blob: 9db5a7378f40fd6d1bce3938571688681d9a8022 [file] [log] [blame]
/*
* Testsuite for eBPF verifier
*
* Copyright (c) 2014 PLUMgrid, http://plumgrid.com
* Copyright (c) 2017 Facebook
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*/
#include <endian.h>
#include <asm/types.h>
#include <linux/types.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <stddef.h>
#include <stdbool.h>
#include <sched.h>
#include <limits.h>
#include <sys/capability.h>
#include <linux/unistd.h>
#include <linux/filter.h>
#include <linux/bpf_perf_event.h>
#include <linux/bpf.h>
#include <linux/if_ether.h>
#include <bpf/bpf.h>
#ifdef HAVE_GENHDR
# include "autoconf.h"
#else
# if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__)
# define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1
# endif
#endif
#include "bpf_rlimit.h"
#include "bpf_rand.h"
#include "bpf_util.h"
#include "../../../include/linux/filter.h"
#define MAX_INSNS BPF_MAXINSNS
#define MAX_FIXUPS 8
#define MAX_NR_MAPS 8
#define POINTER_VALUE 0xcafe4all
#define TEST_DATA_LEN 64
#define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0)
#define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1)
#define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
static bool unpriv_disabled = false;
struct bpf_test {
const char *descr;
struct bpf_insn insns[MAX_INSNS];
int fixup_map1[MAX_FIXUPS];
int fixup_map2[MAX_FIXUPS];
int fixup_map3[MAX_FIXUPS];
int fixup_map4[MAX_FIXUPS];
int fixup_prog1[MAX_FIXUPS];
int fixup_prog2[MAX_FIXUPS];
int fixup_map_in_map[MAX_FIXUPS];
int fixup_cgroup_storage[MAX_FIXUPS];
const char *errstr;
const char *errstr_unpriv;
uint32_t retval;
enum {
UNDEF,
ACCEPT,
REJECT
} result, result_unpriv;
enum bpf_prog_type prog_type;
uint8_t flags;
__u8 data[TEST_DATA_LEN];
void (*fill_helper)(struct bpf_test *self);
};
/* Note we want this to be 64 bit aligned so that the end of our array is
* actually the end of the structure.
*/
#define MAX_ENTRIES 11
struct test_val {
unsigned int index;
int foo[MAX_ENTRIES];
};
struct other_val {
long long foo;
long long bar;
};
static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
{
/* test: {skb->data[0], vlan_push} x 68 + {skb->data[0], vlan_pop} x 68 */
#define PUSH_CNT 51
unsigned int len = BPF_MAXINSNS;
struct bpf_insn *insn = self->insns;
int i = 0, j, k = 0;
insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
loop:
for (j = 0; j < PUSH_CNT; j++) {
insn[i++] = BPF_LD_ABS(BPF_B, 0);
insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 2);
i++;
insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_vlan_push),
insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 2);
i++;
}
for (j = 0; j < PUSH_CNT; j++) {
insn[i++] = BPF_LD_ABS(BPF_B, 0);
insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 2);
i++;
insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_vlan_pop),
insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 2);
i++;
}
if (++k < 5)
goto loop;
for (; i < len - 1; i++)
insn[i] = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, 0xbef);
insn[len - 1] = BPF_EXIT_INSN();
}
static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
{
struct bpf_insn *insn = self->insns;
unsigned int len = BPF_MAXINSNS;
int i = 0;
insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
insn[i++] = BPF_LD_ABS(BPF_B, 0);
insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
i++;
while (i < len - 1)
insn[i++] = BPF_LD_ABS(BPF_B, 1);
insn[i] = BPF_EXIT_INSN();
}
static void bpf_fill_rand_ld_dw(struct bpf_test *self)
{
struct bpf_insn *insn = self->insns;
uint64_t res = 0;
int i = 0;
insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
while (i < self->retval) {
uint64_t val = bpf_semi_rand_get();
struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
res ^= val;
insn[i++] = tmp[0];
insn[i++] = tmp[1];
insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
}
insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
insn[i] = BPF_EXIT_INSN();
res ^= (res >> 32);
self->retval = (uint32_t)res;
}
static struct bpf_test tests[] = {
{
"add+sub+mul",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 1),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 2),
BPF_MOV64_IMM(BPF_REG_2, 3),
BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -1),
BPF_ALU64_IMM(BPF_MUL, BPF_REG_1, 3),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = -3,
},
{
"DIV32 by 0, zero check 1",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, 42),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_2, 1),
BPF_ALU32_REG(BPF_DIV, BPF_REG_2, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 42,
},
{
"DIV32 by 0, zero check 2",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, 42),
BPF_LD_IMM64(BPF_REG_1, 0xffffffff00000000LL),
BPF_MOV32_IMM(BPF_REG_2, 1),
BPF_ALU32_REG(BPF_DIV, BPF_REG_2, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 42,
},
{
"DIV64 by 0, zero check",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, 42),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_2, 1),
BPF_ALU64_REG(BPF_DIV, BPF_REG_2, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 42,
},
{
"MOD32 by 0, zero check 1",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, 42),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_2, 1),
BPF_ALU32_REG(BPF_MOD, BPF_REG_2, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 42,
},
{
"MOD32 by 0, zero check 2",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, 42),
BPF_LD_IMM64(BPF_REG_1, 0xffffffff00000000LL),
BPF_MOV32_IMM(BPF_REG_2, 1),
BPF_ALU32_REG(BPF_MOD, BPF_REG_2, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 42,
},
{
"MOD64 by 0, zero check",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, 42),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_2, 1),
BPF_ALU64_REG(BPF_MOD, BPF_REG_2, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 42,
},
{
"DIV32 by 0, zero check ok, cls",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, 42),
BPF_MOV32_IMM(BPF_REG_1, 2),
BPF_MOV32_IMM(BPF_REG_2, 16),
BPF_ALU32_REG(BPF_DIV, BPF_REG_2, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 8,
},
{
"DIV32 by 0, zero check 1, cls",
.insns = {
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_0, 1),
BPF_ALU32_REG(BPF_DIV, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 0,
},
{
"DIV32 by 0, zero check 2, cls",
.insns = {
BPF_LD_IMM64(BPF_REG_1, 0xffffffff00000000LL),
BPF_MOV32_IMM(BPF_REG_0, 1),
BPF_ALU32_REG(BPF_DIV, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 0,
},
{
"DIV64 by 0, zero check, cls",
.insns = {
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_0, 1),
BPF_ALU64_REG(BPF_DIV, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 0,
},
{
"MOD32 by 0, zero check ok, cls",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, 42),
BPF_MOV32_IMM(BPF_REG_1, 3),
BPF_MOV32_IMM(BPF_REG_2, 5),
BPF_ALU32_REG(BPF_MOD, BPF_REG_2, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 2,
},
{
"MOD32 by 0, zero check 1, cls",
.insns = {
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_0, 1),
BPF_ALU32_REG(BPF_MOD, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 1,
},
{
"MOD32 by 0, zero check 2, cls",
.insns = {
BPF_LD_IMM64(BPF_REG_1, 0xffffffff00000000LL),
BPF_MOV32_IMM(BPF_REG_0, 1),
BPF_ALU32_REG(BPF_MOD, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 1,
},
{
"MOD64 by 0, zero check 1, cls",
.insns = {
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_0, 2),
BPF_ALU64_REG(BPF_MOD, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 2,
},
{
"MOD64 by 0, zero check 2, cls",
.insns = {
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_0, -1),
BPF_ALU64_REG(BPF_MOD, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = -1,
},
/* Just make sure that JITs used udiv/umod as otherwise we get
* an exception from INT_MIN/-1 overflow similarly as with div
* by zero.
*/
{
"DIV32 overflow, check 1",
.insns = {
BPF_MOV32_IMM(BPF_REG_1, -1),
BPF_MOV32_IMM(BPF_REG_0, INT_MIN),
BPF_ALU32_REG(BPF_DIV, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 0,
},
{
"DIV32 overflow, check 2",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, INT_MIN),
BPF_ALU32_IMM(BPF_DIV, BPF_REG_0, -1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 0,
},
{
"DIV64 overflow, check 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, -1),
BPF_LD_IMM64(BPF_REG_0, LLONG_MIN),
BPF_ALU64_REG(BPF_DIV, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 0,
},
{
"DIV64 overflow, check 2",
.insns = {
BPF_LD_IMM64(BPF_REG_0, LLONG_MIN),
BPF_ALU64_IMM(BPF_DIV, BPF_REG_0, -1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 0,
},
{
"MOD32 overflow, check 1",
.insns = {
BPF_MOV32_IMM(BPF_REG_1, -1),
BPF_MOV32_IMM(BPF_REG_0, INT_MIN),
BPF_ALU32_REG(BPF_MOD, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = INT_MIN,
},
{
"MOD32 overflow, check 2",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, INT_MIN),
BPF_ALU32_IMM(BPF_MOD, BPF_REG_0, -1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = INT_MIN,
},
{
"MOD64 overflow, check 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, -1),
BPF_LD_IMM64(BPF_REG_2, LLONG_MIN),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
BPF_ALU64_REG(BPF_MOD, BPF_REG_2, BPF_REG_1),
BPF_MOV32_IMM(BPF_REG_0, 0),
BPF_JMP_REG(BPF_JNE, BPF_REG_3, BPF_REG_2, 1),
BPF_MOV32_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 1,
},
{
"MOD64 overflow, check 2",
.insns = {
BPF_LD_IMM64(BPF_REG_2, LLONG_MIN),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
BPF_ALU64_IMM(BPF_MOD, BPF_REG_2, -1),
BPF_MOV32_IMM(BPF_REG_0, 0),
BPF_JMP_REG(BPF_JNE, BPF_REG_3, BPF_REG_2, 1),
BPF_MOV32_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 1,
},
{
"xor32 zero extend check",
.insns = {
BPF_MOV32_IMM(BPF_REG_2, -1),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 32),
BPF_ALU64_IMM(BPF_OR, BPF_REG_2, 0xffff),
BPF_ALU32_REG(BPF_XOR, BPF_REG_2, BPF_REG_2),
BPF_MOV32_IMM(BPF_REG_0, 2),
BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 0, 1),
BPF_MOV32_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 1,
},
{
"empty prog",
.insns = {
},
.errstr = "unknown opcode 00",
.result = REJECT,
},
{
"only exit insn",
.insns = {
BPF_EXIT_INSN(),
},
.errstr = "R0 !read_ok",
.result = REJECT,
},
{
"unreachable",
.insns = {
BPF_EXIT_INSN(),
BPF_EXIT_INSN(),
},
.errstr = "unreachable",
.result = REJECT,
},
{
"unreachable2",
.insns = {
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 0),
BPF_EXIT_INSN(),
},
.errstr = "unreachable",
.result = REJECT,
},
{
"out of range jump",
.insns = {
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_EXIT_INSN(),
},
.errstr = "jump out of range",
.result = REJECT,
},
{
"out of range jump2",
.insns = {
BPF_JMP_IMM(BPF_JA, 0, 0, -2),
BPF_EXIT_INSN(),
},
.errstr = "jump out of range",
.result = REJECT,
},
{
"test1 ld_imm64",
.insns = {
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
BPF_LD_IMM64(BPF_REG_0, 0),
BPF_LD_IMM64(BPF_REG_0, 0),
BPF_LD_IMM64(BPF_REG_0, 1),
BPF_LD_IMM64(BPF_REG_0, 1),
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.errstr = "invalid BPF_LD_IMM insn",
.errstr_unpriv = "R1 pointer comparison",
.result = REJECT,
},
{
"test2 ld_imm64",
.insns = {
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
BPF_LD_IMM64(BPF_REG_0, 0),
BPF_LD_IMM64(BPF_REG_0, 0),
BPF_LD_IMM64(BPF_REG_0, 1),
BPF_LD_IMM64(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.errstr = "invalid BPF_LD_IMM insn",
.errstr_unpriv = "R1 pointer comparison",
.result = REJECT,
},
{
"test3 ld_imm64",
.insns = {
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0),
BPF_LD_IMM64(BPF_REG_0, 0),
BPF_LD_IMM64(BPF_REG_0, 0),
BPF_LD_IMM64(BPF_REG_0, 1),
BPF_LD_IMM64(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_ld_imm64 insn",
.result = REJECT,
},
{
"test4 ld_imm64",
.insns = {
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_ld_imm64 insn",
.result = REJECT,
},
{
"test5 ld_imm64",
.insns = {
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0),
},
.errstr = "invalid bpf_ld_imm64 insn",
.result = REJECT,
},
{
"test6 ld_imm64",
.insns = {
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0),
BPF_RAW_INSN(0, 0, 0, 0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"test7 ld_imm64",
.insns = {
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 1),
BPF_RAW_INSN(0, 0, 0, 0, 1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 1,
},
{
"test8 ld_imm64",
.insns = {
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 1, 1),
BPF_RAW_INSN(0, 0, 0, 0, 1),
BPF_EXIT_INSN(),
},
.errstr = "uses reserved fields",
.result = REJECT,
},
{
"test9 ld_imm64",
.insns = {
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 1),
BPF_RAW_INSN(0, 0, 0, 1, 1),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_ld_imm64 insn",
.result = REJECT,
},
{
"test10 ld_imm64",
.insns = {
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 1),
BPF_RAW_INSN(0, BPF_REG_1, 0, 0, 1),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_ld_imm64 insn",
.result = REJECT,
},
{
"test11 ld_imm64",
.insns = {
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 1),
BPF_RAW_INSN(0, 0, BPF_REG_1, 0, 1),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_ld_imm64 insn",
.result = REJECT,
},
{
"test12 ld_imm64",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, BPF_REG_1, 0, 1),
BPF_RAW_INSN(0, 0, 0, 0, 1),
BPF_EXIT_INSN(),
},
.errstr = "not pointing to valid bpf_map",
.result = REJECT,
},
{
"test13 ld_imm64",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, BPF_REG_1, 0, 1),
BPF_RAW_INSN(0, 0, BPF_REG_1, 0, 1),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_ld_imm64 insn",
.result = REJECT,
},
{
"arsh32 on imm",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_ALU32_IMM(BPF_ARSH, BPF_REG_0, 5),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "unknown opcode c4",
},
{
"arsh32 on reg",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_MOV64_IMM(BPF_REG_1, 5),
BPF_ALU32_REG(BPF_ARSH, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "unknown opcode cc",
},
{
"arsh64 on imm",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_ALU64_IMM(BPF_ARSH, BPF_REG_0, 5),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"arsh64 on reg",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_MOV64_IMM(BPF_REG_1, 5),
BPF_ALU64_REG(BPF_ARSH, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"no bpf_exit",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_0, BPF_REG_2),
},
.errstr = "not an exit",
.result = REJECT,
},
{
"loop (back-edge)",
.insns = {
BPF_JMP_IMM(BPF_JA, 0, 0, -1),
BPF_EXIT_INSN(),
},
.errstr = "back-edge",
.result = REJECT,
},
{
"loop2 (back-edge)",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_0),
BPF_JMP_IMM(BPF_JA, 0, 0, -4),
BPF_EXIT_INSN(),
},
.errstr = "back-edge",
.result = REJECT,
},
{
"conditional loop",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, -3),
BPF_EXIT_INSN(),
},
.errstr = "back-edge",
.result = REJECT,
},
{
"read uninitialized register",
.insns = {
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.errstr = "R2 !read_ok",
.result = REJECT,
},
{
"read invalid register",
.insns = {
BPF_MOV64_REG(BPF_REG_0, -1),
BPF_EXIT_INSN(),
},
.errstr = "R15 is invalid",
.result = REJECT,
},
{
"program doesn't init R0 before exit",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_1),
BPF_EXIT_INSN(),
},
.errstr = "R0 !read_ok",
.result = REJECT,
},
{
"program doesn't init R0 before exit in all branches",
.insns = {
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.errstr = "R0 !read_ok",
.errstr_unpriv = "R1 pointer comparison",
.result = REJECT,
},
{
"stack out of bounds",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, 8, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid stack",
.result = REJECT,
},
{
"invalid call insn1",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL | BPF_X, 0, 0, 0, 0),
BPF_EXIT_INSN(),
},
.errstr = "unknown opcode 8d",
.result = REJECT,
},
{
"invalid call insn2",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 1, 0),
BPF_EXIT_INSN(),
},
.errstr = "BPF_CALL uses reserved",
.result = REJECT,
},
{
"invalid function call",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 1234567),
BPF_EXIT_INSN(),
},
.errstr = "invalid func unknown#1234567",
.result = REJECT,
},
{
"uninitialized stack1",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 2 },
.errstr = "invalid indirect read from stack",
.result = REJECT,
},
{
"uninitialized stack2",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, -8),
BPF_EXIT_INSN(),
},
.errstr = "invalid read from stack",
.result = REJECT,
},
{
"invalid fp arithmetic",
/* If this gets ever changed, make sure JITs can deal with it. */
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 8),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 subtraction from stack pointer",
.result = REJECT,
},
{
"non-invalid fp arithmetic",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"invalid argument register",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_cgroup_classid),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_cgroup_classid),
BPF_EXIT_INSN(),
},
.errstr = "R1 !read_ok",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"non-invalid argument register",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_cgroup_classid),
BPF_ALU64_REG(BPF_MOV, BPF_REG_1, BPF_REG_6),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_cgroup_classid),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"check valid spill/fill",
.insns = {
/* spill R1(ctx) into stack */
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
/* fill it back into R2 */
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -8),
/* should be able to access R0 = *(R2 + 8) */
/* BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 8), */
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "R0 leaks addr",
.result = ACCEPT,
.result_unpriv = REJECT,
.retval = POINTER_VALUE,
},
{
"check valid spill/fill, skb mark",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
offsetof(struct __sk_buff, mark)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.result_unpriv = ACCEPT,
},
{
"check corrupted spill/fill",
.insns = {
/* spill R1(ctx) into stack */
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
/* mess up with R1 pointer on stack */
BPF_ST_MEM(BPF_B, BPF_REG_10, -7, 0x23),
/* fill back into R0 should fail */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "attempt to corrupt spilled",
.errstr = "corrupted spill",
.result = REJECT,
},
{
"invalid src register in STX",
.insns = {
BPF_STX_MEM(BPF_B, BPF_REG_10, -1, -1),
BPF_EXIT_INSN(),
},
.errstr = "R15 is invalid",
.result = REJECT,
},
{
"invalid dst register in STX",
.insns = {
BPF_STX_MEM(BPF_B, 14, BPF_REG_10, -1),
BPF_EXIT_INSN(),
},
.errstr = "R14 is invalid",
.result = REJECT,
},
{
"invalid dst register in ST",
.insns = {
BPF_ST_MEM(BPF_B, 14, -1, -1),
BPF_EXIT_INSN(),
},
.errstr = "R14 is invalid",
.result = REJECT,
},
{
"invalid src register in LDX",
.insns = {
BPF_LDX_MEM(BPF_B, BPF_REG_0, 12, 0),
BPF_EXIT_INSN(),
},
.errstr = "R12 is invalid",
.result = REJECT,
},
{
"invalid dst register in LDX",
.insns = {
BPF_LDX_MEM(BPF_B, 11, BPF_REG_1, 0),
BPF_EXIT_INSN(),
},
.errstr = "R11 is invalid",
.result = REJECT,
},
{
"junk insn",
.insns = {
BPF_RAW_INSN(0, 0, 0, 0, 0),
BPF_EXIT_INSN(),
},
.errstr = "unknown opcode 00",
.result = REJECT,
},
{
"junk insn2",
.insns = {
BPF_RAW_INSN(1, 0, 0, 0, 0),
BPF_EXIT_INSN(),
},
.errstr = "BPF_LDX uses reserved fields",
.result = REJECT,
},
{
"junk insn3",
.insns = {
BPF_RAW_INSN(-1, 0, 0, 0, 0),
BPF_EXIT_INSN(),
},
.errstr = "unknown opcode ff",
.result = REJECT,
},
{
"junk insn4",
.insns = {
BPF_RAW_INSN(-1, -1, -1, -1, -1),
BPF_EXIT_INSN(),
},
.errstr = "unknown opcode ff",
.result = REJECT,
},
{
"junk insn5",
.insns = {
BPF_RAW_INSN(0x7f, -1, -1, -1, -1),
BPF_EXIT_INSN(),
},
.errstr = "BPF_ALU uses reserved fields",
.result = REJECT,
},
{
"misaligned read from stack",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, -4),
BPF_EXIT_INSN(),
},
.errstr = "misaligned stack access",
.result = REJECT,
},
{
"invalid map_fd for function call",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_delete_elem),
BPF_EXIT_INSN(),
},
.errstr = "fd 0 is not pointing to valid bpf_map",
.result = REJECT,
},
{
"don't check return value before access",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "R0 invalid mem access 'map_value_or_null'",
.result = REJECT,
},
{
"access memory with incorrect alignment",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 4, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "misaligned value access",
.result = REJECT,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
},
{
"sometimes access memory with incorrect alignment",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
BPF_EXIT_INSN(),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "R0 invalid mem access",
.errstr_unpriv = "R0 leaks addr",
.result = REJECT,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
},
{
"jump test 1",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -8),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "R1 pointer comparison",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"jump test 2",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 2),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 14),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 2),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 11),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 2),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 8),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 2),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -40, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 5),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 2),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -48, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -56, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "R1 pointer comparison",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"jump test 3",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 19),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 3),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_JMP_IMM(BPF_JA, 0, 0, 15),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 3),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -32),
BPF_JMP_IMM(BPF_JA, 0, 0, 11),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 3),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -40, 0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -40),
BPF_JMP_IMM(BPF_JA, 0, 0, 7),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 3),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -48, 0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),
BPF_JMP_IMM(BPF_JA, 0, 0, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 0),
BPF_ST_MEM(BPF_DW, BPF_REG_2, -56, 0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -56),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_delete_elem),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 24 },
.errstr_unpriv = "R1 pointer comparison",
.result_unpriv = REJECT,
.result = ACCEPT,
.retval = -ENOENT,
},
{
"jump test 4",
.insns = {
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "R1 pointer comparison",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"jump test 5",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
BPF_JMP_IMM(BPF_JA, 0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "R1 pointer comparison",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"access skb fields ok",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, len)),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, pkt_type)),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, queue_mapping)),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, protocol)),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, vlan_present)),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, vlan_tci)),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, napi_id)),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"access skb fields bad1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -4),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"access skb fields bad2",
.insns = {
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 9),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, pkt_type)),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 4 },
.errstr = "different pointers",
.errstr_unpriv = "R1 pointer comparison",
.result = REJECT,
},
{
"access skb fields bad3",
.insns = {
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, pkt_type)),
BPF_EXIT_INSN(),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_JMP_IMM(BPF_JA, 0, 0, -12),
},
.fixup_map1 = { 6 },
.errstr = "different pointers",
.errstr_unpriv = "R1 pointer comparison",
.result = REJECT,
},
{
"access skb fields bad4",
.insns = {
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 3),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
offsetof(struct __sk_buff, len)),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_JMP_IMM(BPF_JA, 0, 0, -13),
},
.fixup_map1 = { 7 },
.errstr = "different pointers",
.errstr_unpriv = "R1 pointer comparison",
.result = REJECT,
},
{
