blob: 712006eab3658b2e030a2c4afb68bc577a837610 [file] [log] [blame]
/*
* flexcan.c - FLEXCAN CAN controller driver
*
* Copyright (c) 2005-2006 Varma Electronics Oy
* Copyright (c) 2009 Sascha Hauer, Pengutronix
* Copyright (c) 2010 Marc Kleine-Budde, Pengutronix
*
* Based on code originally by Andrey Volkov <avolkov@varma-el.com>
*
* LICENCE:
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/netdevice.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
#include <linux/can/led.h>
#include <linux/can/platform/flexcan.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mfd/syscon.h>
#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/regmap.h>
#define DRV_NAME "flexcan"
/* 8 for RX fifo and 2 error handling */
#define FLEXCAN_NAPI_WEIGHT (8 + 2)
/* FLEXCAN module configuration register (CANMCR) bits */
#define FLEXCAN_MCR_MDIS BIT(31)
#define FLEXCAN_MCR_FRZ BIT(30)
#define FLEXCAN_MCR_FEN BIT(29)
#define FLEXCAN_MCR_HALT BIT(28)
#define FLEXCAN_MCR_NOT_RDY BIT(27)
#define FLEXCAN_MCR_WAK_MSK BIT(26)
#define FLEXCAN_MCR_SOFTRST BIT(25)
#define FLEXCAN_MCR_FRZ_ACK BIT(24)
#define FLEXCAN_MCR_SUPV BIT(23)
#define FLEXCAN_MCR_SLF_WAK BIT(22)
#define FLEXCAN_MCR_WRN_EN BIT(21)
#define FLEXCAN_MCR_LPM_ACK BIT(20)
#define FLEXCAN_MCR_WAK_SRC BIT(19)
#define FLEXCAN_MCR_DOZE BIT(18)
#define FLEXCAN_MCR_SRX_DIS BIT(17)
#define FLEXCAN_MCR_BCC BIT(16)
#define FLEXCAN_MCR_LPRIO_EN BIT(13)
#define FLEXCAN_MCR_AEN BIT(12)
#define FLEXCAN_MCR_FDEN BIT(11)
#define FLEXCAN_MCR_MAXMB(x) ((x) & 0x7f)
#define FLEXCAN_MCR_IDAM_A (0x0 << 8)
#define FLEXCAN_MCR_IDAM_B (0x1 << 8)
#define FLEXCAN_MCR_IDAM_C (0x2 << 8)
#define FLEXCAN_MCR_IDAM_D (0x3 << 8)
/* FLEXCAN control register (CANCTRL) bits */
#define FLEXCAN_CTRL_PRESDIV(x) (((x) & 0xff) << 24)
#define FLEXCAN_CTRL_RJW(x) (((x) & 0x03) << 22)
#define FLEXCAN_CTRL_PSEG1(x) (((x) & 0x07) << 19)
#define FLEXCAN_CTRL_PSEG2(x) (((x) & 0x07) << 16)
#define FLEXCAN_CTRL_BOFF_MSK BIT(15)
#define FLEXCAN_CTRL_ERR_MSK BIT(14)
#define FLEXCAN_CTRL_CLK_SRC BIT(13)
#define FLEXCAN_CTRL_LPB BIT(12)
#define FLEXCAN_CTRL_TWRN_MSK BIT(11)
#define FLEXCAN_CTRL_RWRN_MSK BIT(10)
#define FLEXCAN_CTRL_SMP BIT(7)
#define FLEXCAN_CTRL_BOFF_REC BIT(6)
#define FLEXCAN_CTRL_TSYN BIT(5)
#define FLEXCAN_CTRL_LBUF BIT(4)
#define FLEXCAN_CTRL_LOM BIT(3)
#define FLEXCAN_CTRL_PROPSEG(x) ((x) & 0x07)
#define FLEXCAN_CTRL_ERR_BUS (FLEXCAN_CTRL_ERR_MSK)
#define FLEXCAN_CTRL_ERR_STATE \
(FLEXCAN_CTRL_TWRN_MSK | FLEXCAN_CTRL_RWRN_MSK | \
FLEXCAN_CTRL_BOFF_MSK)
#define FLEXCAN_CTRL_ERR_ALL \
(FLEXCAN_CTRL_ERR_BUS | FLEXCAN_CTRL_ERR_STATE)
/* FLEXCAN control register 2 (CTRL2) bits */
#define FLEXCAN_CTRL2_ECRWRE BIT(29)
#define FLEXCAN_CTRL2_WRMFRZ BIT(28)
#define FLEXCAN_CTRL2_RFFN(x) (((x) & 0x0f) << 24)
#define FLEXCAN_CTRL2_TASD(x) (((x) & 0x1f) << 19)
#define FLEXCAN_CTRL2_MRP BIT(18)
#define FLEXCAN_CTRL2_RRS BIT(17)
#define FLEXCAN_CTRL2_EACEN BIT(16)
/* FLEXCAN memory error control register (MECR) bits */
#define FLEXCAN_MECR_ECRWRDIS BIT(31)
#define FLEXCAN_MECR_HANCEI_MSK BIT(19)
#define FLEXCAN_MECR_FANCEI_MSK BIT(18)
#define FLEXCAN_MECR_CEI_MSK BIT(16)
#define FLEXCAN_MECR_HAERRIE BIT(15)
#define FLEXCAN_MECR_FAERRIE BIT(14)
#define FLEXCAN_MECR_EXTERRIE BIT(13)
#define FLEXCAN_MECR_RERRDIS BIT(9)
#define FLEXCAN_MECR_ECCDIS BIT(8)
#define FLEXCAN_MECR_NCEFAFRZ BIT(7)
/* FLEXCAN error and status register (ESR) bits */
#define FLEXCAN_ESR_TWRN_INT BIT(17)
#define FLEXCAN_ESR_RWRN_INT BIT(16)
#define FLEXCAN_ESR_BIT1_ERR BIT(15)
#define FLEXCAN_ESR_BIT0_ERR BIT(14)
#define FLEXCAN_ESR_ACK_ERR BIT(13)
#define FLEXCAN_ESR_CRC_ERR BIT(12)
#define FLEXCAN_ESR_FRM_ERR BIT(11)
#define FLEXCAN_ESR_STF_ERR BIT(10)
#define FLEXCAN_ESR_TX_WRN BIT(9)
#define FLEXCAN_ESR_RX_WRN BIT(8)
#define FLEXCAN_ESR_IDLE BIT(7)
#define FLEXCAN_ESR_TXRX BIT(6)
#define FLEXCAN_EST_FLT_CONF_SHIFT (4)
#define FLEXCAN_ESR_FLT_CONF_MASK (0x3 << FLEXCAN_EST_FLT_CONF_SHIFT)
#define FLEXCAN_ESR_FLT_CONF_ACTIVE (0x0 << FLEXCAN_EST_FLT_CONF_SHIFT)
#define FLEXCAN_ESR_FLT_CONF_PASSIVE (0x1 << FLEXCAN_EST_FLT_CONF_SHIFT)
#define FLEXCAN_ESR_BOFF_INT BIT(2)
#define FLEXCAN_ESR_ERR_INT BIT(1)
#define FLEXCAN_ESR_WAK_INT BIT(0)
#define FLEXCAN_ESR_ERR_BUS \
(FLEXCAN_ESR_BIT1_ERR | FLEXCAN_ESR_BIT0_ERR | \
FLEXCAN_ESR_ACK_ERR | FLEXCAN_ESR_CRC_ERR | \
FLEXCAN_ESR_FRM_ERR | FLEXCAN_ESR_STF_ERR)
#define FLEXCAN_ESR_ERR_STATE \
