device, "NAND ECC disabled\n"); | 
 | 		break; | 
 | 	case NAND_ECC_SOFT: | 
 | 		dev_info(info->device, "NAND soft ECC\n"); | 
 | 		break; | 
 | 	case NAND_ECC_HW: | 
 | 		dev_info(info->device, "NAND hardware ECC\n"); | 
 | 		break; | 
 | 	default: | 
 | 		dev_info(info->device, "NAND ECC UNKNOWN\n"); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* If you use u-boot BBT creation code, specifying this flag will | 
 | 	 * let the kernel fish out the BBT from the NAND, and also skip the | 
 | 	 * full NAND scan that can take 1/2s or so. Little things... */ | 
 | 	if (set->flash_bbt) { | 
 | 		chip->bbt_options |= NAND_BBT_USE_FLASH; | 
 | 		chip->options |= NAND_SKIP_BBTSCAN; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * s3c2410_nand_update_chip - post probe update | 
 |  * @info: The controller instance. | 
 |  * @nmtd: The driver version of the MTD instance. | 
 |  * | 
 |  * This routine is called after the chip probe has successfully completed | 
 |  * and the relevant per-chip information updated. This call ensure that | 
 |  * we update the internal state accordingly. | 
 |  * | 
 |  * The internal state is currently limited to the ECC state information. | 
 | */ | 
 | static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info, | 
 | 				     struct s3c2410_nand_mtd *nmtd) | 
 | { | 
 | 	struct nand_chip *chip = &nmtd->chip; | 
 |  | 
 | 	dev_dbg(info->device, "chip %p => page shift %d\n", | 
 | 		chip, chip->page_shift); | 
 |  | 
 | 	if (chip->ecc.mode != NAND_ECC_HW) | 
 | 		return; | 
 |  | 
 | 		/* change the behaviour depending on wether we are using | 
 | 		 * the large or small page nand device */ | 
 |  | 
 | 	if (chip->page_shift > 10) { | 
 | 		chip->ecc.size	    = 256; | 
 | 		chip->ecc.bytes	    = 3; | 
 | 	} else { | 
 | 		chip->ecc.size	    = 512; | 
 | 		chip->ecc.bytes	    = 3; | 
 | 		chip->ecc.layout    = &nand_hw_eccoob; | 
 | 	} | 
 | } | 
 |  | 
 | /* s3c24xx_nand_probe | 
 |  * | 
 |  * called by device layer when it finds a device matching | 
 |  * one our driver can handled. This code checks to see if | 
 |  * it can allocate all necessary resources then calls the | 
 |  * nand layer to look for devices | 
 | */ | 
 | static int s3c24xx_nand_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct s3c2410_platform_nand *plat = to_nand_plat(pdev); | 
 | 	enum s3c_cpu_type cpu_type;  | 
 | 	struct s3c2410_nand_info *info; | 
 | 	struct s3c2410_nand_mtd *nmtd; | 
 | 	struct s3c2410_nand_set *sets; | 
 | 	struct resource *res; | 
 | 	int err = 0; | 
 | 	int size; | 
 | 	int nr_sets; | 
 | 	int setno; | 
 |  | 
 | 	cpu_type = platform_get_device_id(pdev)->driver_data; | 
 |  | 
 | 	pr_debug("s3c2410_nand_probe(%p)\n", pdev); | 
 |  | 
 | 	info = kzalloc(sizeof(*info), GFP_KERNEL); | 
 | 	if (info == NULL) { | 
 | 		dev_err(&pdev->dev, "no memory for flash info\n"); | 
 | 		err = -ENOMEM; | 
 | 		goto exit_error; | 
 | 	} | 
 |  | 
 | 	platform_set_drvdata(pdev, info); | 
 |  | 
 | 	spin_lock_init(&info->controller.lock); | 
 | 	init_waitqueue_head(&info->controller.wq); | 
 |  | 
 | 	/* get the clock source and enable it */ | 
 |  | 
 | 	info->clk = clk_get(&pdev->dev, "nand"); | 
 | 	if (IS_ERR(info->clk)) { | 
 | 		dev_err(&pdev->dev, "failed to get clock\n"); | 
 | 		err = -ENOENT; | 
 | 		goto exit_error; | 
 | 	} | 
 |  | 
 | 	s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); | 
 |  | 
 | 	/* allocate and map the resource */ | 
 |  | 
 | 	/* currently we assume we have the one resource */ | 
 | 	res  = pdev->resource; | 
 | 	size = resource_size(res); | 
 |  | 
 | 	info->area = request_mem_region(res->start, size, pdev->name); | 
 |  | 
 | 	if (info->area == NULL) { | 
 | 		dev_err(&pdev->dev, "cannot reserve register region\n"); | 
 | 		err = -ENOENT; | 
 | 		goto exit_error; | 
 | 	} | 
 |  | 
 | 	info->device     = &pdev->dev; | 
 | 	info->platform   = plat; | 
 | 	info->regs       = ioremap(res->start, size); | 
 | 	info->cpu_type   = cpu_type; | 
 |  | 
 | 	if (info->regs == NULL) { | 
 | 		dev_err(&pdev->dev, "cannot reserve register region\n"); | 
 | 		err = -EIO; | 
 | 		goto exit_error; | 
 | 	} | 
 |  | 
 | 	dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs); | 
 |  | 
 | 	/* initialise the hardware */ | 
 |  | 
 | 	err = s3c2410_nand_inithw(info); | 
 | 	if (err != 0) | 
 | 		goto exit_error; | 
 |  | 
 | 	sets = (plat != NULL) ? plat->sets : NULL; | 
