|  | /* | 
|  | * linux/kernel/time/tick-broadcast.c | 
|  | * | 
|  | * This file contains functions which emulate a local clock-event | 
|  | * device via a broadcast event source. | 
|  | * | 
|  | * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> | 
|  | * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar | 
|  | * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner | 
|  | * | 
|  | * This code is licenced under the GPL version 2. For details see | 
|  | * kernel-base/COPYING. | 
|  | */ | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/tick.h> | 
|  |  | 
|  | #include "tick-internal.h" | 
|  |  | 
|  | /* | 
|  | * Broadcast support for broken x86 hardware, where the local apic | 
|  | * timer stops in C3 state. | 
|  | */ | 
|  |  | 
|  | static struct tick_device tick_broadcast_device; | 
|  | /* FIXME: Use cpumask_var_t. */ | 
|  | static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS); | 
|  | static DECLARE_BITMAP(tmpmask, NR_CPUS); | 
|  | static DEFINE_RAW_SPINLOCK(tick_broadcast_lock); | 
|  | static int tick_broadcast_force; | 
|  |  | 
|  | #ifdef CONFIG_TICK_ONESHOT | 
|  | static void tick_broadcast_clear_oneshot(int cpu); | 
|  | #else | 
|  | static inline void tick_broadcast_clear_oneshot(int cpu) { } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Debugging: see timer_list.c | 
|  | */ | 
|  | struct tick_device *tick_get_broadcast_device(void) | 
|  | { | 
|  | return &tick_broadcast_device; | 
|  | } | 
|  |  | 
|  | struct cpumask *tick_get_broadcast_mask(void) | 
|  | { | 
|  | return to_cpumask(tick_broadcast_mask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start the device in periodic mode | 
|  | */ | 
|  | static void tick_broadcast_start_periodic(struct clock_event_device *bc) | 
|  | { | 
|  | if (bc) | 
|  | tick_setup_periodic(bc, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check, if the device can be utilized as broadcast device: | 
|  | */ | 
|  | int tick_check_broadcast_device(struct clock_event_device *dev) | 
|  | { | 
|  | if ((tick_broadcast_device.evtdev && | 
|  | tick_broadcast_device.evtdev->rating >= dev->rating) || | 
|  | (dev->features & CLOCK_EVT_FEAT_C3STOP)) | 
|  | return 0; | 
|  |  | 
|  | clockevents_exchange_device(NULL, dev); | 
|  | tick_broadcast_device.evtdev = dev; | 
|  | if (!cpumask_empty(tick_get_broadcast_mask())) | 
|  | tick_broadcast_start_periodic(dev); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check, if the device is the broadcast device | 
|  | */ | 
|  | int tick_is_broadcast_device(struct clock_event_device *dev) | 
|  | { | 
|  | return (dev && tick_broadcast_device.evtdev == dev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check, if the device is disfunctional and a place holder, which | 
|  | * needs to be handled by the broadcast device. | 
|  | */ | 
|  | int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  |  | 
|  | raw_spin_lock_irqsave(&tick_broadcast_lock, flags); | 
|  |  | 
|  | /* | 
|  | * Devices might be registered with both periodic and oneshot | 
|  | * mode disabled. This signals, that the device needs to be | 
|  | * operated from the broadcast device and is a placeholder for | 
|  | * the cpu local device. | 
|  | */ | 
|  | if (!tick_device_is_functional(dev)) { | 
|  | dev->event_handler = tick_handle_periodic; | 
|  | cpumask_set_cpu(cpu, tick_get_broadcast_mask()); | 
|  | tick_broadcast_start_periodic(tick_broadcast_device.evtdev); | 
|  | ret = 1; | 
|  | } else { | 
|  | /* | 
|  | * When the new device is not affected by the stop | 
|  | * feature and the cpu is marked in the broadcast mask | 
|  | * then clear the broadcast bit. | 
|  | */ | 
|  | if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | cpumask_clear_cpu(cpu, tick_get_broadcast_mask()); | 