(FLEXCAN_ESR_TWRN_INT | FLEXCAN_ESR_RWRN_INT | FLEXCAN_ESR_BOFF_INT)
#define FLEXCAN_ESR_ERR_ALL \
(FLEXCAN_ESR_ERR_BUS | FLEXCAN_ESR_ERR_STATE)
#define FLEXCAN_ESR_ALL_INT \
(FLEXCAN_ESR_TWRN_INT | FLEXCAN_ESR_RWRN_INT | \
FLEXCAN_ESR_BOFF_INT | FLEXCAN_ESR_ERR_INT | \
FLEXCAN_ESR_WAK_INT)
/* FLEXCAN Bit Timing register (CBT) bits */
#define FLEXCAN_CBT_BTF BIT(31)
#define FLEXCAN_CBT_EPRESDIV(x) (((x) & 0x3ff) << 21)
#define FLEXCAN_CBT_ERJW(x) (((x) & 0x1f) << 16)
#define FLEXCAN_CBT_EPROPSEG(x) (((x) & 0x3f) << 10)
#define FLEXCAN_CBT_EPSEG1(x) (((x) & 0x1f) << 5)
#define FLEXCAN_CBT_EPSEG2(x) ((x) & 0x1f)
/* FLEXCAN FD Bit Timing register (FDCBT) bits */
#define FLEXCAN_FDCBT_FPRESDIV(x) (((x) & 0x3ff) << 20)
#define FLEXCAN_FDCBT_FRJW(x) (((x) & 0x07) << 16)
#define FLEXCAN_FDCBT_FPROPSEG(x) (((x) & 0x1f) << 10)
#define FLEXCAN_FDCBT_FPSEG1(x) (((x) & 0x07) << 5)
#define FLEXCAN_FDCBT_FPSEG2(x) ((x) & 0x07)
#define FLEXCAN_RX_BUF_ID 0
/* FLEXCAN interrupt flag register (IFLAG) bits */
/* Errata ERR005829 step7: Reserve first valid MB */
#define FLEXCAN_TX_BUF_RESERVED 8
#define FLEXCAN_TX_BUF_ID 9
#define FLEXCAN_IFLAG_BUF(x) BIT(x)
#define FLEXCAN_IFLAG_RX_FIFO_OVERFLOW BIT(7)
#define FLEXCAN_IFLAG_RX_FIFO_WARN BIT(6)
#define FLEXCAN_IFLAG_RX_FIFO_AVAILABLE BIT(5)
/* FIFO mode using MB0 as the Message Output Buffer */
#define FLEXCAN_RX_BUF_FIFO 0
#define FLEXCAN_RX_BUF_INT \
FLEXCAN_IFLAG_BUF(FLEXCAN_RX_BUF_ID)
#define FLEXCAN_TX_BUF_INT \
FLEXCAN_IFLAG_BUF(FLEXCAN_TX_BUF_ID)
#define FLEXCAN_IFLAG_DEFAULT_FIFO \
(FLEXCAN_IFLAG_RX_FIFO_OVERFLOW | FLEXCAN_IFLAG_RX_FIFO_AVAILABLE | \
FLEXCAN_TX_BUF_INT)
#define FLEXCAN_IFLAG_DEFAULT_MB \
(FLEXCAN_RX_BUF_INT | FLEXCAN_TX_BUF_INT)
/* FLEXCAN message buffers */
#define FLEXCAN_MB_CNT_EDL BIT(31)
#define FLEXCAN_MB_CNT_BRS BIT(30)
#define FLEXCAN_MB_CNT_ESI BIT(29)
#define FLEXCAN_MB_CODE_RX_INACTIVE (0x0 << 24)
#define FLEXCAN_MB_CODE_RX_EMPTY (0x4 << 24)
#define FLEXCAN_MB_CODE_RX_FULL (0x2 << 24)
#define FLEXCAN_MB_CODE_RX_OVERRUN (0x6 << 24)
#define FLEXCAN_MB_CODE_RX_RANSWER (0xa << 24)
#define FLEXCAN_MB_CODE_TX_INACTIVE (0x8 << 24)
#define FLEXCAN_MB_CODE_TX_ABORT (0x9 << 24)
#define FLEXCAN_MB_CODE_TX_DATA (0xc << 24)
#define FLEXCAN_MB_CODE_TX_TANSWER (0xe << 24)
#define FLEXCAN_MB_CNT_SRR BIT(22)
#define FLEXCAN_MB_CNT_IDE BIT(21)
#define FLEXCAN_MB_CNT_RTR BIT(20)
#define FLEXCAN_MB_CNT_LENGTH(x) (((x) & 0xf) << 16)
#define FLEXCAN_MB_CNT_TIMESTAMP(x) ((x) & 0xffff)
#define FLEXCAN_TIMEOUT_US (50)
#define FLEXCAN_FDCTRL_FDRATE BIT(31)
/* FLEXCAN hardware feature flags
*
* Below is some version info we got:
* SOC Version IP-Version Glitch- [TR]WRN_INT Memory err RTR re-
* Filter? connected? detection ception in MB
* MX25 FlexCAN2 03.00.00.00 no no no no
* MX28 FlexCAN2 03.00.04.00 yes yes no no
* MX35 FlexCAN2 03.00.00.00 no no no no
* MX53 FlexCAN2 03.00.00.00 yes no no no
* MX6s FlexCAN3 10.00.12.00 yes yes no yes
* VF610 FlexCAN3 ? no yes yes yes?
*
* Some SOCs do not have the RX_WARN & TX_WARN interrupt line connected.
*/
#define FLEXCAN_QUIRK_BROKEN_ERR_STATE BIT(1) /* [TR]WRN_INT not connected */
#define FLEXCAN_QUIRK_DISABLE_RXFG BIT(2) /* Disable RX FIFO Global mask */
#define FLEXCAN_QUIRK_DISABLE_MECR BIT(3) /* Disble Memory error detection */
#define FLEXCAN_QUIRK_DISABLE_RX_FIFO BIT(4) /* Disable RX FIFO mode */
#define FLEXCAN_QUIRK_SUPPORT_CANFD BIT(5) /* Support CAN FD mode */
/* Message Buffer */
#define FLEXCAN_MB_CTRL 0x0
#define FLEXCAN_MB_ID 0x4
#define FLEXCAN_MB_DATA(n) (0x8 + ((n) << 2))
#define FLEXCAN_MB_NUM 64
#define FLEXCAN_MB_FD_NUM 14
#define FLEXCAN_MB_SIZE 16
#define FLEXCAN_MB_FD_SIZE 72
/* CAN FD Memory Partition
*
* When CAN FD is enabled, the FlexCAN RAM can be partitioned in
* blocks of 512 bytes. Each block can accommodate a number of
* Message Buffers which depends on the configuration provided
* by CAN_FDCTRL[MBDSRn] bit fields where we all set to 64 bytes
* per Message Buffer and 7 MBs per Block by default.
*
* There're two RAM blocks: RAM block 0,1
*/
#define FLEXCAN_CANFD_MB_OFFSET(n) (((n) / 7) * 512 + ((n) % 7) * \
FLEXCAN_MB_FD_SIZE)
#define FLEXCAN_CANFD_MBDSR_MASK 0x6db0000
#define FLEXCAN_CANFD_MBDSR_SHIFT 16
#define FLEXCAN_CANFD_MBDSR_DEFAULT 0x6db
/*
* NOTE:
* To minimize errors when processing FD frames, use the same value
* for FPRESDIV and PRESDIV (in CAN_CBT or CAN_CTRL1).
