| /* |
| * Copyright (C) 2016-2018 Netronome Systems, Inc. |
| * |
| * This software is dual licensed under the GNU General License Version 2, |
| * June 1991 as shown in the file COPYING in the top-level directory of this |
| * source tree or the BSD 2-Clause License provided below. You have the |
| * option to license this software under the complete terms of either license. |
| * |
| * The BSD 2-Clause License: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * 1. Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #define pr_fmt(fmt) "NFP net bpf: " fmt |
| |
| #include <linux/bug.h> |
| #include <linux/bpf.h> |
| #include <linux/filter.h> |
| #include <linux/kernel.h> |
| #include <linux/pkt_cls.h> |
| #include <linux/reciprocal_div.h> |
| #include <linux/unistd.h> |
| |
| #include "main.h" |
| #include "../nfp_asm.h" |
| #include "../nfp_net_ctrl.h" |
| |
| /* --- NFP prog --- */ |
| /* Foreach "multiple" entries macros provide pos and next<n> pointers. |
| * It's safe to modify the next pointers (but not pos). |
| */ |
| #define nfp_for_each_insn_walk2(nfp_prog, pos, next) \ |
| for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \ |
| next = list_next_entry(pos, l); \ |
| &(nfp_prog)->insns != &pos->l && \ |
| &(nfp_prog)->insns != &next->l; \ |
| pos = nfp_meta_next(pos), \ |
| next = nfp_meta_next(pos)) |
| |
| #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2) \ |
| for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \ |
| next = list_next_entry(pos, l), \ |
| next2 = list_next_entry(next, l); \ |
| &(nfp_prog)->insns != &pos->l && \ |
| &(nfp_prog)->insns != &next->l && \ |
| &(nfp_prog)->insns != &next2->l; \ |
| pos = nfp_meta_next(pos), \ |
| next = nfp_meta_next(pos), \ |
| next2 = nfp_meta_next(next)) |
| |
| static bool |
| nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return meta->l.prev != &nfp_prog->insns; |
| } |
| |
| static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn) |
| { |
| if (nfp_prog->__prog_alloc_len / sizeof(u64) == nfp_prog->prog_len) { |
| pr_warn("instruction limit reached (%u NFP instructions)\n", |
| nfp_prog->prog_len); |
| nfp_prog->error = -ENOSPC; |
| return; |
| } |
| |
| nfp_prog->prog[nfp_prog->prog_len] = insn; |
| nfp_prog->prog_len++; |
| } |
| |
| static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog) |
| { |
| return nfp_prog->prog_len; |
| } |
| |
| static bool |
| nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off) |
| { |
| /* If there is a recorded error we may have dropped instructions; |
| * that doesn't have to be due to translator bug, and the translation |
| * will fail anyway, so just return OK. |
| */ |
| if (nfp_prog->error) |
| return true; |
| return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off); |
| } |
| |
| /* --- Emitters --- */ |
| static void |
| __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, |
| u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, enum cmd_ctx_swap ctx, |
| bool indir) |
| { |
| u64 insn; |
| |
| insn = FIELD_PREP(OP_CMD_A_SRC, areg) | |
| FIELD_PREP(OP_CMD_CTX, ctx) | |
| FIELD_PREP(OP_CMD_B_SRC, breg) | |
| FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) | |
| FIELD_PREP(OP_CMD_XFER, xfer) | |
| FIELD_PREP(OP_CMD_CNT, size) | |
| FIELD_PREP(OP_CMD_SIG, ctx != CMD_CTX_NO_SWAP) | |
| FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) | |
| FIELD_PREP(OP_CMD_INDIR, indir) | |
| FIELD_PREP(OP_CMD_MODE, mode); |
| |
| nfp_prog_push(nfp_prog, insn); |
| } |
| |
| static void |
| emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer, |
| swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx, bool indir) |
| { |
| struct nfp_insn_re_regs reg; |
| int err; |
| |
| err = swreg_to_restricted(reg_none(), lreg, rreg, ®, false); |
| if (err) { |
| nfp_prog->error = err; |
| return; |
| } |
| if (reg.swap) { |
| pr_err("cmd can't swap arguments\n"); |
| nfp_prog->error = -EFAULT; |
| return; |
| } |
| if (reg.dst_lmextn || reg.src_lmextn) { |
| pr_err("cmd can't use LMextn\n"); |
| nfp_prog->error = -EFAULT; |
| return; |
| } |
| |
| __emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, ctx, |
| indir); |
| } |
| |
| static void |
| emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer, |
| swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx) |
| { |
| emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, false); |
| } |
| |
| static void |
| emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer, |
| swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx) |
| { |
| emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, true); |
| } |
| |
| static void |
| __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip, |
| enum br_ctx_signal_state css, u16 addr, u8 defer) |
| { |
| u16 addr_lo, addr_hi; |
| u64 insn; |
| |
| addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO)); |
| addr_hi = addr != addr_lo; |
| |
| insn = OP_BR_BASE | |
| FIELD_PREP(OP_BR_MASK, mask) | |
| FIELD_PREP(OP_BR_EV_PIP, ev_pip) | |
| FIELD_PREP(OP_BR_CSS, css) | |
| FIELD_PREP(OP_BR_DEFBR, defer) | |
| FIELD_PREP(OP_BR_ADDR_LO, addr_lo) | |
| FIELD_PREP(OP_BR_ADDR_HI, addr_hi); |
| |
| nfp_prog_push(nfp_prog, insn); |
| } |
| |
| static void |
| emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer, |
| enum nfp_relo_type relo) |
| { |
| if (mask == BR_UNC && defer > 2) { |
| pr_err("BUG: branch defer out of bounds %d\n", defer); |
| nfp_prog->error = -EFAULT; |
| return; |
| } |
| |
| __emit_br(nfp_prog, mask, |
| mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND, |
| BR_CSS_NONE, addr, defer); |
| |
| nfp_prog->prog[nfp_prog->prog_len - 1] |= |
| FIELD_PREP(OP_RELO_TYPE, relo); |
| } |
| |
| static void |
| emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer) |
| { |
| emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL); |
| } |
| |
| static void |
| __emit_br_bit(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 addr, u8 defer, |
| bool set, bool src_lmextn) |
| { |
| u16 addr_lo, addr_hi; |
| u64 insn; |
| |
| addr_lo = addr & (OP_BR_BIT_ADDR_LO >> __bf_shf(OP_BR_BIT_ADDR_LO)); |
| addr_hi = addr != addr_lo; |
| |
| insn = OP_BR_BIT_BASE | |
| FIELD_PREP(OP_BR_BIT_A_SRC, areg) | |
| FIELD_PREP(OP_BR_BIT_B_SRC, breg) | |
| FIELD_PREP(OP_BR_BIT_BV, set) | |
| FIELD_PREP(OP_BR_BIT_DEFBR, defer) | |
| FIELD_PREP(OP_BR_BIT_ADDR_LO, addr_lo) | |
| FIELD_PREP(OP_BR_BIT_ADDR_HI, addr_hi) | |
| FIELD_PREP(OP_BR_BIT_SRC_LMEXTN, src_lmextn); |
| |
| nfp_prog_push(nfp_prog, insn); |
| } |
| |
| static void |
| emit_br_bit_relo(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr, |
| u8 defer, bool set, enum nfp_relo_type relo) |
| { |
| struct nfp_insn_re_regs reg; |
| int err; |
| |
| /* NOTE: The bit to test is specified as an rotation amount, such that |
| * the bit to test will be placed on the MSB of the result when |
| * doing a rotate right. For bit X, we need right rotate X + 1. |
| */ |
| bit += 1; |
| |
| err = swreg_to_restricted(reg_none(), src, reg_imm(bit), ®, false); |
| if (err) { |
| nfp_prog->error = err; |
| return; |
| } |
| |
| __emit_br_bit(nfp_prog, reg.areg, reg.breg, addr, defer, set, |
| reg.src_lmextn); |
| |
| nfp_prog->prog[nfp_prog->prog_len - 1] |= |
| FIELD_PREP(OP_RELO_TYPE, relo); |
| } |
| |
| static void |
| emit_br_bset(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr, u8 defer) |
| { |
| emit_br_bit_relo(nfp_prog, src, bit, addr, defer, true, RELO_BR_REL); |
| } |
| |
| static void |
| __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi, |
| enum immed_width width, bool invert, |
| enum immed_shift shift, bool wr_both, |
| bool dst_lmextn, bool src_lmextn) |
| { |
| u64 insn; |
| |
| insn = OP_IMMED_BASE | |
| FIELD_PREP(OP_IMMED_A_SRC, areg) | |
| FIELD_PREP(OP_IMMED_B_SRC, breg) | |
| FIELD_PREP(OP_IMMED_IMM, imm_hi) | |
| FIELD_PREP(OP_IMMED_WIDTH, width) | |
| FIELD_PREP(OP_IMMED_INV, invert) | |
| FIELD_PREP(OP_IMMED_SHIFT, shift) | |
| FIELD_PREP(OP_IMMED_WR_AB, wr_both) | |
| FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) | |
| FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn); |
| |
| nfp_prog_push(nfp_prog, insn); |
| } |
| |
| static void |
| emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm, |
| enum immed_width width, bool invert, enum immed_shift shift) |
| { |
| struct nfp_insn_ur_regs reg; |
| int err; |
| |
| if (swreg_type(dst) == NN_REG_IMM) { |
| nfp_prog->error = -EFAULT; |
| return; |
| } |
| |
| err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), ®); |
| if (err) { |
| nfp_prog->error = err; |
| return; |
| } |
| |
| /* Use reg.dst when destination is No-Dest. */ |
| __emit_immed(nfp_prog, |
| swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg, |
| reg.breg, imm >> 8, width, invert, shift, |
| reg.wr_both, reg.dst_lmextn, reg.src_lmextn); |
| } |
| |
| static void |
| __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab, |
| enum shf_sc sc, u8 shift, |
| u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both, |
| bool dst_lmextn, bool src_lmextn) |
| { |
| u64 insn; |
| |
| if (!FIELD_FIT(OP_SHF_SHIFT, shift)) { |
| nfp_prog->error = -EFAULT; |
| return; |
| } |
| |
| /* NFP shift instruction has something special. If shift direction is |
| * left then shift amount of 1 to 31 is specified as 32 minus the amount |
| * to shift. |
| * |
| * But no need to do this for indirect shift which has shift amount be |
| * 0. Even after we do this subtraction, shift amount 0 will be turned |
| * into 32 which will eventually be encoded the same as 0 because only |
| * low 5 bits are encoded, but shift amount be 32 will fail the |
| * FIELD_PREP check done later on shift mask (0x1f), due to 32 is out of |
| * mask range. |
| */ |
| if (sc == SHF_SC_L_SHF && shift) |
| shift = 32 - shift; |
| |
| insn = OP_SHF_BASE | |
| FIELD_PREP(OP_SHF_A_SRC, areg) | |
| FIELD_PREP(OP_SHF_SC, sc) | |
| FIELD_PREP(OP_SHF_B_SRC, breg) | |
| FIELD_PREP(OP_SHF_I8, i8) | |
| FIELD_PREP(OP_SHF_SW, sw) | |
| FIELD_PREP(OP_SHF_DST, dst) | |
| FIELD_PREP(OP_SHF_SHIFT, shift) | |
| FIELD_PREP(OP_SHF_OP, op) | |
| FIELD_PREP(OP_SHF_DST_AB, dst_ab) | |
| FIELD_PREP(OP_SHF_WR_AB, wr_both) | |
| FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) | |
| FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn); |
| |
| nfp_prog_push(nfp_prog, insn); |
| } |
| |
| static void |
| emit_shf(struct nfp_prog *nfp_prog, swreg dst, |
| swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift) |
| { |
| struct nfp_insn_re_regs reg; |
| int err; |
| |
| err = swreg_to_restricted(dst, lreg, rreg, ®, true); |
| if (err) { |
| nfp_prog->error = err; |
| return; |
| } |
| |
| __emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift, |
| reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both, |
| reg.dst_lmextn, reg.src_lmextn); |
| } |
| |
| static void |
| emit_shf_indir(struct nfp_prog *nfp_prog, swreg dst, |
| swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc) |
| { |
| if (sc == SHF_SC_R_ROT) { |
| pr_err("indirect shift is not allowed on rotation\n"); |
| nfp_prog->error = -EFAULT; |
| return; |
| } |
| |
| emit_shf(nfp_prog, dst, lreg, op, rreg, sc, 0); |
| } |
| |
| static void |
| __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab, |
| u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both, |
| bool dst_lmextn, bool src_lmextn) |
| { |
| u64 insn; |
| |
| insn = OP_ALU_BASE | |
| FIELD_PREP(OP_ALU_A_SRC, areg) | |
| FIELD_PREP(OP_ALU_B_SRC, breg) | |
| FIELD_PREP(OP_ALU_DST, dst) | |
| FIELD_PREP(OP_ALU_SW, swap) | |
| FIELD_PREP(OP_ALU_OP, op) | |
| FIELD_PREP(OP_ALU_DST_AB, dst_ab) | |
| FIELD_PREP(OP_ALU_WR_AB, wr_both) | |
| FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) | |
| FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn); |
| |
| nfp_prog_push(nfp_prog, insn); |
| } |
| |
| static void |
| emit_alu(struct nfp_prog *nfp_prog, swreg dst, |
| swreg lreg, enum alu_op op, swreg rreg) |
| { |
| struct nfp_insn_ur_regs reg; |
| int err; |
| |
| err = swreg_to_unrestricted(dst, lreg, rreg, ®); |
| if (err) { |
| nfp_prog->error = err; |
| return; |
| } |
| |
| __emit_alu(nfp_prog, reg.dst, reg.dst_ab, |
| reg.areg, op, reg.breg, reg.swap, reg.wr_both, |
| reg.dst_lmextn, reg.src_lmextn); |
| } |
| |
| static void |
| __emit_mul(struct nfp_prog *nfp_prog, enum alu_dst_ab dst_ab, u16 areg, |
| enum mul_type type, enum mul_step step, u16 breg, bool swap, |
| bool wr_both, bool dst_lmextn, bool src_lmextn) |
| { |
| u64 insn; |
| |
| insn = OP_MUL_BASE | |
| FIELD_PREP(OP_MUL_A_SRC, areg) | |
| FIELD_PREP(OP_MUL_B_SRC, breg) | |
| FIELD_PREP(OP_MUL_STEP, step) | |
| FIELD_PREP(OP_MUL_DST_AB, dst_ab) | |
| FIELD_PREP(OP_MUL_SW, swap) | |
| FIELD_PREP(OP_MUL_TYPE, type) | |
| FIELD_PREP(OP_MUL_WR_AB, wr_both) | |
| FIELD_PREP(OP_MUL_SRC_LMEXTN, src_lmextn) | |
| FIELD_PREP(OP_MUL_DST_LMEXTN, dst_lmextn); |
| |
| nfp_prog_push(nfp_prog, insn); |
| } |
| |
| static void |
| emit_mul(struct nfp_prog *nfp_prog, swreg lreg, enum mul_type type, |
| enum mul_step step, swreg rreg) |
| { |
| struct nfp_insn_ur_regs reg; |
| u16 areg; |
| int err; |
| |
| if (type == MUL_TYPE_START && step != MUL_STEP_NONE) { |
| nfp_prog->error = -EINVAL; |
| return; |
| } |
| |
| if (step == MUL_LAST || step == MUL_LAST_2) { |
| /* When type is step and step Number is LAST or LAST2, left |
| * source is used as destination. |
| */ |
| err = swreg_to_unrestricted(lreg, reg_none(), rreg, ®); |
| areg = reg.dst; |
| } else { |
| err = swreg_to_unrestricted(reg_none(), lreg, rreg, ®); |
| areg = reg.areg; |
| } |
| |
| if (err) { |
| nfp_prog->error = err; |
| return; |
| } |
| |
| __emit_mul(nfp_prog, reg.dst_ab, areg, type, step, reg.breg, reg.swap, |
| reg.wr_both, reg.dst_lmextn, reg.src_lmextn); |
| } |
| |
| static void |
| __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc, |
| u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8, |
| bool zero, bool swap, bool wr_both, |
| bool dst_lmextn, bool src_lmextn) |
| { |
| u64 insn; |
| |
| insn = OP_LDF_BASE | |
| FIELD_PREP(OP_LDF_A_SRC, areg) | |
| FIELD_PREP(OP_LDF_SC, sc) | |
| FIELD_PREP(OP_LDF_B_SRC, breg) | |
| FIELD_PREP(OP_LDF_I8, imm8) | |
| FIELD_PREP(OP_LDF_SW, swap) | |
| FIELD_PREP(OP_LDF_ZF, zero) | |
| FIELD_PREP(OP_LDF_BMASK, bmask) | |
| FIELD_PREP(OP_LDF_SHF, shift) | |
| FIELD_PREP(OP_LDF_WR_AB, wr_both) | |
| FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) | |
| FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn); |
| |
| nfp_prog_push(nfp_prog, insn); |
| } |
| |
| static void |
| emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src, |
| enum shf_sc sc, u8 shift, bool zero) |
| { |
| struct nfp_insn_re_regs reg; |
| int err; |
| |
| /* Note: ld_field is special as it uses one of the src regs as dst */ |
