blob: 11b9b2f17a2ef66b7555c0bbbde8d31f6ca2a070 [file] [log] [blame]
<
/*
* HD audio interface patch for Creative CA0132 chip
*
* Copyright (c) 2011, Creative Technology Ltd.
*
* Based on patch_ca0110.c
* Copyright (c) 2008 Takashi Iwai <tiwai@suse.de>
*
* This driver is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/module.h>
#include <linux/firmware.h>
#include <sound/core.h>
#include "hda_codec.h"
#include "hda_local.h"
#include "hda_auto_parser.h"
#include "hda_jack.h"
#include "ca0132_regs.h"
/* Enable this to see controls for tuning purpose. */
/*#define ENABLE_TUNING_CONTROLS*/
#define FLOAT_ZERO 0x00000000
#define FLOAT_ONE 0x3f800000
#define FLOAT_TWO 0x40000000
#define FLOAT_MINUS_5 0xc0a00000
#define UNSOL_TAG_DSP 0x16
#define DSP_DMA_WRITE_BUFLEN_INIT (1UL<<18)
#define DSP_DMA_WRITE_BUFLEN_OVLY (1UL<<15)
#define DMA_TRANSFER_FRAME_SIZE_NWORDS 8
#define DMA_TRANSFER_MAX_FRAME_SIZE_NWORDS 32
#define DMA_OVERLAY_FRAME_SIZE_NWORDS 2
#define MASTERCONTROL 0x80
#define MASTERCONTROL_ALLOC_DMA_CHAN 10
#define MASTERCONTROL_QUERY_SPEAKER_EQ_ADDRESS 60
#define WIDGET_CHIP_CTRL 0x15
#define WIDGET_DSP_CTRL 0x16
#define MEM_CONNID_MICIN1 3
#define MEM_CONNID_MICIN2 5
#define MEM_CONNID_MICOUT1 12
#define MEM_CONNID_MICOUT2 14
#define MEM_CONNID_WUH 10
#define MEM_CONNID_DSP 16
#define MEM_CONNID_DMIC 100
#define SCP_SET 0
#define SCP_GET 1
#define EFX_FILE "ctefx.bin"
#ifdef CONFIG_SND_HDA_CODEC_CA0132_DSP
MODULE_FIRMWARE(EFX_FILE);
#endif
static char *dirstr[2] = { "Playback", "Capture" };
enum {
SPEAKER_OUT,
HEADPHONE_OUT
};
enum {
DIGITAL_MIC,
LINE_MIC_IN
};
enum {
#define VNODE_START_NID 0x80
VNID_SPK = VNODE_START_NID, /* Speaker vnid */
VNID_MIC,
VNID_HP_SEL,
VNID_AMIC1_SEL,
VNID_HP_ASEL,
VNID_AMIC1_ASEL,
VNODE_END_NID,
#define VNODES_COUNT (VNODE_END_NID - VNODE_START_NID)
#define EFFECT_START_NID 0x90
#define OUT_EFFECT_START_NID EFFECT_START_NID
SURROUND = OUT_EFFECT_START_NID,
CRYSTALIZER,
DIALOG_PLUS,
SMART_VOLUME,
X_BASS,
EQUALIZER,
OUT_EFFECT_END_NID,
#define OUT_EFFECTS_COUNT (OUT_EFFECT_END_NID - OUT_EFFECT_START_NID)
#define IN_EFFECT_START_NID OUT_EFFECT_END_NID
ECHO_CANCELLATION = IN_EFFECT_START_NID,
VOICE_FOCUS,
MIC_SVM,
NOISE_REDUCTION,
IN_EFFECT_END_NID,
#define IN_EFFECTS_COUNT (IN_EFFECT_END_NID - IN_EFFECT_START_NID)
VOICEFX = IN_EFFECT_END_NID,
PLAY_ENHANCEMENT,
CRYSTAL_VOICE,
EFFECT_END_NID
#define EFFECTS_COUNT (EFFECT_END_NID - EFFECT_START_NID)
};
/* Effects values size*/
#define EFFECT_VALS_MAX_COUNT 12
/* Latency introduced by DSP blocks in milliseconds. */
#define DSP_CAPTURE_INIT_LATENCY 0
#define DSP_CRYSTAL_VOICE_LATENCY 124
#define DSP_PLAYBACK_INIT_LATENCY 13
#define DSP_PLAY_ENHANCEMENT_LATENCY 30
#define DSP_SPEAKER_OUT_LATENCY 7
struct ct_effect {
char name[SNDRV_CTL_ELEM_ID_NAME_MAXLEN];
hda_nid_t nid;
int mid; /*effect module ID*/
int reqs[EFFECT_VALS_MAX_COUNT]; /*effect module request*/
int direct; /* 0:output; 1:input*/
int params; /* number of default non-on/off params */
/*effect default values, 1st is on/off. */
unsigned int def_vals[EFFECT_VALS_MAX_COUNT];
};
#define EFX_DIR_OUT 0
#define EFX_DIR_IN 1
static struct ct_effect ca0132_effects[EFFECTS_COUNT] = {
{ .name = "Surround",
.nid = SURROUND,
.mid = 0x96,
.reqs = {0, 1},
.direct = EFX_DIR_OUT,
.params = 1,
.def_vals = {0x3F800000, 0x3F2B851F}
},
{ .name = "Crystalizer",
.nid = CRYSTALIZER,
.mid = 0x96,
.reqs = {7, 8},
.direct = EFX_DIR_OUT,
.params = 1,
.def_vals = {0x3F800000, 0x3F266666}
},
{ .name = "Dialog Plus",
.nid = DIALOG_PLUS,
.mid = 0x96,
.reqs = {2, 3},
.direct = EFX_DIR_OUT,
.params = 1,
.def_vals = {0x00000000, 0x3F000000}
},
{ .name = "Smart Volume",
.nid = SMART_VOLUME,
.mid = 0x96,
.reqs = {4, 5, 6},
.direct = EFX_DIR_OUT,
.params = 2,
.def_vals = {0x3F800000, 0x3F3D70A4, 0x00000000}
},
{ .name = "X-Bass",
.nid = X_BASS,
.mid = 0x96,
.reqs = {24, 23, 25},
.direct = EFX_DIR_OUT,
.params = 2,
.def_vals = {0x3F800000, 0x42A00000, 0x3F000000}
},
{ .name = "Equalizer",
.nid = EQUALIZER,
.mid = 0x96,
.reqs = {9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20},
.direct = EFX_DIR_OUT,
.params = 11,
.def_vals = {0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000}
},
{ .name = "Echo Cancellation",
.nid = ECHO_CANCELLATION,
.mid = 0x95,
.reqs = {0, 1, 2, 3},
.direct = EFX_DIR_IN,
.params = 3,
.def_vals = {0x00000000, 0x3F3A9692, 0x00000000, 0x00000000}
},
{ .name = "Voice Focus",
.nid = VOICE_FOCUS,
.mid = 0x95,
.reqs = {6, 7, 8, 9},
.direct = EFX_DIR_IN,
.params = 3,
.def_vals = {0x3F800000, 0x3D7DF3B6, 0x41F00000, 0x41F00000}
},
{ .name = "Mic SVM",
.nid = MIC_SVM,
.mid = 0x95,
.reqs = {44, 45},
.direct = EFX_DIR_IN,
.params = 1,
.def_vals = {0x00000000, 0x3F3D70A4}
},
{ .name = "Noise Reduction",
.nid = NOISE_REDUCTION,
.mid = 0x95,
.reqs = {4, 5},
.direct = EFX_DIR_IN,
.params = 1,
.def_vals = {0x3F800000, 0x3F000000}
},
{ .name = "VoiceFX",
.nid = VOICEFX,
.mid = 0x95,
.reqs = {10, 11, 12, 13, 14, 15, 16, 17, 18},
.direct = EFX_DIR_IN,
.params = 8,
.def_vals = {0x00000000, 0x43C80000, 0x44AF0000, 0x44FA0000,
0x3F800000, 0x3F800000, 0x3F800000, 0x00000000,
0x00000000}
}
};
/* Tuning controls */
#ifdef ENABLE_TUNING_CONTROLS
enum {
#define TUNING_CTL_START_NID 0xC0
WEDGE_ANGLE = TUNING_CTL_START_NID,
SVM_LEVEL,
EQUALIZER_BAND_0,
EQUALIZER_BAND_1,
EQUALIZER_BAND_2,
EQUALIZER_BAND_3,
EQUALIZER_BAND_4,
EQUALIZER_BAND_5,
EQUALIZER_BAND_6,
EQUALIZER_BAND_7,
EQUALIZER_BAND_8,
EQUALIZER_BAND_9,
TUNING_CTL_END_NID
#define TUNING_CTLS_COUNT (TUNING_CTL_END_NID - TUNING_CTL_START_NID)
};
struct ct_tuning_ctl {
char name[SNDRV_CTL_ELEM_ID_NAME_MAXLEN];
hda_nid_t parent_nid;
hda_nid_t nid;
int mid; /*effect module ID*/
int req; /*effect module request*/
int direct; /* 0:output; 1:input*/
unsigned int def_val;/*effect default values*/
};
static struct ct_tuning_ctl ca0132_tuning_ctls[] = {
{ .name = "Wedge Angle",
.parent_nid = VOICE_FOCUS,
.nid = WEDGE_ANGLE,
.mid = 0x95,
.req = 8,
.direct = EFX_DIR_IN,
.def_val = 0x41F00000
},
{ .name = "SVM Level",
.parent_nid = MIC_SVM,
.nid = SVM_LEVEL,
.mid = 0x95,
.req = 45,
.direct = EFX_DIR_IN,
.def_val = 0x3F3D70A4
},
{ .name = "EQ Band0",
.parent_nid = EQUALIZER,
.nid = EQUALIZER_BAND_0,
.mid = 0x96,
.req = 11,
.direct = EFX_DIR_OUT,
.def_val = 0x00000000
},
{ .name = "EQ Band1",
.parent_nid = EQUALIZER,
.nid = EQUALIZER_BAND_1,
.mid = 0x96,
.req = 12,
.direct = EFX_DIR_OUT,
.def_val = 0x00000000
},
{ .name = "EQ Band2",
.parent_nid = EQUALIZER,
.nid = EQUALIZER_BAND_2,
.mid = 0x96,
.req = 13,
.direct = EFX_DIR_OUT,
.def_val = 0x00000000
},
{ .name = "EQ Band3",
.parent_nid = EQUALIZER,
.nid = EQUALIZER_BAND_3,
.mid = 0x96,
.req = 14,
.direct = EFX_DIR_OUT,
.def_val = 0x00000000
},
{ .name = "EQ Band4",
.parent_nid = EQUALIZER,
.nid = EQUALIZER_BAND_4,
.mid = 0x96,
.req = 15,
.direct = EFX_DIR_OUT,
.def_val = 0x00000000
},
{ .name = "EQ Band5",
.parent_nid = EQUALIZER,
.nid = EQUALIZER_BAND_5,
.mid = 0x96,
.req = 16,
.direct = EFX_DIR_OUT,
.def_val = 0x00000000
},
{ .name = "EQ Band6",
.parent_nid = EQUALIZER,
.nid = EQUALIZER_BAND_6,
.mid = 0x96,
.req = 17,
.direct = EFX_DIR_OUT,
.def_val = 0x00000000
},
{ .name = "EQ Band7",
.parent_nid = EQUALIZER,
.nid = EQUALIZER_BAND_7,
.mid = 0x96,
.req = 18,
.direct = EFX_DIR_OUT,
.def_val = 0x00000000
},
{ .name = "EQ Band8",
.parent_nid = EQUALIZER,
.nid = EQUALIZER_BAND_8,
.mid = 0x96,
.req = 19,
.direct = EFX_DIR_OUT,
.def_val = 0x00000000
},
{ .name = "EQ Band9",
.parent_nid = EQUALIZER,
.nid = EQUALIZER_BAND_9,
.mid = 0x96,
.req = 20,
.direct = EFX_DIR_OUT,
.def_val = 0x00000000
}
};
#endif
/* Voice FX Presets */
#define VOICEFX_MAX_PARAM_COUNT 9
struct ct_voicefx {
char *name;
hda_nid_t nid;
int mid;
int reqs[VOICEFX_MAX_PARAM_COUNT]; /*effect module request*/
};
struct ct_voicefx_preset {
char *name; /*preset name*/
unsigned int vals[VOICEFX_MAX_PARAM_COUNT];
};
static struct ct_voicefx ca0132_voicefx = {
.name = "VoiceFX Capture Switch",
.nid = VOICEFX,
.mid = 0x95,
.reqs = {10, 11, 12, 13, 14, 15, 16, 17, 18}
};
static struct ct_voicefx_preset ca0132_voicefx_presets[] = {
{ .name = "Neutral",
.vals = { 0x00000000, 0x43C80000, 0x44AF0000,
0x44FA0000, 0x3F800000, 0x3F800000,
0x3F800000, 0x00000000, 0x00000000 }
},
{ .name = "Female2Male",
.vals = { 0x3F800000, 0x43C80000, 0x44AF0000,
0x44FA0000, 0x3F19999A, 0x3F866666,