* For more details refer to the first NOTE in section CAN FD frames.
*
* CAN FD supported rates combinations
*
* Combination 1:
* Bitrate: 225000 375000 400000 425000 500000 875000
* Data rate: 1000000
*
* Combination 2:
* Bitrate: 550000 600000 625000 650000 675000 750000 775000
* 800000 850000 925000 950000 975000 1000000
* Data rate: 1500000 2000000 2500000 3000000 3500000 4000000
* 5000000
*/
/* registers definition
*
* FIFO-MODE:
* MB
* 0X080...0X08F 0 RX MESSAGE BUFFER
* 0X090...0X0DF 1-5 RESERVERD
* 0X0E0...0X0FF 6-7 8 ENTRY ID TABLE
* (MX25, MX28, MX35, MX53)
* 0X0E0...0X2DF 6-7..37 8..128 ENTRY ID TABLE
* SIZE CONF'ED VIA CTRL2::RFFN
* (MX6, VF610)
*/
enum flexcan_reg {
FLEXCAN_MCR = 0x00,
FLEXCAN_CTRL = 0x04,
FLEXCAN_TIMER = 0x08,
FLEXCAN_RXGMASK = 0x10,
FLEXCAN_RX14MASK = 0x14,
FLEXCAN_RX15MASK = 0x18,
FLEXCAN_ECR = 0x1c,
FLEXCAN_ESR = 0x20,
FLEXCAN_IMASK2 = 0x24,
FLEXCAN_IMASK1 = 0x28,
FLEXCAN_IFLAG2 = 0x2c,
FLEXCAN_IFLAG1 = 0x30,
FLEXCAN_CTRL2 = 0x34,
FLEXCAN_ESR2 = 0x38,
FLEXCAN_IMEUR = 0x3c,
FLEXCAN_LRFR = 0x40,
FLEXCAN_CRCR = 0x44,
FLEXCAN_RXFGMASK = 0x48,
FLEXCAN_RXFIR = 0x4c,
FLEXCAN_CBT = 0x50,
FLEXCAN_MB = 0x80,
FLEXCAN_MECR = 0xae0,
FLEXCAN_ERRIAR = 0xae4,
FLEXCAN_ERRIDPR = 0xae8,
FLEXCAN_ERRIPPR = 0xaeC,
FLEXCAN_RERRAR = 0xaf0,
FLEXCAN_RERRDR = 0xaf4,
FLEXCAN_RERRSYNR = 0xaf8,
FLEXCAN_ERRSR = 0xafC,
FLEXCAN_FDCTRL = 0xc00,
FLEXCAN_FDCBT = 0xc04,
FLEXCAN_FDCRC = 0xc08,
};
struct flexcan_devtype_data {
u32 quirks; /* quirks needed for different IP cores */
};
struct flexcan_stop_mode {
struct regmap *gpr;
u8 req_gpr;
u8 req_bit;
u8 ack_gpr;
u8 ack_bit;
};
struct flexcan_priv {
struct can_priv can;
struct napi_struct napi;
void __iomem *base;
u32 reg_esr;
u32 reg_ctrl_default;
struct device *dev;
struct clk *clk_ipg;
struct clk *clk_per;
struct flexcan_platform_data *pdata;
const struct flexcan_devtype_data *devtype_data;
struct regulator *reg_xceiver;
int id;
struct flexcan_stop_mode stm;
bool mb_mode;
u32 iflag_default;
/* Rx interrupt can be either Rx fifo or Rx buffer interrupt */
u32 rx_int;
u32 mb_size;
u32 mb_num;
};
static struct flexcan_devtype_data fsl_p1010_devtype_data = {
.quirks = FLEXCAN_QUIRK_BROKEN_ERR_STATE,
};
static struct flexcan_devtype_data fsl_imx28_devtype_data;
static struct flexcan_devtype_data fsl_imx6q_devtype_data = {
.quirks = FLEXCAN_QUIRK_DISABLE_RXFG,
};
static struct flexcan_devtype_data fsl_imx8qm_devtype_data = {
.quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_DISABLE_RX_FIFO |
FLEXCAN_QUIRK_SUPPORT_CANFD,
};
static struct flexcan_devtype_data fsl_vf610_devtype_data = {
.quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_DISABLE_MECR,
};
static const struct can_bittiming_const flexcan_bittiming_const = {
.name = DRV_NAME,
.tseg1_min = 4,
.tseg1_max = 16,
.tseg2_min = 2,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 256,
.brp_inc = 1,
};
static const struct can_bittiming_const flexcan_fd_bittiming_const = {
.name = DRV_NAME,
.tseg1_min = 2,
.tseg1_max = 64,
.tseg2_min = 1,
.tseg2_max = 32,
.sjw_max = 32,
.brp_min = 1,
.brp_max = 1024,
.brp_inc = 1,
};
static const struct can_bittiming_const flexcan_fd_data_bittiming_const = {
.name = DRV_NAME,
.tseg1_min = 1,
.tseg1_max = 39,
.tseg2_min = 1,
.tseg2_max = 8,
.sjw_max = 8,
.brp_min = 1,
.brp_max = 1024,
.brp_inc = 1,
};
/* Abstract off the read/write for arm versus ppc. This
* assumes that PPC uses big-endian registers and everything
* else uses little-endian registers, independent of CPU
* endianness.