|  | tick_broadcast_clear_oneshot(cpu); | 
|  | } | 
|  | } | 
|  | raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Broadcast the event to the cpus, which are set in the mask (mangled). | 
|  | */ | 
|  | static void tick_do_broadcast(struct cpumask *mask) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | struct tick_device *td; | 
|  |  | 
|  | /* | 
|  | * Check, if the current cpu is in the mask | 
|  | */ | 
|  | if (cpumask_test_cpu(cpu, mask)) { | 
|  | cpumask_clear_cpu(cpu, mask); | 
|  | td = &per_cpu(tick_cpu_device, cpu); | 
|  | td->evtdev->event_handler(td->evtdev); | 
|  | } | 
|  |  | 
|  | if (!cpumask_empty(mask)) { | 
|  | /* | 
|  | * It might be necessary to actually check whether the devices | 
|  | * have different broadcast functions. For now, just use the | 
|  | * one of the first device. This works as long as we have this | 
|  | * misfeature only on x86 (lapic) | 
|  | */ | 
|  | td = &per_cpu(tick_cpu_device, cpumask_first(mask)); | 
|  | td->evtdev->broadcast(mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Periodic broadcast: | 
|  | * - invoke the broadcast handlers | 
|  | */ | 
|  | static void tick_do_periodic_broadcast(void) | 
|  | { | 
|  | raw_spin_lock(&tick_broadcast_lock); | 
|  |  | 
|  | cpumask_and(to_cpumask(tmpmask), | 
|  | cpu_online_mask, tick_get_broadcast_mask()); | 
|  | tick_do_broadcast(to_cpumask(tmpmask)); | 
|  |  | 
|  | raw_spin_unlock(&tick_broadcast_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Event handler for periodic broadcast ticks | 
|  | */ | 
|  | static void tick_handle_periodic_broadcast(struct clock_event_device *dev) | 
|  | { | 
|  | ktime_t next; | 
|  |  | 
|  | tick_do_periodic_broadcast(); | 
|  |  | 
|  | /* | 
|  | * The device is in periodic mode. No reprogramming necessary: | 
|  | */ | 
|  | if (dev->mode == CLOCK_EVT_MODE_PERIODIC) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Setup the next period for devices, which do not have | 
|  | * periodic mode. We read dev->next_event first and add to it | 
|  | * when the event already expired. clockevents_program_event() | 
|  | * sets dev->next_event only when the event is really | 
|  | * programmed to the device. | 
|  | */ | 
|  | for (next = dev->next_event; ;) { | 
|  | next = ktime_add(next, tick_period); | 
|  |  | 
|  | if (!clockevents_program_event(dev, next, ktime_get())) | 
|  | return; | 
|  | tick_do_periodic_broadcast(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Powerstate information: The system enters/leaves a state, where | 
|  | * affected devices might stop | 
|  | */ | 
|  | static void tick_do_broadcast_on_off(unsigned long *reason) | 
|  | { | 
|  | struct clock_event_device *bc, *dev; | 
|  | struct tick_device *td; | 
|  | unsigned long flags; | 
|  | int cpu, bc_stopped; | 
|  |  | 
|  | raw_spin_lock_irqsave(&tick_broadcast_lock, flags); | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  | td = &per_cpu(tick_cpu_device, cpu); | 
|  | dev = td->evtdev; | 
|  | bc = tick_broadcast_device.evtdev; | 
|  |  | 
|  | /* | 
|  | * Is the device not affected by the powerstate ? | 
|  | */ | 
|  | if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) | 
|  | goto out; | 
|  |  | 
|  | if (!tick_device_is_functional(dev)) | 
|  | goto out; | 
|  |  | 
|  | bc_stopped = cpumask_empty(tick_get_broadcast_mask()); | 
|  |  | 
|  | switch (*reason) { | 
|  | case CLOCK_EVT_NOTIFY_BROADCAST_ON: | 
|  | case CLOCK_EVT_NOTIFY_BROADCAST_FORCE: | 
|  | if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) { | 
|  | cpumask_set_cpu(cpu, tick_get_broadcast_mask()); | 
|  | if (tick_broadcast_device.mode == | 
|  | TICKDEV_MODE_PERIODIC) | 
|  | clockevents_shutdown(dev); | 
|  | } | 
|  | if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE) | 
