| /* |
| * Freescale QuadSPI driver. |
| * |
| * Copyright (C) 2013 Freescale Semiconductor, Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| */ |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/errno.h> |
| #include <linux/platform_device.h> |
| #include <linux/sched.h> |
| #include <linux/delay.h> |
| #include <linux/io.h> |
| #include <linux/clk.h> |
| #include <linux/err.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/timer.h> |
| #include <linux/jiffies.h> |
| #include <linux/completion.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/mtd/spi-nor.h> |
| #include <linux/mutex.h> |
| #include <linux/pm_qos.h> |
| #include <linux/sizes.h> |
| |
| /* Controller needs driver to swap endian */ |
| #define QUADSPI_QUIRK_SWAP_ENDIAN (1 << 0) |
| /* Controller needs 4x internal clock */ |
| #define QUADSPI_QUIRK_4X_INT_CLK (1 << 1) |
| /* |
| * TKT253890, Controller needs driver to fill txfifo till 16 byte to |
| * trigger data transfer even though extern data will not transferred. |
| */ |
| #define QUADSPI_QUIRK_TKT253890 (1 << 2) |
| /* Controller cannot wake up from wait mode, TKT245618 */ |
| #define QUADSPI_QUIRK_TKT245618 (1 << 3) |
| |
| /* The registers */ |
| #define QUADSPI_MCR 0x00 |
| #define QUADSPI_MCR_RESERVED_SHIFT 16 |
| #define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT) |
| #define QUADSPI_MCR_MDIS_SHIFT 14 |
| #define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT) |
| #define QUADSPI_MCR_CLR_TXF_SHIFT 11 |
| #define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT) |
| #define QUADSPI_MCR_CLR_RXF_SHIFT 10 |
| #define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT) |
| #define QUADSPI_MCR_DDR_EN_SHIFT 7 |
| #define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT) |
| #define QUADSPI_MCR_END_CFG_SHIFT 2 |
| #define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT) |
| #define QUADSPI_MCR_SWRSTHD_SHIFT 1 |
| #define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT) |
| #define QUADSPI_MCR_SWRSTSD_SHIFT 0 |
| #define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT) |
| |
| #define QUADSPI_IPCR 0x08 |
| #define QUADSPI_IPCR_SEQID_SHIFT 24 |
| #define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT) |
| |
| #define QUADSPI_BUF0CR 0x10 |
| #define QUADSPI_BUF1CR 0x14 |
| #define QUADSPI_BUF2CR 0x18 |
| #define QUADSPI_BUFXCR_INVALID_MSTRID 0xe |
| |
| #define QUADSPI_BUF3CR 0x1c |
| #define QUADSPI_BUF3CR_ALLMST_SHIFT 31 |
| #define QUADSPI_BUF3CR_ALLMST_MASK (1 << QUADSPI_BUF3CR_ALLMST_SHIFT) |
| #define QUADSPI_BUF3CR_ADATSZ_SHIFT 8 |
| #define QUADSPI_BUF3CR_ADATSZ_MASK (0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT) |
| |
| #define QUADSPI_BFGENCR 0x20 |
| #define QUADSPI_BFGENCR_PAR_EN_SHIFT 16 |
| #define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT)) |
| #define QUADSPI_BFGENCR_SEQID_SHIFT 12 |
| #define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT) |
| |
| #define QUADSPI_BUF0IND 0x30 |
| #define QUADSPI_BUF1IND 0x34 |
| #define QUADSPI_BUF2IND 0x38 |
| #define QUADSPI_SFAR 0x100 |
| |
| #define QUADSPI_SMPR 0x108 |
| #define QUADSPI_SMPR_DDRSMP_SHIFT 16 |
| #define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT) |
| #define QUADSPI_SMPR_FSDLY_SHIFT 6 |
| #define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT) |
| #define QUADSPI_SMPR_FSPHS_SHIFT 5 |
| #define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT) |
| #define QUADSPI_SMPR_HSENA_SHIFT 0 |
| #define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT) |
| |
| #define QUADSPI_RBSR 0x10c |
| #define QUADSPI_RBSR_RDBFL_SHIFT 8 |
| #define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT) |
| |
| #define QUADSPI_RBCT 0x110 |
| #define QUADSPI_RBCT_WMRK_MASK 0x1F |
| #define QUADSPI_RBCT_RXBRD_SHIFT 8 |
| #define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT) |
| |
| #define QUADSPI_TBSR 0x150 |
| #define QUADSPI_TBDR 0x154 |
| #define QUADSPI_SR 0x15c |
| #define QUADSPI_SR_IP_ACC_SHIFT 1 |
| #define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT) |
| #define QUADSPI_SR_AHB_ACC_SHIFT 2 |
| #define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT) |
| |
| #define QUADSPI_FR 0x160 |
| #define QUADSPI_FR_TFF_MASK 0x1 |
| |
| #define QUADSPI_SFA1AD 0x180 |