| err = swreg_to_restricted(dst, dst, src, ®, true); |
| if (err) { |
| nfp_prog->error = err; |
| return; |
| } |
| |
| __emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift, |
| reg.i8, zero, reg.swap, reg.wr_both, |
| reg.dst_lmextn, reg.src_lmextn); |
| } |
| |
| static void |
| emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src, |
| enum shf_sc sc, u8 shift) |
| { |
| emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false); |
| } |
| |
| static void |
| __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr, |
| bool dst_lmextn, bool src_lmextn) |
| { |
| u64 insn; |
| |
| insn = OP_LCSR_BASE | |
| FIELD_PREP(OP_LCSR_A_SRC, areg) | |
| FIELD_PREP(OP_LCSR_B_SRC, breg) | |
| FIELD_PREP(OP_LCSR_WRITE, wr) | |
| FIELD_PREP(OP_LCSR_ADDR, addr / 4) | |
| FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) | |
| FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn); |
| |
| nfp_prog_push(nfp_prog, insn); |
| } |
| |
| static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr) |
| { |
| struct nfp_insn_ur_regs reg; |
| int err; |
| |
| /* This instruction takes immeds instead of reg_none() for the ignored |
| * operand, but we can't encode 2 immeds in one instr with our normal |
| * swreg infra so if param is an immed, we encode as reg_none() and |
| * copy the immed to both operands. |
| */ |
| if (swreg_type(src) == NN_REG_IMM) { |
| err = swreg_to_unrestricted(reg_none(), src, reg_none(), ®); |
| reg.breg = reg.areg; |
| } else { |
| err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), ®); |
| } |
| if (err) { |
| nfp_prog->error = err; |
| return; |
| } |
| |
| __emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr, |
| false, reg.src_lmextn); |
| } |
| |
| /* CSR value is read in following immed[gpr, 0] */ |
| static void __emit_csr_rd(struct nfp_prog *nfp_prog, u16 addr) |
| { |
| __emit_lcsr(nfp_prog, 0, 0, false, addr, false, false); |
| } |
| |
| static void emit_nop(struct nfp_prog *nfp_prog) |
| { |
| __emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0); |
| } |
| |
| /* --- Wrappers --- */ |
| static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift) |
| { |
| if (!(imm & 0xffff0000)) { |
| *val = imm; |
| *shift = IMMED_SHIFT_0B; |
| } else if (!(imm & 0xff0000ff)) { |
| *val = imm >> 8; |
| *shift = IMMED_SHIFT_1B; |
| } else if (!(imm & 0x0000ffff)) { |
| *val = imm >> 16; |
| *shift = IMMED_SHIFT_2B; |
| } else { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm) |
| { |
| enum immed_shift shift; |
| u16 val; |
| |
| if (pack_immed(imm, &val, &shift)) { |
| emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift); |
| } else if (pack_immed(~imm, &val, &shift)) { |
| emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift); |
| } else { |
| emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL, |
| false, IMMED_SHIFT_0B); |
| emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD, |
| false, IMMED_SHIFT_2B); |
| } |
| } |
| |
| static void |
| wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm, |
| enum nfp_relo_type relo) |
| { |
| if (imm > 0xffff) { |
| pr_err("relocation of a large immediate!\n"); |
| nfp_prog->error = -EFAULT; |
| return; |
| } |
| emit_immed(nfp_prog, dst, imm, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B); |
| |
| nfp_prog->prog[nfp_prog->prog_len - 1] |= |
| FIELD_PREP(OP_RELO_TYPE, relo); |
| } |
| |
| /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted) |
| * If the @imm is small enough encode it directly in operand and return |
| * otherwise load @imm to a spare register and return its encoding. |
| */ |
| static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg) |
| { |
| if (FIELD_FIT(UR_REG_IMM_MAX, imm)) |
| return reg_imm(imm); |
| |
| wrp_immed(nfp_prog, tmp_reg, imm); |
| return tmp_reg; |
| } |
| |
| /* re_load_imm_any() - encode immediate or use tmp register (restricted) |
| * If the @imm is small enough encode it directly in operand and return |
| * otherwise load @imm to a spare register and return its encoding. |
| */ |
| static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg) |
| { |
| if (FIELD_FIT(RE_REG_IMM_MAX, imm)) |
| return reg_imm(imm); |
| |
| wrp_immed(nfp_prog, tmp_reg, imm); |
| return tmp_reg; |
| } |
| |
| static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count) |
| { |
| while (count--) |
| emit_nop(nfp_prog); |
| } |
| |
| static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src) |
| { |
| emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src); |
| } |
| |
| static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src) |
| { |
| wrp_mov(nfp_prog, reg_both(dst), reg_b(src)); |
| } |
| |
| /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the |
| * result to @dst from low end. |
| */ |
| static void |
| wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len, |
| u8 offset) |
| { |
| enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE; |
| u8 mask = (1 << field_len) - 1; |
| |
| emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true); |
| } |
| |
| /* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the |
| * result to @dst from offset, there is no change on the other bits of @dst. |
| */ |
| static void |
| wrp_reg_or_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, |
| u8 field_len, u8 offset) |
| { |
| enum shf_sc sc = offset ? SHF_SC_L_SHF : SHF_SC_NONE; |
| u8 mask = ((1 << field_len) - 1) << offset; |
| |
| emit_ld_field(nfp_prog, dst, mask, src, sc, 32 - offset * 8); |
| } |
| |
| static void |
| addr40_offset(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset, |
| swreg *rega, swreg *regb) |
| { |
| if (offset == reg_imm(0)) { |
| *rega = reg_a(src_gpr); |
| *regb = reg_b(src_gpr + 1); |
| return; |
| } |
| |
| emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(src_gpr), ALU_OP_ADD, offset); |
| emit_alu(nfp_prog, imm_b(nfp_prog), reg_b(src_gpr + 1), ALU_OP_ADD_C, |
| reg_imm(0)); |
| *rega = imm_a(nfp_prog); |
| *regb = imm_b(nfp_prog); |
| } |
| |
| /* NFP has Command Push Pull bus which supports bluk memory operations. */ |
| static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| bool descending_seq = meta->ldst_gather_len < 0; |
| s16 len = abs(meta->ldst_gather_len); |
| swreg src_base, off; |
| bool src_40bit_addr; |
| unsigned int i; |
| u8 xfer_num; |
| |
| off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog)); |
| src_40bit_addr = meta->ptr.type == PTR_TO_MAP_VALUE; |
| src_base = reg_a(meta->insn.src_reg * 2); |
| xfer_num = round_up(len, 4) / 4; |
| |
| if (src_40bit_addr) |
| addr40_offset(nfp_prog, meta->insn.src_reg * 2, off, &src_base, |
| &off); |
| |
| /* Setup PREV_ALU fields to override memory read length. */ |
| if (len > 32) |
| wrp_immed(nfp_prog, reg_none(), |
| CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1)); |
| |
| /* Memory read from source addr into transfer-in registers. */ |
| emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, |
| src_40bit_addr ? CMD_MODE_40b_BA : CMD_MODE_32b, 0, |
| src_base, off, xfer_num - 1, CMD_CTX_SWAP, len > 32); |
| |
| /* Move from transfer-in to transfer-out. */ |
| for (i = 0; i < xfer_num; i++) |
| wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i)); |
| |
| off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog)); |
| |
| if (len <= 8) { |
| /* Use single direct_ref write8. */ |
| emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0, |
| reg_a(meta->paired_st->dst_reg * 2), off, len - 1, |
| CMD_CTX_SWAP); |
| } else if (len <= 32 && IS_ALIGNED(len, 4)) { |
| /* Use single direct_ref write32. */ |
| emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0, |
| reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1, |
| CMD_CTX_SWAP); |
| } else if (len <= 32) { |
| /* Use single indirect_ref write8. */ |
| wrp_immed(nfp_prog, reg_none(), |
| CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1)); |
| emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0, |
| reg_a(meta->paired_st->dst_reg * 2), off, |
| len - 1, CMD_CTX_SWAP); |
| } else if (IS_ALIGNED(len, 4)) { |
| /* Use single indirect_ref write32. */ |
| wrp_immed(nfp_prog, reg_none(), |
| CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1)); |
| emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0, |
| reg_a(meta->paired_st->dst_reg * 2), off, |
| xfer_num - 1, CMD_CTX_SWAP); |
| } else if (len <= 40) { |
| /* Use one direct_ref write32 to write the first 32-bytes, then |
| * another direct_ref write8 to write the remaining bytes. |
| */ |
| emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0, |
| reg_a(meta->paired_st->dst_reg * 2), off, 7, |
| CMD_CTX_SWAP); |
| |
| off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32, |
| imm_b(nfp_prog)); |
| emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8, |
| reg_a(meta->paired_st->dst_reg * 2), off, len - 33, |
| CMD_CTX_SWAP); |
| } else { |
| /* Use one indirect_ref write32 to write 4-bytes aligned length, |
| * then another direct_ref write8 to write the remaining bytes. |
| */ |
| u8 new_off; |
| |
| wrp_immed(nfp_prog, reg_none(), |
| CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2)); |
| emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0, |
| reg_a(meta->paired_st->dst_reg * 2), off, |
| xfer_num - 2, CMD_CTX_SWAP); |
| new_off = meta->paired_st->off + (xfer_num - 1) * 4; |
| off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog)); |
| emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, |
| xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off, |
| (len & 0x3) - 1, CMD_CTX_SWAP); |
| } |
| |
| /* TODO: The following extra load is to make sure data flow be identical |
| * before and after we do memory copy optimization. |
| * |
| * The load destination register is not guaranteed to be dead, so we |
| * need to make sure it is loaded with the value the same as before |
| * this transformation. |
| * |
| * These extra loads could be removed once we have accurate register |
| * usage information. |
| */ |
| if (descending_seq) |
| xfer_num = 0; |
| else if (BPF_SIZE(meta->insn.code) != BPF_DW) |
| xfer_num = xfer_num - 1; |
| else |
| xfer_num = xfer_num - 2; |
| |
| switch (BPF_SIZE(meta->insn.code)) { |
| case BPF_B: |
| wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2), |
| reg_xfer(xfer_num), 1, |
| IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1); |
| break; |
| case BPF_H: |
| wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2), |
| reg_xfer(xfer_num), 2, (len & 3) ^ 2); |
| break; |
| case BPF_W: |
| wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2), |
| reg_xfer(0)); |
| break; |
| case BPF_DW: |
| wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2), |
| reg_xfer(xfer_num)); |
| wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), |
| reg_xfer(xfer_num + 1)); |
| break; |
| } |
| |
| if (BPF_SIZE(meta->insn.code) != BPF_DW) |
| wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0); |
| |
| return 0; |
| } |
| |
| static int |
| data_ld(struct nfp_prog *nfp_prog, swreg offset, u8 dst_gpr, int size) |
| { |
| unsigned int i; |
| u16 shift, sz; |
| |
| /* We load the value from the address indicated in @offset and then |
| * shift out the data we don't need. Note: this is big endian! |
| */ |
| sz = max(size, 4); |
| shift = size < 4 ? 4 - size : 0; |
| |
| emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0, |
| pptr_reg(nfp_prog), offset, sz - 1, CMD_CTX_SWAP); |
| |
| i = 0; |
| if (shift) |
| emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE, |
| reg_xfer(0), SHF_SC_R_SHF, shift * 8); |
| else |
| for (; i * 4 < size; i++) |
| wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i)); |
| |
| if (i < 2) |
| wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0); |
| |
| return 0; |
| } |
| |
| static int |
| data_ld_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, |
| swreg lreg, swreg rreg, int size, enum cmd_mode mode) |
| { |
| unsigned int i; |
| u8 mask, sz; |
| |
| /* We load the value from the address indicated in rreg + lreg and then |
| * mask out the data we don't need. Note: this is little endian! |
| */ |
| sz = max(size, 4); |
| mask = size < 4 ? GENMASK(size - 1, 0) : 0; |
| |
| emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, mode, 0, |
| lreg, rreg, sz / 4 - 1, CMD_CTX_SWAP); |
| |
| i = 0; |
| if (mask) |
| emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask, |
| reg_xfer(0), SHF_SC_NONE, 0, true); |
| else |
| for (; i * 4 < size; i++) |
| wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i)); |
| |
| if (i < 2) |
| wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0); |
| |
| return 0; |
| } |
| |
| static int |
| data_ld_host_order_addr32(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset, |
| u8 dst_gpr, u8 size) |
| { |
| return data_ld_host_order(nfp_prog, dst_gpr, reg_a(src_gpr), offset, |
| size, CMD_MODE_32b); |
| } |
| |
| static int |
| data_ld_host_order_addr40(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset, |
| u8 dst_gpr, u8 size) |
| { |
| swreg rega, regb; |
| |
| addr40_offset(nfp_prog, src_gpr, offset, ®a, ®b); |
| |
| return data_ld_host_order(nfp_prog, dst_gpr, rega, regb, |
| size, CMD_MODE_40b_BA); |
| } |
| |
| static int |
| construct_data_ind_ld(struct nfp_prog *nfp_prog, u16 offset, u16 src, u8 size) |
| { |
| swreg tmp_reg; |
| |
| /* Calculate the true offset (src_reg + imm) */ |
| tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog)); |
| emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg); |
| |
| /* Check packet length (size guaranteed to fit b/c it's u8) */ |
| emit_alu(nfp_prog, imm_a(nfp_prog), |
| imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size)); |
| emit_alu(nfp_prog, reg_none(), |
| plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog)); |
| emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT); |
| |
| /* Load data */ |
| return data_ld(nfp_prog, imm_b(nfp_prog), 0, size); |
| } |
| |
| static int construct_data_ld(struct nfp_prog *nfp_prog, u16 offset, u8 size) |
| { |
| swreg tmp_reg; |
| |
| /* Check packet length */ |
| tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog)); |
| emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg); |
| emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT); |
| |
| /* Load data */ |
| tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog)); |
| return data_ld(nfp_prog, tmp_reg, 0, size); |
| } |
| |
| static int |
| data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset, |
| u8 src_gpr, u8 size) |
| { |
| unsigned int i; |
| |
| for (i = 0; i * 4 < size; i++) |
| wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i)); |
| |
| emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0, |
| reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP); |