0x3F800000, 0x00000000, 0x00000000 }
},
{ .name = "Male2Female",
.vals = { 0x3F800000, 0x43C80000, 0x44AF0000,
0x450AC000, 0x4017AE14, 0x3F6B851F,
0x3F800000, 0x00000000, 0x00000000 }
},
{ .name = "ScrappyKid",
.vals = { 0x3F800000, 0x43C80000, 0x44AF0000,
0x44FA0000, 0x40400000, 0x3F28F5C3,
0x3F800000, 0x00000000, 0x00000000 }
},
{ .name = "Elderly",
.vals = { 0x3F800000, 0x44324000, 0x44BB8000,
0x44E10000, 0x3FB33333, 0x3FB9999A,
0x3F800000, 0x3E3A2E43, 0x00000000 }
},
{ .name = "Orc",
.vals = { 0x3F800000, 0x43EA0000, 0x44A52000,
0x45098000, 0x3F266666, 0x3FC00000,
0x3F800000, 0x00000000, 0x00000000 }
},
{ .name = "Elf",
.vals = { 0x3F800000, 0x43C70000, 0x44AE6000,
0x45193000, 0x3F8E147B, 0x3F75C28F,
0x3F800000, 0x00000000, 0x00000000 }
},
{ .name = "Dwarf",
.vals = { 0x3F800000, 0x43930000, 0x44BEE000,
0x45007000, 0x3F451EB8, 0x3F7851EC,
0x3F800000, 0x00000000, 0x00000000 }
},
{ .name = "AlienBrute",
.vals = { 0x3F800000, 0x43BFC5AC, 0x44B28FDF,
0x451F6000, 0x3F266666, 0x3FA7D945,
0x3F800000, 0x3CF5C28F, 0x00000000 }
},
{ .name = "Robot",
.vals = { 0x3F800000, 0x43C80000, 0x44AF0000,
0x44FA0000, 0x3FB2718B, 0x3F800000,
0xBC07010E, 0x00000000, 0x00000000 }
},
{ .name = "Marine",
.vals = { 0x3F800000, 0x43C20000, 0x44906000,
0x44E70000, 0x3F4CCCCD, 0x3F8A3D71,
0x3F0A3D71, 0x00000000, 0x00000000 }
},
{ .name = "Emo",
.vals = { 0x3F800000, 0x43C80000, 0x44AF0000,
0x44FA0000, 0x3F800000, 0x3F800000,
0x3E4CCCCD, 0x00000000, 0x00000000 }
},
{ .name = "DeepVoice",
.vals = { 0x3F800000, 0x43A9C5AC, 0x44AA4FDF,
0x44FFC000, 0x3EDBB56F, 0x3F99C4CA,
0x3F800000, 0x00000000, 0x00000000 }
},
{ .name = "Munchkin",
.vals = { 0x3F800000, 0x43C80000, 0x44AF0000,
0x44FA0000, 0x3F800000, 0x3F1A043C,
0x3F800000, 0x00000000, 0x00000000 }
}
};
enum hda_cmd_vendor_io {
/* for DspIO node */
VENDOR_DSPIO_SCP_WRITE_DATA_LOW = 0x000,
VENDOR_DSPIO_SCP_WRITE_DATA_HIGH = 0x100,
VENDOR_DSPIO_STATUS = 0xF01,
VENDOR_DSPIO_SCP_POST_READ_DATA = 0x702,
VENDOR_DSPIO_SCP_READ_DATA = 0xF02,
VENDOR_DSPIO_DSP_INIT = 0x703,
VENDOR_DSPIO_SCP_POST_COUNT_QUERY = 0x704,
VENDOR_DSPIO_SCP_READ_COUNT = 0xF04,
/* for ChipIO node */
VENDOR_CHIPIO_ADDRESS_LOW = 0x000,
VENDOR_CHIPIO_ADDRESS_HIGH = 0x100,
VENDOR_CHIPIO_STREAM_FORMAT = 0x200,
VENDOR_CHIPIO_DATA_LOW = 0x300,
VENDOR_CHIPIO_DATA_HIGH = 0x400,
VENDOR_CHIPIO_GET_PARAMETER = 0xF00,
VENDOR_CHIPIO_STATUS = 0xF01,
VENDOR_CHIPIO_HIC_POST_READ = 0x702,
VENDOR_CHIPIO_HIC_READ_DATA = 0xF03,
VENDOR_CHIPIO_8051_DATA_WRITE = 0x707,
VENDOR_CHIPIO_8051_DATA_READ = 0xF07,
VENDOR_CHIPIO_CT_EXTENSIONS_ENABLE = 0x70A,
VENDOR_CHIPIO_CT_EXTENSIONS_GET = 0xF0A,
VENDOR_CHIPIO_PLL_PMU_WRITE = 0x70C,
VENDOR_CHIPIO_PLL_PMU_READ = 0xF0C,
VENDOR_CHIPIO_8051_ADDRESS_LOW = 0x70D,
VENDOR_CHIPIO_8051_ADDRESS_HIGH = 0x70E,
VENDOR_CHIPIO_FLAG_SET = 0x70F,
VENDOR_CHIPIO_FLAGS_GET = 0xF0F,
VENDOR_CHIPIO_PARAM_SET = 0x710,
VENDOR_CHIPIO_PARAM_GET = 0xF10,
VENDOR_CHIPIO_PORT_ALLOC_CONFIG_SET = 0x711,
VENDOR_CHIPIO_PORT_ALLOC_SET = 0x712,
VENDOR_CHIPIO_PORT_ALLOC_GET = 0xF12,
VENDOR_CHIPIO_PORT_FREE_SET = 0x713,
VENDOR_CHIPIO_PARAM_EX_ID_GET = 0xF17,
VENDOR_CHIPIO_PARAM_EX_ID_SET = 0x717,
VENDOR_CHIPIO_PARAM_EX_VALUE_GET = 0xF18,
VENDOR_CHIPIO_PARAM_EX_VALUE_SET = 0x718,
VENDOR_CHIPIO_DMIC_CTL_SET = 0x788,
VENDOR_CHIPIO_DMIC_CTL_GET = 0xF88,
VENDOR_CHIPIO_DMIC_PIN_SET = 0x789,
VENDOR_CHIPIO_DMIC_PIN_GET = 0xF89,
VENDOR_CHIPIO_DMIC_MCLK_SET = 0x78A,
VENDOR_CHIPIO_DMIC_MCLK_GET = 0xF8A,
VENDOR_CHIPIO_EAPD_SEL_SET = 0x78D
};
/*
* Control flag IDs
*/
enum control_flag_id {
/* Connection manager stream setup is bypassed/enabled */
CONTROL_FLAG_C_MGR = 0,
/* DSP DMA is bypassed/enabled */
CONTROL_FLAG_DMA = 1,
/* 8051 'idle' mode is disabled/enabled */
CONTROL_FLAG_IDLE_ENABLE = 2,
/* Tracker for the SPDIF-in path is bypassed/enabled */
CONTROL_FLAG_TRACKER = 3,
/* DigitalOut to Spdif2Out connection is disabled/enabled */
CONTROL_FLAG_SPDIF2OUT = 4,
/* Digital Microphone is disabled/enabled */
CONTROL_FLAG_DMIC = 5,
/* ADC_B rate is 48 kHz/96 kHz */
CONTROL_FLAG_ADC_B_96KHZ = 6,
/* ADC_C rate is 48 kHz/96 kHz */
CONTROL_FLAG_ADC_C_96KHZ = 7,
/* DAC rate is 48 kHz/96 kHz (affects all DACs) */
CONTROL_FLAG_DAC_96KHZ = 8,
/* DSP rate is 48 kHz/96 kHz */
CONTROL_FLAG_DSP_96KHZ = 9,
/* SRC clock is 98 MHz/196 MHz (196 MHz forces rate to 96 KHz) */
CONTROL_FLAG_SRC_CLOCK_196MHZ = 10,
/* SRC rate is 48 kHz/96 kHz (48 kHz disabled when clock is 196 MHz) */
CONTROL_FLAG_SRC_RATE_96KHZ = 11,
/* Decode Loop (DSP->SRC->DSP) is disabled/enabled */
CONTROL_FLAG_DECODE_LOOP = 12,
/* De-emphasis filter on DAC-1 disabled/enabled */
CONTROL_FLAG_DAC1_DEEMPHASIS = 13,
/* De-emphasis filter on DAC-2 disabled/enabled */
CONTROL_FLAG_DAC2_DEEMPHASIS = 14,
/* De-emphasis filter on DAC-3 disabled/enabled */
CONTROL_FLAG_DAC3_DEEMPHASIS = 15,
/* High-pass filter on ADC_B disabled/enabled */
CONTROL_FLAG_ADC_B_HIGH_PASS = 16,
/* High-pass filter on ADC_C disabled/enabled */
CONTROL_FLAG_ADC_C_HIGH_PASS = 17,
/* Common mode on Port_A disabled/enabled */
CONTROL_FLAG_PORT_A_COMMON_MODE = 18,
/* Common mode on Port_D disabled/enabled */
CONTROL_FLAG_PORT_D_COMMON_MODE = 19,
/* Impedance for ramp generator on Port_A 16 Ohm/10K Ohm */
CONTROL_FLAG_PORT_A_10KOHM_LOAD = 20,
/* Impedance for ramp generator on Port_D, 16 Ohm/10K Ohm */
CONTROL_FLAG_PORT_D_10KOHM_LOAD = 21,
/* ASI rate is 48kHz/96kHz */
CONTROL_FLAG_ASI_96KHZ = 22,
/* DAC power settings able to control attached ports no/yes */
CONTROL_FLAG_DACS_CONTROL_PORTS = 23,
/* Clock Stop OK reporting is disabled/enabled */
CONTROL_FLAG_CONTROL_STOP_OK_ENABLE = 24,
/* Number of control flags */
CONTROL_FLAGS_MAX = (CONTROL_FLAG_CONTROL_STOP_OK_ENABLE+1)
};
/*
* Control parameter IDs
*/
enum control_param_id {
/* 0: None, 1: Mic1In*/
CONTROL_PARAM_VIP_SOURCE = 1,
/* 0: force HDA, 1: allow DSP if HDA Spdif1Out stream is idle */
CONTROL_PARAM_SPDIF1_SOURCE = 2,
/* Port A output stage gain setting to use when 16 Ohm output
* impedance is selected*/
CONTROL_PARAM_PORTA_160OHM_GAIN = 8,
/* Port D output stage gain setting to use when 16 Ohm output
* impedance is selected*/
CONTROL_PARAM_PORTD_160OHM_GAIN = 10,
/* Stream Control */
/* Select stream with the given ID */
CONTROL_PARAM_STREAM_ID = 24,
/* Source connection point for the selected stream */
CONTROL_PARAM_STREAM_SOURCE_CONN_POINT = 25,
/* Destination connection point for the selected stream */
CONTROL_PARAM_STREAM_DEST_CONN_POINT = 26,
/* Number of audio channels in the selected stream */
CONTROL_PARAM_STREAMS_CHANNELS = 27,
/*Enable control for the selected stream */
CONTROL_PARAM_STREAM_CONTROL = 28,
/* Connection Point Control */
/* Select connection point with the given ID */
CONTROL_PARAM_CONN_POINT_ID = 29,
/* Connection point sample rate */
CONTROL_PARAM_CONN_POINT_SAMPLE_RATE = 30,
/* Node Control */
/* Select HDA node with the given ID */
CONTROL_PARAM_NODE_ID = 31
};
/*
* Dsp Io Status codes
*/
enum hda_vendor_status_dspio {
/* Success */
VENDOR_STATUS_DSPIO_OK = 0x00,
/* Busy, unable to accept new command, the host must retry */
VENDOR_STATUS_DSPIO_BUSY = 0x01,
/* SCP command queue is full */
VENDOR_STATUS_DSPIO_SCP_COMMAND_QUEUE_FULL = 0x02,
/* SCP response queue is empty */
VENDOR_STATUS_DSPIO_SCP_RESPONSE_QUEUE_EMPTY = 0x03
};
/*
* Chip Io Status codes
*/
enum hda_vendor_status_chipio {
/* Success */
VENDOR_STATUS_CHIPIO_OK = 0x00,
/* Busy, unable to accept new command, the host must retry */
VENDOR_STATUS_CHIPIO_BUSY = 0x01
};
/*
* CA0132 sample rate
*/
enum ca0132_sample_rate {
SR_6_000 = 0x00,
SR_8_000 = 0x01,
SR_9_600 = 0x02,
SR_11_025 = 0x03,
SR_16_000 = 0x04,
SR_22_050 = 0x05,
SR_24_000 = 0x06,
SR_32_000 = 0x07,
SR_44_100 = 0x08,
SR_48_000 = 0x09,
SR_88_200 = 0x0A,
SR_96_000 = 0x0B,
SR_144_000 = 0x0C,
SR_176_400 = 0x0D,
SR_192_000 = 0x0E,
SR_384_000 = 0x0F,
SR_COUNT = 0x10,
SR_RATE_UNKNOWN = 0x1F
};
enum dsp_download_state {
DSP_DOWNLOAD_FAILED = -1,
DSP_DOWNLOAD_INIT = 0,
DSP_DOWNLOADING = 1,
DSP_DOWNLOADED = 2
};
/* retrieve parameters from hda format */
#define get_hdafmt_chs(fmt) (fmt & 0xf)
#define get_hdafmt_bits(fmt) ((fmt >> 4) & 0x7)
#define get_hdafmt_rate(fmt) ((fmt >> 8) & 0x7f)
#define get_hdafmt_type(fmt) ((fmt >> 15) & 0x1)
/*
* CA0132 specific
*/
struct ca0132_spec {
struct snd_kcontrol_new *mixers[5];
unsigned int num_mixers;
const struct hda_verb *base_init_verbs;