| #define QUADSPI_SFA2AD 0x184 |
| #define QUADSPI_SFB1AD 0x188 |
| #define QUADSPI_SFB2AD 0x18c |
| #define QUADSPI_RBDR 0x200 |
| |
| #define QUADSPI_LUTKEY 0x300 |
| #define QUADSPI_LUTKEY_VALUE 0x5AF05AF0 |
| |
| #define QUADSPI_LCKCR 0x304 |
| #define QUADSPI_LCKER_LOCK 0x1 |
| #define QUADSPI_LCKER_UNLOCK 0x2 |
| |
| #define QUADSPI_RSER 0x164 |
| #define QUADSPI_RSER_TFIE (0x1 << 0) |
| |
| #define QUADSPI_LUT_BASE 0x310 |
| |
| /* |
| * The definition of the LUT register shows below: |
| * |
| * --------------------------------------------------- |
| * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | |
| * --------------------------------------------------- |
| */ |
| #define OPRND0_SHIFT 0 |
| #define PAD0_SHIFT 8 |
| #define INSTR0_SHIFT 10 |
| #define OPRND1_SHIFT 16 |
| |
| /* Instruction set for the LUT register. */ |
| #define LUT_STOP 0 |
| #define LUT_CMD 1 |
| #define LUT_ADDR 2 |
| #define LUT_DUMMY 3 |
| #define LUT_MODE 4 |
| #define LUT_MODE2 5 |
| #define LUT_MODE4 6 |
| #define LUT_FSL_READ 7 |
| #define LUT_FSL_WRITE 8 |
| #define LUT_JMP_ON_CS 9 |
| #define LUT_ADDR_DDR 10 |
| #define LUT_MODE_DDR 11 |
| #define LUT_MODE2_DDR 12 |
| #define LUT_MODE4_DDR 13 |
| #define LUT_FSL_READ_DDR 14 |
| #define LUT_FSL_WRITE_DDR 15 |
| #define LUT_DATA_LEARN 16 |
| |
| /* |
| * The PAD definitions for LUT register. |
| * |
| * The pad stands for the lines number of IO[0:3]. |
| * For example, the Quad read need four IO lines, so you should |
| * set LUT_PAD4 which means we use four IO lines. |
| */ |
| #define LUT_PAD1 0 |
| #define LUT_PAD2 1 |
| #define LUT_PAD4 2 |
| |
| /* Oprands for the LUT register. */ |
| #define ADDR24BIT 0x18 |
| #define ADDR32BIT 0x20 |
| |
| /* Macros for constructing the LUT register. */ |
| #define LUT0(ins, pad, opr) \ |
| (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \ |
| ((LUT_##ins) << INSTR0_SHIFT)) |
| |
| #define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT) |
| |
| /* other macros for LUT register. */ |
| #define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4) |
| #define QUADSPI_LUT_NUM 64 |
| |
| /* SEQID -- we can have 16 seqids at most. */ |
| #define SEQID_READ 0 |
| #define SEQID_WREN 1 |
| #define SEQID_WRDI 2 |
| #define SEQID_RDSR 3 |
| #define SEQID_SE 4 |
| #define SEQID_CHIP_ERASE 5 |
| #define SEQID_PP 6 |
| #define SEQID_RDID 7 |
| #define SEQID_WRSR 8 |
| #define SEQID_RDCR 9 |
| #define SEQID_EN4B 10 |
| #define SEQID_BRWR 11 |
| |
| #define QUADSPI_MIN_IOMAP SZ_4M |
| |
| enum fsl_qspi_devtype { |
| FSL_QUADSPI_VYBRID, |
| FSL_QUADSPI_IMX6SX, |
| FSL_QUADSPI_IMX7D, |
| FSL_QUADSPI_IMX6UL, |
| FSL_QUADSPI_LS1021A, |
| FSL_QUADSPI_LS2080A, |
| }; |
| |
| struct fsl_qspi_devtype_data { |
| enum fsl_qspi_devtype devtype; |
| int rxfifo; |
| int txfifo; |
| int ahb_buf_size; |
| int driver_data; |
| }; |
| |
| static const struct fsl_qspi_devtype_data vybrid_data = { |
| .devtype = FSL_QUADSPI_VYBRID, |
| .rxfifo = 128, |
| .txfifo = 64, |
| .ahb_buf_size = 1024, |
| .driver_data = QUADSPI_QUIRK_SWAP_ENDIAN, |
| }; |
| |
| static const struct fsl_qspi_devtype_data imx6sx_data = { |
| .devtype = FSL_QUADSPI_IMX6SX, |
| .rxfifo = 128, |
| .txfifo = 512, |
| .ahb_buf_size = 1024, |
| .driver_data = QUADSPI_QUIRK_4X_INT_CLK |
| | QUADSPI_QUIRK_TKT245618, |
| }; |
| |
| static const struct fsl_qspi_devtype_data imx7d_data = { |
| .devtype = FSL_QUADSPI_IMX7D, |
| .rxfifo = 512, |
| .txfifo = 512, |
| .ahb_buf_size = 1024, |
| .driver_data = QUADSPI_QUIRK_TKT253890 |
| | QUADSPI_QUIRK_4X_INT_CLK, |
| }; |
| |
| static const struct fsl_qspi_devtype_data imx6ul_data = { |
| .devtype = FSL_QUADSPI_IMX6UL, |
| .rxfifo = 128, |
| .txfifo = 512, |
| .ahb_buf_size = 1024, |
| .driver_data = QUADSPI_QUIRK_TKT253890 |
| | QUADSPI_QUIRK_4X_INT_CLK, |
| }; |
| |
| static struct fsl_qspi_devtype_data ls1021a_data = { |
| .devtype = FSL_QUADSPI_LS1021A, |
| .rxfifo = 128, |
| .txfifo = 64, |
| .ahb_buf_size = 1024, |
| .driver_data = 0, |
| }; |
| |
| static const struct fsl_qspi_devtype_data ls2080a_data = { |
| .devtype = FSL_QUADSPI_LS2080A, |
| .rxfifo = 128, |
| .txfifo = 64, |
| .ahb_buf_size = 1024, |
| .driver_data = QUADSPI_QUIRK_TKT253890, |
| }; |
| |
| |
| #define FSL_QSPI_MAX_CHIP 4 |
| struct fsl_qspi { |