| |
| return 0; |
| } |
| |
| static int |
| data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset, |
| u64 imm, u8 size) |
| { |
| wrp_immed(nfp_prog, reg_xfer(0), imm); |
| if (size == 8) |
| wrp_immed(nfp_prog, reg_xfer(1), imm >> 32); |
| |
| emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0, |
| reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP); |
| |
| return 0; |
| } |
| |
| typedef int |
| (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off, |
| unsigned int size, bool first, bool new_gpr, bool last, bool lm3, |
| bool needs_inc); |
| |
| static int |
| wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off, |
| unsigned int size, bool first, bool new_gpr, bool last, bool lm3, |
| bool needs_inc) |
| { |
| bool should_inc = needs_inc && new_gpr && !last; |
| u32 idx, src_byte; |
| enum shf_sc sc; |
| swreg reg; |
| int shf; |
| u8 mask; |
| |
| if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4)) |
| return -EOPNOTSUPP; |
| |
| idx = off / 4; |
| |
| /* Move the entire word */ |
| if (size == 4) { |
| wrp_mov(nfp_prog, reg_both(dst), |
| should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx)); |
| return 0; |
| } |
| |
| if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX)) |
| return -EOPNOTSUPP; |
| |
| src_byte = off % 4; |
| |
| mask = (1 << size) - 1; |
| mask <<= dst_byte; |
| |
| if (WARN_ON_ONCE(mask > 0xf)) |
| return -EOPNOTSUPP; |
| |
| shf = abs(src_byte - dst_byte) * 8; |
| if (src_byte == dst_byte) { |
| sc = SHF_SC_NONE; |
| } else if (src_byte < dst_byte) { |
| shf = 32 - shf; |
| sc = SHF_SC_L_SHF; |
| } else { |
| sc = SHF_SC_R_SHF; |
| } |
| |
| /* ld_field can address fewer indexes, if offset too large do RMW. |
| * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes. |
| */ |
| if (idx <= RE_REG_LM_IDX_MAX) { |
| reg = reg_lm(lm3 ? 3 : 0, idx); |
| } else { |
| reg = imm_a(nfp_prog); |
| /* If it's not the first part of the load and we start a new GPR |
| * that means we are loading a second part of the LMEM word into |
| * a new GPR. IOW we've already looked that LMEM word and |
| * therefore it has been loaded into imm_a(). |
| */ |
| if (first || !new_gpr) |
| wrp_mov(nfp_prog, reg, reg_lm(0, idx)); |
| } |
| |
| emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr); |
| |
| if (should_inc) |
| wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3)); |
| |
| return 0; |
| } |
| |
| static int |
| wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off, |
| unsigned int size, bool first, bool new_gpr, bool last, bool lm3, |
| bool needs_inc) |
| { |
| bool should_inc = needs_inc && new_gpr && !last; |
| u32 idx, dst_byte; |
| enum shf_sc sc; |
| swreg reg; |
| int shf; |
| u8 mask; |
| |
| if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4)) |
| return -EOPNOTSUPP; |
| |
| idx = off / 4; |
| |
| /* Move the entire word */ |
| if (size == 4) { |
| wrp_mov(nfp_prog, |
| should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx), |
| reg_b(src)); |
| return 0; |
| } |
| |
| if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX)) |
| return -EOPNOTSUPP; |
| |
| dst_byte = off % 4; |
| |
| mask = (1 << size) - 1; |
| mask <<= dst_byte; |
| |
| if (WARN_ON_ONCE(mask > 0xf)) |
| return -EOPNOTSUPP; |
| |
| shf = abs(src_byte - dst_byte) * 8; |
| if (src_byte == dst_byte) { |
| sc = SHF_SC_NONE; |
| } else if (src_byte < dst_byte) { |
| shf = 32 - shf; |
| sc = SHF_SC_L_SHF; |
| } else { |
| sc = SHF_SC_R_SHF; |
| } |
| |
| /* ld_field can address fewer indexes, if offset too large do RMW. |
| * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes. |
| */ |
| if (idx <= RE_REG_LM_IDX_MAX) { |
| reg = reg_lm(lm3 ? 3 : 0, idx); |
| } else { |
| reg = imm_a(nfp_prog); |
| /* Only first and last LMEM locations are going to need RMW, |
| * the middle location will be overwritten fully. |
| */ |
| if (first || last) |
| wrp_mov(nfp_prog, reg, reg_lm(0, idx)); |
| } |
| |
| emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf); |
| |
| if (new_gpr || last) { |
| if (idx > RE_REG_LM_IDX_MAX) |
| wrp_mov(nfp_prog, reg_lm(0, idx), reg); |
| if (should_inc) |
| wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3)); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, |
| unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr, |
| bool clr_gpr, lmem_step step) |
| { |
| s32 off = nfp_prog->stack_depth + meta->insn.off + ptr_off; |
| bool first = true, last; |
| bool needs_inc = false; |
| swreg stack_off_reg; |
| u8 prev_gpr = 255; |
| u32 gpr_byte = 0; |
| bool lm3 = true; |
| int ret; |
| |
| if (meta->ptr_not_const) { |
| /* Use of the last encountered ptr_off is OK, they all have |
| * the same alignment. Depend on low bits of value being |
| * discarded when written to LMaddr register. |
| */ |
| stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off, |
| stack_imm(nfp_prog)); |
| |
| emit_alu(nfp_prog, imm_b(nfp_prog), |
| reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg); |
| |
| needs_inc = true; |
| } else if (off + size <= 64) { |
| /* We can reach bottom 64B with LMaddr0 */ |
| lm3 = false; |
| } else if (round_down(off, 32) == round_down(off + size - 1, 32)) { |
| /* We have to set up a new pointer. If we know the offset |
| * and the entire access falls into a single 32 byte aligned |
| * window we won't have to increment the LM pointer. |
| * The 32 byte alignment is imporant because offset is ORed in |
| * not added when doing *l$indexN[off]. |
| */ |
| stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32), |
| stack_imm(nfp_prog)); |
| emit_alu(nfp_prog, imm_b(nfp_prog), |
| stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg); |
| |
| off %= 32; |
| } else { |
| stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4), |
| stack_imm(nfp_prog)); |
| |
| emit_alu(nfp_prog, imm_b(nfp_prog), |
| stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg); |
| |
| needs_inc = true; |
| } |
| if (lm3) { |
| emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3); |
| /* For size < 4 one slot will be filled by zeroing of upper. */ |
| wrp_nops(nfp_prog, clr_gpr && size < 8 ? 2 : 3); |
| } |
| |
| if (clr_gpr && size < 8) |
| wrp_immed(nfp_prog, reg_both(gpr + 1), 0); |
| |
| while (size) { |
| u32 slice_end; |
| u8 slice_size; |
| |
| slice_size = min(size, 4 - gpr_byte); |
| slice_end = min(off + slice_size, round_up(off + 1, 4)); |
| slice_size = slice_end - off; |
| |
| last = slice_size == size; |
| |
| if (needs_inc) |
| off %= 4; |
| |
| ret = step(nfp_prog, gpr, gpr_byte, off, slice_size, |
| first, gpr != prev_gpr, last, lm3, needs_inc); |
| if (ret) |
| return ret; |
| |
| prev_gpr = gpr; |
| first = false; |
| |
| gpr_byte += slice_size; |
| if (gpr_byte >= 4) { |
| gpr_byte -= 4; |
| gpr++; |
| } |
| |
| size -= slice_size; |
| off += slice_size; |
| } |
| |
| return 0; |
| } |
| |
| static void |
| wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm) |
| { |
| swreg tmp_reg; |
| |
| if (alu_op == ALU_OP_AND) { |
| if (!imm) |
| wrp_immed(nfp_prog, reg_both(dst), 0); |
| if (!imm || !~imm) |
| return; |
| } |
| if (alu_op == ALU_OP_OR) { |
| if (!~imm) |
| wrp_immed(nfp_prog, reg_both(dst), ~0U); |
| if (!imm || !~imm) |
| return; |
| } |
| if (alu_op == ALU_OP_XOR) { |
| if (!~imm) |
| emit_alu(nfp_prog, reg_both(dst), reg_none(), |
| ALU_OP_NOT, reg_b(dst)); |
| if (!imm || !~imm) |
| return; |
| } |
| |
| tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog)); |
| emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg); |
| } |
| |
| static int |
| wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, |
| enum alu_op alu_op, bool skip) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| u64 imm = insn->imm; /* sign extend */ |
| |
| if (skip) { |
| meta->skip = true; |
| return 0; |
| } |
| |
| wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U); |
| wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32); |
| |
| return 0; |
| } |
| |
| static int |
| wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, |
| enum alu_op alu_op) |
| { |
| u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2; |
| |
| emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src)); |
| emit_alu(nfp_prog, reg_both(dst + 1), |
| reg_a(dst + 1), alu_op, reg_b(src + 1)); |
| |
| return 0; |
| } |
| |
| static int |
| wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, |
| enum alu_op alu_op) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| |
| wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, insn->imm); |
| wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0); |
| |
| return 0; |
| } |
| |
| static int |
| wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, |
| enum alu_op alu_op) |
| { |
| u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2; |
| |
| emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src)); |
| wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0); |
| |
| return 0; |
| } |
| |
| static void |
| wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src, |
| enum br_mask br_mask, u16 off) |
| { |
| emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src)); |
| emit_br(nfp_prog, br_mask, off, 0); |
| } |
| |
| static int |
| wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, |
| enum alu_op alu_op, enum br_mask br_mask) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| |
| wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op, |
| insn->src_reg * 2, br_mask, insn->off); |
| wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op, |
| insn->src_reg * 2 + 1, br_mask, insn->off); |
| |
| return 0; |
| } |
| |
| static const struct jmp_code_map { |
| enum br_mask br_mask; |
| bool swap; |
| } jmp_code_map[] = { |
| [BPF_JGT >> 4] = { BR_BLO, true }, |
| [BPF_JGE >> 4] = { BR_BHS, false }, |
| [BPF_JLT >> 4] = { BR_BLO, false }, |
| [BPF_JLE >> 4] = { BR_BHS, true }, |
| [BPF_JSGT >> 4] = { BR_BLT, true }, |
| [BPF_JSGE >> 4] = { BR_BGE, false }, |
| [BPF_JSLT >> 4] = { BR_BLT, false }, |
| [BPF_JSLE >> 4] = { BR_BGE, true }, |
| }; |
| |
| static const struct jmp_code_map *nfp_jmp_code_get(struct nfp_insn_meta *meta) |
| { |
| unsigned int op; |
| |
| op = BPF_OP(meta->insn.code) >> 4; |
| /* br_mask of 0 is BR_BEQ which we don't use in jump code table */ |
| if (WARN_ONCE(op >= ARRAY_SIZE(jmp_code_map) || |
| !jmp_code_map[op].br_mask, |
| "no code found for jump instruction")) |
| return NULL; |
| |
| return &jmp_code_map[op]; |
| } |
| |
| static int cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| u64 imm = insn->imm; /* sign extend */ |
| const struct jmp_code_map *code; |
| enum alu_op alu_op, carry_op; |
| u8 reg = insn->dst_reg * 2; |
| swreg tmp_reg; |
| |
| code = nfp_jmp_code_get(meta); |
| if (!code) |
| return -EINVAL; |
| |
| alu_op = meta->jump_neg_op ? ALU_OP_ADD : ALU_OP_SUB; |
| carry_op = meta->jump_neg_op ? ALU_OP_ADD_C : ALU_OP_SUB_C; |
| |
| tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog)); |
| if (!code->swap) |
| emit_alu(nfp_prog, reg_none(), reg_a(reg), alu_op, tmp_reg); |
| else |
| emit_alu(nfp_prog, reg_none(), tmp_reg, alu_op, reg_a(reg)); |
| |
| tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog)); |
| if (!code->swap) |
| emit_alu(nfp_prog, reg_none(), |
| reg_a(reg + 1), carry_op, tmp_reg); |
| else |
| emit_alu(nfp_prog, reg_none(), |
| tmp_reg, carry_op, reg_a(reg + 1)); |
| |
| emit_br(nfp_prog, code->br_mask, insn->off, 0); |
| |
| return 0; |
| } |
| |
| static int cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| const struct jmp_code_map *code; |
| u8 areg, breg; |
| |
| code = nfp_jmp_code_get(meta); |
| if (!code) |
| return -EINVAL; |
| |
| areg = insn->dst_reg * 2; |
| breg = insn->src_reg * 2; |
| |
| if (code->swap) { |
| areg ^= breg; |
| breg ^= areg; |
| areg ^= breg; |
| } |
| |
| emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg)); |
| emit_alu(nfp_prog, reg_none(), |
| reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1)); |
| emit_br(nfp_prog, code->br_mask, insn->off, 0); |
| |
| return 0; |
| } |
| |
| static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out) |
| { |
| emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in, |
| SHF_SC_R_ROT, 8); |
| emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out), |
| SHF_SC_R_ROT, 16); |
| } |
| |
| static void |
| wrp_mul_u32(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg, |
| swreg rreg, bool gen_high_half) |
| { |
| emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg); |
| emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_1, rreg); |
| emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_2, rreg); |
| emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_3, rreg); |
| emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_4, rreg); |
| emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_32x32, MUL_LAST, reg_none()); |
| if (gen_high_half) |
| emit_mul(nfp_prog, dst_hi, MUL_TYPE_STEP_32x32, MUL_LAST_2, |
| reg_none()); |
| else |
| wrp_immed(nfp_prog, dst_hi, 0); |
| } |
| |
| static void |
| wrp_mul_u16(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg, |
| swreg rreg) |
| { |
| emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg); |
| emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_1, rreg); |
| emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_2, rreg); |
| emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_16x16, MUL_LAST, reg_none()); |
| } |
| |
| static int |
| wrp_mul(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, |
| bool gen_high_half, bool ropnd_from_reg) |
| { |
| swreg multiplier, multiplicand, dst_hi, dst_lo; |
| const struct bpf_insn *insn = &meta->insn; |
| u32 lopnd_max, ropnd_max; |
| u8 dst_reg; |
| |
| dst_reg = insn->dst_reg; |
| multiplicand = reg_a(dst_reg * 2); |
| dst_hi = reg_both(dst_reg * 2 + 1); |
| dst_lo = reg_both(dst_reg * 2); |
| lopnd_max = meta->umax_dst; |
| if (ropnd_from_reg) { |
| multiplier = reg_b(insn->src_reg * 2); |
| ropnd_max = meta->umax_src; |
| } else { |
| u32 imm = insn->imm; |
| |
| multiplier = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog)); |
| ropnd_max = imm; |
| } |
| if (lopnd_max > U16_MAX || ropnd_max > U16_MAX) |
| wrp_mul_u32(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier, |
| gen_high_half); |
| else |
| wrp_mul_u16(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier); |
| |
| return 0; |
| } |
| |
| static int wrp_div_imm(struct nfp_prog *nfp_prog, u8 dst, u64 imm) |
| { |
| swreg dst_both = reg_both(dst), dst_a = reg_a(dst), dst_b = reg_a(dst); |
| struct reciprocal_value_adv rvalue; |
| u8 pre_shift, exp; |
| swreg magic; |
| |
| if (imm > U32_MAX) { |
| wrp_immed(nfp_prog, dst_both, 0); |
| return 0; |
| } |
| |
| /* NOTE: because we are using "reciprocal_value_adv" which doesn't |