const struct hda_verb *base_exit_verbs;
const struct hda_verb *chip_init_verbs;
struct hda_verb *spec_init_verbs;
struct auto_pin_cfg autocfg;
/* Nodes configurations */
struct hda_multi_out multiout;
hda_nid_t out_pins[AUTO_CFG_MAX_OUTS];
hda_nid_t dacs[AUTO_CFG_MAX_OUTS];
unsigned int num_outputs;
hda_nid_t input_pins[AUTO_PIN_LAST];
hda_nid_t adcs[AUTO_PIN_LAST];
hda_nid_t dig_out;
hda_nid_t dig_in;
unsigned int num_inputs;
hda_nid_t shared_mic_nid;
hda_nid_t shared_out_nid;
hda_nid_t unsol_tag_hp;
hda_nid_t unsol_tag_amic1;
/* chip access */
struct mutex chipio_mutex; /* chip access mutex */
u32 curr_chip_addx;
/* DSP download related */
enum dsp_download_state dsp_state;
unsigned int dsp_stream_id;
unsigned int wait_scp;
unsigned int wait_scp_header;
unsigned int wait_num_data;
unsigned int scp_resp_header;
unsigned int scp_resp_data[4];
unsigned int scp_resp_count;
/* mixer and effects related */
unsigned char dmic_ctl;
int cur_out_type;
int cur_mic_type;
long vnode_lvol[VNODES_COUNT];
long vnode_rvol[VNODES_COUNT];
long vnode_lswitch[VNODES_COUNT];
long vnode_rswitch[VNODES_COUNT];
long effects_switch[EFFECTS_COUNT];
long voicefx_val;
long cur_mic_boost;
struct hda_codec *codec;
struct delayed_work unsol_hp_work;
int quirk;
#ifdef ENABLE_TUNING_CONTROLS
long cur_ctl_vals[TUNING_CTLS_COUNT];
#endif
};
/*
* CA0132 quirks table
*/
enum {
QUIRK_NONE,
QUIRK_ALIENWARE,
};
static const struct hda_pintbl alienware_pincfgs[] = {
{ 0x0b, 0x90170110 }, /* Builtin Speaker */
{ 0x0c, 0x411111f0 }, /* N/A */
{ 0x0d, 0x411111f0 }, /* N/A */
{ 0x0e, 0x411111f0 }, /* N/A */
{ 0x0f, 0x0321101f }, /* HP */
{ 0x10, 0x411111f0 }, /* Headset? disabled for now */
{ 0x11, 0x03a11021 }, /* Mic */
{ 0x12, 0xd5a30140 }, /* Builtin Mic */
{ 0x13, 0x411111f0 }, /* N/A */
{ 0x18, 0x411111f0 }, /* N/A */
{}
};
static const struct snd_pci_quirk ca0132_quirks[] = {
SND_PCI_QUIRK(0x1028, 0x0685, "Alienware 15 2015", QUIRK_ALIENWARE),
SND_PCI_QUIRK(0x1028, 0x0688, "Alienware 17 2015", QUIRK_ALIENWARE),
SND_PCI_QUIRK(0x1028, 0x0708, "Alienware 15 R2 2016", QUIRK_ALIENWARE),
{}
};
/*
* CA0132 codec access
*/
static unsigned int codec_send_command(struct hda_codec *codec, hda_nid_t nid,
unsigned int verb, unsigned int parm, unsigned int *res)
{
unsigned int response;
response = snd_hda_codec_read(codec, nid, 0, verb, parm);
*res = response;
return ((response == -1) ? -1 : 0);
}
static int codec_set_converter_format(struct hda_codec *codec, hda_nid_t nid,
unsigned short converter_format, unsigned int *res)
{
return codec_send_command(codec, nid, VENDOR_CHIPIO_STREAM_FORMAT,
converter_format & 0xffff, res);
}
static int codec_set_converter_stream_channel(struct hda_codec *codec,
hda_nid_t nid, unsigned char stream,
unsigned char channel, unsigned int *res)
{
unsigned char converter_stream_channel = 0;
converter_stream_channel = (stream << 4) | (channel & 0x0f);
return codec_send_command(codec, nid, AC_VERB_SET_CHANNEL_STREAMID,
converter_stream_channel, res);
}
/* Chip access helper function */
static int chipio_send(struct hda_codec *codec,
unsigned int reg,
unsigned int data)
{
unsigned int res;
unsigned long timeout = jiffies + msecs_to_jiffies(1000);
/* send bits of data specified by reg */
do {
res = snd_hda_codec_read(codec, WIDGET_CHIP_CTRL, 0,
reg, data);
if (res == VENDOR_STATUS_CHIPIO_OK)
return 0;
msleep(20);
} while (time_before(jiffies, timeout));
return -EIO;
}
/*
* Write chip address through the vendor widget -- NOT protected by the Mutex!
*/
static int chipio_write_address(struct hda_codec *codec,
unsigned int chip_addx)
{
struct ca0132_spec *spec = codec->spec;
int res;
if (spec->curr_chip_addx == chip_addx)
return 0;
/* send low 16 bits of the address */
res = chipio_send(codec, VENDOR_CHIPIO_ADDRESS_LOW,
chip_addx & 0xffff);
if (res != -EIO) {
/* send high 16 bits of the address */
res = chipio_send(codec, VENDOR_CHIPIO_ADDRESS_HIGH,
chip_addx >> 16);
}
spec->curr_chip_addx = (res < 0) ? ~0UL : chip_addx;
return res;
}
/*
* Write data through the vendor widget -- NOT protected by the Mutex!
*/
static int chipio_write_data(struct hda_codec *codec, unsigned int data)
{
struct ca0132_spec *spec = codec->spec;
int res;
/* send low 16 bits of the data */
res = chipio_send(codec, VENDOR_CHIPIO_DATA_LOW, data & 0xffff);
if (res != -EIO) {
/* send high 16 bits of the data */
res = chipio_send(codec, VENDOR_CHIPIO_DATA_HIGH,
data >> 16);
}
/*If no error encountered, automatically increment the address
as per chip behaviour*/
spec->curr_chip_addx = (res != -EIO) ?
(spec->curr_chip_addx + 4) : ~0UL;
return res;
}
/*
* Write multiple data through the vendor widget -- NOT protected by the Mutex!
*/
static int chipio_write_data_multiple(struct hda_codec *codec,
const u32 *data,
unsigned int count)
{
int status = 0;
if (data == NULL) {
codec_dbg(codec, "chipio_write_data null ptr\n");
return -EINVAL;
}
while ((count-- != 0) && (status == 0))
status = chipio_write_data(codec, *data++);
return status;
}
/*
* Read data through the vendor widget -- NOT protected by the Mutex!
*/
static int chipio_read_data(struct hda_codec *codec, unsigned int *data)
{
struct ca0132_spec *spec = codec->spec;
int res;
/* post read */
res = chipio_send(codec, VENDOR_CHIPIO_HIC_POST_READ, 0);
if (res != -EIO) {
/* read status */
res = chipio_send(codec, VENDOR_CHIPIO_STATUS, 0);
}
if (res != -EIO) {
/* read data */
*data = snd_hda_codec_read(codec, WIDGET_CHIP_CTRL, 0,
VENDOR_CHIPIO_HIC_READ_DATA,
0);
}
/*If no error encountered, automatically increment the address
as per chip behaviour*/
spec->curr_chip_addx = (res != -EIO) ?
(spec->curr_chip_addx + 4) : ~0UL;
return res;
}
/*
* Write given value to the given address through the chip I/O widget.
* protected by the Mutex
*/
static int chipio_write(struct hda_codec *codec,
unsigned int chip_addx, const unsigned int data)
{
struct ca0132_spec *spec = codec->spec;
int err;
mutex_lock(&spec->chipio_mutex);
/* write the address, and if successful proceed to write data */
err = chipio_write_address(codec, chip_addx);
if (err < 0)
goto exit;
err = chipio_write_data(codec, data);
if (err < 0)
goto exit;
exit:
mutex_unlock(&spec->chipio_mutex);
return err;
}
/*
* Write multiple values to the given address through the chip I/O widget.
* protected by the Mutex
*/
static int chipio_write_multiple(struct hda_codec *codec,
u32 chip_addx,
const u32 *data,
unsigned int count)
{
struct ca0132_spec *spec = codec->spec;
int status;
mutex_lock(&spec->chipio_mutex);
status = chipio_write_address(codec, chip_addx);
if (status < 0)
goto error;
status = chipio_write_data_multiple(codec, data, count);
error:
mutex_unlock(&spec->chipio_mutex);
return status;
}
/*
* Read the given address through the chip I/O widget
* protected by the Mutex
*/
static int chipio_read(struct hda_codec *codec,
unsigned int chip_addx, unsigned int *data)
{
struct ca0132_spec *spec = codec->spec;
int err;
mutex_lock(&spec->chipio_mutex);
/* write the address, and if successful proceed to write data */
err = chipio_write_address(codec, chip_addx);
if (err < 0)
goto exit;
err = chipio_read_data(codec, data);
if (err < 0)
goto exit;
exit:
mutex_unlock(&spec->chipio_mutex);
return err;
}
/*
* Set chip control flags through the chip I/O widget.
*/
static void chipio_set_control_flag(struct hda_codec *codec,
enum control_flag_id flag_id,
bool flag_state)
{
unsigned int val;
unsigned int flag_bit;
flag_bit = (flag_state ? 1 : 0);
val = (flag_bit << 7) | (flag_id);
snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0,
VENDOR_CHIPIO_FLAG_SET, val);
}
/*
* Set chip parameters through the chip I/O widget.
*/
static void chipio_set_control_param(struct hda_codec *codec,
enum control_param_id param_id, int param_val)
{
struct ca0132_spec *spec = codec->spec;
int val;
if ((param_id < 32) && (param_val < 8)) {
val = (param_val << 5) | (param_id);
snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0,
VENDOR_CHIPIO_PARAM_SET, val);
} else {
mutex_lock(&spec->chipio_mutex);
if (chipio_send(codec, VENDOR_CHIPIO_STATUS, 0) == 0) {
snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0,
VENDOR_CHIPIO_PARAM_EX_ID_SET,
param_id);
snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0,
VENDOR_CHIPIO_PARAM_EX_VALUE_SET,
param_val);
}
mutex_unlock(&spec->chipio_mutex);
}
}
/*
* Set sampling rate of the connection point.