"invalid access __sk_buff family",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, family)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"invalid access __sk_buff remote_ip4",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, remote_ip4)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"invalid access __sk_buff local_ip4",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, local_ip4)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"invalid access __sk_buff remote_ip6",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, remote_ip6)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"invalid access __sk_buff local_ip6",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, local_ip6)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"invalid access __sk_buff remote_port",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, remote_port)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"invalid access __sk_buff remote_port",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, local_port)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"valid access __sk_buff family",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, family)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"valid access __sk_buff remote_ip4",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, remote_ip4)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"valid access __sk_buff local_ip4",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, local_ip4)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"valid access __sk_buff remote_ip6",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, remote_ip6[0])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, remote_ip6[1])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, remote_ip6[2])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, remote_ip6[3])),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"valid access __sk_buff local_ip6",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, local_ip6[0])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, local_ip6[1])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, local_ip6[2])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, local_ip6[3])),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"valid access __sk_buff remote_port",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, remote_port)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"valid access __sk_buff remote_port",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, local_port)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"invalid access of tc_classid for SK_SKB",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, tc_classid)),
BPF_EXIT_INSN(),
},
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
.errstr = "invalid bpf_context access",
},
{
"invalid access of skb->mark for SK_SKB",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_EXIT_INSN(),
},
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
.errstr = "invalid bpf_context access",
},
{
"check skb->mark is not writeable by SK_SKB",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, mark)),
BPF_EXIT_INSN(),
},
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
.errstr = "invalid bpf_context access",
},
{
"check skb->tc_index is writeable by SK_SKB",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, tc_index)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"check skb->priority is writeable by SK_SKB",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, priority)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"direct packet read for SK_SKB",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"direct packet write for SK_SKB",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"overlapping checks for direct packet access SK_SKB",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 6),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_2, 6),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"valid access family in SK_MSG",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct sk_msg_md, family)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_MSG,
},
{
"valid access remote_ip4 in SK_MSG",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct sk_msg_md, remote_ip4)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_MSG,
},
{
"valid access local_ip4 in SK_MSG",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct sk_msg_md, local_ip4)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_MSG,
},
{
"valid access remote_port in SK_MSG",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct sk_msg_md, remote_port)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_MSG,
},
{
"valid access local_port in SK_MSG",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct sk_msg_md, local_port)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_MSG,
},
{
"valid access remote_ip6 in SK_MSG",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct sk_msg_md, remote_ip6[0])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct sk_msg_md, remote_ip6[1])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct sk_msg_md, remote_ip6[2])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct sk_msg_md, remote_ip6[3])),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"valid access local_ip6 in SK_MSG",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct sk_msg_md, local_ip6[0])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct sk_msg_md, local_ip6[1])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct sk_msg_md, local_ip6[2])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct sk_msg_md, local_ip6[3])),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_SKB,
},
{
"invalid 64B read of family in SK_MSG",
.insns = {
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1,
offsetof(struct sk_msg_md, family)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SK_MSG,
},
{
"invalid read past end of SK_MSG",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct sk_msg_md, local_port) + 4),
BPF_EXIT_INSN(),
},
.errstr = "R0 !read_ok",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SK_MSG,
},
{
"invalid read offset in SK_MSG",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct sk_msg_md, family) + 1),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SK_MSG,
},
{
"direct packet read for SK_MSG",
.insns = {
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1,
offsetof(struct sk_msg_md, data)),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1,
offsetof(struct sk_msg_md, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_MSG,
},
{
"direct packet write for SK_MSG",
.insns = {
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1,
offsetof(struct sk_msg_md, data)),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1,
offsetof(struct sk_msg_md, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_MSG,
},
{
"overlapping checks for direct packet access SK_MSG",
.insns = {
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1,
offsetof(struct sk_msg_md, data)),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1,
offsetof(struct sk_msg_md, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 6),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_2, 6),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SK_MSG,
},
{
"check skb->mark is not writeable by sockets",
.insns = {
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.errstr_unpriv = "R1 leaks addr",
.result = REJECT,
},
{
"check skb->tc_index is not writeable by sockets",
.insns = {
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
offsetof(struct __sk_buff, tc_index)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.errstr_unpriv = "R1 leaks addr",
.result = REJECT,
},
{
"check cb access: byte",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0])),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0]) + 1),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0]) + 2),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0]) + 3),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[1])),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[1]) + 1),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[1]) + 2),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[1]) + 3),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[2])),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[2]) + 1),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[2]) + 2),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[2]) + 3),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[3])),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[3]) + 1),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[3]) + 2),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[3]) + 3),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4])),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4]) + 1),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4]) + 2),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4]) + 3),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[0])),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[0]) + 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[0]) + 2),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[0]) + 3),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[1])),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[1]) + 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[1]) + 2),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[1]) + 3),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[2])),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[2]) + 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[2]) + 2),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[2]) + 3),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[3])),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[3]) + 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[3]) + 2),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[3]) + 3),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[4])),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[4]) + 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[4]) + 2),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[4]) + 3),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"__sk_buff->hash, offset 0, byte store not permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, hash)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"__sk_buff->tc_index, offset 3, byte store not permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, tc_index) + 3),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check skb->hash byte load permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
#if __BYTE_ORDER == __LITTLE_ENDIAN
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, hash)),
#else
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, hash) + 3),
#endif
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"check skb->hash byte load not permitted 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, hash) + 1),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check skb->hash byte load not permitted 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, hash) + 2),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check skb->hash byte load not permitted 3",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
#if __BYTE_ORDER == __LITTLE_ENDIAN
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, hash) + 3),
#else
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, hash)),
#endif
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check cb access: byte, wrong type",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0])),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
},
{
"check cb access: half",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0])),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0]) + 2),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[1])),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[1]) + 2),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[2])),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[2]) + 2),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[3])),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[3]) + 2),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4])),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4]) + 2),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[0])),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[0]) + 2),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[1])),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[1]) + 2),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[2])),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[2]) + 2),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[3])),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[3]) + 2),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[4])),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[4]) + 2),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"check cb access: half, unaligned",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0]) + 1),
BPF_EXIT_INSN(),
},
.errstr = "misaligned context access",
.result = REJECT,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
},
{
"check __sk_buff->hash, offset 0, half store not permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, hash)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check __sk_buff->tc_index, offset 2, half store not permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, tc_index) + 2),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check skb->hash half load permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
#if __BYTE_ORDER == __LITTLE_ENDIAN
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, hash)),
#else
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, hash) + 2),
#endif
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"check skb->hash half load not permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
#if __BYTE_ORDER == __LITTLE_ENDIAN
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, hash) + 2),
#else
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, hash)),
#endif
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check cb access: half, wrong type",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0])),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
},
{
"check cb access: word",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0])),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[1])),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[2])),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[3])),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[0])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[1])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[2])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[3])),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[4])),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"check cb access: word, unaligned 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0]) + 2),
BPF_EXIT_INSN(),
},
.errstr = "misaligned context access",
.result = REJECT,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
},
{
"check cb access: word, unaligned 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4]) + 1),
BPF_EXIT_INSN(),
},
.errstr = "misaligned context access",
.result = REJECT,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
},
{
"check cb access: word, unaligned 3",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4]) + 2),
BPF_EXIT_INSN(),
},
.errstr = "misaligned context access",
.result = REJECT,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
},
{
"check cb access: word, unaligned 4",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4]) + 3),
BPF_EXIT_INSN(),
},
.errstr = "misaligned context access",
.result = REJECT,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
},
{
"check cb access: double",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0])),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[2])),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[0])),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[2])),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"check cb access: double, unaligned 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[1])),
BPF_EXIT_INSN(),
},
.errstr = "misaligned context access",
.result = REJECT,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
},
{
"check cb access: double, unaligned 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[3])),
BPF_EXIT_INSN(),
},
.errstr = "misaligned context access",
.result = REJECT,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
},
{
"check cb access: double, oob 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[4])),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check cb access: double, oob 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[4])),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check __sk_buff->ifindex dw store not permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, ifindex)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check __sk_buff->ifindex dw load not permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, ifindex)),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"check cb access: double, wrong type",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0])),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
},
{
"check out of range skb->cb access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[0]) + 256),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access",
.errstr_unpriv = "",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_ACT,
},
{
"write skb fields from socket prog",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[4])),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, tc_index)),
BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
offsetof(struct __sk_buff, cb[0])),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
offsetof(struct __sk_buff, cb[2])),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.errstr_unpriv = "R1 leaks addr",
.result_unpriv = REJECT,
},
{
"write skb fields from tc_cls_act prog",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, cb[0])),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, mark)),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, tc_index)),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, tc_index)),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[3])),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "",
.result_unpriv = REJECT,
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"PTR_TO_STACK store/load",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -10),
BPF_ST_MEM(BPF_DW, BPF_REG_1, 2, 0xfaceb00c),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 2),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 0xfaceb00c,
},
{
"PTR_TO_STACK store/load - bad alignment on off",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_1, 2, 0xfaceb00c),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 2),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "misaligned stack access off (0x0; 0x0)+-8+2 size 8",
},
{
"PTR_TO_STACK store/load - bad alignment on reg",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -10),
BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "misaligned stack access off (0x0; 0x0)+-10+8 size 8",
},
{
"PTR_TO_STACK store/load - out of bounds low",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -80000),
BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid stack off=-79992 size=8",
},
{
"PTR_TO_STACK store/load - out of bounds high",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid stack off=0 size=8",
},
{
"unpriv: return pointer",
.insns = {
BPF_MOV64_REG(BPF_REG_0, BPF_REG_10),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.result_unpriv = REJECT,
.errstr_unpriv = "R0 leaks addr",
.retval = POINTER_VALUE,
},
{
"unpriv: add const to pointer",
.insns = {
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"unpriv: add pointer to pointer",
.insns = {
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_10),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R1 pointer += pointer",
},
{
"unpriv: neg pointer",
.insns = {
BPF_ALU64_IMM(BPF_NEG, BPF_REG_1, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.result_unpriv = REJECT,
.errstr_unpriv = "R1 pointer arithmetic",
},
{
"unpriv: cmp pointer with const",
.insns = {
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.result_unpriv = REJECT,
.errstr_unpriv = "R1 pointer comparison",
},
{
"unpriv: cmp pointer with pointer",
.insns = {
BPF_JMP_REG(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.result_unpriv = REJECT,
.errstr_unpriv = "R10 pointer comparison",
},
{
"unpriv: check that printk is disallowed",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_2, 8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_trace_printk),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "unknown func bpf_trace_printk#6",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"unpriv: pass pointer to helper function",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_update_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr_unpriv = "R4 leaks addr",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"unpriv: indirectly pass pointer on stack to helper function",
.insns = {
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "invalid indirect read from stack off -8+0 size 8",
.result = REJECT,
},
{
"unpriv: mangle pointer on stack 1",
.insns = {
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8),
BPF_ST_MEM(BPF_W, BPF_REG_10, -8, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "attempt to corrupt spilled",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"unpriv: mangle pointer on stack 2",
.insns = {
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8),
BPF_ST_MEM(BPF_B, BPF_REG_10, -1, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "attempt to corrupt spilled",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"unpriv: read pointer from stack in small chunks",
.insns = {
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_10, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid size",
.result = REJECT,
},
{
"unpriv: write pointer into ctx",
.insns = {
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "R1 leaks addr",
.result_unpriv = REJECT,
.errstr = "invalid bpf_context access",
.result = REJECT,
},
{
"unpriv: spill/fill of ctx",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"unpriv: spill/fill of ctx 2",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_hash_recalc),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"unpriv: spill/fill of ctx 3",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_hash_recalc),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R1 type=fp expected=ctx",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"unpriv: spill/fill of ctx 4",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_RAW_INSN(BPF_STX | BPF_XADD | BPF_DW, BPF_REG_10,
BPF_REG_0, -8, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_hash_recalc),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R1 type=inv expected=ctx",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"unpriv: spill/fill of different pointers stx",
.insns = {
BPF_MOV64_IMM(BPF_REG_3, 42),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_2, 0),
BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_3,
offsetof(struct __sk_buff, mark)),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "same insn cannot be used with different pointers",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"unpriv: spill/fill of different pointers ldx",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2,
-(__s32)offsetof(struct bpf_perf_event_data,
sample_period) - 8),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_2, 0),
BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1,
offsetof(struct bpf_perf_event_data,
sample_period)),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "same insn cannot be used with different pointers",
.prog_type = BPF_PROG_TYPE_PERF_EVENT,
},
{
"unpriv: write pointer into map elem value",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"alu32: mov u32 const",
.insns = {
BPF_MOV32_IMM(BPF_REG_7, 0),
BPF_ALU32_IMM(BPF_AND, BPF_REG_7, 1),
BPF_MOV32_REG(BPF_REG_0, BPF_REG_7),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_7, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 0,
},
{
"unpriv: partial copy of pointer",
.insns = {
BPF_MOV32_REG(BPF_REG_1, BPF_REG_10),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "R10 partial copy",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"unpriv: pass pointer to tail_call",
.insns = {
BPF_MOV64_REG(BPF_REG_3, BPF_REG_1),
BPF_LD_MAP_FD(BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_tail_call),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_prog1 = { 1 },
.errstr_unpriv = "R3 leaks addr into helper",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"unpriv: cmp map pointer with zero",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 1 },
.errstr_unpriv = "R1 pointer comparison",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"unpriv: write into frame pointer",
.insns = {
BPF_MOV64_REG(BPF_REG_10, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "frame pointer is read only",
.result = REJECT,
},
{
"unpriv: spill/fill frame pointer",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "frame pointer is read only",
.result = REJECT,
},
{
"unpriv: cmp of frame pointer",
.insns = {
BPF_JMP_IMM(BPF_JEQ, BPF_REG_10, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "R10 pointer comparison",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"unpriv: adding of fp",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_10),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, -8),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"unpriv: cmp of stack pointer",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_2, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "R2 pointer comparison",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"runtime/jit: tail_call within bounds, prog once",
.insns = {
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_LD_MAP_FD(BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_tail_call),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.fixup_prog1 = { 1 },
.result = ACCEPT,