|  | tick_broadcast_force = 1; | 
|  | break; | 
|  | case CLOCK_EVT_NOTIFY_BROADCAST_OFF: | 
|  | if (!tick_broadcast_force && | 
|  | cpumask_test_cpu(cpu, tick_get_broadcast_mask())) { | 
|  | cpumask_clear_cpu(cpu, tick_get_broadcast_mask()); | 
|  | if (tick_broadcast_device.mode == | 
|  | TICKDEV_MODE_PERIODIC) | 
|  | tick_setup_periodic(dev, 0); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (cpumask_empty(tick_get_broadcast_mask())) { | 
|  | if (!bc_stopped) | 
|  | clockevents_shutdown(bc); | 
|  | } else if (bc_stopped) { | 
|  | if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) | 
|  | tick_broadcast_start_periodic(bc); | 
|  | else | 
|  | tick_broadcast_setup_oneshot(bc); | 
|  | } | 
|  | out: | 
|  | raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Powerstate information: The system enters/leaves a state, where | 
|  | * affected devices might stop. | 
|  | */ | 
|  | void tick_broadcast_on_off(unsigned long reason, int *oncpu) | 
|  | { | 
|  | if (!cpumask_test_cpu(*oncpu, cpu_online_mask)) | 
|  | printk(KERN_ERR "tick-broadcast: ignoring broadcast for " | 
|  | "offline CPU #%d\n", *oncpu); | 
|  | else | 
|  | tick_do_broadcast_on_off(&reason); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the periodic handler depending on broadcast on/off | 
|  | */ | 
|  | void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) | 
|  | { | 
|  | if (!broadcast) | 
|  | dev->event_handler = tick_handle_periodic; | 
|  | else | 
|  | dev->event_handler = tick_handle_periodic_broadcast; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove a CPU from broadcasting | 
|  | */ | 
|  | void tick_shutdown_broadcast(unsigned int *cpup) | 
|  | { | 
|  | struct clock_event_device *bc; | 
|  | unsigned long flags; | 
|  | unsigned int cpu = *cpup; | 
|  |  | 
|  | raw_spin_lock_irqsave(&tick_broadcast_lock, flags); | 
|  |  | 
|  | bc = tick_broadcast_device.evtdev; | 
|  | cpumask_clear_cpu(cpu, tick_get_broadcast_mask()); | 
|  |  | 
|  | if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { | 
|  | if (bc && cpumask_empty(tick_get_broadcast_mask())) | 
|  | clockevents_shutdown(bc); | 
|  | } | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); | 
|  | } | 
|  |  | 
|  | void tick_suspend_broadcast(void) | 
|  | { | 
|  | struct clock_event_device *bc; | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&tick_broadcast_lock, flags); | 
|  |  | 
|  | bc = tick_broadcast_device.evtdev; | 
|  | if (bc) | 
|  | clockevents_shutdown(bc); | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); | 
|  | } | 
|  |  | 
|  | int tick_resume_broadcast(void) | 
|  | { | 
|  | struct clock_event_device *bc; | 
|  | unsigned long flags; | 
|  | int broadcast = 0; | 
|  |  | 
|  | raw_spin_lock_irqsave(&tick_broadcast_lock, flags); | 
|  |  | 
|  | bc = tick_broadcast_device.evtdev; | 
|  |  | 
|  | if (bc) { | 
|  | clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME); | 
|  |  | 
|  | switch (tick_broadcast_device.mode) { | 
|  | case TICKDEV_MODE_PERIODIC: | 
|  | if (!cpumask_empty(tick_get_broadcast_mask())) | 
|  | tick_broadcast_start_periodic(bc); | 
|  | broadcast = cpumask_test_cpu(smp_processor_id(), | 
|  | tick_get_broadcast_mask()); | 
|  | break; | 
|  | case TICKDEV_MODE_ONESHOT: | 
|  | broadcast = tick_resume_broadcast_oneshot(bc); | 
|  | break; | 
|  | } | 
|  | } | 
|  | raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); | 
|  |  | 
|  | return broadcast; | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_TICK_ONESHOT | 
|  |  | 
|  | /* FIXME: use cpumask_var_t. */ | 
|  | static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS); | 
|  |  | 
|  | /* | 
|  | * Exposed for debugging: see timer_list.c | 
|  | */ | 
|  | struct cpumask *tick_get_broadcast_oneshot_mask(void) | 