| * support "divisor > (1u << 31)", we need to JIT separate NFP sequence |
| * to handle such case which actually equals to the result of unsigned |
| * comparison "dst >= imm" which could be calculated using the following |
| * NFP sequence: |
| * |
| * alu[--, dst, -, imm] |
| * immed[imm, 0] |
| * alu[dst, imm, +carry, 0] |
| * |
| */ |
| if (imm > 1U << 31) { |
| swreg tmp_b = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog)); |
| |
| emit_alu(nfp_prog, reg_none(), dst_a, ALU_OP_SUB, tmp_b); |
| wrp_immed(nfp_prog, imm_a(nfp_prog), 0); |
| emit_alu(nfp_prog, dst_both, imm_a(nfp_prog), ALU_OP_ADD_C, |
| reg_imm(0)); |
| return 0; |
| } |
| |
| rvalue = reciprocal_value_adv(imm, 32); |
| exp = rvalue.exp; |
| if (rvalue.is_wide_m && !(imm & 1)) { |
| pre_shift = fls(imm & -imm) - 1; |
| rvalue = reciprocal_value_adv(imm >> pre_shift, 32 - pre_shift); |
| } else { |
| pre_shift = 0; |
| } |
| magic = ur_load_imm_any(nfp_prog, rvalue.m, imm_b(nfp_prog)); |
| if (imm == 1U << exp) { |
| emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b, |
| SHF_SC_R_SHF, exp); |
| } else if (rvalue.is_wide_m) { |
| wrp_mul_u32(nfp_prog, imm_both(nfp_prog), reg_none(), dst_a, |
| magic, true); |
| emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_SUB, |
| imm_b(nfp_prog)); |
| emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b, |
| SHF_SC_R_SHF, 1); |
| emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_ADD, |
| imm_b(nfp_prog)); |
| emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b, |
| SHF_SC_R_SHF, rvalue.sh - 1); |
| } else { |
| if (pre_shift) |
| emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, |
| dst_b, SHF_SC_R_SHF, pre_shift); |
| wrp_mul_u32(nfp_prog, dst_both, reg_none(), dst_a, magic, true); |
| emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, |
| dst_b, SHF_SC_R_SHF, rvalue.sh); |
| } |
| |
| return 0; |
| } |
| |
| static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog); |
| struct nfp_bpf_cap_adjust_head *adjust_head; |
| u32 ret_einval, end; |
| |
| adjust_head = &nfp_prog->bpf->adjust_head; |
| |
| /* Optimized version - 5 vs 14 cycles */ |
| if (nfp_prog->adjust_head_location != UINT_MAX) { |
| if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n)) |
| return -EINVAL; |
| |
| emit_alu(nfp_prog, pptr_reg(nfp_prog), |
| reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog)); |
| emit_alu(nfp_prog, plen_reg(nfp_prog), |
| plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2)); |
| emit_alu(nfp_prog, pv_len(nfp_prog), |
| pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2)); |
| |
| wrp_immed(nfp_prog, reg_both(0), 0); |
| wrp_immed(nfp_prog, reg_both(1), 0); |
| |
| /* TODO: when adjust head is guaranteed to succeed we can |
| * also eliminate the following if (r0 == 0) branch. |
| */ |
| |
| return 0; |
| } |
| |
| ret_einval = nfp_prog_current_offset(nfp_prog) + 14; |
| end = ret_einval + 2; |
| |
| /* We need to use a temp because offset is just a part of the pkt ptr */ |
| emit_alu(nfp_prog, tmp, |
| reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog)); |
| |
| /* Validate result will fit within FW datapath constraints */ |
| emit_alu(nfp_prog, reg_none(), |
| tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min)); |
| emit_br(nfp_prog, BR_BLO, ret_einval, 0); |
| emit_alu(nfp_prog, reg_none(), |
| reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp); |
| emit_br(nfp_prog, BR_BLO, ret_einval, 0); |
| |
| /* Validate the length is at least ETH_HLEN */ |
| emit_alu(nfp_prog, tmp_len, |
| plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2)); |
| emit_alu(nfp_prog, reg_none(), |
| tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN)); |
| emit_br(nfp_prog, BR_BMI, ret_einval, 0); |
| |
| /* Load the ret code */ |
| wrp_immed(nfp_prog, reg_both(0), 0); |
| wrp_immed(nfp_prog, reg_both(1), 0); |
| |
| /* Modify the packet metadata */ |
| emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0); |
| |
| /* Skip over the -EINVAL ret code (defer 2) */ |
| emit_br(nfp_prog, BR_UNC, end, 2); |
| |
| emit_alu(nfp_prog, plen_reg(nfp_prog), |
| plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2)); |
| emit_alu(nfp_prog, pv_len(nfp_prog), |
| pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2)); |
| |
| /* return -EINVAL target */ |
| if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval)) |
| return -EINVAL; |
| |
| wrp_immed(nfp_prog, reg_both(0), -22); |
| wrp_immed(nfp_prog, reg_both(1), ~0); |
| |
| if (!nfp_prog_confirm_current_offset(nfp_prog, end)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int adjust_tail(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| u32 ret_einval, end; |
| swreg plen, delta; |
| |
| BUILD_BUG_ON(plen_reg(nfp_prog) != reg_b(STATIC_REG_PKT_LEN)); |
| |
| plen = imm_a(nfp_prog); |
| delta = reg_a(2 * 2); |
| |
| ret_einval = nfp_prog_current_offset(nfp_prog) + 9; |
| end = nfp_prog_current_offset(nfp_prog) + 11; |
| |
| /* Calculate resulting length */ |
| emit_alu(nfp_prog, plen, plen_reg(nfp_prog), ALU_OP_ADD, delta); |
| /* delta == 0 is not allowed by the kernel, add must overflow to make |
| * length smaller. |
| */ |
| emit_br(nfp_prog, BR_BCC, ret_einval, 0); |
| |
| /* if (new_len < 14) then -EINVAL */ |
| emit_alu(nfp_prog, reg_none(), plen, ALU_OP_SUB, reg_imm(ETH_HLEN)); |
| emit_br(nfp_prog, BR_BMI, ret_einval, 0); |
| |
| emit_alu(nfp_prog, plen_reg(nfp_prog), |
| plen_reg(nfp_prog), ALU_OP_ADD, delta); |
| emit_alu(nfp_prog, pv_len(nfp_prog), |
| pv_len(nfp_prog), ALU_OP_ADD, delta); |
| |
| emit_br(nfp_prog, BR_UNC, end, 2); |
| wrp_immed(nfp_prog, reg_both(0), 0); |
| wrp_immed(nfp_prog, reg_both(1), 0); |
| |
| if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval)) |
| return -EINVAL; |
| |
| wrp_immed(nfp_prog, reg_both(0), -22); |
| wrp_immed(nfp_prog, reg_both(1), ~0); |
| |
| if (!nfp_prog_confirm_current_offset(nfp_prog, end)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int |
| map_call_stack_common(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| bool load_lm_ptr; |
| u32 ret_tgt; |
| s64 lm_off; |
| |
| /* We only have to reload LM0 if the key is not at start of stack */ |
| lm_off = nfp_prog->stack_depth; |
| lm_off += meta->arg2.reg.var_off.value + meta->arg2.reg.off; |
| load_lm_ptr = meta->arg2.var_off || lm_off; |
| |
| /* Set LM0 to start of key */ |
| if (load_lm_ptr) |
| emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0); |
| if (meta->func_id == BPF_FUNC_map_update_elem) |
| emit_csr_wr(nfp_prog, reg_b(3 * 2), NFP_CSR_ACT_LM_ADDR2); |
| |
| emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id, |
| 2, RELO_BR_HELPER); |
| ret_tgt = nfp_prog_current_offset(nfp_prog) + 2; |
| |
| /* Load map ID into A0 */ |
| wrp_mov(nfp_prog, reg_a(0), reg_a(2)); |
| |
| /* Load the return address into B0 */ |
| wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL); |
| |
| if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt)) |
| return -EINVAL; |
| |
| /* Reset the LM0 pointer */ |
| if (!load_lm_ptr) |
| return 0; |
| |
| emit_csr_wr(nfp_prog, stack_reg(nfp_prog), NFP_CSR_ACT_LM_ADDR0); |
| wrp_nops(nfp_prog, 3); |
| |
| return 0; |
| } |
| |
| static int |
| nfp_get_prandom_u32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| __emit_csr_rd(nfp_prog, NFP_CSR_PSEUDO_RND_NUM); |
| /* CSR value is read in following immed[gpr, 0] */ |
| emit_immed(nfp_prog, reg_both(0), 0, |
| IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B); |
| emit_immed(nfp_prog, reg_both(1), 0, |
| IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B); |
| return 0; |
| } |
| |
| static int |
| nfp_perf_event_output(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| swreg ptr_type; |
| u32 ret_tgt; |
| |
| ptr_type = ur_load_imm_any(nfp_prog, meta->arg1.type, imm_a(nfp_prog)); |
| |
| ret_tgt = nfp_prog_current_offset(nfp_prog) + 3; |
| |
| emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id, |
| 2, RELO_BR_HELPER); |
| |
| /* Load ptr type into A1 */ |
| wrp_mov(nfp_prog, reg_a(1), ptr_type); |
| |
| /* Load the return address into B0 */ |
| wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL); |
| |
| if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int |
| nfp_queue_select(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| u32 jmp_tgt; |
| |
| jmp_tgt = nfp_prog_current_offset(nfp_prog) + 5; |
| |
| /* Make sure the queue id fits into FW field */ |
| emit_alu(nfp_prog, reg_none(), reg_a(meta->insn.src_reg * 2), |
| ALU_OP_AND_NOT_B, reg_imm(0xff)); |
| emit_br(nfp_prog, BR_BEQ, jmp_tgt, 2); |
| |
| /* Set the 'queue selected' bit and the queue value */ |
| emit_shf(nfp_prog, pv_qsel_set(nfp_prog), |
| pv_qsel_set(nfp_prog), SHF_OP_OR, reg_imm(1), |
| SHF_SC_L_SHF, PKT_VEL_QSEL_SET_BIT); |
| emit_ld_field(nfp_prog, |
| pv_qsel_val(nfp_prog), 0x1, reg_b(meta->insn.src_reg * 2), |
| SHF_SC_NONE, 0); |
| /* Delay slots end here, we will jump over next instruction if queue |
| * value fits into the field. |
| */ |
| emit_ld_field(nfp_prog, |
| pv_qsel_val(nfp_prog), 0x1, reg_imm(NFP_NET_RXR_MAX), |
| SHF_SC_NONE, 0); |
| |
| if (!nfp_prog_confirm_current_offset(nfp_prog, jmp_tgt)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* --- Callbacks --- */ |
| static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| u8 dst = insn->dst_reg * 2; |
| u8 src = insn->src_reg * 2; |
| |
| if (insn->src_reg == BPF_REG_10) { |
| swreg stack_depth_reg; |
| |
| stack_depth_reg = ur_load_imm_any(nfp_prog, |
| nfp_prog->stack_depth, |
| stack_imm(nfp_prog)); |
| emit_alu(nfp_prog, reg_both(dst), |
| stack_reg(nfp_prog), ALU_OP_ADD, stack_depth_reg); |
| wrp_immed(nfp_prog, reg_both(dst + 1), 0); |
| } else { |
| wrp_reg_mov(nfp_prog, dst, src); |
| wrp_reg_mov(nfp_prog, dst + 1, src + 1); |
| } |
| |
| return 0; |
| } |
| |
| static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| u64 imm = meta->insn.imm; /* sign extend */ |
| |
| wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U); |
| wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32); |
| |
| return 0; |
| } |
| |
| static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR); |
| } |
| |
| static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm); |
| } |
| |
| static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND); |
| } |
| |
| static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm); |
| } |
| |
| static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR); |
| } |
| |
| static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm); |
| } |
| |
| static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| |
| emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), |
| reg_a(insn->dst_reg * 2), ALU_OP_ADD, |
| reg_b(insn->src_reg * 2)); |
| emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), |
| reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C, |
| reg_b(insn->src_reg * 2 + 1)); |
| |
| return 0; |
| } |
| |
| static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| u64 imm = insn->imm; /* sign extend */ |
| |
| wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U); |
| wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32); |
| |
| return 0; |
| } |
| |
| static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| |
| emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), |
| reg_a(insn->dst_reg * 2), ALU_OP_SUB, |
| reg_b(insn->src_reg * 2)); |
| emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), |
| reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C, |
| reg_b(insn->src_reg * 2 + 1)); |
| |
| return 0; |
| } |
| |
| static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| u64 imm = insn->imm; /* sign extend */ |
| |
| wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U); |
| wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32); |
| |
| return 0; |
| } |
| |
| static int mul_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_mul(nfp_prog, meta, true, true); |
| } |
| |
| static int mul_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_mul(nfp_prog, meta, true, false); |
| } |
| |
| static int div_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| |
| return wrp_div_imm(nfp_prog, insn->dst_reg * 2, insn->imm); |
| } |
| |
| static int div_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| /* NOTE: verifier hook has rejected cases for which verifier doesn't |
| * know whether the source operand is constant or not. |
| */ |
| return wrp_div_imm(nfp_prog, meta->insn.dst_reg * 2, meta->umin_src); |
| } |
| |
| static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| |
| emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0), |
| ALU_OP_SUB, reg_b(insn->dst_reg * 2)); |
| emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0), |
| ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1)); |
| |
| return 0; |
| } |
| |
| /* Pseudo code: |
| * if shift_amt >= 32 |
| * dst_high = dst_low << shift_amt[4:0] |
| * dst_low = 0; |
| * else |
| * dst_high = (dst_high, dst_low) >> (32 - shift_amt) |
| * dst_low = dst_low << shift_amt |
| * |
| * The indirect shift will use the same logic at runtime. |
| */ |
| static int __shl_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt) |
| { |
| if (shift_amt < 32) { |
| emit_shf(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), |
| SHF_OP_NONE, reg_b(dst), SHF_SC_R_DSHF, |
| 32 - shift_amt); |
| emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE, |
| reg_b(dst), SHF_SC_L_SHF, shift_amt); |
| } else if (shift_amt == 32) { |
| wrp_reg_mov(nfp_prog, dst + 1, dst); |
| wrp_immed(nfp_prog, reg_both(dst), 0); |
| } else if (shift_amt > 32) { |
| emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE, |
| reg_b(dst), SHF_SC_L_SHF, shift_amt - 32); |
| wrp_immed(nfp_prog, reg_both(dst), 0); |
| } |
| |
| return 0; |
| } |
| |
| static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| u8 dst = insn->dst_reg * 2; |
| |
| return __shl_imm64(nfp_prog, dst, insn->imm); |
| } |
| |
| static void shl_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src) |
| { |
| emit_alu(nfp_prog, imm_both(nfp_prog), reg_imm(32), ALU_OP_SUB, |
| reg_b(src)); |
| emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR, reg_imm(0)); |
| emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), SHF_OP_NONE, |
| reg_b(dst), SHF_SC_R_DSHF); |
| } |
| |
| /* NOTE: for indirect left shift, HIGH part should be calculated first. */ |
| static void shl_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src) |
| { |
| emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0)); |
| emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE, |
| reg_b(dst), SHF_SC_L_SHF); |
| } |
| |
| static void shl_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src) |
| { |