.retval = 42,
},
{
"runtime/jit: tail_call within bounds, prog loop",
.insns = {
BPF_MOV64_IMM(BPF_REG_3, 1),
BPF_LD_MAP_FD(BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_tail_call),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.fixup_prog1 = { 1 },
.result = ACCEPT,
.retval = 41,
},
{
"runtime/jit: tail_call within bounds, no prog",
.insns = {
BPF_MOV64_IMM(BPF_REG_3, 2),
BPF_LD_MAP_FD(BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_tail_call),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.fixup_prog1 = { 1 },
.result = ACCEPT,
.retval = 1,
},
{
"runtime/jit: tail_call out of bounds",
.insns = {
BPF_MOV64_IMM(BPF_REG_3, 256),
BPF_LD_MAP_FD(BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_tail_call),
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.fixup_prog1 = { 1 },
.result = ACCEPT,
.retval = 2,
},
{
"runtime/jit: pass negative index to tail_call",
.insns = {
BPF_MOV64_IMM(BPF_REG_3, -1),
BPF_LD_MAP_FD(BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_tail_call),
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.fixup_prog1 = { 1 },
.result = ACCEPT,
.retval = 2,
},
{
"runtime/jit: pass > 32bit index to tail_call",
.insns = {
BPF_LD_IMM64(BPF_REG_3, 0x100000000ULL),
BPF_LD_MAP_FD(BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_tail_call),
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.fixup_prog1 = { 2 },
.result = ACCEPT,
.retval = 42,
},
{
"stack pointer arithmetic",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 4),
BPF_JMP_IMM(BPF_JA, 0, 0, 0),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, -10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, -10),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1),
BPF_ST_MEM(0, BPF_REG_2, 4, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8),
BPF_ST_MEM(0, BPF_REG_2, 4, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"raw_stack: no skb_load_bytes",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 8),
/* Call to skb_load_bytes() omitted. */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid read from stack off -8+0 size 8",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, negative len",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, -8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R4 min value is negative",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, negative len 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, ~0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R4 min value is negative",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, zero len",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid stack type R3",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, no init",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, init",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_6, 0, 0xcafe),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, spilled regs around bounds",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 8),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
offsetof(struct __sk_buff, mark)),
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2,
offsetof(struct __sk_buff, priority)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, spilled regs corruption",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
offsetof(struct __sk_buff, mark)),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R0 invalid mem access 'inv'",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, spilled regs corruption 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 8),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_6, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
offsetof(struct __sk_buff, mark)),
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2,
offsetof(struct __sk_buff, priority)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_3,
offsetof(struct __sk_buff, pkt_type)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_3),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R3 invalid mem access 'inv'",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, spilled regs + data",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 8),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_6, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
offsetof(struct __sk_buff, mark)),
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2,
offsetof(struct __sk_buff, priority)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_3),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, invalid access 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -513),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid stack type R3 off=-513 access_size=8",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, invalid access 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -1),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid stack type R3 off=-1 access_size=8",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, invalid access 3",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 0xffffffff),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 0xffffffff),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R4 min value is negative",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, invalid access 4",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -1),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 0x7fffffff),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R4 unbounded memory access, use 'var &= const' or 'if (var < const)'",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, invalid access 5",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 0x7fffffff),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R4 unbounded memory access, use 'var &= const' or 'if (var < const)'",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, invalid access 6",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid stack type R3 off=-512 access_size=0",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"raw_stack: skb_load_bytes, large access",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_4, 512),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"context stores via ST",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_ST_MEM(BPF_DW, BPF_REG_1, offsetof(struct __sk_buff, mark), 0),
BPF_EXIT_INSN(),
},
.errstr = "BPF_ST stores into R1 context is not allowed",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"context stores via XADD",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_RAW_INSN(BPF_STX | BPF_XADD | BPF_W, BPF_REG_1,
BPF_REG_0, offsetof(struct __sk_buff, mark), 0),
BPF_EXIT_INSN(),
},
.errstr = "BPF_XADD stores into R1 context is not allowed",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test2",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14),
BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_4, 15),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_3, 7),
BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_3, 12),
BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 14),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_4),
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, len)),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 49),
BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 49),
BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_2),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_3),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_3, 4),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test3",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid bpf_context access off=76",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SOCKET_FILTER,
},
{
"direct packet access: test4 (write)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test5 (pkt_end >= reg, good access)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test6 (pkt_end >= reg, bad access)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 3),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid access to packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test7 (pkt_end >= reg, both accesses)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 3),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid access to packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test8 (double test, variant 1)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 4),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test9 (double test, variant 2)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test10 (write invalid)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid access to packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test11 (shift, good access)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 8),
BPF_MOV64_IMM(BPF_REG_3, 144),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 23),
BPF_ALU64_IMM(BPF_RSH, BPF_REG_5, 3),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.retval = 1,
},
{
"direct packet access: test12 (and, good access)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 8),
BPF_MOV64_IMM(BPF_REG_3, 144),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 23),
BPF_ALU64_IMM(BPF_AND, BPF_REG_5, 15),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.retval = 1,
},
{
"direct packet access: test13 (branches, good access)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 13),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_MOV64_IMM(BPF_REG_4, 1),
BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_4, 2),
BPF_MOV64_IMM(BPF_REG_3, 14),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_MOV64_IMM(BPF_REG_3, 24),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 23),
BPF_ALU64_IMM(BPF_AND, BPF_REG_5, 15),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.retval = 1,
},
{
"direct packet access: test14 (pkt_ptr += 0, CONST_IMM, good access)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 7),
BPF_MOV64_IMM(BPF_REG_5, 12),
BPF_ALU64_IMM(BPF_RSH, BPF_REG_5, 4),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_6, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.retval = 1,
},
{
"direct packet access: test15 (spill with xadd)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 8),
BPF_MOV64_IMM(BPF_REG_5, 4096),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_STX_XADD(BPF_DW, BPF_REG_4, BPF_REG_5, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_4, 0),
BPF_STX_MEM(BPF_W, BPF_REG_2, BPF_REG_5, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R2 invalid mem access 'inv'",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test16 (arith on data_end)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 16),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R3 pointer arithmetic on PTR_TO_PACKET_END",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test17 (pruning, alignment)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 14),
BPF_JMP_IMM(BPF_JGT, BPF_REG_7, 1, 4),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, -4),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 1),
BPF_JMP_A(-6),
},
.errstr = "misaligned packet access off 2+(0x0; 0x0)+15+-4 size 4",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
},
{
"direct packet access: test18 (imm += pkt_ptr, 1)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_IMM(BPF_REG_0, 8),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test19 (imm += pkt_ptr, 2)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 3),
BPF_MOV64_IMM(BPF_REG_4, 4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_2),
BPF_STX_MEM(BPF_B, BPF_REG_4, BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test20 (x += pkt_ptr, 1)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_IMM(BPF_REG_0, 0xffffffff),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0x7fff),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_2),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_4),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 0x7fff - 1),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
},
{
"direct packet access: test21 (x += pkt_ptr, 2)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 9),
BPF_MOV64_IMM(BPF_REG_4, 0xffffffff),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_4, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
BPF_ALU64_IMM(BPF_AND, BPF_REG_4, 0x7fff),
BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_2),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_4),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 0x7fff - 1),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
},
{
"direct packet access: test22 (x += pkt_ptr, 3)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_3, -16),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_10, -16),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 11),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -8),
BPF_MOV64_IMM(BPF_REG_4, 0xffffffff),
BPF_STX_XADD(BPF_DW, BPF_REG_10, BPF_REG_4, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 49),
BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_2),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_4),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 2),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2),
BPF_MOV64_IMM(BPF_REG_2, 1),
BPF_STX_MEM(BPF_H, BPF_REG_4, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
},
{
"direct packet access: test23 (x += pkt_ptr, 4)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_IMM(BPF_REG_0, 0xffffffff),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0xffff),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_0, 31),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0xffff - 1),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = REJECT,
.errstr = "invalid access to packet, off=0 size=8, R5(id=1,off=0,r=0)",
},
{
"direct packet access: test24 (x += pkt_ptr, 5)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_IMM(BPF_REG_0, 0xffffffff),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0xff),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_0, 64),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x7fff - 1),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
},
{
"direct packet access: test25 (marking on <, good access)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_3, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, -4),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test26 (marking on <, bad access)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_3, 3),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JA, 0, 0, -3),
},
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"direct packet access: test27 (marking on <=, good access)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_0, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.retval = 1,
},
{
"direct packet access: test28 (marking on <=, bad access)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_0, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, -4),
},
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test1, valid packet_ptr range",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 5),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_update_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 5 },
.result_unpriv = ACCEPT,
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"helper access to packet: test2, unchecked packet_ptr",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 1 },
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"helper access to packet: test3, variable add",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 10),
BPF_LDX_MEM(BPF_B, BPF_REG_5, BPF_REG_2, 0),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_5),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_4),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_3, 4),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_4),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 11 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"helper access to packet: test4, packet_ptr with bad range",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 7 },
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"helper access to packet: test5, packet_ptr with too short range",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 3),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 6 },
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"helper access to packet: test6, cls valid packet_ptr range",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 5),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_update_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 5 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test7, cls unchecked packet_ptr",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 1 },
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test8, cls variable add",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 10),
BPF_LDX_MEM(BPF_B, BPF_REG_5, BPF_REG_2, 0),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_5),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_4),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_3, 4),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_4),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 11 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test9, cls packet_ptr with bad range",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 7 },
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test10, cls packet_ptr with too short range",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 3),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 6 },
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test11, cls unsuitable helper 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_7, 4),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_4, 42),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_store_bytes),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "helper access to the packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test12, cls unsuitable helper 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_6, BPF_REG_7, 3),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_4, 4),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "helper access to the packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test13, cls helper ok",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_diff),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test14, cls helper ok sub",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 4),
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_diff),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test15, cls helper fail sub",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 12),
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_diff),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test16, cls helper fail range 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_2, 8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_diff),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test17, cls helper fail range 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_2, -9),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_diff),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R2 min value is negative",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test18, cls helper fail range 3",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_2, ~0),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_diff),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R2 min value is negative",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test19, cls helper range zero",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_diff),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test20, pkt end as input",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_diff),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R1 type=pkt_end expected=fp",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to packet: test21, wrong reg",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
BPF_MOV64_IMM(BPF_REG_2, 4),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_diff),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"valid map access into an array with a constant",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"valid map access into an array with a register",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_IMM(BPF_REG_1, 4),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.result_unpriv = REJECT,
.result = ACCEPT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"valid map access into an array with a variable",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, MAX_ENTRIES, 3),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.result_unpriv = REJECT,
.result = ACCEPT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"valid map access into an array with a signed variable",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 0xffffffff, 1),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES),
BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.result_unpriv = REJECT,
.result = ACCEPT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"invalid map access into an array with a constant",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, (MAX_ENTRIES + 1) << 2,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "invalid access to map value, value_size=48 off=48 size=8",
.result = REJECT,
},
{
"invalid map access into an array with a register",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_IMM(BPF_REG_1, MAX_ENTRIES + 1),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R0 min value is outside of the array range",
.result = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"invalid map access into an array with a variable",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R0 unbounded memory access, make sure to bounds check any array access into a map",
.result = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"invalid map access into an array with no floor check",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES),
BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.errstr = "R0 unbounded memory access",
.result_unpriv = REJECT,
.result = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"invalid map access into an array with a invalid max check",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES + 1),
BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.errstr = "invalid access to map value, value_size=48 off=44 size=8",
.result_unpriv = REJECT,
.result = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"invalid map access into an array with a invalid max check",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10),
BPF_MOV64_REG(BPF_REG_8, BPF_REG_0),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_8),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3, 11 },
.errstr = "R0 pointer += pointer",
.result = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"valid cgroup storage access",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_local_storage),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.fixup_cgroup_storage = { 1 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_CGROUP_SKB,
},
{
"invalid cgroup storage access 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_local_storage),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 1 },
.result = REJECT,
.errstr = "cannot pass map_type 1 into func bpf_get_local_storage",
.prog_type = BPF_PROG_TYPE_CGROUP_SKB,
},
{
"invalid cgroup storage access 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_LD_MAP_FD(BPF_REG_1, 1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_local_storage),
BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "fd 1 is not pointing to valid bpf_map",
.prog_type = BPF_PROG_TYPE_CGROUP_SKB,
},
{
"invalid per-cgroup storage access 3",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_local_storage),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 256),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 1),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_cgroup_storage = { 1 },
.result = REJECT,
.errstr = "invalid access to map value, value_size=64 off=256 size=4",
.prog_type = BPF_PROG_TYPE_CGROUP_SKB,
},
{
"invalid cgroup storage access 4",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_local_storage),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, -2),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 1),
BPF_EXIT_INSN(),
},
.fixup_cgroup_storage = { 1 },
.result = REJECT,
.errstr = "invalid access to map value, value_size=64 off=-2 size=4",
.prog_type = BPF_PROG_TYPE_CGROUP_SKB,
},
{
"invalid cgroup storage access 5",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 7),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_local_storage),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.fixup_cgroup_storage = { 1 },
.result = REJECT,
.errstr = "get_local_storage() doesn't support non-zero flags",
.prog_type = BPF_PROG_TYPE_CGROUP_SKB,
},
{
"invalid cgroup storage access 6",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_1),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_local_storage),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.fixup_cgroup_storage = { 1 },
.result = REJECT,
.errstr = "get_local_storage() doesn't support non-zero flags",
.prog_type = BPF_PROG_TYPE_CGROUP_SKB,
},
{
"multiple registers share map_lookup_elem result",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 10),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 4 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS
},
{
"alu ops on ptr_to_map_value_or_null, 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 10),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 4 },
.errstr = "R4 pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS
},
{