 | 	nr_sets = (plat != NULL) ? plat->nr_sets : 1; | 
 |  | 
 | 	info->mtd_count = nr_sets; | 
 |  | 
 | 	/* allocate our information */ | 
 |  | 
 | 	size = nr_sets * sizeof(*info->mtds); | 
 | 	info->mtds = kzalloc(size, GFP_KERNEL); | 
 | 	if (info->mtds == NULL) { | 
 | 		dev_err(&pdev->dev, "failed to allocate mtd storage\n"); | 
 | 		err = -ENOMEM; | 
 | 		goto exit_error; | 
 | 	} | 
 |  | 
 | 	/* initialise all possible chips */ | 
 |  | 
 | 	nmtd = info->mtds; | 
 |  | 
 | 	for (setno = 0; setno < nr_sets; setno++, nmtd++) { | 
 | 		pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info); | 
 |  | 
 | 		s3c2410_nand_init_chip(info, nmtd, sets); | 
 |  | 
 | 		nmtd->scan_res = nand_scan_ident(&nmtd->mtd, | 
 | 						 (sets) ? sets->nr_chips : 1, | 
 | 						 NULL); | 
 |  | 
 | 		if (nmtd->scan_res == 0) { | 
 | 			s3c2410_nand_update_chip(info, nmtd); | 
 | 			nand_scan_tail(&nmtd->mtd); | 
 | 			s3c2410_nand_add_partition(info, nmtd, sets); | 
 | 		} | 
 |  | 
 | 		if (sets != NULL) | 
 | 			sets++; | 
 | 	} | 
 |  | 
 | 	err = s3c2410_nand_cpufreq_register(info); | 
 | 	if (err < 0) { | 
 | 		dev_err(&pdev->dev, "failed to init cpufreq support\n"); | 
 | 		goto exit_error; | 
 | 	} | 
 |  | 
 | 	if (allow_clk_suspend(info)) { | 
 | 		dev_info(&pdev->dev, "clock idle support enabled\n"); | 
 | 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); | 
 | 	} | 
 |  | 
 | 	pr_debug("initialised ok\n"); | 
 | 	return 0; | 
 |  | 
 |  exit_error: | 
 | 	s3c24xx_nand_remove(pdev); | 
 |  | 
 | 	if (err == 0) | 
 | 		err = -EINVAL; | 
 | 	return err; | 
 | } | 
 |  | 
 | /* PM Support */ | 
 | #ifdef CONFIG_PM | 
 |  | 
 | static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm) | 
 | { | 
 | 	struct s3c2410_nand_info *info = platform_get_drvdata(dev); | 
 |  | 
 | 	if (info) { | 
 | 		info->save_sel = readl(info->sel_reg); | 
 |  | 
 | 		/* For the moment, we must ensure nFCE is high during | 
 | 		 * the time we are suspended. This really should be | 
 | 		 * handled by suspending the MTDs we are using, but | 
 | 		 * that is currently not the case. */ | 
 |  | 
 | 		writel(info->save_sel | info->sel_bit, info->sel_reg); | 
 |  | 
 | 		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int s3c24xx_nand_resume(struct platform_device *dev) | 
 | { | 
 | 	struct s3c2410_nand_info *info = platform_get_drvdata(dev); | 
 | 	unsigned long sel; | 
 |  | 
 | 	if (info) { | 
 | 		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); | 
 | 		s3c2410_nand_inithw(info); | 
 |  | 
 | 		/* Restore the state of the nFCE line. */ | 
 |  | 
 | 		sel = readl(info->sel_reg); | 
 | 		sel &= ~info->sel_bit; | 
 | 		sel |= info->save_sel & info->sel_bit; | 
 | 		writel(sel, info->sel_reg); | 
 |  | 
 | 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #else | 
 | #define s3c24xx_nand_suspend NULL | 
 | #define s3c24xx_nand_resume NULL | 
 | #endif | 
 |  | 
 | /* driver device registration */ | 
 |  | 
 | static struct platform_device_id s3c24xx_driver_ids[] = { | 
 | 	{ | 
 | 		.name		= "s3c2410-nand", | 
 | 		.driver_data	= TYPE_S3C2410, | 
 | 	}, { | 
 | 		.name		= "s3c2440-nand", | 
 | 		.driver_data	= TYPE_S3C2440, | 
 | 	}, { | 
 | 		.name		= "s3c2412-nand", | 
 | 		.driver_data	= TYPE_S3C2412, | 
 | 	}, { | 
 | 		.name		= "s3c6400-nand", | 
 | 		.driver_data	= TYPE_S3C2412, /* compatible with 2412 */ | 
 | 	}, | 
 | 	{ } | 
 | }; | 
 |  | 
 | MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids); | 
 |  | 
 | static struct platform_driver s3c24xx_nand_driver = { | 
 | 	.probe		= s3c24xx_nand_probe, | 
 | 	.remove		= s3c24xx_nand_remove, | 
 | 	.suspend	= s3c24xx_nand_suspend, | 
 | 	.resume		= s3c24xx_nand_resume, | 
 | 	.id_table	= s3c24xx_driver_ids, | 
 | 	.driver		= { | 
 | 		.name	= "s3c24xx-nand", | 
 | 		.owner	= THIS_MODULE, | 
 | 	}, | 
 | }; | 
 |  | 
 | static int __init s3c2410_nand_init(void) | 
 | { | 
 | 	printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n"); | 
 |  | 
 | 	return platform_driver_register(&s3c24xx_nand_driver); | 
 | } | 
 |  | 
 | static void __exit s3c2410_nand_exit(void) | 
 | { | 
 | 	platform_driver_unregister(&s3c24xx_nand_driver); | 
 | } | 
 |  | 
 | module_init(s3c2410_nand_init); | 
 | module_exit(s3c2410_nand_exit); | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); | 
 | MODULE_DESCRIPTION("S3C24XX MTD NAND driver"); |