| struct spi_nor nor[FSL_QSPI_MAX_CHIP]; |
| void __iomem *iobase; |
| void __iomem *ahb_addr; |
| u32 memmap_phy; |
| u32 memmap_offs; |
| u32 memmap_len; |
| struct clk *clk, *clk_en; |
| struct device *dev; |
| struct completion c; |
| const struct fsl_qspi_devtype_data *devtype_data; |
| u32 nor_size; |
| u32 nor_num; |
| u32 clk_rate; |
| unsigned int chip_base_addr; /* We may support two chips. */ |
| bool has_second_chip; |
| bool big_endian; |
| struct mutex lock; |
| struct pm_qos_request pm_qos_req; |
| }; |
| |
| static inline int needs_swap_endian(struct fsl_qspi *q) |
| { |
| return q->devtype_data->driver_data & QUADSPI_QUIRK_SWAP_ENDIAN; |
| } |
| |
| static inline int needs_4x_clock(struct fsl_qspi *q) |
| { |
| return q->devtype_data->driver_data & QUADSPI_QUIRK_4X_INT_CLK; |
| } |
| |
| static inline int needs_fill_txfifo(struct fsl_qspi *q) |
| { |
| return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT253890; |
| } |
| |
| static inline int needs_wakeup_wait_mode(struct fsl_qspi *q) |
| { |
| return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT245618; |
| } |
| |
| /* |
| * R/W functions for big- or little-endian registers: |
| * The qSPI controller's endian is independent of the CPU core's endian. |
| * So far, although the CPU core is little-endian but the qSPI have two |
| * versions for big-endian and little-endian. |
| */ |
| static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr) |
| { |
| if (q->big_endian) |
| iowrite32be(val, addr); |
| else |
| iowrite32(val, addr); |
| } |
| |
| static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr) |
| { |
| if (q->big_endian) |
| return ioread32be(addr); |
| else |
| return ioread32(addr); |
| } |
| |
| /* |
| * An IC bug makes us to re-arrange the 32-bit data. |
| * The following chips, such as IMX6SLX, have fixed this bug. |
| */ |
| static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a) |
| { |
| return needs_swap_endian(q) ? __swab32(a) : a; |
| } |
| |
| static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q) |
| { |
| qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); |
| qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR); |
| } |
| |
| static inline void fsl_qspi_lock_lut(struct fsl_qspi *q) |
| { |
| qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); |
| qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR); |
| } |
| |
| static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id) |
| { |
| struct fsl_qspi *q = dev_id; |
| u32 reg; |
| |
| /* clear interrupt */ |
| reg = qspi_readl(q, q->iobase + QUADSPI_FR); |
| qspi_writel(q, reg, q->iobase + QUADSPI_FR); |
| |
| if (reg & QUADSPI_FR_TFF_MASK) |
| complete(&q->c); |
| |
| dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg); |
| return IRQ_HANDLED; |
| } |
| |
| static void fsl_qspi_init_lut(struct fsl_qspi *q) |
| { |
| void __iomem *base = q->iobase; |
| int rxfifo = q->devtype_data->rxfifo; |
| u32 lut_base; |
| int i; |
| |
| struct spi_nor *nor = &q->nor[0]; |
| u8 addrlen = (nor->addr_width == 3) ? ADDR24BIT : ADDR32BIT; |
| u8 read_op = nor->read_opcode; |
| u8 read_dm = nor->read_dummy; |
| |
| fsl_qspi_unlock_lut(q); |
| |
| /* Clear all the LUT table */ |
| for (i = 0; i < QUADSPI_LUT_NUM; i++) |
| qspi_writel(q, 0, base + QUADSPI_LUT_BASE + i * 4); |
| |
| /* Read */ |
| lut_base = SEQID_READ * 4; |
| |
| qspi_writel(q, LUT0(CMD, PAD1, read_op) | LUT1(ADDR, PAD1, addrlen), |
| base + QUADSPI_LUT(lut_base)); |
| qspi_writel(q, LUT0(DUMMY, PAD1, read_dm) | |
| LUT1(FSL_READ, PAD4, rxfifo), |
| base + QUADSPI_LUT(lut_base + 1)); |
| |
| /* Write enable */ |
| lut_base = SEQID_WREN * 4; |
| qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WREN), |
| base + QUADSPI_LUT(lut_base)); |
| |
| /* Page Program */ |
| lut_base = SEQID_PP * 4; |
| |
| qspi_writel(q, LUT0(CMD, PAD1, nor->program_opcode) | |
| LUT1(ADDR, PAD1, addrlen), |
| base + QUADSPI_LUT(lut_base)); |
| qspi_writel(q, LUT0(FSL_WRITE, PAD1, 0), |
| base + QUADSPI_LUT(lut_base + 1)); |
| |
| /* Read Status */ |
| lut_base = SEQID_RDSR * 4; |
| qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDSR) | |
| LUT1(FSL_READ, PAD1, 0x1), |
| base + QUADSPI_LUT(lut_base)); |
| |
| /* Erase a sector */ |
| lut_base = SEQID_SE * 4; |