|  | { | 
|  | return to_cpumask(tick_broadcast_oneshot_mask); | 
|  | } | 
|  |  | 
|  | static int tick_broadcast_set_event(ktime_t expires, int force) | 
|  | { | 
|  | struct clock_event_device *bc = tick_broadcast_device.evtdev; | 
|  |  | 
|  | return tick_dev_program_event(bc, expires, force); | 
|  | } | 
|  |  | 
|  | int tick_resume_broadcast_oneshot(struct clock_event_device *bc) | 
|  | { | 
|  | clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from irq_enter() when idle was interrupted to reenable the | 
|  | * per cpu device. | 
|  | */ | 
|  | void tick_check_oneshot_broadcast(int cpu) | 
|  | { | 
|  | if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) { | 
|  | struct tick_device *td = &per_cpu(tick_cpu_device, cpu); | 
|  |  | 
|  | clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle oneshot mode broadcasting | 
|  | */ | 
|  | static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) | 
|  | { | 
|  | struct tick_device *td; | 
|  | ktime_t now, next_event; | 
|  | int cpu; | 
|  |  | 
|  | raw_spin_lock(&tick_broadcast_lock); | 
|  | again: | 
|  | dev->next_event.tv64 = KTIME_MAX; | 
|  | next_event.tv64 = KTIME_MAX; | 
|  | cpumask_clear(to_cpumask(tmpmask)); | 
|  | now = ktime_get(); | 
|  | /* Find all expired events */ | 
|  | for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) { | 
|  | td = &per_cpu(tick_cpu_device, cpu); | 
|  | if (td->evtdev->next_event.tv64 <= now.tv64) | 
|  | cpumask_set_cpu(cpu, to_cpumask(tmpmask)); | 
|  | else if (td->evtdev->next_event.tv64 < next_event.tv64) | 
|  | next_event.tv64 = td->evtdev->next_event.tv64; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wakeup the cpus which have an expired event. | 
|  | */ | 
|  | tick_do_broadcast(to_cpumask(tmpmask)); | 
|  |  | 
|  | /* | 
|  | * Two reasons for reprogram: | 
|  | * | 
|  | * - The global event did not expire any CPU local | 
|  | * events. This happens in dyntick mode, as the maximum PIT | 
|  | * delta is quite small. | 
|  | * | 
|  | * - There are pending events on sleeping CPUs which were not | 
|  | * in the event mask | 
|  | */ | 
|  | if (next_event.tv64 != KTIME_MAX) { | 
|  | /* | 
|  | * Rearm the broadcast device. If event expired, | 
|  | * repeat the above | 
|  | */ | 
|  | if (tick_broadcast_set_event(next_event, 0)) | 
|  | goto again; | 
|  | } | 
|  | raw_spin_unlock(&tick_broadcast_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Powerstate information: The system enters/leaves a state, where | 
|  | * affected devices might stop | 
|  | */ | 
|  | void tick_broadcast_oneshot_control(unsigned long reason) | 
|  | { | 
|  | struct clock_event_device *bc, *dev; | 
|  | struct tick_device *td; | 
|  | unsigned long flags; | 
|  | int cpu; | 
|  |  | 
|  | raw_spin_lock_irqsave(&tick_broadcast_lock, flags); | 
|  |  | 
|  | /* | 
|  | * Periodic mode does not care about the enter/exit of power | 
|  | * states | 
|  | */ | 
|  | if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) | 
|  | goto out; | 
|  |  | 
|  | bc = tick_broadcast_device.evtdev; | 
|  | cpu = smp_processor_id(); | 
|  | td = &per_cpu(tick_cpu_device, cpu); | 
|  | dev = td->evtdev; | 
|  |  | 
|  | if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) | 
|  | goto out; | 
|  |  | 
|  | if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) { | 
|  | if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) { | 
|  | cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask()); | 
|  | clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN); | 
|  | if (dev->next_event.tv64 < bc->next_event.tv64) | 
|  | tick_broadcast_set_event(dev->next_event, 1); | 
|  | } | 
|  | } else { | 
|  | if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) { | 