*/
static void chipio_set_conn_rate(struct hda_codec *codec,
int connid, enum ca0132_sample_rate rate)
{
chipio_set_control_param(codec, CONTROL_PARAM_CONN_POINT_ID, connid);
chipio_set_control_param(codec, CONTROL_PARAM_CONN_POINT_SAMPLE_RATE,
rate);
}
/*
* Enable clocks.
*/
static void chipio_enable_clocks(struct hda_codec *codec)
{
struct ca0132_spec *spec = codec->spec;
mutex_lock(&spec->chipio_mutex);
snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0,
VENDOR_CHIPIO_8051_ADDRESS_LOW, 0);
snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0,
VENDOR_CHIPIO_PLL_PMU_WRITE, 0xff);
snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0,
VENDOR_CHIPIO_8051_ADDRESS_LOW, 5);
snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0,
VENDOR_CHIPIO_PLL_PMU_WRITE, 0x0b);
snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0,
VENDOR_CHIPIO_8051_ADDRESS_LOW, 6);
snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0,
VENDOR_CHIPIO_PLL_PMU_WRITE, 0xff);
mutex_unlock(&spec->chipio_mutex);
}
/*
* CA0132 DSP IO stuffs
*/
static int dspio_send(struct hda_codec *codec, unsigned int reg,
unsigned int data)
{
int res;
unsigned long timeout = jiffies + msecs_to_jiffies(1000);
/* send bits of data specified by reg to dsp */
do {
res = snd_hda_codec_read(codec, WIDGET_DSP_CTRL, 0, reg, data);
if ((res >= 0) && (res != VENDOR_STATUS_DSPIO_BUSY))
return res;
msleep(20);
} while (time_before(jiffies, timeout));
return -EIO;
}
/*
* Wait for DSP to be ready for commands
*/
static void dspio_write_wait(struct hda_codec *codec)
{
int status;
unsigned long timeout = jiffies + msecs_to_jiffies(1000);
do {
status = snd_hda_codec_read(codec, WIDGET_DSP_CTRL, 0,
VENDOR_DSPIO_STATUS, 0);
if ((status == VENDOR_STATUS_DSPIO_OK) ||
(status == VENDOR_STATUS_DSPIO_SCP_RESPONSE_QUEUE_EMPTY))
break;
msleep(1);
} while (time_before(jiffies, timeout));
}
/*
* Write SCP data to DSP
*/
static int dspio_write(struct hda_codec *codec, unsigned int scp_data)
{
struct ca0132_spec *spec = codec->spec;
int status;
dspio_write_wait(codec);
mutex_lock(&spec->chipio_mutex);
status = dspio_send(codec, VENDOR_DSPIO_SCP_WRITE_DATA_LOW,
scp_data & 0xffff);
if (status < 0)
goto error;
status = dspio_send(codec, VENDOR_DSPIO_SCP_WRITE_DATA_HIGH,
scp_data >> 16);
if (status < 0)
goto error;
/* OK, now check if the write itself has executed*/
status = snd_hda_codec_read(codec, WIDGET_DSP_CTRL, 0,
VENDOR_DSPIO_STATUS, 0);
error:
mutex_unlock(&spec->chipio_mutex);
return (status == VENDOR_STATUS_DSPIO_SCP_COMMAND_QUEUE_FULL) ?
-EIO : 0;
}
/*
* Write multiple SCP data to DSP
*/
static int dspio_write_multiple(struct hda_codec *codec,
unsigned int *buffer, unsigned int size)
{
int status = 0;
unsigned int count;
if ((buffer == NULL))
return -EINVAL;
count = 0;
while (count < size) {
status = dspio_write(codec, *buffer++);
if (status != 0)
break;
count++;
}
return status;
}
static int dspio_read(struct hda_codec *codec, unsigned int *data)
{
int status;
status = dspio_send(codec, VENDOR_DSPIO_SCP_POST_READ_DATA, 0);
if (status == -EIO)
return status;
status = dspio_send(codec, VENDOR_DSPIO_STATUS, 0);
if (status == -EIO ||
status == VENDOR_STATUS_DSPIO_SCP_RESPONSE_QUEUE_EMPTY)
return -EIO;
*data = snd_hda_codec_read(codec, WIDGET_DSP_CTRL, 0,
VENDOR_DSPIO_SCP_READ_DATA, 0);
return 0;
}
static int dspio_read_multiple(struct hda_codec *codec, unsigned int *buffer,
unsigned int *buf_size, unsigned int size_count)
{
int status = 0;
unsigned int size = *buf_size;
unsigned int count;
unsigned int skip_count;
unsigned int dummy;
if ((buffer == NULL))
return -1;
count = 0;
while (count < size && count < size_count) {
status = dspio_read(codec, buffer++);
if (status != 0)
break;
count++;
}
skip_count = count;
if (status == 0) {
while (skip_count < size) {
status = dspio_read(codec, &dummy);
if (status != 0)
break;
skip_count++;
}
}
*buf_size = count;
return status;
}
/*
* Construct the SCP header using corresponding fields
*/
static inline unsigned int
make_scp_header(unsigned int target_id, unsigned int source_id,
unsigned int get_flag, unsigned int req,
unsigned int device_flag, unsigned int resp_flag,
unsigned int error_flag, unsigned int data_size)
{
unsigned int header = 0;
header = (data_size & 0x1f) << 27;
header |= (error_flag & 0x01) << 26;
header |= (resp_flag & 0x01) << 25;
header |= (device_flag & 0x01) << 24;
header |= (req & 0x7f) << 17;
header |= (get_flag & 0x01) << 16;
header |= (source_id & 0xff) << 8;
header |= target_id & 0xff;
return header;
}
/*
* Extract corresponding fields from SCP header
*/
static inline void
extract_scp_header(unsigned int header,
unsigned int *target_id, unsigned int *source_id,
unsigned int *get_flag, unsigned int *req,
unsigned int *device_flag, unsigned int *resp_flag,
unsigned int *error_flag, unsigned int *data_size)
{
if (data_size)
*data_size = (header >> 27) & 0x1f;
if (error_flag)
*error_flag = (header >> 26) & 0x01;
if (resp_flag)
*resp_flag = (header >> 25) & 0x01;
if (device_flag)
*device_flag = (header >> 24) & 0x01;
if (req)
*req = (header >> 17) & 0x7f;
if (get_flag)
*get_flag = (header >> 16) & 0x01;
if (source_id)
*source_id = (header >> 8) & 0xff;
if (target_id)
*target_id = header & 0xff;
}
#define SCP_MAX_DATA_WORDS (16)
/* Structure to contain any SCP message */
struct scp_msg {
unsigned int hdr;
unsigned int data[SCP_MAX_DATA_WORDS];
};
static void dspio_clear_response_queue(struct hda_codec *codec)
{
unsigned int dummy = 0;
int status = -1;
/* clear all from the response queue */
do {
status = dspio_read(codec, &dummy);
} while (status == 0);
}
static int dspio_get_response_data(struct hda_codec *codec)
{
struct ca0132_spec *spec = codec->spec;
unsigned int data = 0;
unsigned int count;
if (dspio_read(codec, &data) < 0)
return -EIO;
if ((data & 0x00ffffff) == spec->wait_scp_header) {
spec->scp_resp_header = data;
spec->scp_resp_count = data >> 27;
count = spec->wait_num_data;
dspio_read_multiple(codec, spec->scp_resp_data,
&spec->scp_resp_count, count);
return 0;
}
return -EIO;
}
/*
* Send SCP message to DSP
*/
static int dspio_send_scp_message(struct hda_codec *codec,
unsigned char *send_buf,
unsigned int send_buf_size,
unsigned char *return_buf,
unsigned int return_buf_size,
unsigned int *bytes_returned)
{
struct ca0132_spec *spec = codec->spec;
int status = -1;
unsigned int scp_send_size = 0;
unsigned int total_size;
bool waiting_for_resp = false;
unsigned int header;
struct scp_msg *ret_msg;
unsigned int resp_src_id, resp_target_id;
unsigned int data_size, src_id, target_id, get_flag, device_flag;
if (bytes_returned)
*bytes_returned = 0;
/* get scp header from buffer */
header = *((unsigned int *)send_buf);
extract_scp_header(header, &target_id, &src_id, &get_flag, NULL,
&device_flag, NULL, NULL, &data_size);
scp_send_size = data_size + 1;
total_size = (scp_send_size * 4);
if (send_buf_size < total_size)
return -EINVAL;
if (get_flag || device_flag) {
if (!return_buf || return_buf_size < 4 || !bytes_returned)
return -EINVAL;
spec->wait_scp_header = *((unsigned int *)send_buf);
/* swap source id with target id */
resp_target_id = src_id;
resp_src_id = target_id;
spec->wait_scp_header &= 0xffff0000;
spec->wait_scp_header |= (resp_src_id << 8) | (resp_target_id);
spec->wait_num_data = return_buf_size/sizeof(unsigned int) - 1;
spec->wait_scp = 1;
waiting_for_resp = true;
}
status = dspio_write_multiple(codec, (unsigned int *)send_buf,
scp_send_size);
if (status < 0) {
spec->wait_scp = 0;
return status;
}
if (waiting_for_resp) {
unsigned long timeout = jiffies + msecs_to_jiffies(1000);
memset(return_buf, 0, return_buf_size);
do {
msleep(20);
} while (spec->wait_scp && time_before(jiffies, timeout));
waiting_for_resp = false;
if (!spec->wait_scp) {
ret_msg = (struct scp_msg *)return_buf;
memcpy(&ret_msg->hdr, &spec->scp_resp_header, 4);
memcpy(&ret_msg->data, spec->scp_resp_data,
spec->wait_num_data);
*bytes_returned = (spec->scp_resp_count + 1) * 4;
status = 0;
} else {
status = -EIO;
}
spec->wait_scp = 0;
}
return status;
}
/**
* Prepare and send the SCP message to DSP
* @codec: the HDA codec
* @mod_id: ID of the DSP module to send the command
* @req: ID of request to send to the DSP module
* @dir: SET or GET
* @data: pointer to the data to send with the request, request specific
* @len: length of the data, in bytes
* @reply: point to the buffer to hold data returned for a reply
* @reply_len: length of the reply buffer returned from GET
*
* Returns zero or a negative error code.