*/
#if defined(CONFIG_PPC)
static inline u32 flexcan_read(const struct flexcan_priv *priv,
enum flexcan_reg reg)
{
return in_be32(priv->base + reg);
}
static inline void flexcan_write(const struct flexcan_priv *priv,
enum flexcan_reg reg, u32 val)
{
out_be32(priv->base + reg, val);
}
static inline u32 flexcan_mb_read(const struct flexcan_priv *priv,
u32 index, unsigned int offset)
{
if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
return in_be32(priv->base + FLEXCAN_MB +
FLEXCAN_CANFD_MB_OFFSET(index) + offset);
else
return in_be32(priv->base + FLEXCAN_MB +
priv->mb_size * index + offset);
}
static inline void flexcan_mb_write(const struct flexcan_priv *priv,
u32 index, unsigned int offset,
u32 val)
{
if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
out_be32(val, priv->base + FLEXCAN_MB +
FLEXCAN_CANFD_MB_OFFSET(index) + offset);
else
out_be32(val, priv->base + FLEXCAN_MB +
priv->mb_size * index + offset);
}
#else
static inline u32 flexcan_read(const struct flexcan_priv *priv,
enum flexcan_reg reg)
{
return readl(priv->base + reg);
}
static inline void flexcan_write(const struct flexcan_priv *priv,
enum flexcan_reg reg, u32 val)
{
writel(val, priv->base + reg);
}
static inline u32 flexcan_mb_read(const struct flexcan_priv *priv,
u32 index, unsigned int offset)
{
if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
return readl(priv->base + FLEXCAN_MB +
FLEXCAN_CANFD_MB_OFFSET(index) + offset);
else
return readl(priv->base + FLEXCAN_MB +
priv->mb_size * index + offset);
}
static inline void flexcan_mb_write(const struct flexcan_priv *priv,
u32 index, unsigned int offset,
u32 val)
{
if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
writel(val, priv->base + FLEXCAN_MB +
FLEXCAN_CANFD_MB_OFFSET(index) + offset);
else
writel(val, priv->base + FLEXCAN_MB +
priv->mb_size * index + offset);
}
#endif
static int flexcan_clks_enable(const struct flexcan_priv *priv)
{
int err;
err = clk_prepare_enable(priv->clk_ipg);
if (err)
return err;
err = clk_prepare_enable(priv->clk_per);
if (err)
clk_disable_unprepare(priv->clk_ipg);
return err;
}
static void flexcan_clks_disable(const struct flexcan_priv *priv)
{
clk_disable_unprepare(priv->clk_ipg);
clk_disable_unprepare(priv->clk_per);
}
static inline void flexcan_enter_stop_mode(struct flexcan_priv *priv)
{
/* enable stop request */
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_RXFG)
regmap_update_bits(priv->stm.gpr, priv->stm.req_gpr,
1 << priv->stm.req_bit, 1 << priv->stm.req_bit);
}
static inline void flexcan_exit_stop_mode(struct flexcan_priv *priv)
{
/* remove stop request */
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_RXFG)
regmap_update_bits(priv->stm.gpr, priv->stm.req_gpr,
1 << priv->stm.req_bit, 0);
}
static inline int flexcan_transceiver_enable(const struct flexcan_priv *priv)
{
if (priv->pdata && priv->pdata->transceiver_switch) {
priv->pdata->transceiver_switch(1);
return 0;
}
if (!priv->reg_xceiver)
return 0;
return regulator_enable(priv->reg_xceiver);
}
static inline int flexcan_transceiver_disable(const struct flexcan_priv *priv)
{
if (priv->pdata && priv->pdata->transceiver_switch) {
priv->pdata->transceiver_switch(0);
return 0;
}
if (!priv->reg_xceiver)
return 0;
return regulator_disable(priv->reg_xceiver);
}
static inline int flexcan_has_and_handle_berr(const struct flexcan_priv *priv,
u32 reg_esr)
{
return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
(reg_esr & FLEXCAN_ESR_ERR_BUS);
}
static int flexcan_chip_enable(struct flexcan_priv *priv)
{
unsigned int timeout = FLEXCAN_TIMEOUT_US / 10;
u32 reg;
reg = flexcan_read(priv, FLEXCAN_MCR);
reg &= ~FLEXCAN_MCR_MDIS;
flexcan_write(priv, FLEXCAN_MCR, reg);
while (timeout-- &&
(flexcan_read(priv, FLEXCAN_MCR) & FLEXCAN_MCR_LPM_ACK))
udelay(10);
if (flexcan_read(priv, FLEXCAN_MCR) & FLEXCAN_MCR_LPM_ACK)
return -ETIMEDOUT;
return 0;
}
static int flexcan_chip_disable(struct flexcan_priv *priv)
{
unsigned int timeout = FLEXCAN_TIMEOUT_US / 10;
u32 reg;
reg = flexcan_read(priv, FLEXCAN_MCR);
reg |= FLEXCAN_MCR_MDIS;
flexcan_write(priv, FLEXCAN_MCR, reg);
while (timeout-- &&
!(flexcan_read(priv, FLEXCAN_MCR) & FLEXCAN_MCR_LPM_ACK))
udelay(10);
if (!(flexcan_read(priv, FLEXCAN_MCR) & FLEXCAN_MCR_LPM_ACK))
return -ETIMEDOUT;
return 0;
}
static int flexcan_chip_freeze(struct flexcan_priv *priv)
{
unsigned int timeout = 1000 * 1000 * 10 / priv->can.bittiming.bitrate;
u32 reg;
reg = flexcan_read(priv, FLEXCAN_MCR);
reg |= FLEXCAN_MCR_HALT;
flexcan_write(priv, FLEXCAN_MCR, reg);
while (timeout-- &&
!(flexcan_read(priv, FLEXCAN_MCR) & FLEXCAN_MCR_FRZ_ACK))
udelay(100);
if (!(flexcan_read(priv, FLEXCAN_MCR) & FLEXCAN_MCR_FRZ_ACK))
return -ETIMEDOUT;
return 0;
}
static int flexcan_chip_unfreeze(struct flexcan_priv *priv)
{
unsigned int timeout = FLEXCAN_TIMEOUT_US / 10;
u32 reg;
reg = flexcan_read(priv, FLEXCAN_MCR);
reg &= ~FLEXCAN_MCR_HALT;
flexcan_write(priv, FLEXCAN_MCR, reg);
while (timeout-- &&
(flexcan_read(priv, FLEXCAN_MCR) & FLEXCAN_MCR_FRZ_ACK))
udelay(20);
if (flexcan_read(priv, FLEXCAN_MCR) & FLEXCAN_MCR_FRZ_ACK)
return -ETIMEDOUT;
return 0;
}
static int flexcan_chip_softreset(struct flexcan_priv *priv)
{
unsigned int timeout = FLEXCAN_TIMEOUT_US / 10;
flexcan_write(priv, FLEXCAN_MCR, FLEXCAN_MCR_SOFTRST);
while (timeout-- &&
(flexcan_read(priv, FLEXCAN_MCR) & FLEXCAN_MCR_SOFTRST))
udelay(10);
if (flexcan_read(priv, FLEXCAN_MCR) & FLEXCAN_MCR_SOFTRST)
return -ETIMEDOUT;
return 0;
}
static int __flexcan_get_berr_counter(const struct net_device *dev,
struct can_berr_counter *bec)
{
const struct flexcan_priv *priv = netdev_priv(dev);
u32 reg = flexcan_read(priv, FLEXCAN_ECR);
bec->txerr = (reg >> 0) & 0xff;
bec->rxerr = (reg >> 8) & 0xff;
return 0;
}
static int flexcan_get_berr_counter(const struct net_device *dev,
struct can_berr_counter *bec)
{
const struct flexcan_priv *priv = netdev_priv(dev);
int err;
pm_runtime_get_sync(priv->dev);
err = __flexcan_get_berr_counter(dev, bec);
pm_runtime_put(priv->dev);
return err;
}
static int flexcan_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
const struct flexcan_priv *priv = netdev_priv(dev);
struct canfd_frame *cf = (struct canfd_frame *)skb->data;
u32 ctrl = FLEXCAN_MB_CODE_TX_DATA | (can_len2dlc(cf->len) << 16);
u32 can_id, reg_fdctrl;
u32 data;
int i;
if (can_dropped_invalid_skb(dev, skb))
return NETDEV_TX_OK;
netif_stop_queue(dev);
if (cf->can_id & CAN_EFF_FLAG) {
can_id = cf->can_id & CAN_EFF_MASK;
ctrl |= FLEXCAN_MB_CNT_IDE | FLEXCAN_MB_CNT_SRR;
} else {
can_id = (cf->can_id & CAN_SFF_MASK) << 18;
}
if (cf->can_id & CAN_RTR_FLAG)
ctrl |= FLEXCAN_MB_CNT_RTR;
for (i = 0; i < cf->len; i += 4) {
data = be32_to_cpup((__be32 *)&cf->data[i]);
flexcan_mb_write(priv, FLEXCAN_TX_BUF_ID,
FLEXCAN_MB_DATA(i / 4), data);
}
can_put_echo_skb(skb, dev, 0);
if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
if (can_is_canfd_skb(skb)) {
reg_fdctrl = flexcan_read(priv, FLEXCAN_FDCTRL) &
~FLEXCAN_FDCTRL_FDRATE;
if (cf->flags & CANFD_BRS) {
reg_fdctrl |= FLEXCAN_FDCTRL_FDRATE;
ctrl |= FLEXCAN_MB_CNT_BRS;
}
flexcan_write(priv, FLEXCAN_FDCTRL, reg_fdctrl);
ctrl |= FLEXCAN_MB_CNT_EDL;
}
}
flexcan_mb_write(priv, FLEXCAN_TX_BUF_ID, FLEXCAN_MB_ID, can_id);
flexcan_mb_write(priv, FLEXCAN_TX_BUF_ID, FLEXCAN_MB_CTRL, ctrl);
/* Errata ERR005829 step8:
* Write twice INACTIVE(0x8) code to first MB.