"alu ops on ptr_to_map_value_or_null, 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 10),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
BPF_ALU64_IMM(BPF_AND, BPF_REG_4, -1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 4 },
.errstr = "R4 pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS
},
{
"alu ops on ptr_to_map_value_or_null, 3",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 10),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_4, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 4 },
.errstr = "R4 pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS
},
{
"invalid memory access with multiple map_lookup_elem calls",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 10),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_MOV64_REG(BPF_REG_8, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 4 },
.result = REJECT,
.errstr = "R4 !read_ok",
.prog_type = BPF_PROG_TYPE_SCHED_CLS
},
{
"valid indirect map_lookup_elem access with 2nd lookup in branch",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 10),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_MOV64_REG(BPF_REG_8, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_2, 10),
BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 0, 3),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 4 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS
},
{
"invalid map access from else condition",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, MAX_ENTRIES-1, 1),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 1),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R0 unbounded memory access",
.result = REJECT,
.errstr_unpriv = "R0 leaks addr",
.result_unpriv = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"constant register |= constant should keep constant type",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48),
BPF_MOV64_IMM(BPF_REG_2, 34),
BPF_ALU64_IMM(BPF_OR, BPF_REG_2, 13),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"constant register |= constant should not bypass stack boundary checks",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48),
BPF_MOV64_IMM(BPF_REG_2, 34),
BPF_ALU64_IMM(BPF_OR, BPF_REG_2, 24),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.errstr = "invalid stack type R1 off=-48 access_size=58",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"constant register |= constant register should keep constant type",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48),
BPF_MOV64_IMM(BPF_REG_2, 34),
BPF_MOV64_IMM(BPF_REG_4, 13),
BPF_ALU64_REG(BPF_OR, BPF_REG_2, BPF_REG_4),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"constant register |= constant register should not bypass stack boundary checks",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48),
BPF_MOV64_IMM(BPF_REG_2, 34),
BPF_MOV64_IMM(BPF_REG_4, 24),
BPF_ALU64_REG(BPF_OR, BPF_REG_2, BPF_REG_4),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.errstr = "invalid stack type R1 off=-48 access_size=58",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"invalid direct packet write for LWT_IN",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "cannot write into packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_LWT_IN,
},
{
"invalid direct packet write for LWT_OUT",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "cannot write into packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_LWT_OUT,
},
{
"direct packet write for LWT_XMIT",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_LWT_XMIT,
},
{
"direct packet read for LWT_IN",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_LWT_IN,
},
{
"direct packet read for LWT_OUT",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_LWT_OUT,
},
{
"direct packet read for LWT_XMIT",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_LWT_XMIT,
},
{
"overlapping checks for direct packet access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 6),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_2, 6),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_LWT_XMIT,
},
{
"make headroom for LWT_XMIT",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_2, 34),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_skb_change_head),
/* split for s390 to succeed */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_2, 42),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_skb_change_head),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_LWT_XMIT,
},
{
"invalid access of tc_classid for LWT_IN",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, tc_classid)),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid bpf_context access",
},
{
"invalid access of tc_classid for LWT_OUT",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, tc_classid)),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid bpf_context access",
},
{
"invalid access of tc_classid for LWT_XMIT",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, tc_classid)),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid bpf_context access",
},
{
"leak pointer into ctx 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0])),
BPF_LD_MAP_FD(BPF_REG_2, 0),
BPF_STX_XADD(BPF_DW, BPF_REG_1, BPF_REG_2,
offsetof(struct __sk_buff, cb[0])),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 2 },
.errstr_unpriv = "R2 leaks addr into mem",
.result_unpriv = REJECT,
.result = REJECT,
.errstr = "BPF_XADD stores into R1 context is not allowed",
},
{
"leak pointer into ctx 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
offsetof(struct __sk_buff, cb[0])),
BPF_STX_XADD(BPF_DW, BPF_REG_1, BPF_REG_10,
offsetof(struct __sk_buff, cb[0])),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "R10 leaks addr into mem",
.result_unpriv = REJECT,
.result = REJECT,
.errstr = "BPF_XADD stores into R1 context is not allowed",
},
{
"leak pointer into ctx 3",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_LD_MAP_FD(BPF_REG_2, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2,
offsetof(struct __sk_buff, cb[0])),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 1 },
.errstr_unpriv = "R2 leaks addr into ctx",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"leak pointer into map val",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0),
BPF_STX_XADD(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 4 },
.errstr_unpriv = "R6 leaks addr into mem",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"helper access to map: full range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: partial range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_2, 8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: empty range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_EMIT_CALL(BPF_FUNC_trace_printk),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "invalid access to map value, value_size=48 off=0 size=0",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: out-of-bound range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val) + 8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "invalid access to map value, value_size=48 off=0 size=56",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: negative range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_2, -8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R2 min value is negative",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const imm): full range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
offsetof(struct test_val, foo)),
BPF_MOV64_IMM(BPF_REG_2,
sizeof(struct test_val) -
offsetof(struct test_val, foo)),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const imm): partial range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
offsetof(struct test_val, foo)),
BPF_MOV64_IMM(BPF_REG_2, 8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const imm): empty range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
offsetof(struct test_val, foo)),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_EMIT_CALL(BPF_FUNC_trace_printk),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "invalid access to map value, value_size=48 off=4 size=0",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const imm): out-of-bound range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
offsetof(struct test_val, foo)),
BPF_MOV64_IMM(BPF_REG_2,
sizeof(struct test_val) -
offsetof(struct test_val, foo) + 8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "invalid access to map value, value_size=48 off=4 size=52",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const imm): negative range (> adjustment)",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
offsetof(struct test_val, foo)),
BPF_MOV64_IMM(BPF_REG_2, -8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R2 min value is negative",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const imm): negative range (< adjustment)",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
offsetof(struct test_val, foo)),
BPF_MOV64_IMM(BPF_REG_2, -1),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R2 min value is negative",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const reg): full range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_3,
offsetof(struct test_val, foo)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2,
sizeof(struct test_val) -
offsetof(struct test_val, foo)),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const reg): partial range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_3,
offsetof(struct test_val, foo)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2, 8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const reg): empty range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_EMIT_CALL(BPF_FUNC_trace_printk),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R1 min value is outside of the array range",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const reg): out-of-bound range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_3,
offsetof(struct test_val, foo)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2,
sizeof(struct test_val) -
offsetof(struct test_val, foo) + 8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "invalid access to map value, value_size=48 off=4 size=52",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const reg): negative range (> adjustment)",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_3,
offsetof(struct test_val, foo)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2, -8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R2 min value is negative",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via const reg): negative range (< adjustment)",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_3,
offsetof(struct test_val, foo)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2, -1),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R2 min value is negative",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via variable): full range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_3,
offsetof(struct test_val, foo), 4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2,
sizeof(struct test_val) -
offsetof(struct test_val, foo)),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via variable): partial range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_3,
offsetof(struct test_val, foo), 4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2, 8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via variable): empty range",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_3,
offsetof(struct test_val, foo), 3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_EMIT_CALL(BPF_FUNC_trace_printk),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R1 min value is outside of the array range",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via variable): no max check",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2, 1),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R1 unbounded memory access",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to adjusted map (via variable): wrong max check",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_3,
offsetof(struct test_val, foo), 4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2,
sizeof(struct test_val) -
offsetof(struct test_val, foo) + 1),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "invalid access to map value, value_size=48 off=4 size=45",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: bounds check using <, good access",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JLT, BPF_REG_3, 32, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: bounds check using <, bad access",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JLT, BPF_REG_3, 32, 4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = REJECT,
.errstr = "R1 unbounded memory access",
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: bounds check using <=, good access",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JLE, BPF_REG_3, 32, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: bounds check using <=, bad access",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JLE, BPF_REG_3, 32, 4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = REJECT,
.errstr = "R1 unbounded memory access",
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: bounds check using s<, good access",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, 32, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, 0, -3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: bounds check using s<, good access 2",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, 32, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, -3, -3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: bounds check using s<, bad access",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, 32, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, -3, -3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = REJECT,
.errstr = "R1 min value is negative",
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: bounds check using s<=, good access",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, 32, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, 0, -3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: bounds check using s<=, good access 2",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, 32, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, -3, -3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to map: bounds check using s<=, bad access",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, 32, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, -3, -3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = REJECT,
.errstr = "R1 min value is negative",
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"map lookup helper access to map",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_EXIT_INSN(),
},
.fixup_map3 = { 3, 8 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"map update helper access to map",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_update_elem),
BPF_EXIT_INSN(),
},
.fixup_map3 = { 3, 10 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"map update helper access to map: wrong size",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_update_elem),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.fixup_map3 = { 10 },
.result = REJECT,
.errstr = "invalid access to map value, value_size=8 off=0 size=16",
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"map helper access to adjusted map (via const imm)",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2,
offsetof(struct other_val, bar)),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_EXIT_INSN(),
},
.fixup_map3 = { 3, 9 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"map helper access to adjusted map (via const imm): out-of-bound 1",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2,
sizeof(struct other_val) - 4),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_EXIT_INSN(),
},
.fixup_map3 = { 3, 9 },
.result = REJECT,
.errstr = "invalid access to map value, value_size=16 off=12 size=8",
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"map helper access to adjusted map (via const imm): out-of-bound 2",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_EXIT_INSN(),
},
.fixup_map3 = { 3, 9 },
.result = REJECT,
.errstr = "invalid access to map value, value_size=16 off=-4 size=8",
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"map helper access to adjusted map (via const reg)",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_3,
offsetof(struct other_val, bar)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_3),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_EXIT_INSN(),
},
.fixup_map3 = { 3, 10 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"map helper access to adjusted map (via const reg): out-of-bound 1",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_3,
sizeof(struct other_val) - 4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_3),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_EXIT_INSN(),
},
.fixup_map3 = { 3, 10 },
.result = REJECT,
.errstr = "invalid access to map value, value_size=16 off=12 size=8",
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"map helper access to adjusted map (via const reg): out-of-bound 2",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_3, -4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_3),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_EXIT_INSN(),
},
.fixup_map3 = { 3, 10 },
.result = REJECT,
.errstr = "invalid access to map value, value_size=16 off=-4 size=8",
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"map helper access to adjusted map (via variable)",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_3,
offsetof(struct other_val, bar), 4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_3),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_EXIT_INSN(),
},
.fixup_map3 = { 3, 11 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"map helper access to adjusted map (via variable): no max check",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_3),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_EXIT_INSN(),
},
.fixup_map3 = { 3, 10 },
.result = REJECT,
.errstr = "R2 unbounded memory access, make sure to bounds check any array access into a map",
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"map helper access to adjusted map (via variable): wrong max check",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_3,
offsetof(struct other_val, bar) + 1, 4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_3),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_EXIT_INSN(),
},
.fixup_map3 = { 3, 11 },
.result = REJECT,
.errstr = "invalid access to map value, value_size=16 off=9 size=8",
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"map element value is preserved across register spilling",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 42),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -184),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1, 0),
BPF_ST_MEM(BPF_DW, BPF_REG_3, 0, 42),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.result = ACCEPT,
.result_unpriv = REJECT,
},
{
"map element value or null is marked on register spilling",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -152),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1, 0),
BPF_ST_MEM(BPF_DW, BPF_REG_3, 0, 42),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.result = ACCEPT,
.result_unpriv = REJECT,
},
{
"map element value store of cleared call register",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R1 !read_ok",
.errstr = "R1 !read_ok",
.result = REJECT,
.result_unpriv = REJECT,
},
{
"map element value with unaligned store",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 17),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 3),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 42),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 2, 43),
BPF_ST_MEM(BPF_DW, BPF_REG_0, -2, 44),
BPF_MOV64_REG(BPF_REG_8, BPF_REG_0),
BPF_ST_MEM(BPF_DW, BPF_REG_8, 0, 32),
BPF_ST_MEM(BPF_DW, BPF_REG_8, 2, 33),
BPF_ST_MEM(BPF_DW, BPF_REG_8, -2, 34),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_8, 5),
BPF_ST_MEM(BPF_DW, BPF_REG_8, 0, 22),
BPF_ST_MEM(BPF_DW, BPF_REG_8, 4, 23),
BPF_ST_MEM(BPF_DW, BPF_REG_8, -7, 24),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_8),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, 3),
BPF_ST_MEM(BPF_DW, BPF_REG_7, 0, 22),
BPF_ST_MEM(BPF_DW, BPF_REG_7, 4, 23),
BPF_ST_MEM(BPF_DW, BPF_REG_7, -4, 24),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.result = ACCEPT,
.result_unpriv = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"map element value with unaligned load",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, MAX_ENTRIES, 9),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 3),
BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 2),
BPF_MOV64_REG(BPF_REG_8, BPF_REG_0),
BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_8, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_8, 2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 5),
BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 4),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.result = ACCEPT,
.result_unpriv = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"map element value illegal alu op, 1",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 8),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R0 bitwise operator &= on pointer",
.result = REJECT,
},
{
"map element value illegal alu op, 2",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
BPF_ALU32_IMM(BPF_ADD, BPF_REG_0, 0),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R0 32-bit pointer arithmetic prohibited",
.result = REJECT,
},
{
"map element value illegal alu op, 3",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
BPF_ALU64_IMM(BPF_DIV, BPF_REG_0, 42),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R0 pointer arithmetic with /= operator",
.result = REJECT,
},
{
"map element value illegal alu op, 4",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
BPF_ENDIAN(BPF_FROM_BE, BPF_REG_0, 64),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 pointer arithmetic prohibited",
.errstr = "invalid mem access 'inv'",
.result = REJECT,
.result_unpriv = REJECT,
},
{
"map element value illegal alu op, 5",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_MOV64_IMM(BPF_REG_3, 4096),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0),
BPF_STX_XADD(BPF_DW, BPF_REG_2, BPF_REG_3, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R0 invalid mem access 'inv'",
.result = REJECT,
},
{
"map element value is preserved across register spilling",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0,
offsetof(struct test_val, foo)),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 42),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -184),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1, 0),
BPF_ST_MEM(BPF_DW, BPF_REG_3, 0, 42),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.result = ACCEPT,
.result_unpriv = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"helper access to variable memory: stack, bitwise AND + JMP, correct bounds",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_MOV64_IMM(BPF_REG_2, 16),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 64),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: stack, bitwise AND, zero included",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_2, 16),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 64),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.errstr = "invalid indirect read from stack off -64+0 size 64",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: stack, bitwise AND + JMP, wrong max",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_2, 16),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 65),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid stack type R1 off=-64 access_size=65",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: stack, JMP, correct bounds",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_MOV64_IMM(BPF_REG_2, 16),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 64, 4),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: stack, JMP (signed), correct bounds",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_MOV64_IMM(BPF_REG_2, 16),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, 64, 4),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: stack, JMP, bounds + offset",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_2, 16),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 64, 5),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 3),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid stack type R1 off=-64 access_size=65",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: stack, JMP, wrong max",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_2, 16),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 65, 4),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid stack type R1 off=-64 access_size=65",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: stack, JMP, no max check",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_2, 16),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
/* because max wasn't checked, signed min is negative */
.errstr = "R2 min value is negative, either use unsigned or 'var &= const'",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: stack, JMP, no min check",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_2, 16),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 64, 3),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "invalid indirect read from stack off -64+0 size 64",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: stack, JMP (signed), no min check",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_2, 16),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, 64, 3),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R2 min value is negative",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: map, JMP, correct bounds",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_2,