*/
static int dspio_scp(struct hda_codec *codec,
int mod_id, int req, int dir, void *data, unsigned int len,
void *reply, unsigned int *reply_len)
{
int status = 0;
struct scp_msg scp_send, scp_reply;
unsigned int ret_bytes, send_size, ret_size;
unsigned int send_get_flag, reply_resp_flag, reply_error_flag;
unsigned int reply_data_size;
memset(&scp_send, 0, sizeof(scp_send));
memset(&scp_reply, 0, sizeof(scp_reply));
if ((len != 0 && data == NULL) || (len > SCP_MAX_DATA_WORDS))
return -EINVAL;
if (dir == SCP_GET && reply == NULL) {
codec_dbg(codec, "dspio_scp get but has no buffer\n");
return -EINVAL;
}
if (reply != NULL && (reply_len == NULL || (*reply_len == 0))) {
codec_dbg(codec, "dspio_scp bad resp buf len parms\n");
return -EINVAL;
}
scp_send.hdr = make_scp_header(mod_id, 0x20, (dir == SCP_GET), req,
0, 0, 0, len/sizeof(unsigned int));
if (data != NULL && len > 0) {
len = min((unsigned int)(sizeof(scp_send.data)), len);
memcpy(scp_send.data, data, len);
}
ret_bytes = 0;
send_size = sizeof(unsigned int) + len;
status = dspio_send_scp_message(codec, (unsigned char *)&scp_send,
send_size, (unsigned char *)&scp_reply,
sizeof(scp_reply), &ret_bytes);
if (status < 0) {
codec_dbg(codec, "dspio_scp: send scp msg failed\n");
return status;
}
/* extract send and reply headers members */
extract_scp_header(scp_send.hdr, NULL, NULL, &send_get_flag,
NULL, NULL, NULL, NULL, NULL);
extract_scp_header(scp_reply.hdr, NULL, NULL, NULL, NULL, NULL,
&reply_resp_flag, &reply_error_flag,
&reply_data_size);
if (!send_get_flag)
return 0;
if (reply_resp_flag && !reply_error_flag) {
ret_size = (ret_bytes - sizeof(scp_reply.hdr))
/ sizeof(unsigned int);
if (*reply_len < ret_size*sizeof(unsigned int)) {
codec_dbg(codec, "reply too long for buf\n");
return -EINVAL;
} else if (ret_size != reply_data_size) {
codec_dbg(codec, "RetLen and HdrLen .NE.\n");
return -EINVAL;
} else {
*reply_len = ret_size*sizeof(unsigned int);
memcpy(reply, scp_reply.data, *reply_len);
}
} else {
codec_dbg(codec, "reply ill-formed or errflag set\n");
return -EIO;
}
return status;
}
/*
* Set DSP parameters
*/
static int dspio_set_param(struct hda_codec *codec, int mod_id,
int req, void *data, unsigned int len)
{
return dspio_scp(codec, mod_id, req, SCP_SET, data, len, NULL, NULL);
}
static int dspio_set_uint_param(struct hda_codec *codec, int mod_id,
int req, unsigned int data)
{
return dspio_set_param(codec, mod_id, req, &data, sizeof(unsigned int));
}
/*
* Allocate a DSP DMA channel via an SCP message
*/
static int dspio_alloc_dma_chan(struct hda_codec *codec, unsigned int *dma_chan)
{
int status = 0;
unsigned int size = sizeof(dma_chan);
codec_dbg(codec, " dspio_alloc_dma_chan() -- begin\n");
status = dspio_scp(codec, MASTERCONTROL, MASTERCONTROL_ALLOC_DMA_CHAN,
SCP_GET, NULL, 0, dma_chan, &size);
if (status < 0) {
codec_dbg(codec, "dspio_alloc_dma_chan: SCP Failed\n");
return status;
}
if ((*dma_chan + 1) == 0) {
codec_dbg(codec, "no free dma channels to allocate\n");
return -EBUSY;
}
codec_dbg(codec, "dspio_alloc_dma_chan: chan=%d\n", *dma_chan);
codec_dbg(codec, " dspio_alloc_dma_chan() -- complete\n");
return status;
}
/*
* Free a DSP DMA via an SCP message
*/
static int dspio_free_dma_chan(struct hda_codec *codec, unsigned int dma_chan)
{
int status = 0;
unsigned int dummy = 0;
codec_dbg(codec, " dspio_free_dma_chan() -- begin\n");
codec_dbg(codec, "dspio_free_dma_chan: chan=%d\n", dma_chan);
status = dspio_scp(codec, MASTERCONTROL, MASTERCONTROL_ALLOC_DMA_CHAN,
SCP_SET, &dma_chan, sizeof(dma_chan), NULL, &dummy);
if (status < 0) {
codec_dbg(codec, "dspio_free_dma_chan: SCP Failed\n");
return status;
}
codec_dbg(codec, " dspio_free_dma_chan() -- complete\n");
return status;
}
/*
* (Re)start the DSP
*/
static int dsp_set_run_state(struct hda_codec *codec)
{
unsigned int dbg_ctrl_reg;
unsigned int halt_state;
int err;
err = chipio_read(codec, DSP_DBGCNTL_INST_OFFSET, &dbg_ctrl_reg);
if (err < 0)
return err;
halt_state = (dbg_ctrl_reg & DSP_DBGCNTL_STATE_MASK) >>
DSP_DBGCNTL_STATE_LOBIT;
if (halt_state != 0) {
dbg_ctrl_reg &= ~((halt_state << DSP_DBGCNTL_SS_LOBIT) &
DSP_DBGCNTL_SS_MASK);
err = chipio_write(codec, DSP_DBGCNTL_INST_OFFSET,
dbg_ctrl_reg);
if (err < 0)
return err;
dbg_ctrl_reg |= (halt_state << DSP_DBGCNTL_EXEC_LOBIT) &
DSP_DBGCNTL_EXEC_MASK;
err = chipio_write(codec, DSP_DBGCNTL_INST_OFFSET,
dbg_ctrl_reg);
if (err < 0)
return err;
}
return 0;
}
/*
* Reset the DSP
*/
static int dsp_reset(struct hda_codec *codec)
{
unsigned int res;
int retry = 20;
codec_dbg(codec, "dsp_reset\n");
do {
res = dspio_send(codec, VENDOR_DSPIO_DSP_INIT, 0);
retry--;
} while (res == -EIO && retry);
if (!retry) {
codec_dbg(codec, "dsp_reset timeout\n");
return -EIO;
}
return 0;
}
/*
* Convert chip address to DSP address
*/
static unsigned int dsp_chip_to_dsp_addx(unsigned int chip_addx,
bool *code, bool *yram)
{
*code = *yram = false;
if (UC_RANGE(chip_addx, 1)) {
*code = true;
return UC_OFF(chip_addx);
} else if (X_RANGE_ALL(chip_addx, 1)) {
return X_OFF(chip_addx);
} else if (Y_RANGE_ALL(chip_addx, 1)) {
*yram = true;
return Y_OFF(chip_addx);
}
return INVALID_CHIP_ADDRESS;
}
/*
* Check if the DSP DMA is active
*/
static bool dsp_is_dma_active(struct hda_codec *codec, unsigned int dma_chan)
{
unsigned int dma_chnlstart_reg;
chipio_read(codec, DSPDMAC_CHNLSTART_INST_OFFSET, &dma_chnlstart_reg);
return ((dma_chnlstart_reg & (1 <<
(DSPDMAC_CHNLSTART_EN_LOBIT + dma_chan))) != 0);
}
static int dsp_dma_setup_common(struct hda_codec *codec,
unsigned int chip_addx,
unsigned int dma_chan,
unsigned int port_map_mask,
bool ovly)
{
int status = 0;
unsigned int chnl_prop;
unsigned int dsp_addx;
unsigned int active;
bool code, yram;
codec_dbg(codec, "-- dsp_dma_setup_common() -- Begin ---------\n");
if (dma_chan >= DSPDMAC_DMA_CFG_CHANNEL_COUNT) {
codec_dbg(codec, "dma chan num invalid\n");
return -EINVAL;
}
if (dsp_is_dma_active(codec, dma_chan)) {
codec_dbg(codec, "dma already active\n");
return -EBUSY;
}
dsp_addx = dsp_chip_to_dsp_addx(chip_addx, &code, &yram);
if (dsp_addx == INVALID_CHIP_ADDRESS) {
codec_dbg(codec, "invalid chip addr\n");
return -ENXIO;
}
chnl_prop = DSPDMAC_CHNLPROP_AC_MASK;
active = 0;
codec_dbg(codec, " dsp_dma_setup_common() start reg pgm\n");
if (ovly) {
status = chipio_read(codec, DSPDMAC_CHNLPROP_INST_OFFSET,
&chnl_prop);
if (status < 0) {
codec_dbg(codec, "read CHNLPROP Reg fail\n");
return status;
}
codec_dbg(codec, "dsp_dma_setup_common() Read CHNLPROP\n");
}
if (!code)
chnl_prop &= ~(1 << (DSPDMAC_CHNLPROP_MSPCE_LOBIT + dma_chan));
else
chnl_prop |= (1 << (DSPDMAC_CHNLPROP_MSPCE_LOBIT + dma_chan));
chnl_prop &= ~(1 << (DSPDMAC_CHNLPROP_DCON_LOBIT + dma_chan));
status = chipio_write(codec, DSPDMAC_CHNLPROP_INST_OFFSET, chnl_prop);
if (status < 0) {
codec_dbg(codec, "write CHNLPROP Reg fail\n");
return status;
}
codec_dbg(codec, " dsp_dma_setup_common() Write CHNLPROP\n");
if (ovly) {
status = chipio_read(codec, DSPDMAC_ACTIVE_INST_OFFSET,
&active);
if (status < 0) {
codec_dbg(codec, "read ACTIVE Reg fail\n");
return status;
}
codec_dbg(codec, "dsp_dma_setup_common() Read ACTIVE\n");
}
active &= (~(1 << (DSPDMAC_ACTIVE_AAR_LOBIT + dma_chan))) &
DSPDMAC_ACTIVE_AAR_MASK;
status = chipio_write(codec, DSPDMAC_ACTIVE_INST_OFFSET, active);
if (status < 0) {
codec_dbg(codec, "write ACTIVE Reg fail\n");
return status;
}
codec_dbg(codec, " dsp_dma_setup_common() Write ACTIVE\n");
status = chipio_write(codec, DSPDMAC_AUDCHSEL_INST_OFFSET(dma_chan),
port_map_mask);
if (status < 0) {
codec_dbg(codec, "write AUDCHSEL Reg fail\n");
return status;
}
codec_dbg(codec, " dsp_dma_setup_common() Write AUDCHSEL\n");
status = chipio_write(codec, DSPDMAC_IRQCNT_INST_OFFSET(dma_chan),
DSPDMAC_IRQCNT_BICNT_MASK | DSPDMAC_IRQCNT_CICNT_MASK);
if (status < 0) {
codec_dbg(codec, "write IRQCNT Reg fail\n");
return status;
}
codec_dbg(codec, " dsp_dma_setup_common() Write IRQCNT\n");
codec_dbg(codec,
"ChipA=0x%x,DspA=0x%x,dmaCh=%u, "
"CHSEL=0x%x,CHPROP=0x%x,Active=0x%x\n",
chip_addx, dsp_addx, dma_chan,
port_map_mask, chnl_prop, active);
codec_dbg(codec, "-- dsp_dma_setup_common() -- Complete ------\n");
return 0;
}
/*
* Setup the DSP DMA per-transfer-specific registers
*/
static int dsp_dma_setup(struct hda_codec *codec,
unsigned int chip_addx,
unsigned int count,
unsigned int dma_chan)
{
int status = 0;
bool code, yram;
unsigned int dsp_addx;
unsigned int addr_field;
unsigned int incr_field;
unsigned int base_cnt;
unsigned int cur_cnt;
unsigned int dma_cfg = 0;
unsigned int adr_ofs = 0;
unsigned int xfr_cnt = 0;
const unsigned int max_dma_count = 1 << (DSPDMAC_XFRCNT_BCNT_HIBIT -
DSPDMAC_XFRCNT_BCNT_LOBIT + 1);
codec_dbg(codec, "-- dsp_dma_setup() -- Begin ---------\n");
if (count > max_dma_count) {
codec_dbg(codec, "count too big\n");
return -EINVAL;
}
dsp_addx = dsp_chip_to_dsp_addx(chip_addx, &code, &yram);
if (dsp_addx == INVALID_CHIP_ADDRESS) {
codec_dbg(codec, "invalid chip addr\n");
return -ENXIO;
}
codec_dbg(codec, " dsp_dma_setup() start reg pgm\n");
addr_field = dsp_addx << DSPDMAC_DMACFG_DBADR_LOBIT;
incr_field = 0;
if (!code) {
addr_field <<= 1;
if (yram)
addr_field |= (1 << DSPDMAC_DMACFG_DBADR_LOBIT);
incr_field = (1 << DSPDMAC_DMACFG_AINCR_LOBIT);
}
dma_cfg = addr_field + incr_field;
status = chipio_write(codec, DSPDMAC_DMACFG_INST_OFFSET(dma_chan),
dma_cfg);
if (status < 0) {
codec_dbg(codec, "write DMACFG Reg fail\n");
return status;
}
codec_dbg(codec, " dsp_dma_setup() Write DMACFG\n");
adr_ofs = (count - 1) << (DSPDMAC_DSPADROFS_BOFS_LOBIT +
(code ? 0 : 1));
status = chipio_write(codec, DSPDMAC_DSPADROFS_INST_OFFSET(dma_chan),
adr_ofs);
if (status < 0) {
codec_dbg(codec, "write DSPADROFS Reg fail\n");
return status;
}
codec_dbg(codec, " dsp_dma_setup() Write DSPADROFS\n");
base_cnt = (count - 1) << DSPDMAC_XFRCNT_BCNT_LOBIT;
cur_cnt = (count - 1) << DSPDMAC_XFRCNT_CCNT_LOBIT;
xfr_cnt = base_cnt | cur_cnt;
status = chipio_write(codec,
DSPDMAC_XFRCNT_INST_OFFSET(dma_chan), xfr_cnt);
if (status < 0) {
codec_dbg(codec, "write XFRCNT Reg fail\n");
return status;
}
codec_dbg(codec, " dsp_dma_setup() Write XFRCNT\n");
codec_dbg(codec,
"ChipA=0x%x, cnt=0x%x, DMACFG=0x%x, "
"ADROFS=0x%x, XFRCNT=0x%x\n",
chip_addx, count, dma_cfg, adr_ofs, xfr_cnt);
codec_dbg(codec, "-- dsp_dma_setup() -- Complete ---------\n");
return 0;
}
/*
* Start the DSP DMA
*/
static int dsp_dma_start(struct hda_codec *codec,
unsigned int dma_chan, bool ovly)
{
unsigned int reg = 0;
int status = 0;
codec_dbg(codec, "-- dsp_dma_start() -- Begin ---------\n");
if (ovly) {
status = chipio_read(codec,
DSPDMAC_CHNLSTART_INST_OFFSET, &reg);
if (status < 0) {
codec_dbg(codec, "read CHNLSTART reg fail\n");
return status;
}
codec_dbg(codec, "-- dsp_dma_start() Read CHNLSTART\n");
reg &= ~(DSPDMAC_CHNLSTART_EN_MASK |
DSPDMAC_CHNLSTART_DIS_MASK);
}
status = chipio_write(codec, DSPDMAC_CHNLSTART_INST_OFFSET,
reg | (1 << (dma_chan + DSPDMAC_CHNLSTART_EN_LOBIT)));
if (status < 0) {
codec_dbg(codec, "write CHNLSTART reg fail\n");
return status;
}
codec_dbg(codec, "-- dsp_dma_start() -- Complete ---------\n");
return status;
}
/*
* Stop the DSP DMA
*/
static int dsp_dma_stop(struct hda_codec *codec,
unsigned int dma_chan, bool ovly)
{
unsigned int reg = 0;
int status = 0;
codec_dbg(codec, "-- dsp_dma_stop() -- Begin ---------\n");
if (ovly) {
status = chipio_read(codec,
DSPDMAC_CHNLSTART_INST_OFFSET, &reg);
if (status < 0) {
codec_dbg(codec, "read CHNLSTART reg fail\n");
return status;
}
codec_dbg(codec, "-- dsp_dma_stop() Read CHNLSTART\n");
reg &= ~(DSPDMAC_CHNLSTART_EN_MASK |
DSPDMAC_CHNLSTART_DIS_MASK);
}
status = chipio_write(codec, DSPDMAC_CHNLSTART_INST_OFFSET,
reg | (1 << (dma_chan + DSPDMAC_CHNLSTART_DIS_LOBIT)));
if (status < 0) {
codec_dbg(codec, "write CHNLSTART reg fail\n");
return status;
}
codec_dbg(codec, "-- dsp_dma_stop() -- Complete ---------\n");
return status;
}
/**
* Allocate router ports
*
* @codec: the HDA codec
* @num_chans: number of channels in the stream
* @ports_per_channel: number of ports per channel
* @start_device: start device
* @port_map: pointer to the port list to hold the allocated ports
*
* Returns zero or a negative error code.