*/
flexcan_mb_write(priv, FLEXCAN_TX_BUF_RESERVED, FLEXCAN_MB_CTRL,
FLEXCAN_MB_CODE_TX_INACTIVE);
flexcan_mb_write(priv, FLEXCAN_TX_BUF_RESERVED, FLEXCAN_MB_CTRL,
FLEXCAN_MB_CODE_TX_INACTIVE);
return NETDEV_TX_OK;
}
static void do_bus_err(struct net_device *dev,
struct can_frame *cf, u32 reg_esr)
{
struct flexcan_priv *priv = netdev_priv(dev);
int rx_errors = 0, tx_errors = 0;
cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
if (reg_esr & FLEXCAN_ESR_BIT1_ERR) {
netdev_dbg(dev, "BIT1_ERR irq\n");
cf->data[2] |= CAN_ERR_PROT_BIT1;
tx_errors = 1;
}
if (reg_esr & FLEXCAN_ESR_BIT0_ERR) {
netdev_dbg(dev, "BIT0_ERR irq\n");
cf->data[2] |= CAN_ERR_PROT_BIT0;
tx_errors = 1;
}
if (reg_esr & FLEXCAN_ESR_ACK_ERR) {
netdev_dbg(dev, "ACK_ERR irq\n");
cf->can_id |= CAN_ERR_ACK;
cf->data[3] = CAN_ERR_PROT_LOC_ACK;
tx_errors = 1;
}
if (reg_esr & FLEXCAN_ESR_CRC_ERR) {
netdev_dbg(dev, "CRC_ERR irq\n");
cf->data[2] |= CAN_ERR_PROT_BIT;
cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
rx_errors = 1;
}
if (reg_esr & FLEXCAN_ESR_FRM_ERR) {
netdev_dbg(dev, "FRM_ERR irq\n");
cf->data[2] |= CAN_ERR_PROT_FORM;
rx_errors = 1;
}
if (reg_esr & FLEXCAN_ESR_STF_ERR) {
netdev_dbg(dev, "STF_ERR irq\n");
cf->data[2] |= CAN_ERR_PROT_STUFF;
rx_errors = 1;
}
priv->can.can_stats.bus_error++;
if (rx_errors)
dev->stats.rx_errors++;
if (tx_errors)
dev->stats.tx_errors++;
}
static int flexcan_poll_bus_err(struct net_device *dev, u32 reg_esr)
{
struct sk_buff *skb;
struct can_frame *cf;
skb = alloc_can_err_skb(dev, &cf);
if (unlikely(!skb))
return 0;
do_bus_err(dev, cf, reg_esr);
dev->stats.rx_packets++;
dev->stats.rx_bytes += cf->can_dlc;
netif_receive_skb(skb);
return 1;
}
static int flexcan_poll_state(struct net_device *dev, u32 reg_esr)
{
struct flexcan_priv *priv = netdev_priv(dev);
struct sk_buff *skb;
struct can_frame *cf;
enum can_state new_state = 0, rx_state = 0, tx_state = 0;
int flt;
struct can_berr_counter bec;
flt = reg_esr & FLEXCAN_ESR_FLT_CONF_MASK;
if (likely(flt == FLEXCAN_ESR_FLT_CONF_ACTIVE)) {
tx_state = unlikely(reg_esr & FLEXCAN_ESR_TX_WRN) ?
CAN_STATE_ERROR_WARNING : CAN_STATE_ERROR_ACTIVE;
rx_state = unlikely(reg_esr & FLEXCAN_ESR_RX_WRN) ?
CAN_STATE_ERROR_WARNING : CAN_STATE_ERROR_ACTIVE;
new_state = max(tx_state, rx_state);
} else {
__flexcan_get_berr_counter(dev, &bec);
new_state = flt == FLEXCAN_ESR_FLT_CONF_PASSIVE ?
CAN_STATE_ERROR_PASSIVE : CAN_STATE_BUS_OFF;
rx_state = bec.rxerr >= bec.txerr ? new_state : 0;
tx_state = bec.rxerr <= bec.txerr ? new_state : 0;
}
/* state hasn't changed */
if (likely(new_state == priv->can.state))
return 0;
skb = alloc_can_err_skb(dev, &cf);
if (unlikely(!skb))
return 0;
can_change_state(dev, cf, tx_state, rx_state);
if (unlikely(new_state == CAN_STATE_BUS_OFF))
can_bus_off(dev);
dev->stats.rx_packets++;
dev->stats.rx_bytes += cf->can_dlc;
netif_receive_skb(skb);
return 1;
}
static void flexcan_read_mb(const struct net_device *dev,
struct canfd_frame *cf)
{
const struct flexcan_priv *priv = netdev_priv(dev);
u32 reg_ctrl, reg_id;
u32 index;
int i;
index = priv->mb_mode ? FLEXCAN_RX_BUF_ID : FLEXCAN_RX_BUF_FIFO;
reg_ctrl = flexcan_mb_read(priv, index, FLEXCAN_MB_CTRL);
reg_id = flexcan_mb_read(priv, index, FLEXCAN_MB_ID);
if (reg_ctrl & FLEXCAN_MB_CNT_IDE)
cf->can_id = ((reg_id >> 0) & CAN_EFF_MASK) | CAN_EFF_FLAG;
else
cf->can_id = (reg_id >> 18) & CAN_SFF_MASK;
if (reg_ctrl & FLEXCAN_MB_CNT_EDL)
cf->len = can_dlc2len((reg_ctrl >> 16) & 0x0F);
else
cf->len = get_can_dlc((reg_ctrl >> 16) & 0x0F);
if (reg_ctrl & FLEXCAN_MB_CNT_ESI) {
cf->flags |= CANFD_ESI;
netdev_warn(dev, "ESI Error\n");
}
if (!(reg_ctrl & FLEXCAN_MB_CNT_EDL) && reg_ctrl & FLEXCAN_MB_CNT_RTR) {
cf->can_id |= CAN_RTR_FLAG;
} else {
if (reg_ctrl & FLEXCAN_MB_CNT_BRS)
cf->flags |= CANFD_BRS;
for (i = 0; i < cf->len; i += 4)
*(__be32 *)(cf->data + i) =
cpu_to_be32(flexcan_mb_read(priv, index,
FLEXCAN_MB_DATA(i / 4)));
}
/* mark as read */
flexcan_write(priv, FLEXCAN_IFLAG1, priv->rx_int);
flexcan_read(priv, FLEXCAN_TIMER);
}
static int flexcan_read_frame(struct net_device *dev)
{
struct net_device_stats *stats = &dev->stats;
const struct flexcan_priv *priv = netdev_priv(dev);
struct canfd_frame *cf;
struct sk_buff *skb;
u32 reg_ctrl;
u32 index;
index = priv->mb_mode ? FLEXCAN_RX_BUF_ID : FLEXCAN_RX_BUF_FIFO;
reg_ctrl = flexcan_mb_read(priv, index, FLEXCAN_MB_CTRL);
if (reg_ctrl & FLEXCAN_MB_CNT_EDL)
skb = alloc_canfd_skb(dev, &cf);
else
skb = alloc_can_skb(dev, (struct can_frame **)&cf);
if (unlikely(!skb)) {
stats->rx_dropped++;
return 0;
}
flexcan_read_mb(dev, cf);
stats->rx_packets++;
stats->rx_bytes += cf->len;
netif_receive_skb(skb);
can_led_event(dev, CAN_LED_EVENT_RX);
return 1;
}
static int flexcan_poll(struct napi_struct *napi, int quota)
{
struct net_device *dev = napi->dev;
const struct flexcan_priv *priv = netdev_priv(dev);
u32 reg_iflag1, reg_esr;
int work_done = 0;
/* The error bits are cleared on read,
* use saved value from irq handler.