sizeof(struct test_val), 4),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: map, JMP, wrong max",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_2,
sizeof(struct test_val) + 1, 4),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "invalid access to map value, value_size=48 off=0 size=49",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: map adjusted, JMP, correct bounds",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 20),
BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_2,
sizeof(struct test_val) - 20, 4),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: map adjusted, JMP, wrong max",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 20),
BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_2,
sizeof(struct test_val) - 19, 4),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R1 min value is outside of the array range",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: size = 0 allowed on NULL (ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_EMIT_CALL(BPF_FUNC_csum_diff),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to variable memory: size > 0 not allowed on NULL (ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_MOV64_IMM(BPF_REG_2, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 64),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_EMIT_CALL(BPF_FUNC_csum_diff),
BPF_EXIT_INSN(),
},
.errstr = "R1 type=inv expected=fp",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to variable memory: size = 0 allowed on != NULL stack pointer (ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, 0),
BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_EMIT_CALL(BPF_FUNC_csum_diff),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to variable memory: size = 0 allowed on != NULL map pointer (ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_EMIT_CALL(BPF_FUNC_csum_diff),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to variable memory: size possible = 0 allowed on != NULL stack pointer (ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 8, 7),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_EMIT_CALL(BPF_FUNC_csum_diff),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to variable memory: size possible = 0 allowed on != NULL map pointer (ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 8, 4),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_EMIT_CALL(BPF_FUNC_csum_diff),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"helper access to variable memory: size possible = 0 allowed on != NULL packet pointer (ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 7),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 8, 4),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_EMIT_CALL(BPF_FUNC_csum_diff),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.retval = 0 /* csum_diff of 64-byte packet */,
},
{
"helper access to variable memory: size = 0 not allowed on NULL (!ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.errstr = "R1 type=inv expected=fp",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: size > 0 not allowed on NULL (!ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_MOV64_IMM(BPF_REG_2, 1),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.errstr = "R1 type=inv expected=fp",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: size = 0 allowed on != NULL stack pointer (!ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: size = 0 allowed on != NULL map pointer (!ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: size possible = 0 allowed on != NULL stack pointer (!ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 8, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: size possible = 0 allowed on != NULL map pointer (!ARG_PTR_TO_MEM_OR_NULL)",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 8, 2),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: 8 bytes leak",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_MOV64_IMM(BPF_REG_2, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 63),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_EXIT_INSN(),
},
.errstr = "invalid indirect read from stack off -64+32 size 64",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"helper access to variable memory: 8 bytes no leak (init memory)",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 32),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 32),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_EMIT_CALL(BPF_FUNC_probe_read),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"invalid and of negative number",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
BPF_ALU64_IMM(BPF_AND, BPF_REG_1, -4),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R0 max value is outside of the array range",
.result = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"invalid range check",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 12),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_9, 1),
BPF_ALU32_IMM(BPF_MOD, BPF_REG_1, 2),
BPF_ALU32_IMM(BPF_ADD, BPF_REG_1, 1),
BPF_ALU32_REG(BPF_AND, BPF_REG_9, BPF_REG_1),
BPF_ALU32_IMM(BPF_ADD, BPF_REG_9, 1),
BPF_ALU32_IMM(BPF_RSH, BPF_REG_9, 1),
BPF_MOV32_IMM(BPF_REG_3, 1),
BPF_ALU32_REG(BPF_SUB, BPF_REG_3, BPF_REG_9),
BPF_ALU32_IMM(BPF_MUL, BPF_REG_3, 0x10000000),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_3),
BPF_STX_MEM(BPF_W, BPF_REG_0, BPF_REG_3, 0),
BPF_MOV64_REG(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr = "R0 max value is outside of the array range",
.result = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"map in map access",
.insns = {
BPF_ST_MEM(0, BPF_REG_10, -4, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_ST_MEM(0, BPF_REG_10, -4, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map_in_map = { 3 },
.result = ACCEPT,
},
{
"invalid inner map pointer",
.insns = {
BPF_ST_MEM(0, BPF_REG_10, -4, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_ST_MEM(0, BPF_REG_10, -4, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map_in_map = { 3 },
.errstr = "R1 pointer arithmetic on CONST_PTR_TO_MAP prohibited",
.result = REJECT,
},
{
"forgot null checking on the inner map pointer",
.insns = {
BPF_ST_MEM(0, BPF_REG_10, -4, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_ST_MEM(0, BPF_REG_10, -4, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map_in_map = { 3 },
.errstr = "R1 type=map_value_or_null expected=map_ptr",
.result = REJECT,
},
{
"ld_abs: check calling conv, r1",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_LD_ABS(BPF_W, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.errstr = "R1 !read_ok",
.result = REJECT,
},
{
"ld_abs: check calling conv, r2",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_LD_ABS(BPF_W, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.errstr = "R2 !read_ok",
.result = REJECT,
},
{
"ld_abs: check calling conv, r3",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_LD_ABS(BPF_W, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_3),
BPF_EXIT_INSN(),
},
.errstr = "R3 !read_ok",
.result = REJECT,
},
{
"ld_abs: check calling conv, r4",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_LD_ABS(BPF_W, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_4),
BPF_EXIT_INSN(),
},
.errstr = "R4 !read_ok",
.result = REJECT,
},
{
"ld_abs: check calling conv, r5",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_LD_ABS(BPF_W, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
BPF_EXIT_INSN(),
},
.errstr = "R5 !read_ok",
.result = REJECT,
},
{
"ld_abs: check calling conv, r7",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_7, 0),
BPF_LD_ABS(BPF_W, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_7),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"ld_abs: tests on r6 and skb data reload helper",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_LD_ABS(BPF_B, 0),
BPF_LD_ABS(BPF_H, 0),
BPF_LD_ABS(BPF_W, 0),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_6, 0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
BPF_MOV64_IMM(BPF_REG_2, 1),
BPF_MOV64_IMM(BPF_REG_3, 2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_vlan_push),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_7),
BPF_LD_ABS(BPF_B, 0),
BPF_LD_ABS(BPF_H, 0),
BPF_LD_ABS(BPF_W, 0),
BPF_MOV64_IMM(BPF_REG_0, 42),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 42 /* ultimate return value */,
},
{
"ld_ind: check calling conv, r1",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_1, 1),
BPF_LD_IND(BPF_W, BPF_REG_1, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.errstr = "R1 !read_ok",
.result = REJECT,
},
{
"ld_ind: check calling conv, r2",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_2, 1),
BPF_LD_IND(BPF_W, BPF_REG_2, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.errstr = "R2 !read_ok",
.result = REJECT,
},
{
"ld_ind: check calling conv, r3",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_3, 1),
BPF_LD_IND(BPF_W, BPF_REG_3, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_3),
BPF_EXIT_INSN(),
},
.errstr = "R3 !read_ok",
.result = REJECT,
},
{
"ld_ind: check calling conv, r4",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_4, 1),
BPF_LD_IND(BPF_W, BPF_REG_4, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_4),
BPF_EXIT_INSN(),
},
.errstr = "R4 !read_ok",
.result = REJECT,
},
{
"ld_ind: check calling conv, r5",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_5, 1),
BPF_LD_IND(BPF_W, BPF_REG_5, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
BPF_EXIT_INSN(),
},
.errstr = "R5 !read_ok",
.result = REJECT,
},
{
"ld_ind: check calling conv, r7",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_7, 1),
BPF_LD_IND(BPF_W, BPF_REG_7, -0x200000),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_7),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 1,
},
{
"check bpf_perf_event_data->sample_period byte load permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
#if __BYTE_ORDER == __LITTLE_ENDIAN
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct bpf_perf_event_data, sample_period)),
#else
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
offsetof(struct bpf_perf_event_data, sample_period) + 7),
#endif
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_PERF_EVENT,
},
{
"check bpf_perf_event_data->sample_period half load permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
#if __BYTE_ORDER == __LITTLE_ENDIAN
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct bpf_perf_event_data, sample_period)),
#else
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct bpf_perf_event_data, sample_period) + 6),
#endif
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_PERF_EVENT,
},
{
"check bpf_perf_event_data->sample_period word load permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
#if __BYTE_ORDER == __LITTLE_ENDIAN
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct bpf_perf_event_data, sample_period)),
#else
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct bpf_perf_event_data, sample_period) + 4),
#endif
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_PERF_EVENT,
},
{
"check bpf_perf_event_data->sample_period dword load permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1,
offsetof(struct bpf_perf_event_data, sample_period)),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_PERF_EVENT,
},
{
"check skb->data half load not permitted",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
#if __BYTE_ORDER == __LITTLE_ENDIAN
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, data)),
#else
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, data) + 2),
#endif
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid bpf_context access",
},
{
"check skb->tc_classid half load not permitted for lwt prog",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
#if __BYTE_ORDER == __LITTLE_ENDIAN
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, tc_classid)),
#else
BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, tc_classid) + 2),
#endif
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid bpf_context access",
.prog_type = BPF_PROG_TYPE_LWT_IN,
},
{
"bounds checks mixing signed and unsigned, positive bounds",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, 2),
BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 3),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 4, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, -1),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 3),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 2",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, -1),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 5),
BPF_MOV64_IMM(BPF_REG_8, 0),
BPF_ALU64_REG(BPF_ADD, BPF_REG_8, BPF_REG_1),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_8, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_8),
BPF_ST_MEM(BPF_B, BPF_REG_8, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 3",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, -1),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 4),
BPF_MOV64_REG(BPF_REG_8, BPF_REG_1),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_8, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_8),
BPF_ST_MEM(BPF_B, BPF_REG_8, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 4",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, 1),
BPF_ALU64_REG(BPF_AND, BPF_REG_1, BPF_REG_2),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
},
{
"bounds checks mixing signed and unsigned, variant 5",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, -1),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 5),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 4),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 4),
BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 6",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, -512),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_6, -1),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_6, 5),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_4, 1, 4),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 1),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_ST_MEM(BPF_H, BPF_REG_10, -512, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_load_bytes),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R4 min value is negative, either use unsigned",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 7",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, 1024 * 1024 * 1024),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 3),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
},
{
"bounds checks mixing signed and unsigned, variant 8",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, -1),
BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 9",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_LD_IMM64(BPF_REG_2, -9223372036854775808ULL),
BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
},
{
"bounds checks mixing signed and unsigned, variant 10",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 11",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, -1),
BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2),
/* Dead branch. */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 12",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, -6),
BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 13",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, 2),
BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2),
BPF_MOV64_IMM(BPF_REG_7, 1),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_7, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_1),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_7, 4, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_7),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 14",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_9, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, -1),
BPF_MOV64_IMM(BPF_REG_8, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_9, 42, 6),
BPF_JMP_REG(BPF_JSGT, BPF_REG_8, BPF_REG_1, 3),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, -3),
BPF_JMP_IMM(BPF_JA, 0, 0, -7),
},
.fixup_map1 = { 4 },
.errstr = "R0 invalid mem access 'inv'",
.result = REJECT,
},
{
"bounds checks mixing signed and unsigned, variant 15",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
BPF_MOV64_IMM(BPF_REG_2, -6),
BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_JMP_IMM(BPF_JGT, BPF_REG_0, 1, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "unbounded min value",
.result = REJECT,
.result_unpriv = REJECT,
},
{
"subtraction bounds (map value) variant 1",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_1, 0xff, 7),
BPF_LDX_MEM(BPF_B, BPF_REG_3, BPF_REG_0, 1),
BPF_JMP_IMM(BPF_JGT, BPF_REG_3, 0xff, 5),
BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_3),
BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 56),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "R0 max value is outside of the array range",
.result = REJECT,
},
{
"subtraction bounds (map value) variant 2",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8),
BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGT, BPF_REG_1, 0xff, 6),
BPF_LDX_MEM(BPF_B, BPF_REG_3, BPF_REG_0, 1),
BPF_JMP_IMM(BPF_JGT, BPF_REG_3, 0xff, 4),
BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.",
.result = REJECT,
},
{
"bounds check based on zero-extended MOV",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
/* r2 = 0x0000'0000'ffff'ffff */
BPF_MOV32_IMM(BPF_REG_2, 0xffffffff),
/* r2 = 0 */
BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 32),
/* no-op */
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
/* access at offset 0 */
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
/* exit */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT
},
{
"bounds check based on sign-extended MOV. test1",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
/* r2 = 0xffff'ffff'ffff'ffff */
BPF_MOV64_IMM(BPF_REG_2, 0xffffffff),
/* r2 = 0xffff'ffff */
BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 32),
/* r0 = <oob pointer> */
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
/* access to OOB pointer */
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
/* exit */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "map_value pointer and 4294967295",
.result = REJECT
},
{
"bounds check based on sign-extended MOV. test2",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
/* r2 = 0xffff'ffff'ffff'ffff */
BPF_MOV64_IMM(BPF_REG_2, 0xffffffff),
/* r2 = 0xfff'ffff */
BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36),
/* r0 = <oob pointer> */
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
/* access to OOB pointer */
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
/* exit */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "R0 min value is outside of the array range",
.result = REJECT
},
{
"bounds check based on reg_off + var_off + insn_off. test1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_ALU64_IMM(BPF_AND, BPF_REG_6, 1),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, (1 << 29) - 1),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, (1 << 29) - 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 3),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 4 },
.errstr = "value_size=8 off=1073741825",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"bounds check based on reg_off + var_off + insn_off. test2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_ALU64_IMM(BPF_AND, BPF_REG_6, 1),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, (1 << 30) - 1),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, (1 << 29) - 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 3),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 4 },
.errstr = "value 1073741823",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"bounds check after truncation of non-boundary-crossing range",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
/* r1 = [0x00, 0xff] */
BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_2, 1),
/* r2 = 0x10'0000'0000 */
BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 36),
/* r1 = [0x10'0000'0000, 0x10'0000'00ff] */
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_2),
/* r1 = [0x10'7fff'ffff, 0x10'8000'00fe] */
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x7fffffff),
/* r1 = [0x00, 0xff] */
BPF_ALU32_IMM(BPF_SUB, BPF_REG_1, 0x7fffffff),
/* r1 = 0 */
BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8),
/* no-op */
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
/* access at offset 0 */
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
/* exit */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT
},
{
"bounds check after truncation of boundary-crossing range (1)",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
/* r1 = [0x00, 0xff] */
BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0xffffff80 >> 1),
/* r1 = [0xffff'ff80, 0x1'0000'007f] */
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0xffffff80 >> 1),
/* r1 = [0xffff'ff80, 0xffff'ffff] or
* [0x0000'0000, 0x0000'007f]
*/
BPF_ALU32_IMM(BPF_ADD, BPF_REG_1, 0),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 0xffffff80 >> 1),
/* r1 = [0x00, 0xff] or
* [0xffff'ffff'0000'0080, 0xffff'ffff'ffff'ffff]
*/
BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 0xffffff80 >> 1),
/* r1 = 0 or
* [0x00ff'ffff'ff00'0000, 0x00ff'ffff'ffff'ffff]
*/
BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8),
/* no-op or OOB pointer computation */
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
/* potentially OOB access */
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
/* exit */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
/* not actually fully unbounded, but the bound is very high */
.errstr = "R0 unbounded memory access",
.result = REJECT
},
{
"bounds check after truncation of boundary-crossing range (2)",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
/* r1 = [0x00, 0xff] */
BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0xffffff80 >> 1),
/* r1 = [0xffff'ff80, 0x1'0000'007f] */
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0xffffff80 >> 1),
/* r1 = [0xffff'ff80, 0xffff'ffff] or
* [0x0000'0000, 0x0000'007f]
* difference to previous test: truncation via MOV32
* instead of ALU32.
*/
BPF_MOV32_REG(BPF_REG_1, BPF_REG_1),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 0xffffff80 >> 1),
/* r1 = [0x00, 0xff] or
* [0xffff'ffff'0000'0080, 0xffff'ffff'ffff'ffff]
*/
BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 0xffffff80 >> 1),
/* r1 = 0 or
* [0x00ff'ffff'ff00'0000, 0x00ff'ffff'ffff'ffff]
*/
BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8),
/* no-op or OOB pointer computation */
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
/* potentially OOB access */
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
/* exit */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
/* not actually fully unbounded, but the bound is very high */
.errstr = "R0 unbounded memory access",
.result = REJECT
},
{
"bounds check after wrapping 32-bit addition",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
/* r1 = 0x7fff'ffff */
BPF_MOV64_IMM(BPF_REG_1, 0x7fffffff),
/* r1 = 0xffff'fffe */
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x7fffffff),
/* r1 = 0 */
BPF_ALU32_IMM(BPF_ADD, BPF_REG_1, 2),
/* no-op */
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
/* access at offset 0 */
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
/* exit */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT
},
{
"bounds check after shift with oversized count operand",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
BPF_MOV64_IMM(BPF_REG_2, 32),
BPF_MOV64_IMM(BPF_REG_1, 1),
/* r1 = (u32)1 << (u32)32 = ? */
BPF_ALU32_REG(BPF_LSH, BPF_REG_1, BPF_REG_2),
/* r1 = [0x0000, 0xffff] */
BPF_ALU64_IMM(BPF_AND, BPF_REG_1, 0xffff),
/* computes unknown pointer, potentially OOB */
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
/* potentially OOB access */
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
/* exit */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "R0 max value is outside of the array range",
.result = REJECT
},
{
"bounds check after right shift of maybe-negative number",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
/* r1 = [0x00, 0xff] */
BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
/* r1 = [-0x01, 0xfe] */
BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 1),
/* r1 = 0 or 0xff'ffff'ffff'ffff */
BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8),
/* r1 = 0 or 0xffff'ffff'ffff */
BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8),
/* computes unknown pointer, potentially OOB */
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
/* potentially OOB access */
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
/* exit */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "R0 unbounded memory access",
.result = REJECT
},
{
"bounds check map access with off+size signed 32bit overflow. test1",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x7ffffffe),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0),
BPF_JMP_A(0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "map_value pointer and 2147483646",
.result = REJECT
},
{
"bounds check map access with off+size signed 32bit overflow. test2",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x1fffffff),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x1fffffff),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x1fffffff),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0),