*/
static int dsp_allocate_router_ports(struct hda_codec *codec,
unsigned int num_chans,
unsigned int ports_per_channel,
unsigned int start_device,
unsigned int *port_map)
{
int status = 0;
int res;
u8 val;
status = chipio_send(codec, VENDOR_CHIPIO_STATUS, 0);
if (status < 0)
return status;
val = start_device << 6;
val |= (ports_per_channel - 1) << 4;
val |= num_chans - 1;
snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0,
VENDOR_CHIPIO_PORT_ALLOC_CONFIG_SET,
val);
snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0,
VENDOR_CHIPIO_PORT_ALLOC_SET,
MEM_CONNID_DSP);
status = chipio_send(codec, VENDOR_CHIPIO_STATUS, 0);
if (status < 0)
return status;
res = snd_hda_codec_read(codec, WIDGET_CHIP_CTRL, 0,
VENDOR_CHIPIO_PORT_ALLOC_GET, 0);
*port_map = res;
return (res < 0) ? res : 0;
}
/*
* Free router ports
*/
static int dsp_free_router_ports(struct hda_codec *codec)
{
int status = 0;
status = chipio_send(codec, VENDOR_CHIPIO_STATUS, 0);
if (status < 0)
return status;
snd_hda_codec_write(codec, WIDGET_CHIP_CTRL, 0,
VENDOR_CHIPIO_PORT_FREE_SET,
MEM_CONNID_DSP);
status = chipio_send(codec, VENDOR_CHIPIO_STATUS, 0);
return status;
}
/*
* Allocate DSP ports for the download stream
*/
static int dsp_allocate_ports(struct hda_codec *codec,
unsigned int num_chans,
unsigned int rate_multi, unsigned int *port_map)
{
int status;
codec_dbg(codec, " dsp_allocate_ports() -- begin\n");
if ((rate_multi != 1) && (rate_multi != 2) && (rate_multi != 4)) {
codec_dbg(codec, "bad rate multiple\n");
return -EINVAL;
}
status = dsp_allocate_router_ports(codec, num_chans,
rate_multi, 0, port_map);
codec_dbg(codec, " dsp_allocate_ports() -- complete\n");
return status;
}
static int dsp_allocate_ports_format(struct hda_codec *codec,
const unsigned short fmt,
unsigned int *port_map)
{
int status;
unsigned int num_chans;
unsigned int sample_rate_div = ((get_hdafmt_rate(fmt) >> 0) & 3) + 1;
unsigned int sample_rate_mul = ((get_hdafmt_rate(fmt) >> 3) & 3) + 1;
unsigned int rate_multi = sample_rate_mul / sample_rate_div;
if ((rate_multi != 1) && (rate_multi != 2) && (rate_multi != 4)) {
codec_dbg(codec, "bad rate multiple\n");
return -EINVAL;
}
num_chans = get_hdafmt_chs(fmt) + 1;
status = dsp_allocate_ports(codec, num_chans, rate_multi, port_map);
return status;
}
/*
* free DSP ports
*/
static int dsp_free_ports(struct hda_codec *codec)
{
int status;
codec_dbg(codec, " dsp_free_ports() -- begin\n");
status = dsp_free_router_ports(codec);
if (status < 0) {
codec_dbg(codec, "free router ports fail\n");
return status;
}
codec_dbg(codec, " dsp_free_ports() -- complete\n");
return status;
}
/*
* HDA DMA engine stuffs for DSP code download
*/
struct dma_engine {
struct hda_codec *codec;
unsigned short m_converter_format;
struct snd_dma_buffer *dmab;
unsigned int buf_size;
};
enum dma_state {
DMA_STATE_STOP = 0,
DMA_STATE_RUN = 1
};
static int dma_convert_to_hda_format(struct hda_codec *codec,
unsigned int sample_rate,
unsigned short channels,
unsigned short *hda_format)
{
unsigned int format_val;
format_val = snd_hdac_calc_stream_format(sample_rate,
channels, SNDRV_PCM_FORMAT_S32_LE, 32, 0);
if (hda_format)
*hda_format = (unsigned short)format_val;
return 0;
}
/*
* Reset DMA for DSP download
*/
static int dma_reset(struct dma_engine *dma)
{
struct hda_codec *codec = dma->codec;
struct ca0132_spec *spec = codec->spec;
int status;
if (dma->dmab->area)
snd_hda_codec_load_dsp_cleanup(codec, dma->dmab);
status = snd_hda_codec_load_dsp_prepare(codec,
dma->m_converter_format,
dma->buf_size,
dma->dmab);
if (status < 0)
return status;
spec->dsp_stream_id = status;
return 0;
}
static int dma_set_state(struct dma_engine *dma, enum dma_state state)
{
bool cmd;
switch (state) {
case DMA_STATE_STOP:
cmd = false;
break;
case DMA_STATE_RUN:
cmd = true;
break;
default:
return 0;
}
snd_hda_codec_load_dsp_trigger(dma->codec, cmd);
return 0;
}
static unsigned int dma_get_buffer_size(struct dma_engine *dma)
{
return dma->dmab->bytes;
}
static unsigned char *dma_get_buffer_addr(struct dma_engine *dma)
{
return dma->dmab->area;
}
static int dma_xfer(struct dma_engine *dma,
const unsigned int *data,
unsigned int count)
{
memcpy(dma->dmab->area, data, count);
return 0;
}
static void dma_get_converter_format(
struct dma_engine *dma,
unsigned short *format)
{
if (format)
*format = dma->m_converter_format;
}
static unsigned int dma_get_stream_id(struct dma_engine *dma)
{
struct ca0132_spec *spec = dma->codec->spec;
return spec->dsp_stream_id;
}
struct dsp_image_seg {
u32 magic;
u32 chip_addr;
u32 count;
u32 data[0];
};
static const u32 g_magic_value = 0x4c46584d;
static const u32 g_chip_addr_magic_value = 0xFFFFFF01;
static bool is_valid(const struct dsp_image_seg *p)
{
return p->magic == g_magic_value;
}
static bool is_hci_prog_list_seg(const struct dsp_image_seg *p)
{
return g_chip_addr_magic_value == p->chip_addr;
}
static bool is_last(const struct dsp_image_seg *p)
{
return p->count == 0;
}
static size_t dsp_sizeof(const struct dsp_image_seg *p)
{
return sizeof(*p) + p->count*sizeof(u32);
}
static const struct dsp_image_seg *get_next_seg_ptr(
const struct dsp_image_seg *p)
{
return (struct dsp_image_seg *)((unsigned char *)(p) + dsp_sizeof(p));
}
/*
* CA0132 chip DSP transfer stuffs. For DSP download.
*/
#define INVALID_DMA_CHANNEL (~0U)
/*
* Program a list of address/data pairs via the ChipIO widget.
* The segment data is in the format of successive pairs of words.
* These are repeated as indicated by the segment's count field.
*/
static int dspxfr_hci_write(struct hda_codec *codec,
const struct dsp_image_seg *fls)
{
int status;
const u32 *data;
unsigned int count;
if (fls == NULL || fls->chip_addr != g_chip_addr_magic_value) {
codec_dbg(codec, "hci_write invalid params\n");
return -EINVAL;
}
count = fls->count;
data = (u32 *)(fls->data);
while (count >= 2) {
status = chipio_write(codec, data[0], data[1]);
if (status < 0) {
codec_dbg(codec, "hci_write chipio failed\n");
return status;
}
count -= 2;
data += 2;
}
return 0;
}
/**
* Write a block of data into DSP code or data RAM using pre-allocated
* DMA engine.
*
* @codec: the HDA codec
* @fls: pointer to a fast load image
* @reloc: Relocation address for loading single-segment overlays, or 0 for
* no relocation
* @dma_engine: pointer to DMA engine to be used for DSP download
* @dma_chan: The number of DMA channels used for DSP download
* @port_map_mask: port mapping
* @ovly: TRUE if overlay format is required
*
* Returns zero or a negative error code.
*/
static int dspxfr_one_seg(struct hda_codec *codec,
const struct dsp_image_seg *fls,
unsigned int reloc,
struct dma_engine *dma_engine,
unsigned int dma_chan,
unsigned int port_map_mask,
bool ovly)
{
int status = 0;
bool comm_dma_setup_done = false;
const unsigned int *data;
unsigned int chip_addx;
unsigned int words_to_write;
unsigned int buffer_size_words;
unsigned char *buffer_addx;
unsigned short hda_format;
unsigned int sample_rate_div;
unsigned int sample_rate_mul;
unsigned int num_chans;
unsigned int hda_frame_size_words;
unsigned int remainder_words;
const u32 *data_remainder;
u32 chip_addx_remainder;
unsigned int run_size_words;
const struct dsp_image_seg *hci_write = NULL;
unsigned long timeout;
bool dma_active;
if (fls == NULL)
return -EINVAL;
if (is_hci_prog_list_seg(fls)) {
hci_write = fls;
fls = get_next_seg_ptr(fls);
}
if (hci_write && (!fls || is_last(fls))) {
codec_dbg(codec, "hci_write\n");
return dspxfr_hci_write(codec, hci_write);
}
if (fls == NULL || dma_engine == NULL || port_map_mask == 0) {
codec_dbg(codec, "Invalid Params\n");
return -EINVAL;
}
data = fls->data;
chip_addx = fls->chip_addr,
words_to_write = fls->count;
if (!words_to_write)
return hci_write ? dspxfr_hci_write(codec, hci_write) : 0;
if (reloc)
chip_addx = (chip_addx & (0xFFFF0000 << 2)) + (reloc << 2);
if (!UC_RANGE(chip_addx, words_to_write) &&
!X_RANGE_ALL(chip_addx, words_to_write) &&
!Y_RANGE_ALL(chip_addx, words_to_write)) {
codec_dbg(codec, "Invalid chip_addx Params\n");
return -EINVAL;
}
buffer_size_words = (unsigned int)dma_get_buffer_size(dma_engine) /
sizeof(u32);
buffer_addx = dma_get_buffer_addr(dma_engine);
if (buffer_addx == NULL) {
codec_dbg(codec, "dma_engine buffer NULL\n");
return -EINVAL;
}
dma_get_converter_format(dma_engine, &hda_format);
sample_rate_div = ((get_hdafmt_rate(hda_format) >> 0) & 3) + 1;
sample_rate_mul = ((get_hdafmt_rate(hda_format) >> 3) & 3) + 1;
num_chans = get_hdafmt_chs(hda_format) + 1;
hda_frame_size_words = ((sample_rate_div == 0) ? 0 :
(num_chans * sample_rate_mul / sample_rate_div));
if (hda_frame_size_words == 0) {
codec_dbg(codec, "frmsz zero\n");
return -EINVAL;
}
buffer_size_words = min(buffer_size_words,
(unsigned int)(UC_RANGE(chip_addx, 1) ?