| |
| qspi_writel(q, LUT0(CMD, PAD1, nor->erase_opcode) | |
| LUT1(ADDR, PAD1, addrlen), |
| base + QUADSPI_LUT(lut_base)); |
| |
| /* Erase the whole chip */ |
| lut_base = SEQID_CHIP_ERASE * 4; |
| qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE), |
| base + QUADSPI_LUT(lut_base)); |
| |
| /* READ ID */ |
| lut_base = SEQID_RDID * 4; |
| qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDID) | |
| LUT1(FSL_READ, PAD1, 0x8), |
| base + QUADSPI_LUT(lut_base)); |
| |
| /* Write Register */ |
| lut_base = SEQID_WRSR * 4; |
| qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRSR) | |
| LUT1(FSL_WRITE, PAD1, 0x2), |
| base + QUADSPI_LUT(lut_base)); |
| |
| /* Read Configuration Register */ |
| lut_base = SEQID_RDCR * 4; |
| qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDCR) | |
| LUT1(FSL_READ, PAD1, 0x1), |
| base + QUADSPI_LUT(lut_base)); |
| |
| /* Write disable */ |
| lut_base = SEQID_WRDI * 4; |
| qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRDI), |
| base + QUADSPI_LUT(lut_base)); |
| |
| /* Enter 4 Byte Mode (Micron) */ |
| lut_base = SEQID_EN4B * 4; |
| qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_EN4B), |
| base + QUADSPI_LUT(lut_base)); |
| |
| /* Enter 4 Byte Mode (Spansion) */ |
| lut_base = SEQID_BRWR * 4; |
| qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_BRWR), |
| base + QUADSPI_LUT(lut_base)); |
| |
| fsl_qspi_lock_lut(q); |
| } |
| |
| /* Get the SEQID for the command */ |
| static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd) |
| { |
| switch (cmd) { |
| case SPINOR_OP_READ_1_1_4: |
| case SPINOR_OP_READ_1_1_4_4B: |
| return SEQID_READ; |
| case SPINOR_OP_WREN: |
| return SEQID_WREN; |
| case SPINOR_OP_WRDI: |
| return SEQID_WRDI; |
| case SPINOR_OP_RDSR: |
| return SEQID_RDSR; |
| case SPINOR_OP_SE: |
| return SEQID_SE; |
| case SPINOR_OP_CHIP_ERASE: |
| return SEQID_CHIP_ERASE; |
| case SPINOR_OP_PP: |
| return SEQID_PP; |
| case SPINOR_OP_RDID: |
| return SEQID_RDID; |
| case SPINOR_OP_WRSR: |
| return SEQID_WRSR; |
| case SPINOR_OP_RDCR: |
| return SEQID_RDCR; |
| case SPINOR_OP_EN4B: |
| return SEQID_EN4B; |
| case SPINOR_OP_BRWR: |
| return SEQID_BRWR; |
| default: |
| if (cmd == q->nor[0].erase_opcode) |
| return SEQID_SE; |
| dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd); |
| break; |
| } |
| return -EINVAL; |
| } |
| |
| static int |
| fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len) |
| { |
| void __iomem *base = q->iobase; |
| int seqid; |
| u32 reg, reg2; |
| int err; |
| |
| init_completion(&q->c); |
| dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n", |
| q->chip_base_addr, addr, len, cmd); |
| |
| /* save the reg */ |
| reg = qspi_readl(q, base + QUADSPI_MCR); |
| |
| qspi_writel(q, q->memmap_phy + q->chip_base_addr + addr, |
| base + QUADSPI_SFAR); |
| qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS, |
| base + QUADSPI_RBCT); |
| qspi_writel(q, reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR); |
| |
| do { |
| reg2 = qspi_readl(q, base + QUADSPI_SR); |
| if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) { |
| udelay(1); |
| dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2); |
| continue; |
| } |
| break; |
| } while (1); |
| |
| /* trigger the LUT now */ |
| seqid = fsl_qspi_get_seqid(q, cmd); |
| if (seqid < 0) |
| return seqid; |
| |
| qspi_writel(q, (seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, |
| base + QUADSPI_IPCR); |
| |
| /* Wait for the interrupt. */ |
| if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) { |
| dev_err(q->dev, |
| "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n", |
| cmd, addr, qspi_readl(q, base + QUADSPI_FR), |
| qspi_readl(q, base + QUADSPI_SR)); |
| err = -ETIMEDOUT; |
| } else { |
| err = 0; |
| } |
| |
| /* restore the MCR */ |
| qspi_writel(q, reg, base + QUADSPI_MCR); |
| |
| return err; |
| } |
| |
| /* Read out the data from the QUADSPI_RBDR buffer registers. */ |
| static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf) |
| { |
| u32 tmp; |
| int i = 0; |
| |
| while (len > 0) { |
| tmp = qspi_readl(q, q->iobase + QUADSPI_RBDR + i * 4); |
| tmp = fsl_qspi_endian_xchg(q, tmp); |
| dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n", |
| q->chip_base_addr, tmp); |
| |