| shl_reg64_lt32_high(nfp_prog, dst, src); |
| shl_reg64_lt32_low(nfp_prog, dst, src); |
| } |
| |
| static void shl_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src) |
| { |
| emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0)); |
| emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE, |
| reg_b(dst), SHF_SC_L_SHF); |
| wrp_immed(nfp_prog, reg_both(dst), 0); |
| } |
| |
| static int shl_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| u64 umin, umax; |
| u8 dst, src; |
| |
| dst = insn->dst_reg * 2; |
| umin = meta->umin_src; |
| umax = meta->umax_src; |
| if (umin == umax) |
| return __shl_imm64(nfp_prog, dst, umin); |
| |
| src = insn->src_reg * 2; |
| if (umax < 32) { |
| shl_reg64_lt32(nfp_prog, dst, src); |
| } else if (umin >= 32) { |
| shl_reg64_ge32(nfp_prog, dst, src); |
| } else { |
| /* Generate different instruction sequences depending on runtime |
| * value of shift amount. |
| */ |
| u16 label_ge32, label_end; |
| |
| label_ge32 = nfp_prog_current_offset(nfp_prog) + 7; |
| emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0); |
| |
| shl_reg64_lt32_high(nfp_prog, dst, src); |
| label_end = nfp_prog_current_offset(nfp_prog) + 6; |
| emit_br(nfp_prog, BR_UNC, label_end, 2); |
| /* shl_reg64_lt32_low packed in delay slot. */ |
| shl_reg64_lt32_low(nfp_prog, dst, src); |
| |
| if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32)) |
| return -EINVAL; |
| shl_reg64_ge32(nfp_prog, dst, src); |
| |
| if (!nfp_prog_confirm_current_offset(nfp_prog, label_end)) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* Pseudo code: |
| * if shift_amt >= 32 |
| * dst_high = 0; |
| * dst_low = dst_high >> shift_amt[4:0] |
| * else |
| * dst_high = dst_high >> shift_amt |
| * dst_low = (dst_high, dst_low) >> shift_amt |
| * |
| * The indirect shift will use the same logic at runtime. |
| */ |
| static int __shr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt) |
| { |
| if (shift_amt < 32) { |
| emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE, |
| reg_b(dst), SHF_SC_R_DSHF, shift_amt); |
| emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE, |
| reg_b(dst + 1), SHF_SC_R_SHF, shift_amt); |
| } else if (shift_amt == 32) { |
| wrp_reg_mov(nfp_prog, dst, dst + 1); |
| wrp_immed(nfp_prog, reg_both(dst + 1), 0); |
| } else if (shift_amt > 32) { |
| emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE, |
| reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32); |
| wrp_immed(nfp_prog, reg_both(dst + 1), 0); |
| } |
| |
| return 0; |
| } |
| |
| static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| u8 dst = insn->dst_reg * 2; |
| |
| return __shr_imm64(nfp_prog, dst, insn->imm); |
| } |
| |
| /* NOTE: for indirect right shift, LOW part should be calculated first. */ |
| static void shr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src) |
| { |
| emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0)); |
| emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE, |
| reg_b(dst + 1), SHF_SC_R_SHF); |
| } |
| |
| static void shr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src) |
| { |
| emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0)); |
| emit_shf_indir(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE, |
| reg_b(dst), SHF_SC_R_DSHF); |
| } |
| |
| static void shr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src) |
| { |
| shr_reg64_lt32_low(nfp_prog, dst, src); |
| shr_reg64_lt32_high(nfp_prog, dst, src); |
| } |
| |
| static void shr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src) |
| { |
| emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0)); |
| emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE, |
| reg_b(dst + 1), SHF_SC_R_SHF); |
| wrp_immed(nfp_prog, reg_both(dst + 1), 0); |
| } |
| |
| static int shr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| u64 umin, umax; |
| u8 dst, src; |
| |
| dst = insn->dst_reg * 2; |
| umin = meta->umin_src; |
| umax = meta->umax_src; |
| if (umin == umax) |
| return __shr_imm64(nfp_prog, dst, umin); |
| |
| src = insn->src_reg * 2; |
| if (umax < 32) { |
| shr_reg64_lt32(nfp_prog, dst, src); |
| } else if (umin >= 32) { |
| shr_reg64_ge32(nfp_prog, dst, src); |
| } else { |
| /* Generate different instruction sequences depending on runtime |
| * value of shift amount. |
| */ |
| u16 label_ge32, label_end; |
| |
| label_ge32 = nfp_prog_current_offset(nfp_prog) + 6; |
| emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0); |
| shr_reg64_lt32_low(nfp_prog, dst, src); |
| label_end = nfp_prog_current_offset(nfp_prog) + 6; |
| emit_br(nfp_prog, BR_UNC, label_end, 2); |
| /* shr_reg64_lt32_high packed in delay slot. */ |
| shr_reg64_lt32_high(nfp_prog, dst, src); |
| |
| if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32)) |
| return -EINVAL; |
| shr_reg64_ge32(nfp_prog, dst, src); |
| |
| if (!nfp_prog_confirm_current_offset(nfp_prog, label_end)) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* Code logic is the same as __shr_imm64 except ashr requires signedness bit |
| * told through PREV_ALU result. |
| */ |
| static int __ashr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt) |
| { |
| if (shift_amt < 32) { |
| emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE, |
| reg_b(dst), SHF_SC_R_DSHF, shift_amt); |
| /* Set signedness bit. */ |
| emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR, |
| reg_imm(0)); |
| emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR, |
| reg_b(dst + 1), SHF_SC_R_SHF, shift_amt); |
| } else if (shift_amt == 32) { |
| /* NOTE: this also helps setting signedness bit. */ |
| wrp_reg_mov(nfp_prog, dst, dst + 1); |
| emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR, |
| reg_b(dst + 1), SHF_SC_R_SHF, 31); |
| } else if (shift_amt > 32) { |
| emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR, |
| reg_imm(0)); |
| emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR, |
| reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32); |
| emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR, |
| reg_b(dst + 1), SHF_SC_R_SHF, 31); |
| } |
| |
| return 0; |
| } |
| |
| static int ashr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| u8 dst = insn->dst_reg * 2; |
| |
| return __ashr_imm64(nfp_prog, dst, insn->imm); |
| } |
| |
| static void ashr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src) |
| { |
| /* NOTE: the first insn will set both indirect shift amount (source A) |
| * and signedness bit (MSB of result). |
| */ |
| emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1)); |
| emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR, |
| reg_b(dst + 1), SHF_SC_R_SHF); |
| } |
| |
| static void ashr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src) |
| { |
| /* NOTE: it is the same as logic shift because we don't need to shift in |
| * signedness bit when the shift amount is less than 32. |
| */ |
| return shr_reg64_lt32_low(nfp_prog, dst, src); |
| } |
| |
| static void ashr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src) |
| { |
| ashr_reg64_lt32_low(nfp_prog, dst, src); |
| ashr_reg64_lt32_high(nfp_prog, dst, src); |
| } |
| |
| static void ashr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src) |
| { |
| emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1)); |
| emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR, |
| reg_b(dst + 1), SHF_SC_R_SHF); |
| emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR, |
| reg_b(dst + 1), SHF_SC_R_SHF, 31); |
| } |
| |
| /* Like ashr_imm64, but need to use indirect shift. */ |
| static int ashr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| u64 umin, umax; |
| u8 dst, src; |
| |
| dst = insn->dst_reg * 2; |
| umin = meta->umin_src; |
| umax = meta->umax_src; |
| if (umin == umax) |
| return __ashr_imm64(nfp_prog, dst, umin); |
| |
| src = insn->src_reg * 2; |
| if (umax < 32) { |
| ashr_reg64_lt32(nfp_prog, dst, src); |
| } else if (umin >= 32) { |
| ashr_reg64_ge32(nfp_prog, dst, src); |
| } else { |
| u16 label_ge32, label_end; |
| |
| label_ge32 = nfp_prog_current_offset(nfp_prog) + 6; |
| emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0); |
| ashr_reg64_lt32_low(nfp_prog, dst, src); |
| label_end = nfp_prog_current_offset(nfp_prog) + 6; |
| emit_br(nfp_prog, BR_UNC, label_end, 2); |
| /* ashr_reg64_lt32_high packed in delay slot. */ |
| ashr_reg64_lt32_high(nfp_prog, dst, src); |
| |
| if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32)) |
| return -EINVAL; |
| ashr_reg64_ge32(nfp_prog, dst, src); |
| |
| if (!nfp_prog_confirm_current_offset(nfp_prog, label_end)) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| |
| wrp_reg_mov(nfp_prog, insn->dst_reg * 2, insn->src_reg * 2); |
| wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0); |
| |
| return 0; |
| } |
| |
| static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| |
| wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm); |
| wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0); |
| |
| return 0; |
| } |
| |
| static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR); |
| } |
| |
| static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR); |
| } |
| |
| static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND); |
| } |
| |
| static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND); |
| } |
| |
| static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR); |
| } |
| |
| static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR); |
| } |
| |
| static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD); |
| } |
| |
| static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD); |
| } |
| |
| static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB); |
| } |
| |
| static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB); |
| } |
| |
| static int mul_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_mul(nfp_prog, meta, false, true); |
| } |
| |
| static int mul_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_mul(nfp_prog, meta, false, false); |
| } |
| |
| static int div_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return div_reg64(nfp_prog, meta); |
| } |
| |
| static int div_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return div_imm64(nfp_prog, meta); |
| } |
| |
| static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| u8 dst = meta->insn.dst_reg * 2; |
| |
| emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst)); |
| wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0); |
| |
| return 0; |
| } |
| |
| static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| |
| if (!insn->imm) |
| return 1; /* TODO: zero shift means indirect */ |
| |
| emit_shf(nfp_prog, reg_both(insn->dst_reg * 2), |
| reg_none(), SHF_OP_NONE, reg_b(insn->dst_reg * 2), |
| SHF_SC_L_SHF, insn->imm); |
| wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0); |
| |
| return 0; |
| } |
| |
| static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| u8 gpr = insn->dst_reg * 2; |
| |
| switch (insn->imm) { |
| case 16: |
| emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr), |
| SHF_SC_R_ROT, 8); |
| emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr), |
| SHF_SC_R_SHF, 16); |
| |
| wrp_immed(nfp_prog, reg_both(gpr + 1), 0); |
| break; |
| case 32: |
| wrp_end32(nfp_prog, reg_a(gpr), gpr); |
| wrp_immed(nfp_prog, reg_both(gpr + 1), 0); |
| break; |
| case 64: |
| wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1)); |
| |
| wrp_end32(nfp_prog, reg_a(gpr), gpr + 1); |
| wrp_end32(nfp_prog, imm_a(nfp_prog), gpr); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| struct nfp_insn_meta *prev = nfp_meta_prev(meta); |
| u32 imm_lo, imm_hi; |
| u8 dst; |
| |
| dst = prev->insn.dst_reg * 2; |
| imm_lo = prev->insn.imm; |
| imm_hi = meta->insn.imm; |
| |
| wrp_immed(nfp_prog, reg_both(dst), imm_lo); |
| |
| /* mov is always 1 insn, load imm may be two, so try to use mov */ |
| if (imm_hi == imm_lo) |
| wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst)); |
| else |
| wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi); |
| |
| return 0; |
| } |
| |
| static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| meta->double_cb = imm_ld8_part2; |
| return 0; |
| } |
| |
| static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return construct_data_ld(nfp_prog, meta->insn.imm, 1); |
| } |
| |
| static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return construct_data_ld(nfp_prog, meta->insn.imm, 2); |
| } |
| |
| static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return construct_data_ld(nfp_prog, meta->insn.imm, 4); |
| } |
| |
| static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return construct_data_ind_ld(nfp_prog, meta->insn.imm, |
| meta->insn.src_reg * 2, 1); |
| } |
| |
| static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return construct_data_ind_ld(nfp_prog, meta->insn.imm, |
| meta->insn.src_reg * 2, 2); |
| } |
| |
| static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return construct_data_ind_ld(nfp_prog, meta->insn.imm, |
| meta->insn.src_reg * 2, 4); |
| } |
| |
| static int |
| mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, |
| unsigned int size, unsigned int ptr_off) |
| { |
| return mem_op_stack(nfp_prog, meta, size, ptr_off, |
| meta->insn.dst_reg * 2, meta->insn.src_reg * 2, |
| true, wrp_lmem_load); |
| } |
| |
| static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, |
| u8 size) |
| { |
| swreg dst = reg_both(meta->insn.dst_reg * 2); |
| |
| switch (meta->insn.off) { |
| case offsetof(struct __sk_buff, len): |
| if (size != FIELD_SIZEOF(struct __sk_buff, len)) |
| return -EOPNOTSUPP; |
| wrp_mov(nfp_prog, dst, plen_reg(nfp_prog)); |
| break; |
| case offsetof(struct __sk_buff, data): |
| if (size != FIELD_SIZEOF(struct __sk_buff, data)) |
| return -EOPNOTSUPP; |
| wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog)); |
| break; |
| case offsetof(struct __sk_buff, data_end): |
| if (size != FIELD_SIZEOF(struct __sk_buff, data_end)) |
| return -EOPNOTSUPP; |
| emit_alu(nfp_prog, dst, |
| plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog)); |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0); |
| |
| return 0; |
| } |
| |
| static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, |
| u8 size) |
| { |
| swreg dst = reg_both(meta->insn.dst_reg * 2); |
| |
| switch (meta->insn.off) { |
| case offsetof(struct xdp_md, data): |
| if (size != FIELD_SIZEOF(struct xdp_md, data)) |
| return -EOPNOTSUPP; |
| wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog)); |
| break; |
| case offsetof(struct xdp_md, data_end): |
| if (size != FIELD_SIZEOF(struct xdp_md, data_end)) |
| return -EOPNOTSUPP; |
| emit_alu(nfp_prog, dst, |
| plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog)); |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0); |