65536 : 32768));
buffer_size_words -= buffer_size_words % hda_frame_size_words;
codec_dbg(codec,
"chpadr=0x%08x frmsz=%u nchan=%u "
"rate_mul=%u div=%u bufsz=%u\n",
chip_addx, hda_frame_size_words, num_chans,
sample_rate_mul, sample_rate_div, buffer_size_words);
if (buffer_size_words < hda_frame_size_words) {
codec_dbg(codec, "dspxfr_one_seg:failed\n");
return -EINVAL;
}
remainder_words = words_to_write % hda_frame_size_words;
data_remainder = data;
chip_addx_remainder = chip_addx;
data += remainder_words;
chip_addx += remainder_words*sizeof(u32);
words_to_write -= remainder_words;
while (words_to_write != 0) {
run_size_words = min(buffer_size_words, words_to_write);
codec_dbg(codec, "dspxfr (seg loop)cnt=%u rs=%u remainder=%u\n",
words_to_write, run_size_words, remainder_words);
dma_xfer(dma_engine, data, run_size_words*sizeof(u32));
if (!comm_dma_setup_done) {
status = dsp_dma_stop(codec, dma_chan, ovly);
if (status < 0)
return status;
status = dsp_dma_setup_common(codec, chip_addx,
dma_chan, port_map_mask, ovly);
if (status < 0)
return status;
comm_dma_setup_done = true;
}
status = dsp_dma_setup(codec, chip_addx,
run_size_words, dma_chan);
if (status < 0)
return status;
status = dsp_dma_start(codec, dma_chan, ovly);
if (status < 0)
return status;
if (!dsp_is_dma_active(codec, dma_chan)) {
codec_dbg(codec, "dspxfr:DMA did not start\n");
return -EIO;
}
status = dma_set_state(dma_engine, DMA_STATE_RUN);
if (status < 0)
return status;
if (remainder_words != 0) {
status = chipio_write_multiple(codec,
chip_addx_remainder,
data_remainder,
remainder_words);
if (status < 0)
return status;
remainder_words = 0;
}
if (hci_write) {
status = dspxfr_hci_write(codec, hci_write);
if (status < 0)
return status;
hci_write = NULL;
}
timeout = jiffies + msecs_to_jiffies(2000);
do {
dma_active = dsp_is_dma_active(codec, dma_chan);
if (!dma_active)
break;
msleep(20);
} while (time_before(jiffies, timeout));
if (dma_active)
break;
codec_dbg(codec, "+++++ DMA complete\n");
dma_set_state(dma_engine, DMA_STATE_STOP);
status = dma_reset(dma_engine);
if (status < 0)
return status;
data += run_size_words;
chip_addx += run_size_words*sizeof(u32);
words_to_write -= run_size_words;
}
if (remainder_words != 0) {
status = chipio_write_multiple(codec, chip_addx_remainder,
data_remainder, remainder_words);
}
return status;
}
/**
* Write the entire DSP image of a DSP code/data overlay to DSP memories
*
* @codec: the HDA codec
* @fls_data: pointer to a fast load image
* @reloc: Relocation address for loading single-segment overlays, or 0 for
* no relocation
* @sample_rate: sampling rate of the stream used for DSP download
* @channels: channels of the stream used for DSP download
* @ovly: TRUE if overlay format is required
*
* Returns zero or a negative error code.
*/
static int dspxfr_image(struct hda_codec *codec,
const struct dsp_image_seg *fls_data,
unsigned int reloc,
unsigned int sample_rate,
unsigned short channels,
bool ovly)
{
struct ca0132_spec *spec = codec->spec;
int status;
unsigned short hda_format = 0;
unsigned int response;
unsigned char stream_id = 0;
struct dma_engine *dma_engine;
unsigned int dma_chan;
unsigned int port_map_mask;
if (fls_data == NULL)
return -EINVAL;
dma_engine = kzalloc(sizeof(*dma_engine), GFP_KERNEL);
if (!dma_engine)
return -ENOMEM;
dma_engine->dmab = kzalloc(sizeof(*dma_engine->dmab), GFP_KERNEL);
if (!dma_engine->dmab) {
kfree(dma_engine);
return -ENOMEM;
}
dma_engine->codec = codec;
dma_convert_to_hda_format(codec, sample_rate, channels, &hda_format);
dma_engine->m_converter_format = hda_format;
dma_engine->buf_size = (ovly ? DSP_DMA_WRITE_BUFLEN_OVLY :
DSP_DMA_WRITE_BUFLEN_INIT) * 2;
dma_chan = ovly ? INVALID_DMA_CHANNEL : 0;
status = codec_set_converter_format(codec, WIDGET_CHIP_CTRL,
hda_format, &response);
if (status < 0) {
codec_dbg(codec, "set converter format fail\n");
goto exit;
}
status = snd_hda_codec_load_dsp_prepare(codec,
dma_engine->m_converter_format,
dma_engine->buf_size,
dma_engine->dmab);
if (status < 0)
goto exit;
spec->dsp_stream_id = status;
if (ovly) {
status = dspio_alloc_dma_chan(codec, &dma_chan);
if (status < 0) {
codec_dbg(codec, "alloc dmachan fail\n");
dma_chan = INVALID_DMA_CHANNEL;
goto exit;
}
}
port_map_mask = 0;
status = dsp_allocate_ports_format(codec, hda_format,
&port_map_mask);
if (status < 0) {
codec_dbg(codec, "alloc ports fail\n");
goto exit;
}
stream_id = dma_get_stream_id(dma_engine);
status = codec_set_converter_stream_channel(codec,
WIDGET_CHIP_CTRL, stream_id, 0, &response);
if (status < 0) {
codec_dbg(codec, "set stream chan fail\n");
goto exit;
}
while ((fls_data != NULL) && !is_last(fls_data)) {
if (!is_valid(fls_data)) {
codec_dbg(codec, "FLS check fail\n");
status = -EINVAL;
goto exit;
}
status = dspxfr_one_seg(codec, fls_data, reloc,
dma_engine, dma_chan,
port_map_mask, ovly);
if (status < 0)
break;
if (is_hci_prog_list_seg(fls_data))
fls_data = get_next_seg_ptr(fls_data);
if ((fls_data != NULL) && !is_last(fls_data))
fls_data = get_next_seg_ptr(fls_data);
}
if (port_map_mask != 0)
status = dsp_free_ports(codec);
if (status < 0)
goto exit;
status = codec_set_converter_stream_channel(codec,
WIDGET_CHIP_CTRL, 0, 0, &response);
exit:
if (ovly && (dma_chan != INVALID_DMA_CHANNEL))
dspio_free_dma_chan(codec, dma_chan);
if (dma_engine->dmab->area)
snd_hda_codec_load_dsp_cleanup(codec, dma_engine->dmab);
kfree(dma_engine->dmab);
kfree(dma_engine);
return status;
}
/*
* CA0132 DSP download stuffs.
*/
static void dspload_post_setup(struct hda_codec *codec)
{
codec_dbg(codec, "---- dspload_post_setup ------\n");
/*set DSP speaker to 2.0 configuration*/
chipio_write(codec, XRAM_XRAM_INST_OFFSET(0x18), 0x08080080);
chipio_write(codec, XRAM_XRAM_INST_OFFSET(0x19), 0x3f800000);
/*update write pointer*/
chipio_write(codec, XRAM_XRAM_INST_OFFSET(0x29), 0x00000002);
}
/**
* dspload_image - Download DSP from a DSP Image Fast Load structure.
*
* @codec: the HDA codec
* @fls: pointer to a fast load image
* @ovly: TRUE if overlay format is required
* @reloc: Relocation address for loading single-segment overlays, or 0 for
* no relocation
* @autostart: TRUE if DSP starts after loading; ignored if ovly is TRUE
* @router_chans: number of audio router channels to be allocated (0 means use
* internal defaults; max is 32)
*
* Download DSP from a DSP Image Fast Load structure. This structure is a
* linear, non-constant sized element array of structures, each of which
* contain the count of the data to be loaded, the data itself, and the
* corresponding starting chip address of the starting data location.
* Returns zero or a negative error code.
*/
static int dspload_image(struct hda_codec *codec,
const struct dsp_image_seg *fls,
bool ovly,
unsigned int reloc,
bool autostart,
int router_chans)
{
int status = 0;
unsigned int sample_rate;
unsigned short channels;
codec_dbg(codec, "---- dspload_image begin ------\n");
if (router_chans == 0) {
if (!ovly)
router_chans = DMA_TRANSFER_FRAME_SIZE_NWORDS;
else
router_chans = DMA_OVERLAY_FRAME_SIZE_NWORDS;
}
sample_rate = 48000;
channels = (unsigned short)router_chans;
while (channels > 16) {
sample_rate *= 2;
channels /= 2;
}
do {
codec_dbg(codec, "Ready to program DMA\n");
if (!ovly)
status = dsp_reset(codec);
if (status < 0)
break;
codec_dbg(codec, "dsp_reset() complete\n");
status = dspxfr_image(codec, fls, reloc, sample_rate, channels,
ovly);
if (status < 0)
break;
codec_dbg(codec, "dspxfr_image() complete\n");
if (autostart && !ovly) {
dspload_post_setup(codec);
status = dsp_set_run_state(codec);
}
codec_dbg(codec, "LOAD FINISHED\n");
} while (0);
return status;
}
#ifdef CONFIG_SND_HDA_CODEC_CA0132_DSP
static bool dspload_is_loaded(struct hda_codec *codec)
{
unsigned int data = 0;
int status = 0;
status = chipio_read(codec, 0x40004, &data);
if ((status < 0) || (data != 1))
return false;
return true;
}
#else
#define dspload_is_loaded(codec) false
#endif
static bool dspload_wait_loaded(struct hda_codec *codec)
{
unsigned long timeout = jiffies + msecs_to_jiffies(2000);
do {
if (dspload_is_loaded(codec)) {
codec_info(codec, "ca0132 DSP downloaded and running\n");
return true;
}
msleep(20);
} while (time_before(jiffies, timeout));
codec_err(codec, "ca0132 failed to download DSP\n");
return false;
}
/*
* PCM callbacks
*/
static int ca0132_playback_pcm_prepare(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
struct ca0132_spec *spec = codec->spec;
snd_hda_codec_setup_stream(codec, spec->dacs[0], stream_tag, 0, format);
return 0;
}
static int ca0132_playback_pcm_cleanup(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct ca0132_spec *spec = codec->spec;
if (spec->dsp_state == DSP_DOWNLOADING)
return 0;
/*If Playback effects are on, allow stream some time to flush
*effects tail*/
if (spec->effects_switch[PLAY_ENHANCEMENT - EFFECT_START_NID])
msleep(50);
snd_hda_codec_cleanup_stream(codec, spec->dacs[0]);
return 0;
}
static unsigned int ca0132_playback_pcm_delay(struct hda_pcm_stream *info,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct ca0132_spec *spec = codec->spec;
unsigned int latency = DSP_PLAYBACK_INIT_LATENCY;
struct snd_pcm_runtime *runtime = substream->runtime;
if (spec->dsp_state != DSP_DOWNLOADED)
return 0;
/* Add latency if playback enhancement and either effect is enabled. */
if (spec->effects_switch[PLAY_ENHANCEMENT - EFFECT_START_NID]) {
if ((spec->effects_switch[SURROUND - EFFECT_START_NID]) ||
(spec->effects_switch[DIALOG_PLUS - EFFECT_START_NID]))
latency += DSP_PLAY_ENHANCEMENT_LATENCY;
}
/* Applying Speaker EQ adds latency as well. */
if (spec->cur_out_type == SPEAKER_OUT)
latency += DSP_SPEAKER_OUT_LATENCY;
return (latency * runtime->rate) / 1000;
}
/*
* Digital out
*/
static int ca0132_dig_playback_pcm_open(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct ca0132_spec *spec = codec->spec;
return snd_hda_multi_out_dig_open(codec, &spec->multiout);
}
static int ca0132_dig_playback_pcm_prepare(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
struct ca0132_spec *spec = codec->spec;
return snd_hda_multi_out_dig_prepare(codec, &spec->multiout,
stream_tag, format, substream);
}
static int ca0132_dig_playback_pcm_cleanup(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct ca0132_spec *spec = codec->spec;
return snd_hda_multi_out_dig_cleanup(codec, &spec->multiout);
}
static int ca0132_dig_playback_pcm_close(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct ca0132_spec *spec = codec->spec;
return snd_hda_multi_out_dig_close(codec, &spec->multiout);
}
/*
* Analog capture
*/
static int ca0132_capture_pcm_prepare(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
snd_hda_codec_setup_stream(codec, hinfo->nid,
stream_tag, 0, format);
return 0;
}
static int ca0132_capture_pcm_cleanup(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct ca0132_spec *spec = codec->spec;
if (spec->dsp_state == DSP_DOWNLOADING)
return 0;
snd_hda_codec_cleanup_stream(codec, hinfo->nid);
return 0;
}
static unsigned int ca0132_capture_pcm_delay(struct hda_pcm_stream *info,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct ca0132_spec *spec = codec->spec;
unsigned int latency = DSP_CAPTURE_INIT_LATENCY;
struct snd_pcm_runtime *runtime = substream->runtime;
if (spec->dsp_state != DSP_DOWNLOADED)
return 0;
if (spec->effects_switch[CRYSTAL_VOICE - EFFECT_START_NID])
latency += DSP_CRYSTAL_VOICE_LATENCY;
return (latency * runtime->rate) / 1000;
}
/*
* Controls stuffs.