| if (len >= 4) { |
| *((u32 *)rxbuf) = tmp; |
| rxbuf += 4; |
| } else { |
| memcpy(rxbuf, &tmp, len); |
| break; |
| } |
| |
| len -= 4; |
| i++; |
| } |
| } |
| |
| /* |
| * If we have changed the content of the flash by writing or erasing, |
| * we need to invalidate the AHB buffer. If we do not do so, we may read out |
| * the wrong data. The spec tells us reset the AHB domain and Serial Flash |
| * domain at the same time. |
| */ |
| static inline void fsl_qspi_invalid(struct fsl_qspi *q) |
| { |
| u32 reg; |
| |
| reg = qspi_readl(q, q->iobase + QUADSPI_MCR); |
| reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK; |
| qspi_writel(q, reg, q->iobase + QUADSPI_MCR); |
| |
| /* |
| * The minimum delay : 1 AHB + 2 SFCK clocks. |
| * Delay 1 us is enough. |
| */ |
| udelay(1); |
| |
| reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK); |
| qspi_writel(q, reg, q->iobase + QUADSPI_MCR); |
| } |
| |
| static ssize_t fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor, |
| u8 opcode, unsigned int to, u32 *txbuf, |
| unsigned count) |
| { |
| int ret, i, j; |
| u32 tmp; |
| |
| dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n", |
| q->chip_base_addr, to, count); |
| |
| /* clear the TX FIFO. */ |
| tmp = qspi_readl(q, q->iobase + QUADSPI_MCR); |
| qspi_writel(q, tmp | QUADSPI_MCR_CLR_TXF_MASK, q->iobase + QUADSPI_MCR); |
| |
| /* fill the TX data to the FIFO */ |
| for (j = 0, i = ((count + 3) / 4); j < i; j++) { |
| tmp = fsl_qspi_endian_xchg(q, *txbuf); |
| qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR); |
| txbuf++; |
| } |
| |
| /* fill the TXFIFO upto 16 bytes for i.MX7d */ |
| if (needs_fill_txfifo(q)) |
| for (; i < 4; i++) |
| qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR); |
| |
| /* Trigger it */ |
| ret = fsl_qspi_runcmd(q, opcode, to, count); |
| |
| if (ret == 0) |
| return count; |
| |
| return ret; |
| } |
| |
| static void fsl_qspi_set_map_addr(struct fsl_qspi *q) |
| { |
| int nor_size = q->nor_size; |
| void __iomem *base = q->iobase; |
| |
| qspi_writel(q, nor_size + q->memmap_phy, base + QUADSPI_SFA1AD); |
| qspi_writel(q, nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD); |
| qspi_writel(q, nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD); |
| qspi_writel(q, nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD); |
| } |
| |
| /* |
| * There are two different ways to read out the data from the flash: |
| * the "IP Command Read" and the "AHB Command Read". |
| * |
| * The IC guy suggests we use the "AHB Command Read" which is faster |
| * then the "IP Command Read". (What's more is that there is a bug in |
| * the "IP Command Read" in the Vybrid.) |
| * |
| * After we set up the registers for the "AHB Command Read", we can use |
| * the memcpy to read the data directly. A "missed" access to the buffer |
| * causes the controller to clear the buffer, and use the sequence pointed |
| * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash. |
| */ |
| static int fsl_qspi_init_ahb_read(struct fsl_qspi *q) |
| { |
| void __iomem *base = q->iobase; |
| int seqid; |
| |
| /* AHB configuration for access buffer 0/1/2 .*/ |
| qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR); |
| qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR); |
| qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR); |
| /* |
| * Set ADATSZ with the maximum AHB buffer size to improve the |
| * read performance. |
| */ |
| qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK | |
| ((q->devtype_data->ahb_buf_size / 8) |
| << QUADSPI_BUF3CR_ADATSZ_SHIFT), |
| base + QUADSPI_BUF3CR); |
| |
| /* We only use the buffer3 */ |
| qspi_writel(q, 0, base + QUADSPI_BUF0IND); |
| qspi_writel(q, 0, base + QUADSPI_BUF1IND); |
| qspi_writel(q, 0, base + QUADSPI_BUF2IND); |
| |
| /* Set the default lut sequence for AHB Read. */ |
| seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode); |
| if (seqid < 0) |
| return seqid; |
| |
| qspi_writel(q, seqid << QUADSPI_BFGENCR_SEQID_SHIFT, |
| q->iobase + QUADSPI_BFGENCR); |
| |
| return 0; |
| } |
| |
| /* This function was used to prepare and enable QSPI clock */ |
| static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q) |
| { |
| int ret; |
| |
| ret = clk_prepare_enable(q->clk_en); |