| |
| return 0; |
| } |
| |
| static int |
| mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, |
| unsigned int size) |
| { |
| swreg tmp_reg; |
| |
| tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog)); |
| |
| return data_ld_host_order_addr32(nfp_prog, meta->insn.src_reg * 2, |
| tmp_reg, meta->insn.dst_reg * 2, size); |
| } |
| |
| static int |
| mem_ldx_emem(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, |
| unsigned int size) |
| { |
| swreg tmp_reg; |
| |
| tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog)); |
| |
| return data_ld_host_order_addr40(nfp_prog, meta->insn.src_reg * 2, |
| tmp_reg, meta->insn.dst_reg * 2, size); |
| } |
| |
| static void |
| mem_ldx_data_init_pktcache(struct nfp_prog *nfp_prog, |
| struct nfp_insn_meta *meta) |
| { |
| s16 range_start = meta->pkt_cache.range_start; |
| s16 range_end = meta->pkt_cache.range_end; |
| swreg src_base, off; |
| u8 xfer_num, len; |
| bool indir; |
| |
| off = re_load_imm_any(nfp_prog, range_start, imm_b(nfp_prog)); |
| src_base = reg_a(meta->insn.src_reg * 2); |
| len = range_end - range_start; |
| xfer_num = round_up(len, REG_WIDTH) / REG_WIDTH; |
| |
| indir = len > 8 * REG_WIDTH; |
| /* Setup PREV_ALU for indirect mode. */ |
| if (indir) |
| wrp_immed(nfp_prog, reg_none(), |
| CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1)); |
| |
| /* Cache memory into transfer-in registers. */ |
| emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base, |
| off, xfer_num - 1, CMD_CTX_SWAP, indir); |
| } |
| |
| static int |
| mem_ldx_data_from_pktcache_unaligned(struct nfp_prog *nfp_prog, |
| struct nfp_insn_meta *meta, |
| unsigned int size) |
| { |
| s16 range_start = meta->pkt_cache.range_start; |
| s16 insn_off = meta->insn.off - range_start; |
| swreg dst_lo, dst_hi, src_lo, src_mid; |
| u8 dst_gpr = meta->insn.dst_reg * 2; |
| u8 len_lo = size, len_mid = 0; |
| u8 idx = insn_off / REG_WIDTH; |
| u8 off = insn_off % REG_WIDTH; |
| |
| dst_hi = reg_both(dst_gpr + 1); |
| dst_lo = reg_both(dst_gpr); |
| src_lo = reg_xfer(idx); |
| |
| /* The read length could involve as many as three registers. */ |
| if (size > REG_WIDTH - off) { |
| /* Calculate the part in the second register. */ |
| len_lo = REG_WIDTH - off; |
| len_mid = size - len_lo; |
| |
| /* Calculate the part in the third register. */ |
| if (size > 2 * REG_WIDTH - off) |
| len_mid = REG_WIDTH; |
| } |
| |
| wrp_reg_subpart(nfp_prog, dst_lo, src_lo, len_lo, off); |
| |
| if (!len_mid) { |
| wrp_immed(nfp_prog, dst_hi, 0); |
| return 0; |
| } |
| |
| src_mid = reg_xfer(idx + 1); |
| |
| if (size <= REG_WIDTH) { |
| wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, len_mid, len_lo); |
| wrp_immed(nfp_prog, dst_hi, 0); |
| } else { |
| swreg src_hi = reg_xfer(idx + 2); |
| |
| wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, |
| REG_WIDTH - len_lo, len_lo); |
| wrp_reg_subpart(nfp_prog, dst_hi, src_mid, len_lo, |
| REG_WIDTH - len_lo); |
| wrp_reg_or_subpart(nfp_prog, dst_hi, src_hi, REG_WIDTH - len_lo, |
| len_lo); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| mem_ldx_data_from_pktcache_aligned(struct nfp_prog *nfp_prog, |
| struct nfp_insn_meta *meta, |
| unsigned int size) |
| { |
| swreg dst_lo, dst_hi, src_lo; |
| u8 dst_gpr, idx; |
| |
| idx = (meta->insn.off - meta->pkt_cache.range_start) / REG_WIDTH; |
| dst_gpr = meta->insn.dst_reg * 2; |
| dst_hi = reg_both(dst_gpr + 1); |
| dst_lo = reg_both(dst_gpr); |
| src_lo = reg_xfer(idx); |
| |
| if (size < REG_WIDTH) { |
| wrp_reg_subpart(nfp_prog, dst_lo, src_lo, size, 0); |
| wrp_immed(nfp_prog, dst_hi, 0); |
| } else if (size == REG_WIDTH) { |
| wrp_mov(nfp_prog, dst_lo, src_lo); |
| wrp_immed(nfp_prog, dst_hi, 0); |
| } else { |
| swreg src_hi = reg_xfer(idx + 1); |
| |
| wrp_mov(nfp_prog, dst_lo, src_lo); |
| wrp_mov(nfp_prog, dst_hi, src_hi); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| mem_ldx_data_from_pktcache(struct nfp_prog *nfp_prog, |
| struct nfp_insn_meta *meta, unsigned int size) |
| { |
| u8 off = meta->insn.off - meta->pkt_cache.range_start; |
| |
| if (IS_ALIGNED(off, REG_WIDTH)) |
| return mem_ldx_data_from_pktcache_aligned(nfp_prog, meta, size); |
| |
| return mem_ldx_data_from_pktcache_unaligned(nfp_prog, meta, size); |
| } |
| |
| static int |
| mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, |
| unsigned int size) |
| { |
| if (meta->ldst_gather_len) |
| return nfp_cpp_memcpy(nfp_prog, meta); |
| |
| if (meta->ptr.type == PTR_TO_CTX) { |
| if (nfp_prog->type == BPF_PROG_TYPE_XDP) |
| return mem_ldx_xdp(nfp_prog, meta, size); |
| else |
| return mem_ldx_skb(nfp_prog, meta, size); |
| } |
| |
| if (meta->ptr.type == PTR_TO_PACKET) { |
| if (meta->pkt_cache.range_end) { |
| if (meta->pkt_cache.do_init) |
| mem_ldx_data_init_pktcache(nfp_prog, meta); |
| |
| return mem_ldx_data_from_pktcache(nfp_prog, meta, size); |
| } else { |
| return mem_ldx_data(nfp_prog, meta, size); |
| } |
| } |
| |
| if (meta->ptr.type == PTR_TO_STACK) |
| return mem_ldx_stack(nfp_prog, meta, size, |
| meta->ptr.off + meta->ptr.var_off.value); |
| |
| if (meta->ptr.type == PTR_TO_MAP_VALUE) |
| return mem_ldx_emem(nfp_prog, meta, size); |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return mem_ldx(nfp_prog, meta, 1); |
| } |
| |
| static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return mem_ldx(nfp_prog, meta, 2); |
| } |
| |
| static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return mem_ldx(nfp_prog, meta, 4); |
| } |
| |
| static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return mem_ldx(nfp_prog, meta, 8); |
| } |
| |
| static int |
| mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, |
| unsigned int size) |
| { |
| u64 imm = meta->insn.imm; /* sign extend */ |
| swreg off_reg; |
| |
| off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog)); |
| |
| return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg, |
| imm, size); |
| } |
| |
| static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, |
| unsigned int size) |
| { |
| if (meta->ptr.type == PTR_TO_PACKET) |
| return mem_st_data(nfp_prog, meta, size); |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return mem_st(nfp_prog, meta, 1); |
| } |
| |
| static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return mem_st(nfp_prog, meta, 2); |
| } |
| |
| static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return mem_st(nfp_prog, meta, 4); |
| } |
| |
| static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return mem_st(nfp_prog, meta, 8); |
| } |
| |
| static int |
| mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, |
| unsigned int size) |
| { |
| swreg off_reg; |
| |
| off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog)); |
| |
| return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg, |
| meta->insn.src_reg * 2, size); |
| } |
| |
| static int |
| mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, |
| unsigned int size, unsigned int ptr_off) |
| { |
| return mem_op_stack(nfp_prog, meta, size, ptr_off, |
| meta->insn.src_reg * 2, meta->insn.dst_reg * 2, |
| false, wrp_lmem_store); |
| } |
| |
| static int mem_stx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| switch (meta->insn.off) { |
| case offsetof(struct xdp_md, rx_queue_index): |
| return nfp_queue_select(nfp_prog, meta); |
| } |
| |
| WARN_ON_ONCE(1); /* verifier should have rejected bad accesses */ |
| return -EOPNOTSUPP; |
| } |
| |
| static int |
| mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, |
| unsigned int size) |
| { |
| if (meta->ptr.type == PTR_TO_PACKET) |
| return mem_stx_data(nfp_prog, meta, size); |
| |
| if (meta->ptr.type == PTR_TO_STACK) |
| return mem_stx_stack(nfp_prog, meta, size, |
| meta->ptr.off + meta->ptr.var_off.value); |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return mem_stx(nfp_prog, meta, 1); |
| } |
| |
| static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return mem_stx(nfp_prog, meta, 2); |
| } |
| |
| static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| if (meta->ptr.type == PTR_TO_CTX) |
| if (nfp_prog->type == BPF_PROG_TYPE_XDP) |
| return mem_stx_xdp(nfp_prog, meta); |
| return mem_stx(nfp_prog, meta, 4); |
| } |
| |
| static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return mem_stx(nfp_prog, meta, 8); |
| } |
| |
| static int |
| mem_xadd(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, bool is64) |
| { |
| u8 dst_gpr = meta->insn.dst_reg * 2; |
| u8 src_gpr = meta->insn.src_reg * 2; |
| unsigned int full_add, out; |
| swreg addra, addrb, off; |
| |
| off = ur_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog)); |
| |
| /* We can fit 16 bits into command immediate, if we know the immediate |
| * is guaranteed to either always or never fit into 16 bit we only |
| * generate code to handle that particular case, otherwise generate |
| * code for both. |
| */ |
| out = nfp_prog_current_offset(nfp_prog); |
| full_add = nfp_prog_current_offset(nfp_prog); |
| |
| if (meta->insn.off) { |
| out += 2; |
| full_add += 2; |
| } |
| if (meta->xadd_maybe_16bit) { |
| out += 3; |
| full_add += 3; |
| } |
| if (meta->xadd_over_16bit) |
| out += 2 + is64; |
| if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) { |
| out += 5; |
| full_add += 5; |
| } |
| |
| /* Generate the branch for choosing add_imm vs add */ |
| if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) { |
| swreg max_imm = imm_a(nfp_prog); |
| |
| wrp_immed(nfp_prog, max_imm, 0xffff); |
| emit_alu(nfp_prog, reg_none(), |
| max_imm, ALU_OP_SUB, reg_b(src_gpr)); |
| emit_alu(nfp_prog, reg_none(), |
| reg_imm(0), ALU_OP_SUB_C, reg_b(src_gpr + 1)); |
| emit_br(nfp_prog, BR_BLO, full_add, meta->insn.off ? 2 : 0); |
| /* defer for add */ |
| } |
| |
| /* If insn has an offset add to the address */ |
| if (!meta->insn.off) { |
| addra = reg_a(dst_gpr); |
| addrb = reg_b(dst_gpr + 1); |
| } else { |
| emit_alu(nfp_prog, imma_a(nfp_prog), |
| reg_a(dst_gpr), ALU_OP_ADD, off); |
| emit_alu(nfp_prog, imma_b(nfp_prog), |
| reg_a(dst_gpr + 1), ALU_OP_ADD_C, reg_imm(0)); |
| addra = imma_a(nfp_prog); |
| addrb = imma_b(nfp_prog); |
| } |
| |
| /* Generate the add_imm if 16 bits are possible */ |
| if (meta->xadd_maybe_16bit) { |
| swreg prev_alu = imm_a(nfp_prog); |
| |
| wrp_immed(nfp_prog, prev_alu, |
| FIELD_PREP(CMD_OVE_DATA, 2) | |
| CMD_OVE_LEN | |
| FIELD_PREP(CMD_OV_LEN, 0x8 | is64 << 2)); |
| wrp_reg_or_subpart(nfp_prog, prev_alu, reg_b(src_gpr), 2, 2); |
| emit_cmd_indir(nfp_prog, CMD_TGT_ADD_IMM, CMD_MODE_40b_BA, 0, |
| addra, addrb, 0, CMD_CTX_NO_SWAP); |
| |
| if (meta->xadd_over_16bit) |
| emit_br(nfp_prog, BR_UNC, out, 0); |
| } |
| |
| if (!nfp_prog_confirm_current_offset(nfp_prog, full_add)) |
| return -EINVAL; |
| |
| /* Generate the add if 16 bits are not guaranteed */ |
| if (meta->xadd_over_16bit) { |
| emit_cmd(nfp_prog, CMD_TGT_ADD, CMD_MODE_40b_BA, 0, |
| addra, addrb, is64 << 2, |
| is64 ? CMD_CTX_SWAP_DEFER2 : CMD_CTX_SWAP_DEFER1); |
| |
| wrp_mov(nfp_prog, reg_xfer(0), reg_a(src_gpr)); |
| if (is64) |
| wrp_mov(nfp_prog, reg_xfer(1), reg_a(src_gpr + 1)); |
| } |
| |
| if (!nfp_prog_confirm_current_offset(nfp_prog, out)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int mem_xadd4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return mem_xadd(nfp_prog, meta, false); |
| } |
| |
| static int mem_xadd8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return mem_xadd(nfp_prog, meta, true); |
| } |
| |
| static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| emit_br(nfp_prog, BR_UNC, meta->insn.off, 0); |
| |
| return 0; |
| } |
| |
| static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| u64 imm = insn->imm; /* sign extend */ |
| swreg or1, or2, tmp_reg; |
| |
| or1 = reg_a(insn->dst_reg * 2); |
| or2 = reg_b(insn->dst_reg * 2 + 1); |
| |
| if (imm & ~0U) { |
| tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog)); |
| emit_alu(nfp_prog, imm_a(nfp_prog), |
| reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg); |
| or1 = imm_a(nfp_prog); |
| } |
| |
| if (imm >> 32) { |
| tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog)); |
| emit_alu(nfp_prog, imm_b(nfp_prog), |
| reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg); |
| or2 = imm_b(nfp_prog); |
| } |
| |
| emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2); |
| emit_br(nfp_prog, BR_BEQ, insn->off, 0); |
| |
| return 0; |
| } |
| |
| static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| u64 imm = insn->imm; /* sign extend */ |
| swreg tmp_reg; |
| |
| if (!imm) { |
| meta->skip = true; |
| return 0; |
| } |
| |
| if (imm & ~0U) { |
| tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog)); |
| emit_alu(nfp_prog, reg_none(), |
| reg_a(insn->dst_reg * 2), ALU_OP_AND, tmp_reg); |
| emit_br(nfp_prog, BR_BNE, insn->off, 0); |
| } |
| |
| if (imm >> 32) { |
| tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog)); |
| emit_alu(nfp_prog, reg_none(), |
| reg_a(insn->dst_reg * 2 + 1), ALU_OP_AND, tmp_reg); |
| emit_br(nfp_prog, BR_BNE, insn->off, 0); |
| } |
| |
| return 0; |
| } |
| |
| static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| u64 imm = insn->imm; /* sign extend */ |
| swreg tmp_reg; |
| |
| if (!imm) { |
| emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2), |
| ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1)); |
| emit_br(nfp_prog, BR_BNE, insn->off, 0); |
| return 0; |
| } |
| |
| tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog)); |
| emit_alu(nfp_prog, reg_none(), |
| reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg); |
| emit_br(nfp_prog, BR_BNE, insn->off, 0); |
| |
| tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog)); |
| emit_alu(nfp_prog, reg_none(), |
| reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg); |
| emit_br(nfp_prog, BR_BNE, insn->off, 0); |
| |
| return 0; |
| } |
| |
| static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| const struct bpf_insn *insn = &meta->insn; |
| |
| emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2), |
| ALU_OP_XOR, reg_b(insn->src_reg * 2)); |
| emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(insn->dst_reg * 2 + 1), |
| ALU_OP_XOR, reg_b(insn->src_reg * 2 + 1)); |
| emit_alu(nfp_prog, reg_none(), |
| imm_a(nfp_prog), ALU_OP_OR, imm_b(nfp_prog)); |
| emit_br(nfp_prog, BR_BEQ, insn->off, 0); |
| |
| return 0; |
| } |
| |
| static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE); |
| } |
| |
| static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE); |
| } |
| |
| static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| switch (meta->insn.imm) { |
| case BPF_FUNC_xdp_adjust_head: |
| return adjust_head(nfp_prog, meta); |
| case BPF_FUNC_xdp_adjust_tail: |