*/
/*
* Mixer controls helpers.
*/
#define CA0132_CODEC_VOL_MONO(xname, nid, channel, dir) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.name = xname, \
.subdevice = HDA_SUBDEV_AMP_FLAG, \
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
SNDRV_CTL_ELEM_ACCESS_TLV_READ | \
SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK, \
.info = ca0132_volume_info, \
.get = ca0132_volume_get, \
.put = ca0132_volume_put, \
.tlv = { .c = ca0132_volume_tlv }, \
.private_value = HDA_COMPOSE_AMP_VAL(nid, channel, 0, dir) }
#define CA0132_CODEC_MUTE_MONO(xname, nid, channel, dir) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.name = xname, \
.subdevice = HDA_SUBDEV_AMP_FLAG, \
.info = snd_hda_mixer_amp_switch_info, \
.get = ca0132_switch_get, \
.put = ca0132_switch_put, \
.private_value = HDA_COMPOSE_AMP_VAL(nid, channel, 0, dir) }
/* stereo */
#define CA0132_CODEC_VOL(xname, nid, dir) \
CA0132_CODEC_VOL_MONO(xname, nid, 3, dir)
#define CA0132_CODEC_MUTE(xname, nid, dir) \
CA0132_CODEC_MUTE_MONO(xname, nid, 3, dir)
/* The followings are for tuning of products */
#ifdef ENABLE_TUNING_CONTROLS
static unsigned int voice_focus_vals_lookup[] = {
0x41A00000, 0x41A80000, 0x41B00000, 0x41B80000, 0x41C00000, 0x41C80000,
0x41D00000, 0x41D80000, 0x41E00000, 0x41E80000, 0x41F00000, 0x41F80000,
0x42000000, 0x42040000, 0x42080000, 0x420C0000, 0x42100000, 0x42140000,
0x42180000, 0x421C0000, 0x42200000, 0x42240000, 0x42280000, 0x422C0000,
0x42300000, 0x42340000, 0x42380000, 0x423C0000, 0x42400000, 0x42440000,
0x42480000, 0x424C0000, 0x42500000, 0x42540000, 0x42580000, 0x425C0000,
0x42600000, 0x42640000, 0x42680000, 0x426C0000, 0x42700000, 0x42740000,
0x42780000, 0x427C0000, 0x42800000, 0x42820000, 0x42840000, 0x42860000,
0x42880000, 0x428A0000, 0x428C0000, 0x428E0000, 0x42900000, 0x42920000,
0x42940000, 0x42960000, 0x42980000, 0x429A0000, 0x429C0000, 0x429E0000,
0x42A00000, 0x42A20000, 0x42A40000, 0x42A60000, 0x42A80000, 0x42AA0000,
0x42AC0000, 0x42AE0000, 0x42B00000, 0x42B20000, 0x42B40000, 0x42B60000,
0x42B80000, 0x42BA0000, 0x42BC0000, 0x42BE0000, 0x42C00000, 0x42C20000,
0x42C40000, 0x42C60000, 0x42C80000, 0x42CA0000, 0x42CC0000, 0x42CE0000,
0x42D00000, 0x42D20000, 0x42D40000, 0x42D60000, 0x42D80000, 0x42DA0000,
0x42DC0000, 0x42DE0000, 0x42E00000, 0x42E20000, 0x42E40000, 0x42E60000,
0x42E80000, 0x42EA0000, 0x42EC0000, 0x42EE0000, 0x42F00000, 0x42F20000,
0x42F40000, 0x42F60000, 0x42F80000, 0x42FA0000, 0x42FC0000, 0x42FE0000,
0x43000000, 0x43010000, 0x43020000, 0x43030000, 0x43040000, 0x43050000,
0x43060000, 0x43070000, 0x43080000, 0x43090000, 0x430A0000, 0x430B0000,
0x430C0000, 0x430D0000, 0x430E0000, 0x430F0000, 0x43100000, 0x43110000,
0x43120000, 0x43130000, 0x43140000, 0x43150000, 0x43160000, 0x43170000,
0x43180000, 0x43190000, 0x431A0000, 0x431B0000, 0x431C0000, 0x431D0000,
0x431E0000, 0x431F0000, 0x43200000, 0x43210000, 0x43220000, 0x43230000,
0x43240000, 0x43250000, 0x43260000, 0x43270000, 0x43280000, 0x43290000,
0x432A0000, 0x432B0000, 0x432C0000, 0x432D0000, 0x432E0000, 0x432F0000,
0x43300000, 0x43310000, 0x43320000, 0x43330000, 0x43340000
};
static unsigned int mic_svm_vals_lookup[] = {
0x00000000, 0x3C23D70A, 0x3CA3D70A, 0x3CF5C28F, 0x3D23D70A, 0x3D4CCCCD,
0x3D75C28F, 0x3D8F5C29, 0x3DA3D70A, 0x3DB851EC, 0x3DCCCCCD, 0x3DE147AE,
0x3DF5C28F, 0x3E051EB8, 0x3E0F5C29, 0x3E19999A, 0x3E23D70A, 0x3E2E147B,
0x3E3851EC, 0x3E428F5C, 0x3E4CCCCD, 0x3E570A3D, 0x3E6147AE, 0x3E6B851F,
0x3E75C28F, 0x3E800000, 0x3E851EB8, 0x3E8A3D71, 0x3E8F5C29, 0x3E947AE1,
0x3E99999A, 0x3E9EB852, 0x3EA3D70A, 0x3EA8F5C3, 0x3EAE147B, 0x3EB33333,
0x3EB851EC, 0x3EBD70A4, 0x3EC28F5C, 0x3EC7AE14, 0x3ECCCCCD, 0x3ED1EB85,
0x3ED70A3D, 0x3EDC28F6, 0x3EE147AE, 0x3EE66666, 0x3EEB851F, 0x3EF0A3D7,
0x3EF5C28F, 0x3EFAE148, 0x3F000000, 0x3F028F5C, 0x3F051EB8, 0x3F07AE14,
0x3F0A3D71, 0x3F0CCCCD, 0x3F0F5C29, 0x3F11EB85, 0x3F147AE1, 0x3F170A3D,
0x3F19999A, 0x3F1C28F6, 0x3F1EB852, 0x3F2147AE, 0x3F23D70A, 0x3F266666,
0x3F28F5C3, 0x3F2B851F, 0x3F2E147B, 0x3F30A3D7, 0x3F333333, 0x3F35C28F,
0x3F3851EC, 0x3F3AE148, 0x3F3D70A4, 0x3F400000, 0x3F428F5C, 0x3F451EB8,
0x3F47AE14, 0x3F4A3D71, 0x3F4CCCCD, 0x3F4F5C29, 0x3F51EB85, 0x3F547AE1,
0x3F570A3D, 0x3F59999A, 0x3F5C28F6, 0x3F5EB852, 0x3F6147AE, 0x3F63D70A,
0x3F666666, 0x3F68F5C3, 0x3F6B851F, 0x3F6E147B, 0x3F70A3D7, 0x3F733333,
0x3F75C28F, 0x3F7851EC, 0x3F7AE148, 0x3F7D70A4, 0x3F800000
};
static unsigned int equalizer_vals_lookup[] = {
0xC1C00000, 0xC1B80000, 0xC1B00000, 0xC1A80000, 0xC1A00000, 0xC1980000,
0xC1900000, 0xC1880000, 0xC1800000, 0xC1700000, 0xC1600000, 0xC1500000,
0xC1400000, 0xC1300000, 0xC1200000, 0xC1100000, 0xC1000000, 0xC0E00000,
0xC0C00000, 0xC0A00000, 0xC0800000, 0xC0400000, 0xC0000000, 0xBF800000,
0x00000000, 0x3F800000, 0x40000000, 0x40400000, 0x40800000, 0x40A00000,
0x40C00000, 0x40E00000, 0x41000000, 0x41100000, 0x41200000, 0x41300000,
0x41400000, 0x41500000, 0x41600000, 0x41700000, 0x41800000, 0x41880000,
0x41900000, 0x41980000, 0x41A00000, 0x41A80000, 0x41B00000, 0x41B80000,
0x41C00000
};
static int tuning_ctl_set(struct hda_codec *codec, hda_nid_t nid,
unsigned int *lookup, int idx)
{
int i = 0;
for (i = 0; i < TUNING_CTLS_COUNT; i++)
if (nid == ca0132_tuning_ctls[i].nid)
break;
snd_hda_power_up(codec);
dspio_set_param(codec, ca0132_tuning_ctls[i].mid,
ca0132_tuning_ctls[i].req,
&(lookup[idx]), sizeof(unsigned int));
snd_hda_power_down(codec);
return 1;
}
static int tuning_ctl_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct ca0132_spec *spec = codec->spec;
hda_nid_t nid = get_amp_nid(kcontrol);
long *valp = ucontrol->value.integer.value;
int idx = nid - TUNING_CTL_START_NID;
*valp = spec->cur_ctl_vals[idx];
return 0;
}
static int voice_focus_ctl_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
int chs = get_amp_channels(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = chs == 3 ? 2 : 1;
uinfo->value.integer.min = 20;
uinfo->value.integer.max = 180;
uinfo->value.integer.step = 1;
return 0;
}
static int voice_focus_ctl_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct ca0132_spec *spec = codec->spec;
hda_nid_t nid = get_amp_nid(kcontrol);
long *valp = ucontrol->value.integer.value;
int idx;
idx = nid - TUNING_CTL_START_NID;
/* any change? */
if (spec->cur_ctl_vals[idx] == *valp)
return 0;
spec->cur_ctl_vals[idx] = *valp;
idx = *valp - 20;
tuning_ctl_set(codec, nid, voice_focus_vals_lookup, idx);
return 1;
}
static int mic_svm_ctl_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
int chs = get_amp_channels(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = chs == 3 ? 2 : 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 100;
uinfo->value.integer.step = 1;
return 0;
}
static int mic_svm_ctl_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct ca0132_spec *spec = codec->spec;
hda_nid_t nid = get_amp_nid(kcontrol);
long *valp = ucontrol->value.integer.value;
int idx;