*/
reg_esr = flexcan_read(priv, FLEXCAN_ESR) | priv->reg_esr;
/* handle state changes */
work_done += flexcan_poll_state(dev, reg_esr);
/* handle RX MB */
reg_iflag1 = flexcan_read(priv, FLEXCAN_IFLAG1);
while (reg_iflag1 & priv->rx_int && work_done < quota) {
work_done += flexcan_read_frame(dev);
reg_iflag1 = flexcan_read(priv, FLEXCAN_IFLAG1);
}
/* report bus errors */
if (flexcan_has_and_handle_berr(priv, reg_esr) && work_done < quota)
work_done += flexcan_poll_bus_err(dev, reg_esr);
if (work_done < quota) {
napi_complete(napi);
/* enable IRQs */
flexcan_write(priv, FLEXCAN_IMASK1, priv->iflag_default);
flexcan_write(priv, FLEXCAN_CTRL, priv->reg_ctrl_default);
}
return work_done;
}
static irqreturn_t flexcan_irq(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct net_device_stats *stats = &dev->stats;
struct flexcan_priv *priv = netdev_priv(dev);
u32 reg_iflag1, reg_esr;
reg_iflag1 = flexcan_read(priv, FLEXCAN_IFLAG1);
reg_esr = flexcan_read(priv, FLEXCAN_ESR);
/* ACK all bus error and state change IRQ sources */
if (reg_esr & FLEXCAN_ESR_ALL_INT)
flexcan_write(priv, FLEXCAN_ESR, reg_esr & FLEXCAN_ESR_ALL_INT);
if (reg_esr & FLEXCAN_ESR_WAK_INT)
flexcan_exit_stop_mode(priv);
/* schedule NAPI in case of:
* - rx IRQ
* - state change IRQ
* - bus error IRQ and bus error reporting is activated
*/
if ((reg_iflag1 & priv->rx_int) ||
(reg_esr & FLEXCAN_ESR_ERR_STATE) ||
flexcan_has_and_handle_berr(priv, reg_esr)) {
/* The error bits are cleared on read,
* save them for later use.
*/
priv->reg_esr = reg_esr & FLEXCAN_ESR_ERR_BUS;
flexcan_write(priv, FLEXCAN_IMASK1, priv->iflag_default &
~priv->rx_int);
flexcan_write(priv, FLEXCAN_CTRL, priv->reg_ctrl_default &
~FLEXCAN_CTRL_ERR_ALL);
napi_schedule(&priv->napi);
}
/* FIFO overflow */
if (reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_OVERFLOW) {
flexcan_write(priv, FLEXCAN_IFLAG1,
FLEXCAN_IFLAG_RX_FIFO_OVERFLOW);
dev->stats.rx_over_errors++;
dev->stats.rx_errors++;
}
/* transmission complete interrupt */
if (reg_iflag1 & (1 << FLEXCAN_TX_BUF_ID)) {
stats->tx_bytes += can_get_echo_skb(dev, 0);
stats->tx_packets++;
can_led_event(dev, CAN_LED_EVENT_TX);
/* after sending a RTR frame MB is in RX mode */
flexcan_mb_write(priv, FLEXCAN_TX_BUF_ID, FLEXCAN_MB_CTRL,
FLEXCAN_MB_CODE_TX_INACTIVE);
flexcan_write(priv, FLEXCAN_IFLAG1, 1 << FLEXCAN_TX_BUF_ID);
netif_wake_queue(dev);
}
return IRQ_HANDLED;
}
static void flexcan_set_bittiming(struct net_device *dev)
{
const struct flexcan_priv *priv = netdev_priv(dev);
const struct can_bittiming *bt = &priv->can.bittiming;
const struct can_bittiming *dbt = &priv->can.data_bittiming;
u32 reg;
reg = flexcan_read(priv, FLEXCAN_CTRL);
reg &= ~(FLEXCAN_CTRL_LPB | FLEXCAN_CTRL_SMP | FLEXCAN_CTRL_LOM);
if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
reg |= FLEXCAN_CTRL_LPB;
if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
reg |= FLEXCAN_CTRL_LOM;
if (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
reg |= FLEXCAN_CTRL_SMP;
flexcan_write(priv, FLEXCAN_CTRL, reg);
if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
reg = FLEXCAN_CBT_EPRESDIV(bt->brp - 1) |
FLEXCAN_CBT_EPSEG1(bt->phase_seg1 - 1) |
FLEXCAN_CBT_EPSEG2(bt->phase_seg2 - 1) |
FLEXCAN_CBT_ERJW(bt->sjw - 1) |
FLEXCAN_CBT_EPROPSEG(bt->prop_seg - 1) |
FLEXCAN_CBT_BTF;
flexcan_write(priv, FLEXCAN_CBT, reg);
netdev_dbg(dev, "bt: prediv %d seg1 %d seg2 %d rjw %d propseg %d\n",
bt->brp - 1, bt->phase_seg1 - 1, bt->phase_seg2 - 1,
bt->sjw - 1, bt->prop_seg - 1);
reg = FLEXCAN_FDCBT_FPRESDIV(dbt->brp - 1) |
FLEXCAN_FDCBT_FPSEG1(dbt->phase_seg1 - 1) |
FLEXCAN_FDCBT_FPSEG2(dbt->phase_seg2 - 1) |
FLEXCAN_FDCBT_FRJW(dbt->sjw - 1) |
FLEXCAN_FDCBT_FPROPSEG(dbt->prop_seg);
flexcan_write(priv, FLEXCAN_FDCBT, reg);
if (bt->brp != dbt->brp)
netdev_warn(dev, "PRESDIV not the same, may risk transfer errors\n");
netdev_dbg(dev, "fdbt: prediv %d seg1 %d seg2 %d rjw %d propseg %d\n",
dbt->brp - 1, dbt->phase_seg1 - 1, dbt->phase_seg2 - 1,
dbt->sjw - 1, dbt->prop_seg);
netdev_dbg(dev, "%s: mcr=0x%08x ctrl=0x%08x cbt=0x%08x fdcbt=0x%08x\n",
__func__, flexcan_read(priv, FLEXCAN_MCR),
flexcan_read(priv, FLEXCAN_CTRL),
flexcan_read(priv, FLEXCAN_CBT),
flexcan_read(priv, FLEXCAN_FDCBT));
} else {
reg = flexcan_read(priv, FLEXCAN_CTRL);
reg &= ~(FLEXCAN_CTRL_PRESDIV(0xff) |
FLEXCAN_CTRL_RJW(0x3) |
FLEXCAN_CTRL_PSEG1(0x7) |
FLEXCAN_CTRL_PSEG2(0x7) |
FLEXCAN_CTRL_PROPSEG(0x7));
reg |= FLEXCAN_CTRL_PRESDIV(bt->brp - 1) |
FLEXCAN_CTRL_PSEG1(bt->phase_seg1 - 1) |
FLEXCAN_CTRL_PSEG2(bt->phase_seg2 - 1) |
FLEXCAN_CTRL_RJW(bt->sjw - 1) |
FLEXCAN_CTRL_PROPSEG(bt->prop_seg - 1);