| return adjust_tail(nfp_prog, meta); |
| case BPF_FUNC_map_lookup_elem: |
| case BPF_FUNC_map_update_elem: |
| case BPF_FUNC_map_delete_elem: |
| return map_call_stack_common(nfp_prog, meta); |
| case BPF_FUNC_get_prandom_u32: |
| return nfp_get_prandom_u32(nfp_prog, meta); |
| case BPF_FUNC_perf_event_output: |
| return nfp_perf_event_output(nfp_prog, meta); |
| default: |
| WARN_ONCE(1, "verifier allowed unsupported function\n"); |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) |
| { |
| emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT); |
| |
| return 0; |
| } |
| |
| static const instr_cb_t instr_cb[256] = { |
| [BPF_ALU64 | BPF_MOV | BPF_X] = mov_reg64, |
| [BPF_ALU64 | BPF_MOV | BPF_K] = mov_imm64, |
| [BPF_ALU64 | BPF_XOR | BPF_X] = xor_reg64, |
| [BPF_ALU64 | BPF_XOR | BPF_K] = xor_imm64, |
| [BPF_ALU64 | BPF_AND | BPF_X] = and_reg64, |
| [BPF_ALU64 | BPF_AND | BPF_K] = and_imm64, |
| [BPF_ALU64 | BPF_OR | BPF_X] = or_reg64, |
| [BPF_ALU64 | BPF_OR | BPF_K] = or_imm64, |
| [BPF_ALU64 | BPF_ADD | BPF_X] = add_reg64, |
| [BPF_ALU64 | BPF_ADD | BPF_K] = add_imm64, |
| [BPF_ALU64 | BPF_SUB | BPF_X] = sub_reg64, |
| [BPF_ALU64 | BPF_SUB | BPF_K] = sub_imm64, |
| [BPF_ALU64 | BPF_MUL | BPF_X] = mul_reg64, |
| [BPF_ALU64 | BPF_MUL | BPF_K] = mul_imm64, |
| [BPF_ALU64 | BPF_DIV | BPF_X] = div_reg64, |
| [BPF_ALU64 | BPF_DIV | BPF_K] = div_imm64, |
| [BPF_ALU64 | BPF_NEG] = neg_reg64, |
| [BPF_ALU64 | BPF_LSH | BPF_X] = shl_reg64, |
| [BPF_ALU64 | BPF_LSH | BPF_K] = shl_imm64, |
| [BPF_ALU64 | BPF_RSH | BPF_X] = shr_reg64, |
| [BPF_ALU64 | BPF_RSH | BPF_K] = shr_imm64, |
| [BPF_ALU64 | BPF_ARSH | BPF_X] = ashr_reg64, |
| [BPF_ALU64 | BPF_ARSH | BPF_K] = ashr_imm64, |
| [BPF_ALU | BPF_MOV | BPF_X] = mov_reg, |
| [BPF_ALU | BPF_MOV | BPF_K] = mov_imm, |
| [BPF_ALU | BPF_XOR | BPF_X] = xor_reg, |
| [BPF_ALU | BPF_XOR | BPF_K] = xor_imm, |
| [BPF_ALU | BPF_AND | BPF_X] = and_reg, |
| [BPF_ALU | BPF_AND | BPF_K] = and_imm, |
| [BPF_ALU | BPF_OR | BPF_X] = or_reg, |
| [BPF_ALU | BPF_OR | BPF_K] = or_imm, |
| [BPF_ALU | BPF_ADD | BPF_X] = add_reg, |
| [BPF_ALU | BPF_ADD | BPF_K] = add_imm, |
| [BPF_ALU | BPF_SUB | BPF_X] = sub_reg, |
| [BPF_ALU | BPF_SUB | BPF_K] = sub_imm, |
| [BPF_ALU | BPF_MUL | BPF_X] = mul_reg, |
| [BPF_ALU | BPF_MUL | BPF_K] = mul_imm, |
| [BPF_ALU | BPF_DIV | BPF_X] = div_reg, |
| [BPF_ALU | BPF_DIV | BPF_K] = div_imm, |
| [BPF_ALU | BPF_NEG] = neg_reg, |
| [BPF_ALU | BPF_LSH | BPF_K] = shl_imm, |
| [BPF_ALU | BPF_END | BPF_X] = end_reg32, |
| [BPF_LD | BPF_IMM | BPF_DW] = imm_ld8, |
| [BPF_LD | BPF_ABS | BPF_B] = data_ld1, |
| [BPF_LD | BPF_ABS | BPF_H] = data_ld2, |
| [BPF_LD | BPF_ABS | BPF_W] = data_ld4, |
| [BPF_LD | BPF_IND | BPF_B] = data_ind_ld1, |
| [BPF_LD | BPF_IND | BPF_H] = data_ind_ld2, |
| [BPF_LD | BPF_IND | BPF_W] = data_ind_ld4, |
| [BPF_LDX | BPF_MEM | BPF_B] = mem_ldx1, |
| [BPF_LDX | BPF_MEM | BPF_H] = mem_ldx2, |
| [BPF_LDX | BPF_MEM | BPF_W] = mem_ldx4, |
| [BPF_LDX | BPF_MEM | BPF_DW] = mem_ldx8, |
| [BPF_STX | BPF_MEM | BPF_B] = mem_stx1, |
| [BPF_STX | BPF_MEM | BPF_H] = mem_stx2, |
| [BPF_STX | BPF_MEM | BPF_W] = mem_stx4, |
| [BPF_STX | BPF_MEM | BPF_DW] = mem_stx8, |
| [BPF_STX | BPF_XADD | BPF_W] = mem_xadd4, |
| [BPF_STX | BPF_XADD | BPF_DW] = mem_xadd8, |
| [BPF_ST | BPF_MEM | BPF_B] = mem_st1, |
| [BPF_ST | BPF_MEM | BPF_H] = mem_st2, |
| [BPF_ST | BPF_MEM | BPF_W] = mem_st4, |
| [BPF_ST | BPF_MEM | BPF_DW] = mem_st8, |
| [BPF_JMP | BPF_JA | BPF_K] = jump, |
| [BPF_JMP | BPF_JEQ | BPF_K] = jeq_imm, |
| [BPF_JMP | BPF_JGT | BPF_K] = cmp_imm, |
| [BPF_JMP | BPF_JGE | BPF_K] = cmp_imm, |
| [BPF_JMP | BPF_JLT | BPF_K] = cmp_imm, |
| [BPF_JMP | BPF_JLE | BPF_K] = cmp_imm, |
| [BPF_JMP | BPF_JSGT | BPF_K] = cmp_imm, |
| [BPF_JMP | BPF_JSGE | BPF_K] = cmp_imm, |
| [BPF_JMP | BPF_JSLT | BPF_K] = cmp_imm, |
| [BPF_JMP | BPF_JSLE | BPF_K] = cmp_imm, |
| [BPF_JMP | BPF_JSET | BPF_K] = jset_imm, |
| [BPF_JMP | BPF_JNE | BPF_K] = jne_imm, |
| [BPF_JMP | BPF_JEQ | BPF_X] = jeq_reg, |
| [BPF_JMP | BPF_JGT | BPF_X] = cmp_reg, |
| [BPF_JMP | BPF_JGE | BPF_X] = cmp_reg, |
| [BPF_JMP | BPF_JLT | BPF_X] = cmp_reg, |
| [BPF_JMP | BPF_JLE | BPF_X] = cmp_reg, |
| [BPF_JMP | BPF_JSGT | BPF_X] = cmp_reg, |
| [BPF_JMP | BPF_JSGE | BPF_X] = cmp_reg, |
| [BPF_JMP | BPF_JSLT | BPF_X] = cmp_reg, |
| [BPF_JMP | BPF_JSLE | BPF_X] = cmp_reg, |
| [BPF_JMP | BPF_JSET | BPF_X] = jset_reg, |
| [BPF_JMP | BPF_JNE | BPF_X] = jne_reg, |
| [BPF_JMP | BPF_CALL] = call, |
| [BPF_JMP | BPF_EXIT] = goto_out, |
| }; |
| |
| /* --- Assembler logic --- */ |
| static int nfp_fixup_branches(struct nfp_prog *nfp_prog) |
| { |
| struct nfp_insn_meta *meta, *jmp_dst; |
| u32 idx, br_idx; |
| |
| list_for_each_entry(meta, &nfp_prog->insns, l) { |
| if (meta->skip) |
| continue; |
| if (meta->insn.code == (BPF_JMP | BPF_CALL)) |
| continue; |
| if (BPF_CLASS(meta->insn.code) != BPF_JMP) |
| continue; |
| |
| if (list_is_last(&meta->l, &nfp_prog->insns)) |
| br_idx = nfp_prog->last_bpf_off; |
| else |
| br_idx = list_next_entry(meta, l)->off - 1; |
| |
| if (!nfp_is_br(nfp_prog->prog[br_idx])) { |
| pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n", |
| br_idx, meta->insn.code, nfp_prog->prog[br_idx]); |
| return -ELOOP; |
| } |
| /* Leave special branches for later */ |
| if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) != |
| RELO_BR_REL) |
| continue; |
| |
| if (!meta->jmp_dst) { |
| pr_err("Non-exit jump doesn't have destination info recorded!!\n"); |
| return -ELOOP; |
| } |
| |
| jmp_dst = meta->jmp_dst; |
| |
| if (jmp_dst->skip) { |
| pr_err("Branch landing on removed instruction!!\n"); |
| return -ELOOP; |
| } |
| |
| for (idx = meta->off; idx <= br_idx; idx++) { |
| if (!nfp_is_br(nfp_prog->prog[idx])) |
| continue; |
| br_set_offset(&nfp_prog->prog[idx], jmp_dst->off); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void nfp_intro(struct nfp_prog *nfp_prog) |
| { |
| wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0)); |
| emit_alu(nfp_prog, plen_reg(nfp_prog), |
| plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog)); |
| } |
| |
| static void nfp_outro_tc_da(struct nfp_prog *nfp_prog) |
| { |
| /* TC direct-action mode: |
| * 0,1 ok NOT SUPPORTED[1] |
| * 2 drop 0x22 -> drop, count as stat1 |
| * 4,5 nuke 0x02 -> drop |
| * 7 redir 0x44 -> redir, count as stat2 |
| * * unspec 0x11 -> pass, count as stat0 |
| * |
| * [1] We can't support OK and RECLASSIFY because we can't tell TC |
| * the exact decision made. We are forced to support UNSPEC |
| * to handle aborts so that's the only one we handle for passing |
| * packets up the stack. |
| */ |
| /* Target for aborts */ |
| nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog); |
| |
| emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT); |
| |
| wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS); |
| emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16); |
| |
| /* Target for normal exits */ |
| nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog); |
| |
| /* if R0 > 7 jump to abort */ |
| emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0)); |
| emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0); |
| wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS); |
| |
| wrp_immed(nfp_prog, reg_b(2), 0x41221211); |
| wrp_immed(nfp_prog, reg_b(3), 0x41001211); |
| |
| emit_shf(nfp_prog, reg_a(1), |
| reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2); |
| |
| emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0)); |
| emit_shf(nfp_prog, reg_a(2), |
| reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0); |
| |
| emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0)); |
| emit_shf(nfp_prog, reg_b(2), |
| reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0); |
| |
| emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT); |
| |
| emit_shf(nfp_prog, reg_b(2), |
| reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4); |
| emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16); |
| } |
| |
| static void nfp_outro_xdp(struct nfp_prog *nfp_prog) |
| { |
| /* XDP return codes: |
| * 0 aborted 0x82 -> drop, count as stat3 |
| * 1 drop 0x22 -> drop, count as stat1 |
| * 2 pass 0x11 -> pass, count as stat0 |
| * 3 tx 0x44 -> redir, count as stat2 |
| * * unknown 0x82 -> drop, count as stat3 |
| */ |
| /* Target for aborts */ |
| nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog); |
| |
| emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT); |
| |
| wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS); |
| emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16); |
| |
| /* Target for normal exits */ |
| nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog); |
| |
| /* if R0 > 3 jump to abort */ |
| emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0)); |
| emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0); |
| |
| wrp_immed(nfp_prog, reg_b(2), 0x44112282); |
| |
| emit_shf(nfp_prog, reg_a(1), |
| reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3); |
| |
| emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0)); |
| emit_shf(nfp_prog, reg_b(2), |
| reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0); |
| |
| emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT); |
| |
| wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS); |
| emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16); |
| } |
| |
| static void nfp_outro(struct nfp_prog *nfp_prog) |
| { |
| switch (nfp_prog->type) { |
| case BPF_PROG_TYPE_SCHED_CLS: |
| nfp_outro_tc_da(nfp_prog); |
| break; |
| case BPF_PROG_TYPE_XDP: |
| nfp_outro_xdp(nfp_prog); |
| break; |
| default: |
| WARN_ON(1); |
| } |
| } |
| |
| static int nfp_translate(struct nfp_prog *nfp_prog) |
| { |
| struct nfp_insn_meta *meta; |
| int err; |
| |
| nfp_intro(nfp_prog); |
| if (nfp_prog->error) |
| return nfp_prog->error; |
| |
| list_for_each_entry(meta, &nfp_prog->insns, l) { |
| instr_cb_t cb = instr_cb[meta->insn.code]; |
| |
| meta->off = nfp_prog_current_offset(nfp_prog); |
| |
| if (meta->skip) { |
| nfp_prog->n_translated++; |
| continue; |
| } |
| |
| if (nfp_meta_has_prev(nfp_prog, meta) && |
| nfp_meta_prev(meta)->double_cb) |
| cb = nfp_meta_prev(meta)->double_cb; |
| if (!cb) |
| return -ENOENT; |
| err = cb(nfp_prog, meta); |
| if (err) |
| return err; |
| if (nfp_prog->error) |
| return nfp_prog->error; |
| |
| nfp_prog->n_translated++; |
| } |
| |
| nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1; |
| |
| nfp_outro(nfp_prog); |
| if (nfp_prog->error) |
| return nfp_prog->error; |
| |
| wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW); |
| if (nfp_prog->error) |
| return nfp_prog->error; |
| |
| return nfp_fixup_branches(nfp_prog); |
| } |
| |
| /* --- Optimizations --- */ |
| static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog) |
| { |
| struct nfp_insn_meta *meta; |
| |
| list_for_each_entry(meta, &nfp_prog->insns, l) { |
| struct bpf_insn insn = meta->insn; |
| |
| /* Programs converted from cBPF start with register xoring */ |
| if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) && |
| insn.src_reg == insn.dst_reg) |
| continue; |
| |
| /* Programs start with R6 = R1 but we ignore the skb pointer */ |
| if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) && |
| insn.src_reg == 1 && insn.dst_reg == 6) |
| meta->skip = true; |
| |
| /* Return as soon as something doesn't match */ |
| if (!meta->skip) |
| return; |
| } |
| } |
| |
| /* abs(insn.imm) will fit better into unrestricted reg immediate - |
| * convert add/sub of a negative number into a sub/add of a positive one. |
| */ |
| static void nfp_bpf_opt_neg_add_sub(struct nfp_prog *nfp_prog) |
| { |
| struct nfp_insn_meta *meta; |
| |
| list_for_each_entry(meta, &nfp_prog->insns, l) { |
| struct bpf_insn insn = meta->insn; |
| |
| if (meta->skip) |
| continue; |
| |
| if (BPF_CLASS(insn.code) != BPF_ALU && |
| BPF_CLASS(insn.code) != BPF_ALU64 && |
| BPF_CLASS(insn.code) != BPF_JMP) |
| continue; |
| if (BPF_SRC(insn.code) != BPF_K) |
| continue; |
| if (insn.imm >= 0) |
| continue; |
| |
| if (BPF_CLASS(insn.code) == BPF_JMP) { |
| switch (BPF_OP(insn.code)) { |
| case BPF_JGE: |
| case BPF_JSGE: |
| case BPF_JLT: |
| case BPF_JSLT: |
| meta->jump_neg_op = true; |
| break; |
| default: |
| continue; |
| } |
| } else { |
| if (BPF_OP(insn.code) == BPF_ADD) |
| insn.code = BPF_CLASS(insn.code) | BPF_SUB; |
| else if (BPF_OP(insn.code) == BPF_SUB) |
| insn.code = BPF_CLASS(insn.code) | BPF_ADD; |
| else |
| continue; |
| |
| meta->insn.code = insn.code | BPF_K; |
| } |
| |
| meta->insn.imm = -insn.imm; |
| } |
| } |
| |
| /* Remove masking after load since our load guarantees this is not needed */ |
| static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog) |
| { |
| struct nfp_insn_meta *meta1, *meta2; |
| const s32 exp_mask[] = { |
| [BPF_B] = 0x000000ffU, |
| [BPF_H] = 0x0000ffffU, |
| [BPF_W] = 0xffffffffU, |
| }; |
| |
| nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) { |
| struct bpf_insn insn, next; |
| |
| insn = meta1->insn; |
| next = meta2->insn; |
| |
| if (BPF_CLASS(insn.code) != BPF_LD) |
| continue; |
| if (BPF_MODE(insn.code) != BPF_ABS && |
| BPF_MODE(insn.code) != BPF_IND) |
| continue; |
| |
| if (next.code != (BPF_ALU64 | BPF_AND | BPF_K)) |
| continue; |
| |
| if (!exp_mask[BPF_SIZE(insn.code)]) |
| continue; |
| if (exp_mask[BPF_SIZE(insn.code)] != next.imm) |
| continue; |
| |
| if (next.src_reg || next.dst_reg) |
| continue; |
| |
| if (meta2->flags & FLAG_INSN_IS_JUMP_DST) |
| continue; |
| |
| meta2->skip = true; |
| } |
| } |
| |
| static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog) |
| { |
| struct nfp_insn_meta *meta1, *meta2, *meta3; |
| |
| nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) { |
| struct bpf_insn insn, next1, next2; |
| |
| insn = meta1->insn; |
| next1 = meta2->insn; |
| next2 = meta3->insn; |
| |
| if (BPF_CLASS(insn.code) != BPF_LD) |
| continue; |
| if (BPF_MODE(insn.code) != BPF_ABS && |
| BPF_MODE(insn.code) != BPF_IND) |
| continue; |
| if (BPF_SIZE(insn.code) != BPF_W) |
| continue; |
| |
| if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) && |
| next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) && |
| !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) && |
| next2.code == (BPF_LSH | BPF_K | BPF_ALU64))) |
| continue; |
| |
| if (next1.src_reg || next1.dst_reg || |
| next2.src_reg || next2.dst_reg) |
| continue; |
| |
| if (next1.imm != 0x20 || next2.imm != 0x20) |
| continue; |
| |
| if (meta2->flags & FLAG_INSN_IS_JUMP_DST || |
| meta3->flags & FLAG_INSN_IS_JUMP_DST) |
| continue; |
| |
| meta2->skip = true; |
| meta3->skip = true; |
| } |
| } |
| |
| /* load/store pair that forms memory copy sould look like the following: |
| * |