| if (ret) |
| return ret; |
| |
| ret = clk_prepare_enable(q->clk); |
| if (ret) { |
| clk_disable_unprepare(q->clk_en); |
| return ret; |
| } |
| |
| if (needs_wakeup_wait_mode(q)) |
| pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0); |
| |
| return 0; |
| } |
| |
| /* This function was used to disable and unprepare QSPI clock */ |
| static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q) |
| { |
| if (needs_wakeup_wait_mode(q)) |
| pm_qos_remove_request(&q->pm_qos_req); |
| |
| clk_disable_unprepare(q->clk); |
| clk_disable_unprepare(q->clk_en); |
| |
| } |
| |
| /* We use this function to do some basic init for spi_nor_scan(). */ |
| static int fsl_qspi_nor_setup(struct fsl_qspi *q) |
| { |
| void __iomem *base = q->iobase; |
| u32 reg; |
| int ret; |
| |
| /* disable and unprepare clock to avoid glitch pass to controller */ |
| fsl_qspi_clk_disable_unprep(q); |
| |
| /* the default frequency, we will change it in the future. */ |
| ret = clk_set_rate(q->clk, 66000000); |
| if (ret) |
| return ret; |
| |
| ret = fsl_qspi_clk_prep_enable(q); |
| if (ret) |
| return ret; |
| |
| /* Reset the module */ |
| qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK, |
| base + QUADSPI_MCR); |
| udelay(1); |
| |
| /* Init the LUT table. */ |
| fsl_qspi_init_lut(q); |
| |
| /* Disable the module */ |
| qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK, |
| base + QUADSPI_MCR); |
| |
| reg = qspi_readl(q, base + QUADSPI_SMPR); |
| qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK |
| | QUADSPI_SMPR_FSPHS_MASK |
| | QUADSPI_SMPR_HSENA_MASK |
| | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR); |
| |
| /* Enable the module */ |
| qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK, |
| base + QUADSPI_MCR); |
| |
| /* clear all interrupt status */ |
| qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR); |
| |
| /* enable the interrupt */ |
| qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER); |
| |
| return 0; |
| } |
| |
| static int fsl_qspi_nor_setup_last(struct fsl_qspi *q) |
| { |
| unsigned long rate = q->clk_rate; |
| int ret; |
| |
| if (needs_4x_clock(q)) |
| rate *= 4; |
| |
| /* disable and unprepare clock to avoid glitch pass to controller */ |
| fsl_qspi_clk_disable_unprep(q); |
| |
| ret = clk_set_rate(q->clk, rate); |
| if (ret) |
| return ret; |
| |
| ret = fsl_qspi_clk_prep_enable(q); |
| if (ret) |
| return ret; |
| |
| /* Init the LUT table again. */ |
| fsl_qspi_init_lut(q); |
| |
| /* Init for AHB read */ |
| return fsl_qspi_init_ahb_read(q); |
| } |
| |
| static const struct of_device_id fsl_qspi_dt_ids[] = { |
| { .compatible = "fsl,vf610-qspi", .data = &vybrid_data, }, |
| { .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, }, |
| { .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, }, |
| { .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, }, |
| { .compatible = "fsl,ls1021a-qspi", .data = (void *)&ls1021a_data, }, |
| { .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids); |
| |
| static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor) |
| { |
| q->chip_base_addr = q->nor_size * (nor - q->nor); |
| } |
| |
| static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) |
| { |
| int ret; |
| struct fsl_qspi *q = nor->priv; |
| |
| ret = fsl_qspi_runcmd(q, opcode, 0, len); |
| if (ret) |
| return ret; |
| |
| fsl_qspi_read_data(q, len, buf); |
| return 0; |
| } |
| |
| static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) |
| { |
| struct fsl_qspi *q = nor->priv; |
| int ret; |
| |
| if (!buf) { |
| ret = fsl_qspi_runcmd(q, opcode, 0, 1); |
| if (ret) |
| return ret; |
| |
| if (opcode == SPINOR_OP_CHIP_ERASE) |
| fsl_qspi_invalid(q); |
| |
| } else if (len > 0) { |
| ret = fsl_qspi_nor_write(q, nor, opcode, 0, |
| (u32 *)buf, len); |
| if (ret > 0) |
| return 0; |
| } else { |
| dev_err(q->dev, "invalid cmd %d\n", opcode); |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static ssize_t fsl_qspi_write(struct spi_nor *nor, loff_t to, |
| size_t len, const u_char *buf) |
| { |
| struct fsl_qspi *q = nor->priv; |
| ssize_t ret = fsl_qspi_nor_write(q, nor, nor->program_opcode, to, |
| (u32 *)buf, len); |
| |
| /* invalid the data in the AHB buffer. */ |
| fsl_qspi_invalid(q); |
| return ret; |