flexcan_write(priv, FLEXCAN_CTRL, reg);
netdev_dbg(dev, "bt: prediv %d seg1 %d seg2 %d rjw %d propseg %d\n",
bt->brp - 1, bt->phase_seg1 - 1, bt->phase_seg2 - 1,
bt->sjw - 1, bt->prop_seg - 1);
/* print chip status */
netdev_dbg(dev, "%s: mcr=0x%08x ctrl=0x%08x\n", __func__,
flexcan_read(priv, FLEXCAN_MCR),
flexcan_read(priv, FLEXCAN_CTRL));
}
}
/* flexcan_chip_start
*
* this functions is entered with clocks enabled
*
*/
static int flexcan_chip_start(struct net_device *dev)
{
struct flexcan_priv *priv = netdev_priv(dev);
u32 reg_mcr, reg_ctrl, reg_ctrl2, reg_mecr, reg_fdctrl;
int err, i;
/* enable module */
err = flexcan_chip_enable(priv);
if (err)
return err;
/* soft reset */
err = flexcan_chip_softreset(priv);
if (err)
goto out_chip_disable;
flexcan_set_bittiming(dev);
/* MCR
*
* enable freeze
* enable fifo
* halt now
* only supervisor access
* enable warning int
* disable local echo
* choose format C
* set max mailbox number
* enable self wakeup
*/
reg_mcr = flexcan_read(priv, FLEXCAN_MCR);
reg_mcr &= ~FLEXCAN_MCR_MAXMB(0xff);
reg_mcr |= FLEXCAN_MCR_FRZ | FLEXCAN_MCR_HALT |
FLEXCAN_MCR_SUPV | FLEXCAN_MCR_WRN_EN |
FLEXCAN_MCR_IDAM_C | FLEXCAN_MCR_SRX_DIS |
FLEXCAN_MCR_WAK_MSK | FLEXCAN_MCR_SLF_WAK |
FLEXCAN_MCR_MAXMB(FLEXCAN_TX_BUF_ID);
if (!priv->mb_mode)
reg_mcr |= FLEXCAN_MCR_FEN;
netdev_dbg(dev, "%s: writing mcr=0x%08x", __func__, reg_mcr);
flexcan_write(priv, FLEXCAN_MCR, reg_mcr);
/* CTRL
*
* disable timer sync feature
*
* disable auto busoff recovery
* transmit lowest buffer first
*
* enable tx and rx warning interrupt
* enable bus off interrupt
* (== FLEXCAN_CTRL_ERR_STATE)
*/
reg_ctrl = flexcan_read(priv, FLEXCAN_CTRL);
reg_ctrl &= ~FLEXCAN_CTRL_TSYN;
reg_ctrl |= FLEXCAN_CTRL_BOFF_REC | FLEXCAN_CTRL_LBUF |
FLEXCAN_CTRL_ERR_STATE;
/* enable the "error interrupt" (FLEXCAN_CTRL_ERR_MSK),
* on most Flexcan cores, too. Otherwise we don't get
* any error warning or passive interrupts.
*/
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_BROKEN_ERR_STATE ||
priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
reg_ctrl |= FLEXCAN_CTRL_ERR_MSK;
else
reg_ctrl &= ~FLEXCAN_CTRL_ERR_MSK;
/* save for later use */
priv->reg_ctrl_default = reg_ctrl;
/* leave interrupts disabled for now */
reg_ctrl &= ~FLEXCAN_CTRL_ERR_ALL;
netdev_dbg(dev, "%s: writing ctrl=0x%08x", __func__, reg_ctrl);
flexcan_write(priv, FLEXCAN_CTRL, reg_ctrl);
/* CAN FD initialization
*
* disable BRS by default
* Message Buffer Data Size 64 bytes per MB
* disable Transceiver Delay Compensation
* Configure Message Buffer according to CAN FD mode enabled or not
*/
if ((priv->can.ctrlmode_supported & CAN_CTRLMODE_FD) &&
!(priv->can.ctrlmode & CAN_CTRLMODE_FD)) {
netdev_err(dev, "fd mode must be enabled\n");
err = -EOPNOTSUPP;
goto out_chip_disable;
}
if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
reg_fdctrl = flexcan_read(priv, FLEXCAN_FDCTRL) &
~FLEXCAN_CANFD_MBDSR_MASK;
reg_fdctrl |= FLEXCAN_CANFD_MBDSR_DEFAULT <<
FLEXCAN_CANFD_MBDSR_SHIFT;
flexcan_write(priv, FLEXCAN_FDCTRL, reg_fdctrl);
reg_mcr = flexcan_read(priv, FLEXCAN_MCR);
flexcan_write(priv, FLEXCAN_MCR, reg_mcr | FLEXCAN_MCR_FDEN);
priv->mb_size = FLEXCAN_MB_FD_SIZE;
priv->mb_num = FLEXCAN_MB_FD_NUM;
} else {
priv->mb_size = FLEXCAN_MB_SIZE;
priv->mb_num = FLEXCAN_MB_NUM;
}
/* clear and invalidate all mailboxes first */
i = priv->mb_mode ? 0 : FLEXCAN_TX_BUF_ID;
for (; i < priv->mb_num; i++) {
flexcan_mb_write(priv, i, FLEXCAN_MB_CTRL,
FLEXCAN_MB_CODE_RX_INACTIVE);
}
/* Errata ERR005829: mark first TX mailbox as INACTIVE */
flexcan_mb_write(priv, FLEXCAN_TX_BUF_RESERVED, FLEXCAN_MB_CTRL,
FLEXCAN_MB_CODE_TX_INACTIVE);
/* mark TX mailbox as INACTIVE */
flexcan_mb_write(priv, FLEXCAN_TX_BUF_ID, FLEXCAN_MB_CTRL,
FLEXCAN_MB_CODE_TX_INACTIVE);
if (priv->mb_mode) {
/* mark RX mailbox as INACTIVE */
flexcan_mb_write(priv, FLEXCAN_RX_BUF_ID, FLEXCAN_MB_CTRL,
FLEXCAN_MB_CODE_RX_EMPTY);
/* store Remote Request Frame */
reg_ctrl2 = flexcan_read(priv, FLEXCAN_CTRL2);
reg_ctrl2 |= FLEXCAN_CTRL2_RRS;
/* enable Entire Frame Arbitration Field Comparison */
reg_ctrl2 |= FLEXCAN_CTRL2_EACEN;
flexcan_write(priv, FLEXCAN_CTRL2, reg_ctrl2);
}
/* acceptance mask/acceptance code (accept everything) */
flexcan_write(priv, FLEXCAN_RXGMASK, 0x0);
flexcan_write(priv, FLEXCAN_RX14MASK, 0x0);
flexcan_write(priv, FLEXCAN_RX15MASK, 0x0);
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_RXFG)
flexcan_write(priv, FLEXCAN_RXFGMASK, 0x0);
/* On Vybrid, disable memory error detection interrupts
* and freeze mode.
* This also works around errata e5295 which generates
* false positive memory errors and put the device in
* freeze mode.