| * ld_width R, [addr_src + offset_src] |
| * st_width [addr_dest + offset_dest], R |
| * |
| * The destination register of load and source register of store should |
| * be the same, load and store should also perform at the same width. |
| * If either of addr_src or addr_dest is stack pointer, we don't do the |
| * CPP optimization as stack is modelled by registers on NFP. |
| */ |
| static bool |
| curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta, |
| struct nfp_insn_meta *st_meta) |
| { |
| struct bpf_insn *ld = &ld_meta->insn; |
| struct bpf_insn *st = &st_meta->insn; |
| |
| if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta)) |
| return false; |
| |
| if (ld_meta->ptr.type != PTR_TO_PACKET && |
| ld_meta->ptr.type != PTR_TO_MAP_VALUE) |
| return false; |
| |
| if (st_meta->ptr.type != PTR_TO_PACKET) |
| return false; |
| |
| if (BPF_SIZE(ld->code) != BPF_SIZE(st->code)) |
| return false; |
| |
| if (ld->dst_reg != st->src_reg) |
| return false; |
| |
| /* There is jump to the store insn in this pair. */ |
| if (st_meta->flags & FLAG_INSN_IS_JUMP_DST) |
| return false; |
| |
| return true; |
| } |
| |
| /* Currently, we only support chaining load/store pairs if: |
| * |
| * - Their address base registers are the same. |
| * - Their address offsets are in the same order. |
| * - They operate at the same memory width. |
| * - There is no jump into the middle of them. |
| */ |
| static bool |
| curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta, |
| struct nfp_insn_meta *st_meta, |
| struct bpf_insn *prev_ld, |
| struct bpf_insn *prev_st) |
| { |
| u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst; |
| struct bpf_insn *ld = &ld_meta->insn; |
| struct bpf_insn *st = &st_meta->insn; |
| s16 prev_ld_off, prev_st_off; |
| |
| /* This pair is the start pair. */ |
| if (!prev_ld) |
| return true; |
| |
| prev_size = BPF_LDST_BYTES(prev_ld); |
| curr_size = BPF_LDST_BYTES(ld); |
| prev_ld_base = prev_ld->src_reg; |
| prev_st_base = prev_st->dst_reg; |
| prev_ld_dst = prev_ld->dst_reg; |
| prev_ld_off = prev_ld->off; |
| prev_st_off = prev_st->off; |
| |
| if (ld->dst_reg != prev_ld_dst) |
| return false; |
| |
| if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base) |
| return false; |
| |
| if (curr_size != prev_size) |
| return false; |
| |
| /* There is jump to the head of this pair. */ |
| if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST) |
| return false; |
| |
| /* Both in ascending order. */ |
| if (prev_ld_off + prev_size == ld->off && |
| prev_st_off + prev_size == st->off) |
| return true; |
| |
| /* Both in descending order. */ |
| if (ld->off + curr_size == prev_ld_off && |
| st->off + curr_size == prev_st_off) |
| return true; |
| |
| return false; |
| } |
| |
| /* Return TRUE if cross memory access happens. Cross memory access means |
| * store area is overlapping with load area that a later load might load |
| * the value from previous store, for this case we can't treat the sequence |
| * as an memory copy. |
| */ |
| static bool |
| cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta, |
| struct nfp_insn_meta *head_st_meta) |
| { |
| s16 head_ld_off, head_st_off, ld_off; |
| |
| /* Different pointer types does not overlap. */ |
| if (head_ld_meta->ptr.type != head_st_meta->ptr.type) |
| return false; |
| |
| /* load and store are both PTR_TO_PACKET, check ID info. */ |
| if (head_ld_meta->ptr.id != head_st_meta->ptr.id) |
| return true; |
| |
| /* Canonicalize the offsets. Turn all of them against the original |
| * base register. |
| */ |
| head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off; |
| head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off; |
| ld_off = ld->off + head_ld_meta->ptr.off; |
| |
| /* Ascending order cross. */ |
| if (ld_off > head_ld_off && |
| head_ld_off < head_st_off && ld_off >= head_st_off) |
| return true; |
| |
| /* Descending order cross. */ |
| if (ld_off < head_ld_off && |
| head_ld_off > head_st_off && ld_off <= head_st_off) |
| return true; |
| |
| return false; |
| } |
| |
| /* This pass try to identify the following instructoin sequences. |
| * |
| * load R, [regA + offA] |
| * store [regB + offB], R |
| * load R, [regA + offA + const_imm_A] |
| * store [regB + offB + const_imm_A], R |
| * load R, [regA + offA + 2 * const_imm_A] |
| * store [regB + offB + 2 * const_imm_A], R |
| * ... |
| * |
| * Above sequence is typically generated by compiler when lowering |
| * memcpy. NFP prefer using CPP instructions to accelerate it. |
| */ |
| static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog) |
| { |
| struct nfp_insn_meta *head_ld_meta = NULL; |
| struct nfp_insn_meta *head_st_meta = NULL; |
| struct nfp_insn_meta *meta1, *meta2; |
| struct bpf_insn *prev_ld = NULL; |
| struct bpf_insn *prev_st = NULL; |
| u8 count = 0; |
| |
| nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) { |
| struct bpf_insn *ld = &meta1->insn; |
| struct bpf_insn *st = &meta2->insn; |
| |
| /* Reset record status if any of the following if true: |
| * - The current insn pair is not load/store. |
| * - The load/store pair doesn't chain with previous one. |
| * - The chained load/store pair crossed with previous pair. |
| * - The chained load/store pair has a total size of memory |
| * copy beyond 128 bytes which is the maximum length a |
| * single NFP CPP command can transfer. |
| */ |
| if (!curr_pair_is_memcpy(meta1, meta2) || |
| !curr_pair_chain_with_previous(meta1, meta2, prev_ld, |
| prev_st) || |
| (head_ld_meta && (cross_mem_access(ld, head_ld_meta, |
| head_st_meta) || |
| head_ld_meta->ldst_gather_len >= 128))) { |
| if (!count) |
| continue; |
| |
| if (count > 1) { |
| s16 prev_ld_off = prev_ld->off; |
| s16 prev_st_off = prev_st->off; |
| s16 head_ld_off = head_ld_meta->insn.off; |
| |
| if (prev_ld_off < head_ld_off) { |
| head_ld_meta->insn.off = prev_ld_off; |
| head_st_meta->insn.off = prev_st_off; |
| head_ld_meta->ldst_gather_len = |
| -head_ld_meta->ldst_gather_len; |
| } |
| |
| head_ld_meta->paired_st = &head_st_meta->insn; |
| head_st_meta->skip = true; |
| } else { |
| head_ld_meta->ldst_gather_len = 0; |
| } |
| |
| /* If the chain is ended by an load/store pair then this |
| * could serve as the new head of the the next chain. |
| */ |
| if (curr_pair_is_memcpy(meta1, meta2)) { |
| head_ld_meta = meta1; |
| head_st_meta = meta2; |
| head_ld_meta->ldst_gather_len = |
| BPF_LDST_BYTES(ld); |
| meta1 = nfp_meta_next(meta1); |
| meta2 = nfp_meta_next(meta2); |
| prev_ld = ld; |
| prev_st = st; |
| count = 1; |
| } else { |
| head_ld_meta = NULL; |
| head_st_meta = NULL; |
| prev_ld = NULL; |
| prev_st = NULL; |
| count = 0; |
| } |
| |
| continue; |
| } |
| |
| if (!head_ld_meta) { |
| head_ld_meta = meta1; |
| head_st_meta = meta2; |
| } else { |
| meta1->skip = true; |
| meta2->skip = true; |
| } |
| |
| head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld); |
| meta1 = nfp_meta_next(meta1); |
| meta2 = nfp_meta_next(meta2); |
| prev_ld = ld; |
| prev_st = st; |
| count++; |
| } |
| } |
| |
| static void nfp_bpf_opt_pkt_cache(struct nfp_prog *nfp_prog) |
| { |
| struct nfp_insn_meta *meta, *range_node = NULL; |
| s16 range_start = 0, range_end = 0; |
| bool cache_avail = false; |
| struct bpf_insn *insn; |
| s32 range_ptr_off = 0; |
| u32 range_ptr_id = 0; |
| |
| list_for_each_entry(meta, &nfp_prog->insns, l) { |
| if (meta->flags & FLAG_INSN_IS_JUMP_DST) |
| cache_avail = false; |
| |
| if (meta->skip) |
| continue; |
| |
| insn = &meta->insn; |
| |
| if (is_mbpf_store_pkt(meta) || |
| insn->code == (BPF_JMP | BPF_CALL) || |
| is_mbpf_classic_store_pkt(meta) || |
| is_mbpf_classic_load(meta)) { |
| cache_avail = false; |
| continue; |
| } |
| |
| if (!is_mbpf_load(meta)) |
| continue; |
| |
| if (meta->ptr.type != PTR_TO_PACKET || meta->ldst_gather_len) { |
| cache_avail = false; |
| continue; |
| } |
| |
| if (!cache_avail) { |
| cache_avail = true; |
| if (range_node) |
| goto end_current_then_start_new; |
| goto start_new; |
| } |
| |
| /* Check ID to make sure two reads share the same |
| * variable offset against PTR_TO_PACKET, and check OFF |
| * to make sure they also share the same constant |
| * offset. |
| * |
| * OFFs don't really need to be the same, because they |
| * are the constant offsets against PTR_TO_PACKET, so |
| * for different OFFs, we could canonicalize them to |
| * offsets against original packet pointer. We don't |
| * support this. |
| */ |
| if (meta->ptr.id == range_ptr_id && |
| meta->ptr.off == range_ptr_off) { |
| s16 new_start = range_start; |
| s16 end, off = insn->off; |
| s16 new_end = range_end; |
| bool changed = false; |
| |
| if (off < range_start) { |
| new_start = off; |
| changed = true; |
| } |
| |
| end = off + BPF_LDST_BYTES(insn); |
| if (end > range_end) { |
| new_end = end; |
| changed = true; |
| } |
| |
| if (!changed) |
| continue; |
| |
| if (new_end - new_start <= 64) { |
| /* Install new range. */ |
| range_start = new_start; |
| range_end = new_end; |
| continue; |
| } |
| } |
| |
| end_current_then_start_new: |
| range_node->pkt_cache.range_start = range_start; |
| range_node->pkt_cache.range_end = range_end; |
| start_new: |
| range_node = meta; |
| range_node->pkt_cache.do_init = true; |
| range_ptr_id = range_node->ptr.id; |
| range_ptr_off = range_node->ptr.off; |
| range_start = insn->off; |
| range_end = insn->off + BPF_LDST_BYTES(insn); |
| } |
| |
| if (range_node) { |
| range_node->pkt_cache.range_start = range_start; |
| range_node->pkt_cache.range_end = range_end; |
| } |
| |
| list_for_each_entry(meta, &nfp_prog->insns, l) { |
| if (meta->skip) |
| continue; |
| |
| if (is_mbpf_load_pkt(meta) && !meta->ldst_gather_len) { |
| if (meta->pkt_cache.do_init) { |
| range_start = meta->pkt_cache.range_start; |
| range_end = meta->pkt_cache.range_end; |
| } else { |
| meta->pkt_cache.range_start = range_start; |
| meta->pkt_cache.range_end = range_end; |
| } |
| } |
| } |
| } |
| |
| static int nfp_bpf_optimize(struct nfp_prog *nfp_prog) |
| { |
| nfp_bpf_opt_reg_init(nfp_prog); |
| |
| nfp_bpf_opt_neg_add_sub(nfp_prog); |
| nfp_bpf_opt_ld_mask(nfp_prog); |
| nfp_bpf_opt_ld_shift(nfp_prog); |
| nfp_bpf_opt_ldst_gather(nfp_prog); |
| nfp_bpf_opt_pkt_cache(nfp_prog); |
| |
| return 0; |
| } |
| |
| static int nfp_bpf_replace_map_ptrs(struct nfp_prog *nfp_prog) |
| { |
| struct nfp_insn_meta *meta1, *meta2; |
| struct nfp_bpf_map *nfp_map; |
| struct bpf_map *map; |
| u32 id; |
| |
| nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) { |
| if (meta1->skip || meta2->skip) |
| continue; |
| |
| if (meta1->insn.code != (BPF_LD | BPF_IMM | BPF_DW) || |
| meta1->insn.src_reg != BPF_PSEUDO_MAP_FD) |
| continue; |
| |
| map = (void *)(unsigned long)((u32)meta1->insn.imm | |
| (u64)meta2->insn.imm << 32); |
| if (bpf_map_offload_neutral(map)) { |
| id = map->id; |
| } else { |
| nfp_map = map_to_offmap(map)->dev_priv; |
| id = nfp_map->tid; |
| } |
| |
| meta1->insn.imm = id; |
| meta2->insn.imm = 0; |
| } |
| |
| return 0; |
| } |
| |
| static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len) |
| { |
| __le64 *ustore = (__force __le64 *)prog; |
| int i; |
| |
| for (i = 0; i < len; i++) { |
| int err; |
| |
| err = nfp_ustore_check_valid_no_ecc(prog[i]); |
| if (err) |
| return err; |
| |
| ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i])); |
| } |
| |
| return 0; |
| } |
| |
| static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog) |
| { |
| void *prog; |
| |
| prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL); |
| if (!prog) |
| return; |
| |
| nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64); |
| memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len); |
| kvfree(nfp_prog->prog); |
| nfp_prog->prog = prog; |
| } |
| |
| int nfp_bpf_jit(struct nfp_prog *nfp_prog) |
| { |
| int ret; |
| |
| ret = nfp_bpf_replace_map_ptrs(nfp_prog); |
| if (ret) |
| return ret; |
| |
| ret = nfp_bpf_optimize(nfp_prog); |
| if (ret) |
| return ret; |
| |
| ret = nfp_translate(nfp_prog); |
| if (ret) { |
| pr_err("Translation failed with error %d (translated: %u)\n", |
| ret, nfp_prog->n_translated); |
| return -EINVAL; |
| } |
| |
| nfp_bpf_prog_trim(nfp_prog); |
| |
| return ret; |
| } |
| |
| void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog, unsigned int cnt) |
| { |
| struct nfp_insn_meta *meta; |
| |
| /* Another pass to record jump information. */ |
| list_for_each_entry(meta, &nfp_prog->insns, l) { |
| u64 code = meta->insn.code; |
| |
| if (BPF_CLASS(code) == BPF_JMP && BPF_OP(code) != BPF_EXIT && |
| BPF_OP(code) != BPF_CALL) { |
| struct nfp_insn_meta *dst_meta; |
| unsigned short dst_indx; |
| |
| dst_indx = meta->n + 1 + meta->insn.off; |
| dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_indx, |
| cnt); |
| |
| meta->jmp_dst = dst_meta; |
| dst_meta->flags |= FLAG_INSN_IS_JUMP_DST; |
| } |
| } |
| } |
| |
| bool nfp_bpf_supported_opcode(u8 code) |
| { |
| return !!instr_cb[code]; |
| } |
| |
| void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv) |
| { |
| unsigned int i; |
| u64 *prog; |
| int err; |
| |
| prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64), |
| GFP_KERNEL); |
| if (!prog) |
| return ERR_PTR(-ENOMEM); |
| |
| for (i = 0; i < nfp_prog->prog_len; i++) { |
| enum nfp_relo_type special; |
| u32 val; |
| |
| special = FIELD_GET(OP_RELO_TYPE, prog[i]); |
| switch (special) { |
| case RELO_NONE: |
| continue; |
| case RELO_BR_REL: |
| br_add_offset(&prog[i], bv->start_off); |
| break; |
| case RELO_BR_GO_OUT: |
| br_set_offset(&prog[i], |
| nfp_prog->tgt_out + bv->start_off); |
| break; |
| case RELO_BR_GO_ABORT: |
| br_set_offset(&prog[i], |
| nfp_prog->tgt_abort + bv->start_off); |
| break; |
| case RELO_BR_NEXT_PKT: |
| br_set_offset(&prog[i], bv->tgt_done); |
| break; |
| case RELO_BR_HELPER: |
| val = br_get_offset(prog[i]); |
| val -= BR_OFF_RELO; |
| switch (val) { |
| case BPF_FUNC_map_lookup_elem: |
| val = nfp_prog->bpf->helpers.map_lookup; |
| break; |
| case BPF_FUNC_map_update_elem: |
| val = nfp_prog->bpf->helpers.map_update; |
| break; |
| case BPF_FUNC_map_delete_elem: |
| val = nfp_prog->bpf->helpers.map_delete; |
| break; |
| case BPF_FUNC_perf_event_output: |
| val = nfp_prog->bpf->helpers.perf_event_output; |
| break; |
| default: |
| pr_err("relocation of unknown helper %d\n", |
| val); |
| err = -EINVAL; |
| goto err_free_prog; |
| } |
| br_set_offset(&prog[i], val); |
| break; |
| case RELO_IMMED_REL: |
| immed_add_value(&prog[i], bv->start_off); |
| break; |
| } |
| |
| prog[i] &= ~OP_RELO_TYPE; |
| } |
| |
| err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len); |
| if (err) |
| goto err_free_prog; |
| |
| return prog; |
| |
| err_free_prog: |
| kfree(prog); |
| return ERR_PTR(err); |
| } |