| } |
| |
| static ssize_t fsl_qspi_read(struct spi_nor *nor, loff_t from, |
| size_t len, u_char *buf) |
| { |
| struct fsl_qspi *q = nor->priv; |
| u8 cmd = nor->read_opcode; |
| |
| /* if necessary,ioremap buffer before AHB read, */ |
| if (!q->ahb_addr) { |
| q->memmap_offs = q->chip_base_addr + from; |
| q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP; |
| |
| q->ahb_addr = ioremap_nocache( |
| q->memmap_phy + q->memmap_offs, |
| q->memmap_len); |
| if (!q->ahb_addr) { |
| dev_err(q->dev, "ioremap failed\n"); |
| return -ENOMEM; |
| } |
| /* ioremap if the data requested is out of range */ |
| } else if (q->chip_base_addr + from < q->memmap_offs |
| || q->chip_base_addr + from + len > |
| q->memmap_offs + q->memmap_len) { |
| iounmap(q->ahb_addr); |
| |
| q->memmap_offs = q->chip_base_addr + from; |
| q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP; |
| q->ahb_addr = ioremap_nocache( |
| q->memmap_phy + q->memmap_offs, |
| q->memmap_len); |
| if (!q->ahb_addr) { |
| dev_err(q->dev, "ioremap failed\n"); |
| return -ENOMEM; |
| } |
| } |
| |
| dev_dbg(q->dev, "cmd [%x],read from %p, len:%zd\n", |
| cmd, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs, |
| len); |
| |
| /* Read out the data directly from the AHB buffer.*/ |
| memcpy(buf, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs, |
| len); |
| |
| return len; |
| } |
| |
| static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs) |
| { |
| struct fsl_qspi *q = nor->priv; |
| int ret; |
| |
| dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n", |
| nor->mtd.erasesize / 1024, q->chip_base_addr, (u32)offs); |
| |
| ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0); |
| if (ret) |
| return ret; |
| |
| fsl_qspi_invalid(q); |
| return 0; |
| } |
| |
| static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops) |
| { |
| struct fsl_qspi *q = nor->priv; |
| int ret; |
| |
| mutex_lock(&q->lock); |
| |
| ret = fsl_qspi_clk_prep_enable(q); |
| if (ret) |
| goto err_mutex; |
| |
| fsl_qspi_set_base_addr(q, nor); |
| return 0; |
| |
| err_mutex: |
| mutex_unlock(&q->lock); |
| return ret; |
| } |
| |
| static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops) |
| { |
| struct fsl_qspi *q = nor->priv; |
| |
| fsl_qspi_clk_disable_unprep(q); |
| mutex_unlock(&q->lock); |
| } |
| |
| static int fsl_qspi_probe(struct platform_device *pdev) |
| { |
| const struct spi_nor_hwcaps hwcaps = { |
| .mask = SNOR_HWCAPS_READ_1_1_4 | |
| SNOR_HWCAPS_PP, |
| }; |
| struct device_node *np = pdev->dev.of_node; |
| struct device *dev = &pdev->dev; |
| struct fsl_qspi *q; |
| struct resource *res; |
| struct spi_nor *nor; |
| struct mtd_info *mtd; |
| int ret, i = 0; |
| |
| q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL); |
| if (!q) |
| return -ENOMEM; |
| |
| q->nor_num = of_get_child_count(dev->of_node); |
| if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP) |
| return -ENODEV; |
| |
| q->dev = dev; |
| q->devtype_data = of_device_get_match_data(dev); |
| if (!q->devtype_data) |
| return -ENODEV; |
| platform_set_drvdata(pdev, q); |
| |
| /* find the resources */ |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI"); |
| q->iobase = devm_ioremap_resource(dev, res); |
| if (IS_ERR(q->iobase)) |
| return PTR_ERR(q->iobase); |
| |
| q->big_endian = of_property_read_bool(np, "big-endian"); |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, |
| "QuadSPI-memory"); |
| if (!devm_request_mem_region(dev, res->start, resource_size(res), |
| res->name)) { |
| dev_err(dev, "can't request region for resource %pR\n", res); |
| return -EBUSY; |
| } |
| |
| q->memmap_phy = res->start; |
| |
| /* find the clocks */ |
| q->clk_en = devm_clk_get(dev, "qspi_en"); |
| if (IS_ERR(q->clk_en)) |
| return PTR_ERR(q->clk_en); |
| |
| q->clk = devm_clk_get(dev, "qspi"); |
| if (IS_ERR(q->clk)) |
| return PTR_ERR(q->clk); |
| |
| ret = fsl_qspi_clk_prep_enable(q); |
| if (ret) { |
| dev_err(dev, "can not enable the clock\n"); |
| goto clk_failed; |
| } |
| |
| /* find the irq */ |
| ret = platform_get_irq(pdev, 0); |
| if (ret < 0) { |
| dev_err(dev, "failed to get the irq: %d\n", ret); |
| goto irq_failed; |
| } |
| |
| ret = devm_request_irq(dev, ret, |
| fsl_qspi_irq_handler, 0, pdev->name, q); |