BPF_JMP_A(0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "pointer offset 1073741822",
.result = REJECT
},
{
"bounds check map access with off+size signed 32bit overflow. test3",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_0, 0x1fffffff),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_0, 0x1fffffff),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 2),
BPF_JMP_A(0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "pointer offset -1073741822",
.result = REJECT
},
{
"bounds check map access with off+size signed 32bit overflow. test4",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_1, 1000000),
BPF_ALU64_IMM(BPF_MUL, BPF_REG_1, 1000000),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 2),
BPF_JMP_A(0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "map_value pointer and 1000000000000",
.result = REJECT
},
{
"pointer/scalar confusion in state equality check (way 1)",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0),
BPF_JMP_A(1),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_10),
BPF_JMP_A(0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
.retval = POINTER_VALUE,
.result_unpriv = REJECT,
.errstr_unpriv = "R0 leaks addr as return value"
},
{
"pointer/scalar confusion in state equality check (way 2)",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_10),
BPF_JMP_A(1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = ACCEPT,
.retval = POINTER_VALUE,
.result_unpriv = REJECT,
.errstr_unpriv = "R0 leaks addr as return value"
},
{
"variable-offset ctx access",
.insns = {
/* Get an unknown value */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0),
/* Make it small and 4-byte aligned */
BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 4),
/* add it to skb. We now have either &skb->len or
* &skb->pkt_type, but we don't know which
*/
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_2),
/* dereference it */
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
BPF_EXIT_INSN(),
},
.errstr = "variable ctx access var_off=(0x0; 0x4)",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_LWT_IN,
},
{
"variable-offset stack access",
.insns = {
/* Fill the top 8 bytes of the stack */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
/* Get an unknown value */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0),
/* Make it small and 4-byte aligned */
BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 4),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_2, 8),
/* add it to fp. We now have either fp-4 or fp-8, but
* we don't know which
*/
BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_10),
/* dereference it */
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_2, 0),
BPF_EXIT_INSN(),
},
.errstr = "variable stack access var_off=(0xfffffffffffffff8; 0x4)",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_LWT_IN,
},
{
"indirect variable-offset stack access",
.insns = {
/* Fill the top 8 bytes of the stack */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
/* Get an unknown value */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0),
/* Make it small and 4-byte aligned */
BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 4),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_2, 8),
/* add it to fp. We now have either fp-4 or fp-8, but
* we don't know which
*/
BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_10),
/* dereference it indirectly */
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 5 },
.errstr = "variable stack read R2",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_LWT_IN,
},
{
"direct stack access with 32-bit wraparound. test1",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x7fffffff),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x7fffffff),
BPF_MOV32_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
BPF_EXIT_INSN()
},
.errstr = "fp pointer and 2147483647",
.result = REJECT
},
{
"direct stack access with 32-bit wraparound. test2",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x3fffffff),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x3fffffff),
BPF_MOV32_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
BPF_EXIT_INSN()
},
.errstr = "fp pointer and 1073741823",
.result = REJECT
},
{
"direct stack access with 32-bit wraparound. test3",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x1fffffff),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x1fffffff),
BPF_MOV32_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
BPF_EXIT_INSN()
},
.errstr = "fp pointer offset 1073741822",
.result = REJECT
},
{
"liveness pruning and write screening",
.insns = {
/* Get an unknown value */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0),
/* branch conditions teach us nothing about R2 */
BPF_JMP_IMM(BPF_JGE, BPF_REG_2, 0, 1),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGE, BPF_REG_2, 0, 1),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R0 !read_ok",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_LWT_IN,
},
{
"varlen_map_value_access pruning",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8),
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES),
BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_JMP_IMM(BPF_JA, 0, 0, 0),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 3 },
.errstr_unpriv = "R0 leaks addr",
.errstr = "R0 unbounded memory access",
.result_unpriv = REJECT,
.result = REJECT,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"invalid 64-bit BPF_END",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, 0),
{
.code = BPF_ALU64 | BPF_END | BPF_TO_LE,
.dst_reg = BPF_REG_0,
.src_reg = 0,
.off = 0,
.imm = 32,
},
BPF_EXIT_INSN(),
},
.errstr = "unknown opcode d7",
.result = REJECT,
},
{
"XDP, using ifindex from netdev",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, ingress_ifindex)),
BPF_JMP_IMM(BPF_JLT, BPF_REG_2, 1, 1),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
.retval = 1,
},
{
"meta access, test1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_0, 8),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid access to packet, off=-8",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test3",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test4",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_4),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test5",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_3),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_4, 3),
BPF_MOV64_IMM(BPF_REG_2, -8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_xdp_adjust_meta),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_3, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R3 !read_ok",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test6",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_3),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_0, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test7",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_3),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test8",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 0xFFFF),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test9",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 0xFFFF),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 1),
BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test10",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_IMM(BPF_REG_5, 42),
BPF_MOV64_IMM(BPF_REG_6, 24),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_5, -8),
BPF_STX_XADD(BPF_DW, BPF_REG_10, BPF_REG_6, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_5, BPF_REG_10, -8),
BPF_JMP_IMM(BPF_JGT, BPF_REG_5, 100, 6),
BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_5),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_6, BPF_REG_5, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test11",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_IMM(BPF_REG_5, 42),
BPF_MOV64_IMM(BPF_REG_6, 24),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_5, -8),
BPF_STX_XADD(BPF_DW, BPF_REG_10, BPF_REG_6, -8),
BPF_LDX_MEM(BPF_DW, BPF_REG_5, BPF_REG_10, -8),
BPF_JMP_IMM(BPF_JGT, BPF_REG_5, 100, 6),
BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_5),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_2),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_6, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_5, BPF_REG_5, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"meta access, test12",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 16),
BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_4, 5),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_3, 0),
BPF_MOV64_REG(BPF_REG_5, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 16),
BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"arithmetic ops make PTR_TO_CTX unusable",
.insns = {
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
offsetof(struct __sk_buff, data) -
offsetof(struct __sk_buff, mark)),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_EXIT_INSN(),
},
.errstr = "dereference of modified ctx ptr",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"pkt_end - pkt_start is allowed",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = TEST_DATA_LEN,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"XDP pkt read, pkt_end mangling, bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R3 pointer arithmetic on PTR_TO_PACKET_END",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_end mangling, bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_ALU64_IMM(BPF_SUB, BPF_REG_3, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R3 pointer arithmetic on PTR_TO_PACKET_END",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data' > pkt_end, good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data' > pkt_end, bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_data' > pkt_end, bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_end > pkt_data', good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_end > pkt_data', bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_end > pkt_data', bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data' < pkt_end, good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_data' < pkt_end, bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data' < pkt_end, bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_end < pkt_data', good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_end < pkt_data', bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_end < pkt_data', bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data' >= pkt_end, good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_data' >= pkt_end, bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data' >= pkt_end, bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_end >= pkt_data', good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_end >= pkt_data', bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_end >= pkt_data', bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data' <= pkt_end, good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data' <= pkt_end, bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_data' <= pkt_end, bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_end <= pkt_data', good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_end <= pkt_data', bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_end <= pkt_data', bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_meta' > pkt_data, good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_meta' > pkt_data, bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_meta' > pkt_data, bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data > pkt_meta', good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_data > pkt_meta', bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data > pkt_meta', bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_meta' < pkt_data, good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_meta' < pkt_data, bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_meta' < pkt_data, bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data < pkt_meta', good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data < pkt_meta', bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_data < pkt_meta', bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 0),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_meta' >= pkt_data, good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_meta' >= pkt_data, bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_meta' >= pkt_data, bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_data >= pkt_meta', good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data >= pkt_meta', bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_data >= pkt_meta', bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_meta' <= pkt_data, good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_meta' <= pkt_data, bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_meta' <= pkt_data, bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data <= pkt_meta', good access",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"XDP pkt read, pkt_data <= pkt_meta', bad access 1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"XDP pkt read, pkt_data <= pkt_meta', bad access 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data_meta)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr = "R1 offset is outside of the packet",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
},
{
"check deducing bounds from const, 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 1, 0),
BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R0 tried to subtract pointer from scalar",
},
{
"check deducing bounds from const, 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 1, 1),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSLE, BPF_REG_0, 1, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 1,
},
{
"check deducing bounds from const, 3",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSLE, BPF_REG_0, 0, 0),
BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R0 tried to subtract pointer from scalar",
},
{
"check deducing bounds from const, 4",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSLE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
},
{
"check deducing bounds from const, 5",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 1),
BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R0 tried to subtract pointer from scalar",
},
{
"check deducing bounds from const, 6",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R0 tried to subtract pointer from scalar",
},
{
"check deducing bounds from const, 7",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, ~0),
BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 0),
BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "dereference of modified ctx ptr",
},
{
"check deducing bounds from const, 8",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, ~0),
BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 1),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "dereference of modified ctx ptr",
},
{
"check deducing bounds from const, 9",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 0),
BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R0 tried to subtract pointer from scalar",
},
{
"check deducing bounds from const, 10",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSLE, BPF_REG_0, 0, 0),
/* Marks reg as unknown. */
BPF_ALU64_IMM(BPF_NEG, BPF_REG_0, 0),
BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "math between ctx pointer and register with unbounded min value is not allowed",
},
{
"bpf_exit with invalid return code. test1",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
BPF_EXIT_INSN(),
},
.errstr = "R0 has value (0x0; 0xffffffff)",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
},
{
"bpf_exit with invalid return code. test2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
},
{
"bpf_exit with invalid return code. test3",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 3),
BPF_EXIT_INSN(),
},
.errstr = "R0 has value (0x0; 0x3)",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
},
{
"bpf_exit with invalid return code. test4",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
},
{
"bpf_exit with invalid return code. test5",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.errstr = "R0 has value (0x2; 0x0)",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
},
{
"bpf_exit with invalid return code. test6",
.insns = {
BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.errstr = "R0 is not a known value (ctx)",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
},
{
"bpf_exit with invalid return code. test7",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 4),
BPF_ALU64_REG(BPF_MUL, BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.errstr = "R0 has unknown scalar value",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
},
{
"calls: basic sanity",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.result = ACCEPT,
},
{
"calls: not on unpriviledged",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "function calls to other bpf functions are allowed for root only",
.result_unpriv = REJECT,
.result = ACCEPT,
.retval = 1,
},
{
"calls: div by 0 in subprog",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 8),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(BPF_REG_2, 0),
BPF_MOV32_IMM(BPF_REG_3, 1),
BPF_ALU32_REG(BPF_DIV, BPF_REG_3, BPF_REG_2),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 1,
},
{
"calls: multiple ret types in subprog 1",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 8),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
BPF_MOV32_IMM(BPF_REG_0, 42),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = REJECT,
.errstr = "R0 invalid mem access 'inv'",
},
{
"calls: multiple ret types in subprog 2",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 8),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 9),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_6,
offsetof(struct __sk_buff, data)),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 64),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.fixup_map1 = { 16 },
.result = REJECT,
.errstr = "R0 min value is outside of the array range",
},
{
"calls: overlapping caller/callee",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "last insn is not an exit or jmp",
.result = REJECT,
},
{
"calls: wrong recursive calls",
.insns = {
BPF_JMP_IMM(BPF_JA, 0, 0, 4),
BPF_JMP_IMM(BPF_JA, 0, 0, 4),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "jump out of range",
.result = REJECT,
},
{
"calls: wrong src reg",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 2, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "BPF_CALL uses reserved fields",
.result = REJECT,
},
{
"calls: wrong off value",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, -1, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "BPF_CALL uses reserved fields",
.result = REJECT,
},
{
"calls: jump back loop",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -1),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "back-edge from insn 0 to 0",
.result = REJECT,
},
{
"calls: conditional call",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "jump out of range",
.result = REJECT,
},
{
"calls: conditional call 2",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 3),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.result = ACCEPT,
},
{
"calls: conditional call 3",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
BPF_JMP_IMM(BPF_JA, 0, 0, 4),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, -6),
BPF_MOV64_IMM(BPF_REG_0, 3),
BPF_JMP_IMM(BPF_JA, 0, 0, -6),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "back-edge from insn",
.result = REJECT,
},
{
"calls: conditional call 4",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, -5),
BPF_MOV64_IMM(BPF_REG_0, 3),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.result = ACCEPT,
},
{
"calls: conditional call 5",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, -6),
BPF_MOV64_IMM(BPF_REG_0, 3),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "back-edge from insn",
.result = REJECT,
},
{
"calls: conditional call 6",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -2),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "back-edge from insn",
.result = REJECT,
},
{
"calls: using r0 returned by callee",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.result = ACCEPT,
},
{
"calls: using uninit r0 from callee",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "!read_ok",
.result = REJECT,
},
{
"calls: callee is using r1",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, len)),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_ACT,
.result = ACCEPT,
.retval = TEST_DATA_LEN,
},
{
"calls: callee using args1",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "allowed for root only",
.result_unpriv = REJECT,
.result = ACCEPT,
.retval = POINTER_VALUE,
},
{
"calls: callee using wrong args2",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "R2 !read_ok",
.result = REJECT,
},
{
"calls: callee using two args",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_6,
offsetof(struct __sk_buff, len)),
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_6,
offsetof(struct __sk_buff, len)),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "allowed for root only",
.result_unpriv = REJECT,
.result = ACCEPT,
.retval = TEST_DATA_LEN + TEST_DATA_LEN - ETH_HLEN - ETH_HLEN,
},
{
"calls: callee changing pkt pointers",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_8, BPF_REG_6),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_8, 8),
BPF_JMP_REG(BPF_JGT, BPF_REG_8, BPF_REG_7, 2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
/* clear_all_pkt_pointers() has to walk all frames
* to make sure that pkt pointers in the caller
* are cleared when callee is calling a helper that
* adjusts packet size
*/
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_MOV32_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_xdp_adjust_head),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "R6 invalid mem access 'inv'",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"calls: two calls with args",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 6),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_7),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, len)),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = TEST_DATA_LEN + TEST_DATA_LEN,
},
{
"calls: calls with stack arith",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -64),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -64),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -64),
BPF_MOV64_IMM(BPF_REG_0, 42),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 42,
},
{
"calls: calls with misaligned stack access",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -63),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -61),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -63),
BPF_MOV64_IMM(BPF_REG_0, 42),
BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
.errstr = "misaligned stack access",
.result = REJECT,
},
{
"calls: calls control flow, jump test",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 42),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 43),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_JMP_IMM(BPF_JA, 0, 0, -3),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 43,
},
{
"calls: calls control flow, jump test 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 42),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 43),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -3),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.errstr = "jump out of range from insn 1 to 4",
.result = REJECT,
},
{
"calls: two calls with bad jump",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 6),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_7),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, len)),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -3),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "jump out of range from insn 11 to 9",
.result = REJECT,
},
{
"calls: recursive call. test1",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -1),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "back-edge",
.result = REJECT,
},
{
"calls: recursive call. test2",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -3),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "back-edge",
.result = REJECT,
},
{
"calls: unreachable code",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "unreachable insn 6",
.result = REJECT,
},
{
"calls: invalid call",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -4),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "invalid destination",
.result = REJECT,
},
{
"calls: invalid call 2",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 0x7fffffff),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "invalid destination",
.result = REJECT,
},
{
"calls: jumping across function bodies. test1",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, -3),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "jump out of range",
.result = REJECT,
},
{
"calls: jumping across function bodies. test2",
.insns = {
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "jump out of range",
.result = REJECT,
},
{
"calls: call without exit",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, -2),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "not an exit",
.result = REJECT,
},
{
"calls: call into middle of ld_imm64",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_LD_IMM64(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "last insn",
.result = REJECT,
},
{