|  | cpumask_clear_cpu(cpu, | 
|  | tick_get_broadcast_oneshot_mask()); | 
|  | clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT); | 
|  | if (dev->next_event.tv64 != KTIME_MAX) | 
|  | tick_program_event(dev->next_event, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset the one shot broadcast for a cpu | 
|  | * | 
|  | * Called with tick_broadcast_lock held | 
|  | */ | 
|  | static void tick_broadcast_clear_oneshot(int cpu) | 
|  | { | 
|  | cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask()); | 
|  | } | 
|  |  | 
|  | static void tick_broadcast_init_next_event(struct cpumask *mask, | 
|  | ktime_t expires) | 
|  | { | 
|  | struct tick_device *td; | 
|  | int cpu; | 
|  |  | 
|  | for_each_cpu(cpu, mask) { | 
|  | td = &per_cpu(tick_cpu_device, cpu); | 
|  | if (td->evtdev) | 
|  | td->evtdev->next_event = expires; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * tick_broadcast_setup_oneshot - setup the broadcast device | 
|  | */ | 
|  | void tick_broadcast_setup_oneshot(struct clock_event_device *bc) | 
|  | { | 
|  | /* Set it up only once ! */ | 
|  | if (bc->event_handler != tick_handle_oneshot_broadcast) { | 
|  | int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC; | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | bc->event_handler = tick_handle_oneshot_broadcast; | 
|  | clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); | 
|  |  | 
|  | /* Take the do_timer update */ | 
|  | tick_do_timer_cpu = cpu; | 
|  |  | 
|  | /* | 
|  | * We must be careful here. There might be other CPUs | 
|  | * waiting for periodic broadcast. We need to set the | 
|  | * oneshot_mask bits for those and program the | 
|  | * broadcast device to fire. | 
|  | */ | 
|  | cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask()); | 
|  | cpumask_clear_cpu(cpu, to_cpumask(tmpmask)); | 
|  | cpumask_or(tick_get_broadcast_oneshot_mask(), | 
|  | tick_get_broadcast_oneshot_mask(), | 
|  | to_cpumask(tmpmask)); | 
|  |  | 
|  | if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) { | 
|  | tick_broadcast_init_next_event(to_cpumask(tmpmask), | 
|  | tick_next_period); | 
|  | tick_broadcast_set_event(tick_next_period, 1); | 
|  | } else | 
|  | bc->next_event.tv64 = KTIME_MAX; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Select oneshot operating mode for the broadcast device | 
|  | */ | 
|  | void tick_broadcast_switch_to_oneshot(void) | 
|  | { | 
|  | struct clock_event_device *bc; | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&tick_broadcast_lock, flags); | 
|  |  | 
|  | tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; | 
|  | bc = tick_broadcast_device.evtdev; | 
|  | if (bc) | 
|  | tick_broadcast_setup_oneshot(bc); | 
|  | raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Remove a dead CPU from broadcasting | 
|  | */ | 
|  | void tick_shutdown_broadcast_oneshot(unsigned int *cpup) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned int cpu = *cpup; | 
|  |  | 
|  | raw_spin_lock_irqsave(&tick_broadcast_lock, flags); | 
|  |  | 
|  | /* | 
|  | * Clear the broadcast mask flag for the dead cpu, but do not | 
|  | * stop the broadcast device! | 
|  | */ | 
|  | cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask()); | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check, whether the broadcast device is in one shot mode | 
|  | */ | 
|  | int tick_broadcast_oneshot_active(void) | 
|  | { | 
|  | return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether the broadcast device supports oneshot. | 
|  | */ | 
|  | bool tick_broadcast_oneshot_available(void) | 
|  | { | 
|  | struct clock_event_device *bc = tick_broadcast_device.evtdev; | 
|  |  | 
|  | return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false; | 
|  | } | 
|  |  | 
|  | #endif |