| if (ret) { |
| dev_err(dev, "failed to request irq: %d\n", ret); |
| goto irq_failed; |
| } |
| |
| ret = fsl_qspi_nor_setup(q); |
| if (ret) |
| goto irq_failed; |
| |
| if (of_get_property(np, "fsl,qspi-has-second-chip", NULL)) |
| q->has_second_chip = true; |
| |
| mutex_init(&q->lock); |
| |
| /* iterate the subnodes. */ |
| for_each_available_child_of_node(dev->of_node, np) { |
| /* skip the holes */ |
| if (!q->has_second_chip) |
| i *= 2; |
| |
| nor = &q->nor[i]; |
| mtd = &nor->mtd; |
| |
| nor->dev = dev; |
| spi_nor_set_flash_node(nor, np); |
| nor->priv = q; |
| |
| if (q->nor_num > 1 && !mtd->name) { |
| int spiflash_idx; |
| |
| ret = of_property_read_u32(np, "reg", &spiflash_idx); |
| if (!ret) { |
| mtd->name = devm_kasprintf(dev, GFP_KERNEL, |
| "%s-%d", |
| dev_name(dev), |
| spiflash_idx); |
| if (!mtd->name) { |
| ret = -ENOMEM; |
| goto mutex_failed; |
| } |
| } else { |
| dev_warn(dev, "reg property is missing\n"); |
| } |
| } |
| |
| /* fill the hooks */ |
| nor->read_reg = fsl_qspi_read_reg; |
| nor->write_reg = fsl_qspi_write_reg; |
| nor->read = fsl_qspi_read; |
| nor->write = fsl_qspi_write; |
| nor->erase = fsl_qspi_erase; |
| |
| nor->prepare = fsl_qspi_prep; |
| nor->unprepare = fsl_qspi_unprep; |
| |
| ret = of_property_read_u32(np, "spi-max-frequency", |
| &q->clk_rate); |
| if (ret < 0) |
| goto mutex_failed; |
| |
| /* set the chip address for READID */ |
| fsl_qspi_set_base_addr(q, nor); |
| |
| ret = spi_nor_scan(nor, NULL, &hwcaps); |
| if (ret) |
| goto mutex_failed; |
| |
| ret = mtd_device_register(mtd, NULL, 0); |
| if (ret) |
| goto mutex_failed; |
| |
| /* Set the correct NOR size now. */ |
| if (q->nor_size == 0) { |
| q->nor_size = mtd->size; |
| |
| /* Map the SPI NOR to accessiable address */ |
| fsl_qspi_set_map_addr(q); |
| } |
| |
| /* |
| * The TX FIFO is 64 bytes in the Vybrid, but the Page Program |
| * may writes 265 bytes per time. The write is working in the |
| * unit of the TX FIFO, not in the unit of the SPI NOR's page |
| * size. |
| * |
| * So shrink the spi_nor->page_size if it is larger then the |
| * TX FIFO. |
| */ |
| if (nor->page_size > q->devtype_data->txfifo) |
| nor->page_size = q->devtype_data->txfifo; |
| |
| i++; |
| } |
| |
| /* finish the rest init. */ |
| ret = fsl_qspi_nor_setup_last(q); |
| if (ret) |
| goto last_init_failed; |
| |
| fsl_qspi_clk_disable_unprep(q); |
| return 0; |
| |
| last_init_failed: |
| for (i = 0; i < q->nor_num; i++) { |
| /* skip the holes */ |
| if (!q->has_second_chip) |
| i *= 2; |
| mtd_device_unregister(&q->nor[i].mtd); |
| } |
| mutex_failed: |
| mutex_destroy(&q->lock); |
| irq_failed: |
| fsl_qspi_clk_disable_unprep(q); |
| clk_failed: |
| dev_err(dev, "Freescale QuadSPI probe failed\n"); |
| return ret; |
| } |
| |
| static int fsl_qspi_remove(struct platform_device *pdev) |
| { |
| struct fsl_qspi *q = platform_get_drvdata(pdev); |
| int i; |
| |
| for (i = 0; i < q->nor_num; i++) { |
| /* skip the holes */ |
| if (!q->has_second_chip) |
| i *= 2; |
| mtd_device_unregister(&q->nor[i].mtd); |
| } |
| |
| /* disable the hardware */ |
| qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR); |
| qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER); |
| |
| mutex_destroy(&q->lock); |
| |
| if (q->ahb_addr) |
| iounmap(q->ahb_addr); |
| |
| return 0; |
| } |
| |
| static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state) |
| { |
| return 0; |
| } |
| |
| static int fsl_qspi_resume(struct platform_device *pdev) |
| { |
| int ret; |
| struct fsl_qspi *q = platform_get_drvdata(pdev); |
| |
| ret = fsl_qspi_clk_prep_enable(q); |
| if (ret) |
| return ret; |
| |
| fsl_qspi_nor_setup(q); |
| fsl_qspi_set_map_addr(q); |
| fsl_qspi_nor_setup_last(q); |
| |
| fsl_qspi_clk_disable_unprep(q); |
| |
| return 0; |
| } |
| |
| static struct platform_driver fsl_qspi_driver = { |
| .driver = { |
| .name = "fsl-quadspi", |
| .of_match_table = fsl_qspi_dt_ids, |
| }, |
| .probe = fsl_qspi_probe, |
| .remove = fsl_qspi_remove, |
| .suspend = fsl_qspi_suspend, |
| .resume = fsl_qspi_resume, |
| }; |
| module_platform_driver(fsl_qspi_driver); |
| |
| MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver"); |
| MODULE_AUTHOR("Freescale Semiconductor Inc."); |
| MODULE_LICENSE("GPL v2"); |