"calls: call into middle of other call",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "last insn",
.result = REJECT,
},
{
"calls: ld_abs with changing ctx data in callee",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_LD_ABS(BPF_B, 0),
BPF_LD_ABS(BPF_H, 0),
BPF_LD_ABS(BPF_W, 0),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_6),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 5),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_7),
BPF_LD_ABS(BPF_B, 0),
BPF_LD_ABS(BPF_H, 0),
BPF_LD_ABS(BPF_W, 0),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_2, 1),
BPF_MOV64_IMM(BPF_REG_3, 2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_vlan_push),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.errstr = "BPF_LD_[ABS|IND] instructions cannot be mixed",
.result = REJECT,
},
{
"calls: two calls with bad fallthrough",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 6),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_7),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_0),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
offsetof(struct __sk_buff, len)),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
.errstr = "not an exit",
.result = REJECT,
},
{
"calls: two calls with stack read",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 6),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_7),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
.result = ACCEPT,
},
{
"calls: two calls with stack write",
.insns = {
/* main prog */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -16),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 7),
BPF_MOV64_REG(BPF_REG_8, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_8, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_8),
/* write into stack frame of main prog */
BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* subprog 2 */
/* read from stack frame of main prog */
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
.result = ACCEPT,
},
{
"calls: stack overflow using two frames (pre-call access)",
.insns = {
/* prog 1 */
BPF_ST_MEM(BPF_B, BPF_REG_10, -300, 0),
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
/* prog 2 */
BPF_ST_MEM(BPF_B, BPF_REG_10, -300, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
.errstr = "combined stack size",
.result = REJECT,
},
{
"calls: stack overflow using two frames (post-call access)",
.insns = {
/* prog 1 */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 2),
BPF_ST_MEM(BPF_B, BPF_REG_10, -300, 0),
BPF_EXIT_INSN(),
/* prog 2 */
BPF_ST_MEM(BPF_B, BPF_REG_10, -300, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
.errstr = "combined stack size",
.result = REJECT,
},
{
"calls: stack depth check using three frames. test1",
.insns = {
/* main */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4), /* call A */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 5), /* call B */
BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* A */
BPF_ST_MEM(BPF_B, BPF_REG_10, -256, 0),
BPF_EXIT_INSN(),
/* B */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, -3), /* call A */
BPF_ST_MEM(BPF_B, BPF_REG_10, -64, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
/* stack_main=32, stack_A=256, stack_B=64
* and max(main+A, main+A+B) < 512
*/
.result = ACCEPT,
},
{
"calls: stack depth check using three frames. test2",
.insns = {
/* main */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4), /* call A */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 5), /* call B */
BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* A */
BPF_ST_MEM(BPF_B, BPF_REG_10, -64, 0),
BPF_EXIT_INSN(),
/* B */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, -3), /* call A */
BPF_ST_MEM(BPF_B, BPF_REG_10, -256, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
/* stack_main=32, stack_A=64, stack_B=256
* and max(main+A, main+A+B) < 512
*/
.result = ACCEPT,
},
{
"calls: stack depth check using three frames. test3",
.insns = {
/* main */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 6), /* call A */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 8), /* call B */
BPF_JMP_IMM(BPF_JGE, BPF_REG_6, 0, 1),
BPF_ST_MEM(BPF_B, BPF_REG_10, -64, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* A */
BPF_JMP_IMM(BPF_JLT, BPF_REG_1, 10, 1),
BPF_EXIT_INSN(),
BPF_ST_MEM(BPF_B, BPF_REG_10, -224, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, -3),
/* B */
BPF_JMP_IMM(BPF_JGT, BPF_REG_1, 2, 1),
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, -6), /* call A */
BPF_ST_MEM(BPF_B, BPF_REG_10, -256, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
/* stack_main=64, stack_A=224, stack_B=256
* and max(main+A, main+A+B) > 512
*/
.errstr = "combined stack",
.result = REJECT,
},
{
"calls: stack depth check using three frames. test4",
/* void main(void) {
* func1(0);
* func1(1);
* func2(1);
* }
* void func1(int alloc_or_recurse) {
* if (alloc_or_recurse) {
* frame_pointer[-300] = 1;
* } else {
* func2(alloc_or_recurse);
* }
* }
* void func2(int alloc_or_recurse) {
* if (alloc_or_recurse) {
* frame_pointer[-300] = 1;
* }
* }
*/
.insns = {
/* main */
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 6), /* call A */
BPF_MOV64_IMM(BPF_REG_1, 1),
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4), /* call A */
BPF_MOV64_IMM(BPF_REG_1, 1),
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 7), /* call B */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* A */
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 2),
BPF_ST_MEM(BPF_B, BPF_REG_10, -300, 0),
BPF_EXIT_INSN(),
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call B */
BPF_EXIT_INSN(),
/* B */
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
BPF_ST_MEM(BPF_B, BPF_REG_10, -300, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
.result = REJECT,
.errstr = "combined stack",
},
{
"calls: stack depth check using three frames. test5",
.insns = {
/* main */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call A */
BPF_EXIT_INSN(),
/* A */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call B */
BPF_EXIT_INSN(),
/* B */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call C */
BPF_EXIT_INSN(),
/* C */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call D */
BPF_EXIT_INSN(),
/* D */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call E */
BPF_EXIT_INSN(),
/* E */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call F */
BPF_EXIT_INSN(),
/* F */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call G */
BPF_EXIT_INSN(),
/* G */
BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 1), /* call H */
BPF_EXIT_INSN(),
/* H */
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
.errstr = "call stack",
.result = REJECT,
},
{
"calls: spill into caller stack frame",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
.errstr = "cannot spill",
.result = REJECT,
},
{
"calls: write into caller stack frame",
.insns = {
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
BPF_EXIT_INSN(),
BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
.result = ACCEPT,
.retval = 42,
},
{
"calls: write into callee stack frame",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 42),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, -8),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_XDP,
.errstr = "cannot return stack pointer",
.result = REJECT,
},
{
"calls: two calls with stack write and void return",
.insns = {
/* main prog */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -16),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
/* subprog 2 */
/* write into stack frame of main prog */
BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 0),
BPF_EXIT_INSN(), /* void return */
},
.prog_type = BPF_PROG_TYPE_XDP,
.result = ACCEPT,
},
{
"calls: ambiguous return value",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 5),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.errstr_unpriv = "allowed for root only",
.result_unpriv = REJECT,
.errstr = "R0 !read_ok",
.result = REJECT,
},
{
"calls: two calls that return map_value",
.insns = {
/* main prog */
/* pass fp-16, fp-8 into a function */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 8),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
/* fetch secound map_value_ptr from the stack */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -16),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
/* call 3rd function twice */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
/* first time with fp-8 */
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
/* second time with fp-16 */
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
/* subprog 2 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
/* lookup from map */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
/* write map_value_ptr into stack frame of main prog */
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(), /* return 0 */
},
.prog_type = BPF_PROG_TYPE_XDP,
.fixup_map1 = { 23 },
.result = ACCEPT,
},
{
"calls: two calls that return map_value with bool condition",
.insns = {
/* main prog */
/* pass fp-16, fp-8 into a function */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
/* call 3rd function twice */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
/* first time with fp-8 */
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 9),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
/* second time with fp-16 */
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 1, 2),
/* fetch secound map_value_ptr from the stack */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_7, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
BPF_EXIT_INSN(),
/* subprog 2 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
/* lookup from map */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(), /* return 0 */
/* write map_value_ptr into stack frame of main prog */
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(), /* return 1 */
},
.prog_type = BPF_PROG_TYPE_XDP,
.fixup_map1 = { 23 },
.result = ACCEPT,
},
{
"calls: two calls that return map_value with incorrect bool check",
.insns = {
/* main prog */
/* pass fp-16, fp-8 into a function */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
/* call 3rd function twice */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
/* first time with fp-8 */
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 9),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
/* second time with fp-16 */
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
/* fetch secound map_value_ptr from the stack */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_7, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
BPF_EXIT_INSN(),
/* subprog 2 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
/* lookup from map */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(), /* return 0 */
/* write map_value_ptr into stack frame of main prog */
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(), /* return 1 */
},
.prog_type = BPF_PROG_TYPE_XDP,
.fixup_map1 = { 23 },
.result = REJECT,
.errstr = "invalid read from stack off -16+0 size 8",
},
{
"calls: two calls that receive map_value via arg=ptr_stack_of_caller. test1",
.insns = {
/* main prog */
/* pass fp-16, fp-8 into a function */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
/* 1st lookup from map */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_8, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
/* write map_value_ptr into stack frame of main prog at fp-8 */
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_8, 1),
/* 2nd lookup from map */
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), /* 20 */
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, /* 24 */
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_9, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
/* write map_value_ptr into stack frame of main prog at fp-16 */
BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_9, 1),
/* call 3rd func with fp-8, 0|1, fp-16, 0|1 */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), /* 30 */
BPF_MOV64_REG(BPF_REG_2, BPF_REG_8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_7),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_9),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), /* 34 */
BPF_EXIT_INSN(),
/* subprog 2 */
/* if arg2 == 1 do *arg1 = 0 */
BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
/* if arg4 == 1 do *arg3 = 0 */
BPF_JMP_IMM(BPF_JNE, BPF_REG_4, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 2, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.fixup_map1 = { 12, 22 },
.result = REJECT,
.errstr = "invalid access to map value, value_size=8 off=2 size=8",
},
{
"calls: two calls that receive map_value via arg=ptr_stack_of_caller. test2",
.insns = {
/* main prog */
/* pass fp-16, fp-8 into a function */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
/* 1st lookup from map */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_8, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
/* write map_value_ptr into stack frame of main prog at fp-8 */
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_8, 1),
/* 2nd lookup from map */
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), /* 20 */
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, /* 24 */
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_9, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
/* write map_value_ptr into stack frame of main prog at fp-16 */
BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_9, 1),
/* call 3rd func with fp-8, 0|1, fp-16, 0|1 */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), /* 30 */
BPF_MOV64_REG(BPF_REG_2, BPF_REG_8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_7),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_9),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), /* 34 */
BPF_EXIT_INSN(),
/* subprog 2 */
/* if arg2 == 1 do *arg1 = 0 */
BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
/* if arg4 == 1 do *arg3 = 0 */
BPF_JMP_IMM(BPF_JNE, BPF_REG_4, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.fixup_map1 = { 12, 22 },
.result = ACCEPT,
},
{
"calls: two jumps that receive map_value via arg=ptr_stack_of_jumper. test3",
.insns = {
/* main prog */
/* pass fp-16, fp-8 into a function */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
/* 1st lookup from map */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -24, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -24),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_8, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
/* write map_value_ptr into stack frame of main prog at fp-8 */
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_8, 1),
/* 2nd lookup from map */
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -24),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_9, 0), // 26
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
/* write map_value_ptr into stack frame of main prog at fp-16 */
BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_9, 1),
/* call 3rd func with fp-8, 0|1, fp-16, 0|1 */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), // 30
BPF_MOV64_REG(BPF_REG_2, BPF_REG_8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_7),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_9),
BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1), // 34
BPF_JMP_IMM(BPF_JA, 0, 0, -30),
/* subprog 2 */
/* if arg2 == 1 do *arg1 = 0 */
BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
/* if arg4 == 1 do *arg3 = 0 */
BPF_JMP_IMM(BPF_JNE, BPF_REG_4, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 2, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, -8),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.fixup_map1 = { 12, 22 },
.result = REJECT,
.errstr = "invalid access to map value, value_size=8 off=2 size=8",
},
{
"calls: two calls that receive map_value_ptr_or_null via arg. test1",
.insns = {
/* main prog */
/* pass fp-16, fp-8 into a function */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
/* 1st lookup from map */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
/* write map_value_ptr_or_null into stack frame of main prog at fp-8 */
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_8, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_MOV64_IMM(BPF_REG_8, 1),
/* 2nd lookup from map */
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
/* write map_value_ptr_or_null into stack frame of main prog at fp-16 */
BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_9, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_MOV64_IMM(BPF_REG_9, 1),
/* call 3rd func with fp-8, 0|1, fp-16, 0|1 */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_7),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_9),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
/* subprog 2 */
/* if arg2 == 1 do *arg1 = 0 */
BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
/* if arg4 == 1 do *arg3 = 0 */
BPF_JMP_IMM(BPF_JNE, BPF_REG_4, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.fixup_map1 = { 12, 22 },
.result = ACCEPT,
},
{
"calls: two calls that receive map_value_ptr_or_null via arg. test2",
.insns = {
/* main prog */
/* pass fp-16, fp-8 into a function */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
/* 1st lookup from map */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
/* write map_value_ptr_or_null into stack frame of main prog at fp-8 */
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_8, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_MOV64_IMM(BPF_REG_8, 1),
/* 2nd lookup from map */
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
/* write map_value_ptr_or_null into stack frame of main prog at fp-16 */
BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV64_IMM(BPF_REG_9, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_MOV64_IMM(BPF_REG_9, 1),
/* call 3rd func with fp-8, 0|1, fp-16, 0|1 */
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_8),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_7),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_9),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
/* subprog 2 */
/* if arg2 == 1 do *arg1 = 0 */
BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 1, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
/* if arg4 == 0 do *arg3 = 0 */
BPF_JMP_IMM(BPF_JNE, BPF_REG_4, 0, 2),
/* fetch map_value_ptr from the stack of this function */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0),
/* write into map value */
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.fixup_map1 = { 12, 22 },
.result = REJECT,
.errstr = "R0 invalid mem access 'inv'",
},
{
"calls: pkt_ptr spill into caller stack",
.insns = {
BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
/* spill unchecked pkt_ptr into stack of caller */
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2),
/* now the pkt range is verified, read pkt_ptr from stack */
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_4, 0),
/* write 4 bytes into packet */
BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.retval = POINTER_VALUE,
},
{
"calls: pkt_ptr spill into caller stack 2",
.insns = {
BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
/* Marking is still kept, but not in all cases safe. */
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
BPF_ST_MEM(BPF_W, BPF_REG_4, 0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
/* spill unchecked pkt_ptr into stack of caller */
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2),
/* now the pkt range is verified, read pkt_ptr from stack */
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_4, 0),
/* write 4 bytes into packet */
BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.errstr = "invalid access to packet",
.result = REJECT,
},
{
"calls: pkt_ptr spill into caller stack 3",
.insns = {
BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
/* Marking is still kept and safe here. */
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
BPF_ST_MEM(BPF_W, BPF_REG_4, 0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
/* spill unchecked pkt_ptr into stack of caller */
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 3),
BPF_MOV64_IMM(BPF_REG_5, 1),
/* now the pkt range is verified, read pkt_ptr from stack */
BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_4, 0),
/* write 4 bytes into packet */
BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 1,
},
{
"calls: pkt_ptr spill into caller stack 4",
.insns = {
BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
/* Check marking propagated. */
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
BPF_ST_MEM(BPF_W, BPF_REG_4, 0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
/* spill unchecked pkt_ptr into stack of caller */
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2),
BPF_MOV64_IMM(BPF_REG_5, 1),
/* don't read back pkt_ptr from stack here */
/* write 4 bytes into packet */
BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 1,
},
{
"calls: pkt_ptr spill into caller stack 5",
.insns = {
BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_4, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 3),
/* spill checked pkt_ptr into stack of caller */
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_5, 1),
/* don't read back pkt_ptr from stack here */
/* write 4 bytes into packet */
BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.errstr = "same insn cannot be used with different",
.result = REJECT,
},
{
"calls: pkt_ptr spill into caller stack 6",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_4, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 3),
/* spill checked pkt_ptr into stack of caller */
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_5, 1),
/* don't read back pkt_ptr from stack here */
/* write 4 bytes into packet */
BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.errstr = "R4 invalid mem access",
.result = REJECT,
},
{
"calls: pkt_ptr spill into caller stack 7",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_4, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 3),
/* spill checked pkt_ptr into stack of caller */
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_5, 1),
/* don't read back pkt_ptr from stack here */
/* write 4 bytes into packet */
BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.errstr = "R4 invalid mem access",
.result = REJECT,
},
{
"calls: pkt_ptr spill into caller stack 8",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_0, BPF_REG_3, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_4, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_MOV64_IMM(BPF_REG_5, 0),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 3),
/* spill checked pkt_ptr into stack of caller */
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_5, 1),
/* don't read back pkt_ptr from stack here */
/* write 4 bytes into packet */
BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
},
{
"calls: pkt_ptr spill into caller stack 9",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_JMP_REG(BPF_JLE, BPF_REG_0, BPF_REG_3, 1),
BPF_EXIT_INSN(),
BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_4, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct __sk_buff, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct __sk_buff, data_end)),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
BPF_MOV64_IMM(BPF_REG_5, 0),
/* spill unchecked pkt_ptr into stack of caller */
BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2),
BPF_MOV64_IMM(BPF_REG_5, 1),
/* don't read back pkt_ptr from stack here */
/* write 4 bytes into packet */
BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0),
BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.errstr = "invalid access to packet",
.result = REJECT,
},
{
"calls: caller stack init to zero or map_value_or_null",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
/* fetch map_value_or_null or const_zero from stack */
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
/* store into map_value */
BPF_ST_MEM(BPF_W, BPF_REG_0, 0, 0),
BPF_EXIT_INSN(),
/* subprog 1 */
/* if (ctx == 0) return; */
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 8),
/* else bpf_map_lookup() and *(fp - 8) = r0 */
BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
/* write map_value_ptr_or_null into stack frame of main prog at fp-8 */
BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 13 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"calls: stack init to zero and pruning",
.insns = {
/* first make allocated_stack 16 byte */
BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, 0),
/* now fork the execution such that the false branch
* of JGT insn will be verified second and it skisp zero
* init of fp-8 stack slot. If stack liveness marking
* is missing live_read marks from call map_lookup
* processing then pruning will incorrectly assume
* that fp-8 stack slot was unused in the fall-through
* branch and will accept the program incorrectly
*/
BPF_JMP_IMM(BPF_JGT, BPF_REG_1, 2, 2),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 6 },
.errstr = "invalid indirect read from stack off -8+0 size 8",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"calls: two calls returning different map pointers for lookup (hash, array)",
.insns = {
/* main prog */
BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 2),
BPF_CALL_REL(11),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_CALL_REL(12),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_LD_MAP_FD(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* subprog 2 */
BPF_LD_MAP_FD(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.fixup_map2 = { 13 },
.fixup_map4 = { 16 },
.result = ACCEPT,
.retval = 1,
},
{
"calls: two calls returning different map pointers for lookup (hash, map in map)",
.insns = {
/* main prog */
BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 2),
BPF_CALL_REL(11),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_CALL_REL(12),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
offsetof(struct test_val, foo)),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
/* subprog 1 */
BPF_LD_MAP_FD(BPF_REG_0, 0),
BPF_EXIT_INSN(),
/* subprog 2 */
BPF_LD_MAP_FD(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.fixup_map_in_map = { 16 },
.fixup_map4 = { 13 },
.result = REJECT,
.errstr = "R0 invalid mem access 'map_ptr'",
},
{
"cond: two branches returning different map pointers for lookup (tail, tail)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_JMP_IMM(BPF_JNE, BPF_REG_6, 0, 3),
BPF_LD_MAP_FD(BPF_REG_2, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
BPF_LD_MAP_FD(BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_3, 7),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_tail_call),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.fixup_prog1 = { 5 },
.fixup_prog2 = { 2 },
.result_unpriv = REJECT,
.errstr_unpriv = "tail_call abusing map_ptr",
.result = ACCEPT,
.retval = 42,
},
{
"cond: two branches returning same map pointers for lookup (tail, tail)",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
offsetof(struct __sk_buff, mark)),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 3),
BPF_LD_MAP_FD(BPF_REG_2, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 2),
BPF_LD_MAP_FD(BPF_REG_2, 0),
BPF_MOV64_IMM(BPF_REG_3, 7),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_tail_call),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.fixup_prog2 = { 2, 5 },
.result_unpriv = ACCEPT,
.result = ACCEPT,
.retval = 42,
},
{
"search pruning: all branches should be verified (nop operation)",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_3, 0xbeef, 2),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_A(1),
BPF_MOV64_IMM(BPF_REG_4, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_4, -16),
BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns),
BPF_LDX_MEM(BPF_DW, BPF_REG_5, BPF_REG_10, -16),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_5, 0, 2),
BPF_MOV64_IMM(BPF_REG_6, 0),
BPF_ST_MEM(BPF_DW, BPF_REG_6, 0, 0xdead),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "R6 invalid mem access 'inv'",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"search pruning: all branches should be verified (invalid stack access)",
.insns = {
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8),
BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_3, 0xbeef, 2),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_4, -16),
BPF_JMP_A(1),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_4, -24),
BPF_EMIT_CALL(BPF_FUNC_ktime_get_ns),
BPF_LDX_MEM(BPF_DW, BPF_REG_5, BPF_REG_10, -16),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.errstr = "invalid read from stack off -16+0 size 8",
.result = REJECT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"jit: lsh, rsh, arsh by 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_MOV64_IMM(BPF_REG_1, 0xff),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 1),
BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0x3fc, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 1),
BPF_ALU32_IMM(BPF_RSH, BPF_REG_1, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0xff, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_ARSH, BPF_REG_1, 1),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0x7f, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 2,
},
{
"jit: mov32 for ldimm64, 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_LD_IMM64(BPF_REG_1, 0xfeffffffffffffffULL),
BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32),
BPF_LD_IMM64(BPF_REG_2, 0xfeffffffULL),
BPF_JMP_REG(BPF_JEQ, BPF_REG_1, BPF_REG_2, 1),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 2,
},
{
"jit: mov32 for ldimm64, 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_LD_IMM64(BPF_REG_1, 0x1ffffffffULL),
BPF_LD_IMM64(BPF_REG_2, 0xffffffffULL),
BPF_JMP_REG(BPF_JEQ, BPF_REG_1, BPF_REG_2, 1),
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 2,
},
{
"jit: various mul tests",
.insns = {
BPF_LD_IMM64(BPF_REG_2, 0xeeff0d413122ULL),
BPF_LD_IMM64(BPF_REG_0, 0xfefefeULL),
BPF_LD_IMM64(BPF_REG_1, 0xefefefULL),
BPF_ALU64_REG(BPF_MUL, BPF_REG_0, BPF_REG_1),
BPF_JMP_REG(BPF_JEQ, BPF_REG_0, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_LD_IMM64(BPF_REG_3, 0xfefefeULL),
BPF_ALU64_REG(BPF_MUL, BPF_REG_3, BPF_REG_1),
BPF_JMP_REG(BPF_JEQ, BPF_REG_3, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV32_REG(BPF_REG_2, BPF_REG_2),
BPF_LD_IMM64(BPF_REG_0, 0xfefefeULL),
BPF_ALU32_REG(BPF_MUL, BPF_REG_0, BPF_REG_1),
BPF_JMP_REG(BPF_JEQ, BPF_REG_0, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_LD_IMM64(BPF_REG_3, 0xfefefeULL),
BPF_ALU32_REG(BPF_MUL, BPF_REG_3, BPF_REG_1),
BPF_JMP_REG(BPF_JEQ, BPF_REG_3, BPF_REG_2, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_LD_IMM64(BPF_REG_0, 0x952a7bbcULL),
BPF_LD_IMM64(BPF_REG_1, 0xfefefeULL),
BPF_LD_IMM64(BPF_REG_2, 0xeeff0d413122ULL),
BPF_ALU32_REG(BPF_MUL, BPF_REG_2, BPF_REG_1),
BPF_JMP_REG(BPF_JEQ, BPF_REG_2, BPF_REG_0, 2),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 2),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.retval = 2,
},
{
"xadd/w check unaligned stack",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_STX_XADD(BPF_W, BPF_REG_10, BPF_REG_0, -7),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "misaligned stack access off",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"xadd/w check unaligned map",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_1, 1),
BPF_STX_XADD(BPF_W, BPF_REG_0, BPF_REG_1, 3),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 3),
BPF_EXIT_INSN(),
},
.fixup_map1 = { 3 },
.result = REJECT,
.errstr = "misaligned value access off",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"xadd/w check unaligned pkt",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
offsetof(struct xdp_md, data)),
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
offsetof(struct xdp_md, data_end)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 2),
BPF_MOV64_IMM(BPF_REG_0, 99),
BPF_JMP_IMM(BPF_JA, 0, 0, 6),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0),
BPF_ST_MEM(BPF_W, BPF_REG_2, 3, 0),
BPF_STX_XADD(BPF_W, BPF_REG_2, BPF_REG_0, 1),
BPF_STX_XADD(BPF_W, BPF_REG_2, BPF_REG_0, 2),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_2, 1),
BPF_EXIT_INSN(),
},
.result = REJECT,
.errstr = "BPF_XADD stores into R2 packet",
.prog_type = BPF_PROG_TYPE_XDP,
},
{
"xadd/w check whether src/dst got mangled, 1",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_10),
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_STX_XADD(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_STX_XADD(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
BPF_JMP_REG(BPF_JNE, BPF_REG_6, BPF_REG_0, 3),
BPF_JMP_REG(BPF_JNE, BPF_REG_7, BPF_REG_10, 2),
BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 42),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.retval = 3,
},
{
"xadd/w check whether src/dst got mangled, 2",
.insns = {
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_0),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_10),
BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -8),
BPF_STX_XADD(BPF_W, BPF_REG_10, BPF_REG_0, -8),
BPF_STX_XADD(BPF_W, BPF_REG_10, BPF_REG_0, -8),
BPF_JMP_REG(BPF_JNE, BPF_REG_6, BPF_REG_0, 3),
BPF_JMP_REG(BPF_JNE, BPF_REG_7, BPF_REG_10, 2),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_10, -8),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(BPF_REG_0, 42),
BPF_EXIT_INSN(),
},
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.retval = 3,
},
{
"bpf_get_stack return R0 within range",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 28),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),
BPF_MOV64_IMM(BPF_REG_9, sizeof(struct test_val)),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
BPF_MOV64_IMM(BPF_REG_3, sizeof(struct test_val)),
BPF_MOV64_IMM(BPF_REG_4, 256),
BPF_EMIT_CALL(BPF_FUNC_get_stack),
BPF_MOV64_IMM(BPF_REG_1, 0),
BPF_MOV64_REG(BPF_REG_8, BPF_REG_0),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_8, 32),
BPF_ALU64_IMM(BPF_ARSH, BPF_REG_8, 32),
BPF_JMP_REG(BPF_JSLT, BPF_REG_1, BPF_REG_8, 16),
BPF_ALU64_REG(BPF_SUB, BPF_REG_9, BPF_REG_8),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_8),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_9),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 32),
BPF_ALU64_IMM(BPF_ARSH, BPF_REG_1, 32),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_1),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
BPF_MOV64_IMM(BPF_REG_5, sizeof(struct test_val)),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_5),
BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 4),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_MOV64_REG(BPF_REG_3, BPF_REG_9),
BPF_MOV64_IMM(BPF_REG_4, 0),
BPF_EMIT_CALL(BPF_FUNC_get_stack),
BPF_EXIT_INSN(),
},
.fixup_map2 = { 4 },
.result = ACCEPT,
.prog_type = BPF_PROG_TYPE_TRACEPOINT,
},
{
"ld_abs: invalid op 1",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_LD_ABS(BPF_DW, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = REJECT,
.errstr = "unknown opcode",
},
{
"ld_abs: invalid op 2",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, 256),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_LD_IND(BPF_DW, BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = REJECT,
.errstr = "unknown opcode",
},
{
"ld_abs: nmap reduced",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_LD_ABS(BPF_H, 12),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0x806, 28),
BPF_LD_ABS(BPF_H, 12),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0x806, 26),
BPF_MOV32_IMM(BPF_REG_0, 18),
BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -64),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_10, -64),
BPF_LD_IND(BPF_W, BPF_REG_7, 14),
BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -60),
BPF_MOV32_IMM(BPF_REG_0, 280971478),
BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -56),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_10, -56),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_10, -60),
BPF_ALU32_REG(BPF_SUB, BPF_REG_0, BPF_REG_7),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 15),
BPF_LD_ABS(BPF_H, 12),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0x806, 13),
BPF_MOV32_IMM(BPF_REG_0, 22),
BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -56),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_10, -56),
BPF_LD_IND(BPF_H, BPF_REG_7, 14),
BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -52),
BPF_MOV32_IMM(BPF_REG_0, 17366),
BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -48),
BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_10, -48),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_10, -52),
BPF_ALU32_REG(BPF_SUB, BPF_REG_0, BPF_REG_7),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
BPF_MOV32_IMM(BPF_REG_0, 256),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.data = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0x06, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0x10, 0xbf, 0x48, 0xd6, 0x43, 0xd6,
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 256,
},
{
"ld_abs: div + abs, test 1",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1),
BPF_LD_ABS(BPF_B, 3),
BPF_ALU64_IMM(BPF_MOV, BPF_REG_2, 2),
BPF_ALU32_REG(BPF_DIV, BPF_REG_0, BPF_REG_2),
BPF_ALU64_REG(BPF_MOV, BPF_REG_8, BPF_REG_0),
BPF_LD_ABS(BPF_B, 4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_8, BPF_REG_0),
BPF_LD_IND(BPF_B, BPF_REG_8, -70),
BPF_EXIT_INSN(),
},
.data = {
10, 20, 30, 40, 50,
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 10,
},
{
"ld_abs: div + abs, test 2",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1),
BPF_LD_ABS(BPF_B, 3),
BPF_ALU64_IMM(BPF_MOV, BPF_REG_2, 2),
BPF_ALU32_REG(BPF_DIV, BPF_REG_0, BPF_REG_2),
BPF_ALU64_REG(BPF_MOV, BPF_REG_8, BPF_REG_0),
BPF_LD_ABS(BPF_B, 128),
BPF_ALU64_REG(BPF_ADD, BPF_REG_8, BPF_REG_0),
BPF_LD_IND(BPF_B, BPF_REG_8, -70),
BPF_EXIT_INSN(),
},
.data = {
10, 20, 30, 40, 50,
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 0,
},
{
"ld_abs: div + abs, test 3",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1),
BPF_ALU64_IMM(BPF_MOV, BPF_REG_7, 0),
BPF_LD_ABS(BPF_B, 3),
BPF_ALU32_REG(BPF_DIV, BPF_REG_0, BPF_REG_7),
BPF_EXIT_INSN(),
},
.data = {
10, 20, 30, 40, 50,
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 0,
},
{
"ld_abs: div + abs, test 4",
.insns = {
BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1),
BPF_ALU64_IMM(BPF_MOV, BPF_REG_7, 0),
BPF_LD_ABS(BPF_B, 256),
BPF_ALU32_REG(BPF_DIV, BPF_REG_0, BPF_REG_7),
BPF_EXIT_INSN(),
},
.data = {
10, 20, 30, 40, 50,
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 0,
},
{
"ld_abs: vlan + abs, test 1",
.insns = { },
.data = {
0x34,
},
.fill_helper = bpf_fill_ld_abs_vlan_push_pop,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 0xbef,
},
{
"ld_abs: vlan + abs, test 2",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_LD_ABS(BPF_B, 0),
BPF_LD_ABS(BPF_H, 0),
BPF_LD_ABS(BPF_W, 0),
BPF_MOV64_REG(BPF_REG_7, BPF_REG_6),
BPF_MOV64_IMM(BPF_REG_6, 0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
BPF_MOV64_IMM(BPF_REG_2, 1),
BPF_MOV64_IMM(BPF_REG_3, 2),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_vlan_push),
BPF_MOV64_REG(BPF_REG_6, BPF_REG_7),
BPF_LD_ABS(BPF_B, 0),
BPF_LD_ABS(BPF_H, 0),
BPF_LD_ABS(BPF_W, 0),
BPF_MOV64_IMM(BPF_REG_0, 42),
BPF_EXIT_INSN(),
},
.data = {
0x34,
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 42,
},
{
"ld_abs: jump around ld_abs",
.insns = { },
.data = {
10, 11,
},
.fill_helper = bpf_fill_jump_around_ld_abs,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 10,
},
{
"ld_dw: xor semi-random 64 bit imms, test 1",
.insns = { },
.data = { },
.fill_helper = bpf_fill_rand_ld_dw,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 4090,
},
{
"ld_dw: xor semi-random 64 bit imms, test 2",
.insns = { },
.data = { },
.fill_helper = bpf_fill_rand_ld_dw,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 2047,
},
{
"ld_dw: xor semi-random 64 bit imms, test 3",
.insns = { },
.data = { },
.fill_helper = bpf_fill_rand_ld_dw,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 511,
},
{
"ld_dw: xor semi-random 64 bit imms, test 4",
.insns = { },
.data = { },
.fill_helper = bpf_fill_rand_ld_dw,
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
.retval = 5,
},
{
"pass unmodified ctx pointer to helper",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_update),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
},
{
"pass modified ctx pointer to helper, 1",
.insns = {
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -612),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_update),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = REJECT,
.errstr = "dereference of modified ctx ptr",
},
{
"pass modified ctx pointer to helper, 2",
.insns = {
BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -612),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_socket_cookie),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.result_unpriv = REJECT,
.result = REJECT,
.errstr_unpriv = "dereference of modified ctx ptr",
.errstr = "dereference of modified ctx ptr",
},
{
"pass modified ctx pointer to helper, 3",
.insns = {
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, 0),
BPF_ALU64_IMM(BPF_AND, BPF_REG_3, 4),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_csum_update),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = REJECT,
.errstr = "variable ctx access var_off=(0x0; 0x4)",
},
{
"mov64 src == dst",
.insns = {
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_2),
// Check bounds are OK
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
},
{
"mov64 src != dst",
.insns = {
BPF_MOV64_IMM(BPF_REG_3, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_3),
// Check bounds are OK
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
},
{
"calls: ctx read at start of subprog",
.insns = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 5),
BPF_JMP_REG(BPF_JSGT, BPF_REG_0, BPF_REG_0, 0),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
BPF_EXIT_INSN(),
BPF_LDX_MEM(BPF_B, BPF_REG_9, BPF_REG_1, 0),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SOCKET_FILTER,
.errstr_unpriv = "function calls to other bpf functions are allowed for root only",
.result_unpriv = REJECT,
.result = ACCEPT,
},
};
static int probe_filter_length(const struct bpf_insn *fp)
{
int len;
for (len = MAX_INSNS - 1; len > 0; --len)
if (fp[len].code != 0 || fp[len].imm != 0)
break;
return len + 1;
}
static int create_map(uint32_t type, uint32_t size_key,
uint32_t size_value, uint32_t max_elem)
{
int fd;
fd = bpf_create_map(type, size_key, size_value, max_elem,
type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0);
if (fd < 0)
printf("Failed to create hash map '%s'!\n", strerror(errno));
return fd;
}
static int create_prog_dummy1(void)
{
struct bpf_insn prog[] = {
BPF_MOV64_IMM(BPF_REG_0, 42),
BPF_EXIT_INSN(),
};
return bpf_load_program(BPF_PROG_TYPE_SOCKET_FILTER, prog,
ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
}
static int create_prog_dummy2(int mfd, int idx)
{
struct bpf_insn prog[] = {
BPF_MOV64_IMM(BPF_REG_3, idx),
BPF_LD_MAP_FD(BPF_REG_2, mfd),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_tail_call),
BPF_MOV64_IMM(BPF_REG_0, 41),
BPF_EXIT_INSN(),
};
return bpf_load_program(BPF_PROG_TYPE_SOCKET_FILTER, prog,
ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
}
static int create_prog_array(uint32_t max_elem, int p1key)
{
int p2key = 1;
int mfd, p1fd, p2fd;
mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int),
sizeof(int), max_elem, 0);
if (mfd < 0) {
printf("Failed to create prog array '%s'!\n", strerror(errno));
return -1;
}
p1fd = create_prog_dummy1();
p2fd = create_prog_dummy2(mfd, p2key);
if (p1fd < 0 || p2fd < 0)
goto out;
if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
goto out;
if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
goto out;
close(p2fd);
close(p1fd);
return mfd;
out:
close(p2fd);
close(p1fd);
close(mfd);
return -1;
}
static int create_map_in_map(void)
{
int inner_map_fd, outer_map_fd;
inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
sizeof(int), 1, 0);
if (inner_map_fd < 0) {
printf("Failed to create array '%s'!\n", strerror(errno));
return inner_map_fd;
}
outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
sizeof(int), inner_map_fd, 1, 0);
if (outer_map_fd < 0)
printf("Failed to create array of maps '%s'!\n",
strerror(errno));
close(inner_map_fd);
return outer_map_fd;
}
static int create_cgroup_storage(void)
{
int fd;
fd = bpf_create_map(BPF_MAP_TYPE_CGROUP_STORAGE,
sizeof(struct bpf_cgroup_storage_key),
TEST_DATA_LEN, 0, 0);
if (fd < 0)
printf("Failed to create array '%s'!\n", strerror(errno));
return fd;
}
static char bpf_vlog[UINT_MAX >> 8];
static void do_test_fixup(struct bpf_test *test, struct bpf_insn *prog,
int *map_fds)
{
int *fixup_map1 = test->fixup_map1;
int *fixup_map2 = test->fixup_map2;
int *fixup_map3 = test->fixup_map3;
int *fixup_map4 = test->fixup_map4;
int *fixup_prog1 = test->fixup_prog1;
int *fixup_prog2 = test->fixup_prog2;
int *fixup_map_in_map = test->fixup_map_in_map;
int *fixup_cgroup_storage = test->fixup_cgroup_storage;
if (test->fill_helper)
test->fill_helper(test);
/* Allocating HTs with 1 elem is fine here, since we only test
* for verifier and not do a runtime lookup, so the only thing
* that really matters is value size in this case.
*/
if (*fixup_map1) {
map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
sizeof(long long), 1);
do {
prog[*fixup_map1].imm = map_fds[0];
fixup_map1++;
} while (*fixup_map1);
}
if (*fixup_map2) {
map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
sizeof(struct test_val), 1);
do {
prog[*fixup_map2].imm = map_fds[1];
fixup_map2++;
} while (*fixup_map2);
}
if (*fixup_map3) {
map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
sizeof(struct other_val), 1);
do {
prog[*fixup_map3].imm = map_fds[2];
fixup_map3++;
} while (*fixup_map3);
}
if (*fixup_map4) {
map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
sizeof(struct test_val), 1);
do {
prog[*fixup_map4].imm = map_fds[3];
fixup_map4++;
} while (*fixup_map4);
}
if (*fixup_prog1) {
map_fds[4] = create_prog_array(4, 0);
do {
prog[*fixup_prog1].imm = map_fds[4];
fixup_prog1++;
} while (*fixup_prog1);
}
if (*fixup_prog2) {
map_fds[5] = create_prog_array(8, 7);
do {
prog[*fixup_prog2].imm = map_fds[5];
fixup_prog2++;
} while (*fixup_prog2);
}
if (*fixup_map_in_map) {
map_fds[6] = create_map_in_map();
do {
prog[*fixup_map_in_map].imm = map_fds[6];
fixup_map_in_map++;
} while (*fixup_map_in_map);
}
if (*fixup_cgroup_storage) {
map_fds[7] = create_cgroup_storage();
do {
prog[*fixup_cgroup_storage].imm = map_fds[7];
fixup_cgroup_storage++;
} while (*fixup_cgroup_storage);
}
}
static void do_test_single(struct bpf_test *test, bool unpriv,
int *passes, int *errors)
{
int fd_prog, expected_ret, reject_from_alignment;
int prog_len, prog_type = test->prog_type;
struct bpf_insn *prog = test->insns;
int map_fds[MAX_NR_MAPS];
const char *expected_err;
uint32_t retval;
int i, err;
for (i = 0; i < MAX_NR_MAPS; i++)
map_fds[i] = -1;
do_test_fixup(test, prog, map_fds);
prog_len = probe_filter_length(prog);
fd_prog = bpf_verify_program(prog_type ? : BPF_PROG_TYPE_SOCKET_FILTER,
prog, prog_len, test->flags & F_LOAD_WITH_STRICT_ALIGNMENT,
"GPL", 0, bpf_vlog, sizeof(bpf_vlog), 1);
expected_ret = unpriv && test->result_unpriv != UNDEF ?
test->result_unpriv : test->result;
expected_err = unpriv && test->errstr_unpriv ?
test->errstr_unpriv : test->errstr;
reject_from_alignment = fd_prog < 0 &&
(test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) &&
strstr(bpf_vlog, "misaligned");
#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (reject_from_alignment) {
printf("FAIL\nFailed due to alignment despite having efficient unaligned access: '%s'!\n",
strerror(errno));
goto fail_log;
}
#endif
if (expected_ret == ACCEPT) {
if (fd_prog < 0 && !reject_from_alignment) {
printf("FAIL\nFailed to load prog '%s'!\n",
strerror(errno));
goto fail_log;
}
} else {
if (fd_prog >= 0) {
printf("FAIL\nUnexpected success to load!\n");
goto fail_log;
}
if (!strstr(bpf_vlog, expected_err) && !reject_from_alignment) {
printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
expected_err, bpf_vlog);
goto fail_log;
}
}
if (fd_prog >= 0) {
__u8 tmp[TEST_DATA_LEN << 2];
__u32 size_tmp = sizeof(tmp);
err = bpf_prog_test_run(fd_prog, 1, test->data,
sizeof(test->data), tmp, &size_tmp,
&retval, NULL);
if (err && errno != 524/*ENOTSUPP*/ && errno != EPERM) {
printf("Unexpected bpf_prog_test_run error\n");
goto fail_log;
}
if (!err && retval != test->retval &&
test->retval != POINTER_VALUE) {
printf("FAIL retval %d != %d\n", retval, test->retval);
goto fail_log;
}
}
(*passes)++;
printf("OK%s\n", reject_from_alignment ?
" (NOTE: reject due to unknown alignment)" : "");
close_fds:
close(fd_prog);
for (i = 0; i < MAX_NR_MAPS; i++)
close(map_fds[i]);
sched_yield();
return;
fail_log:
(*errors)++;
printf("%s", bpf_vlog);
goto close_fds;
}
static bool is_admin(void)
{
cap_t caps;
cap_flag_value_t sysadmin = CAP_CLEAR;
const cap_value_t cap_val = CAP_SYS_ADMIN;
#ifdef CAP_IS_SUPPORTED
if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) {
perror("cap_get_flag");
return false;
}
#endif
caps = cap_get_proc();
if (!caps) {
perror("cap_get_proc");
return false;
}
if (cap_get_flag(caps, cap_val, CAP_EFFECTIVE, &sysadmin))
perror("cap_get_flag");
if (cap_free(caps))
perror("cap_free");
return (sysadmin == CAP_SET);
}
static int set_admin(bool admin)
{
cap_t caps;
const cap_value_t cap_val = CAP_SYS_ADMIN;
int ret = -1;
caps = cap_get_proc();
if (!caps) {
perror("cap_get_proc");
return -1;
}
if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_val,
admin ? CAP_SET : CAP_CLEAR)) {
perror("cap_set_flag");
goto out;
}
if (cap_set_proc(caps)) {
perror("cap_set_proc");
goto out;
}
ret = 0;
out:
if (cap_free(caps))
perror("cap_free");
return ret;
}
static void get_unpriv_disabled()
{
char buf[2];
FILE *fd;
fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r");
if (!fd) {
perror("fopen /proc/sys/"UNPRIV_SYSCTL);
unpriv_disabled = true;
return;
}
if (fgets(buf, 2, fd) == buf && atoi(buf))
unpriv_disabled = true;
fclose(fd);
}
static int do_test(bool unpriv, unsigned int from, unsigned int to)
{
int i, passes = 0, errors = 0, skips = 0;
for (i = from; i < to; i++) {
struct bpf_test *test = &tests[i];
/* Program types that are not supported by non-root we
* skip right away.
*/
if (!test->prog_type && unpriv_disabled) {
printf("#%d/u %s SKIP\n", i, test->descr);
skips++;
} else if (!test->prog_type) {
if (!unpriv)
set_admin(false);
printf("#%d/u %s ", i, test->descr);
do_test_single(test, true, &passes, &errors);
if (!unpriv)
set_admin(true);
}
if (unpriv) {
printf("#%d/p %s SKIP\n", i, test->descr);
skips++;
} else {
printf("#%d/p %s ", i, test->descr);
do_test_single(test, false, &passes, &errors);
}
}
printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
skips, errors);
return errors ? EXIT_FAILURE : EXIT_SUCCESS;
}
int main(int argc, char **argv)
{
unsigned int from = 0, to = ARRAY_SIZE(tests);
bool unpriv = !is_admin();
if (argc == 3) {
unsigned int l = atoi(argv[argc - 2]);
unsigned int u = atoi(argv[argc - 1]);
if (l < to && u < to) {
from = l;
to = u + 1;
}
} else if (argc == 2) {
unsigned int t = atoi(argv[argc - 1]);
if (t < to) {
from = t;
to = t + 1;
}
}
get_unpriv_disabled();
if (unpriv && unpriv_disabled) {
printf("Cannot run as unprivileged user with sysctl %s.\n",
UNPRIV_SYSCTL);
return EXIT_FAILURE;
}
bpf_semi_rand_init();
return do_test(unpriv, from, to);
}