*/
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_MECR) {
/* Follow the protocol as described in "Detection
* and Correction of Memory Errors" to write to
* MECR register
*/
reg_ctrl2 = flexcan_read(priv, FLEXCAN_CTRL2);
reg_ctrl2 |= FLEXCAN_CTRL2_ECRWRE;
flexcan_write(priv, FLEXCAN_CTRL2, reg_ctrl2);
reg_mecr = flexcan_read(priv, FLEXCAN_MECR);
reg_mecr &= ~FLEXCAN_MECR_ECRWRDIS;
flexcan_write(priv, FLEXCAN_MECR, reg_mecr);
reg_mecr &= ~(FLEXCAN_MECR_NCEFAFRZ | FLEXCAN_MECR_HANCEI_MSK |
FLEXCAN_MECR_FANCEI_MSK);
flexcan_write(priv, FLEXCAN_MECR, reg_mecr);
}
err = flexcan_transceiver_enable(priv);
if (err)
goto out_chip_disable;
/* synchronize with the can bus */
err = flexcan_chip_unfreeze(priv);
if (err)
goto out_transceiver_disable;
priv->can.state = CAN_STATE_ERROR_ACTIVE;
/* enable interrupts atomically */
disable_irq(dev->irq);
flexcan_write(priv, FLEXCAN_CTRL, priv->reg_ctrl_default);
flexcan_write(priv, FLEXCAN_IMASK1, priv->iflag_default);
enable_irq(dev->irq);
/* print chip status */
netdev_dbg(dev, "%s: reading mcr=0x%08x ctrl=0x%08x\n", __func__,
flexcan_read(priv, FLEXCAN_MCR),
flexcan_read(priv, FLEXCAN_CTRL));
return 0;
out_transceiver_disable:
flexcan_transceiver_disable(priv);
out_chip_disable:
flexcan_chip_disable(priv);
return err;
}
/* flexcan_chip_stop
*
* this functions is entered with clocks enabled
*/
static void flexcan_chip_stop(struct net_device *dev)
{
struct flexcan_priv *priv = netdev_priv(dev);
/* freeze + disable module */
flexcan_chip_freeze(priv);
flexcan_chip_disable(priv);
/* Disable all interrupts */
flexcan_write(priv, FLEXCAN_IMASK1, 0);
flexcan_write(priv, FLEXCAN_CTRL, priv->reg_ctrl_default &
~FLEXCAN_CTRL_ERR_ALL);
flexcan_transceiver_disable(priv);
priv->can.state = CAN_STATE_STOPPED;
}
static int flexcan_open(struct net_device *dev)
{
struct flexcan_priv *priv = netdev_priv(dev);
int err;
err = pm_runtime_get_sync(priv->dev);
if (err)
return err;
err = open_candev(dev);
if (err)
goto out_pm_runtime;
err = request_irq(dev->irq, flexcan_irq, IRQF_SHARED, dev->name, dev);
if (err)
goto out_close;
/* start chip and queuing */
err = flexcan_chip_start(dev);
if (err)
goto out_free_irq;
can_led_event(dev, CAN_LED_EVENT_OPEN);
napi_enable(&priv->napi);
netif_start_queue(dev);
return 0;
out_free_irq:
free_irq(dev->irq, dev);
out_close:
close_candev(dev);
out_pm_runtime:
pm_runtime_put(priv->dev);
return err;
}
static int flexcan_close(struct net_device *dev)
{
struct flexcan_priv *priv = netdev_priv(dev);
netif_stop_queue(dev);
napi_disable(&priv->napi);
flexcan_chip_stop(dev);
free_irq(dev->irq, dev);
close_candev(dev);
can_led_event(dev, CAN_LED_EVENT_STOP);
pm_runtime_put(priv->dev);
return 0;
}
static int flexcan_set_mode(struct net_device *dev, enum can_mode mode)
{
int err;
switch (mode) {
case CAN_MODE_START:
err = flexcan_chip_start(dev);
if (err)
return err;
netif_wake_queue(dev);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static const struct net_device_ops flexcan_netdev_ops = {
.ndo_open = flexcan_open,
.ndo_stop = flexcan_close,
.ndo_start_xmit = flexcan_start_xmit,
.ndo_change_mtu = can_change_mtu,
};
static int register_flexcandev(struct net_device *dev)
{
struct flexcan_priv *priv = netdev_priv(dev);
u32 reg, err;
/* select "bus clock", chip must be disabled */
err = flexcan_chip_disable(priv);
if (err)
return err;
reg = flexcan_read(priv, FLEXCAN_CTRL);
reg |= FLEXCAN_CTRL_CLK_SRC;
flexcan_write(priv, FLEXCAN_CTRL, reg);
err = flexcan_chip_enable(priv);
if (err)
goto out_chip_disable;
/* set freeze, halt and activate FIFO, restrict register access */
reg = flexcan_read(priv, FLEXCAN_MCR);
reg |= FLEXCAN_MCR_FRZ | FLEXCAN_MCR_HALT |
FLEXCAN_MCR_SUPV;
if (!priv->mb_mode)
reg |= FLEXCAN_MCR_FEN;
flexcan_write(priv, FLEXCAN_MCR, reg);
/* Currently we only support newer versions of this core
* featuring a RX FIFO. Older cores found on some Coldfire
* derivates are not yet supported.
*/
if (!priv->mb_mode) {
reg = flexcan_read(priv, FLEXCAN_MCR);
if (!(reg & FLEXCAN_MCR_FEN)) {
netdev_err(dev, "Could not enable RX FIFO, unsupported core\n");
err = -ENODEV;
goto out_chip_disable;
}
}
err = register_candev(dev);
/* disable core and turn off clocks */
out_chip_disable:
flexcan_chip_disable(priv);
return err;
}
static void unregister_flexcandev(struct net_device *dev)
{
unregister_candev(dev);
}
static int flexcan_of_parse_stop_mode(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct device_node *np = pdev->dev.of_node;
struct device_node *node;
struct flexcan_priv *priv;
phandle phandle;
u32 out_val[5];
int ret;
if (!np)
return -EINVAL;
/*
* stop mode property format is:
* <&gpr req_gpr req_bit ack_gpr ack_bit>.
*/
ret = of_property_read_u32_array(np, "stop-mode", out_val, 5);
if (ret) {
dev_dbg(&pdev->dev, "no stop-mode property\n");
return ret;
}
phandle = *out_val;
node = of_find_node_by_phandle(phandle);
if (!node) {
dev_dbg(&pdev->dev, "could not find gpr node by phandle\n");
return PTR_ERR(node);
}
priv = netdev_priv(dev);
priv->stm.gpr = syscon_node_to_regmap(node);
if (IS_ERR(priv->stm.gpr)) {
dev_dbg(&pdev->dev, "could not find gpr regmap\n");
return PTR_ERR(priv->stm.gpr);
}
of_node_put(node);
priv->stm.req_gpr = out_val[1];
priv->stm.req_bit = out_val[2];
priv->stm.ack_gpr = out_val[3];
priv->stm.ack_bit = out_val[4];
dev_dbg(&pdev->dev, "gpr %s req_gpr 0x%x req_bit %u ack_gpr 0x%x ack_bit %u\n",
node->full_name, priv->stm.req_gpr,
priv->stm.req_bit, priv->stm.ack_gpr,
priv->stm.ack_bit);
return 0;
}
static const struct of_device_id flexcan_of_match[] = {
{ .compatible = "fsl,imx8qm-flexcan", .data = &fsl_imx8qm_devtype_data, },
{ .compatible = "fsl,imx6q-flexcan", .data = &fsl_imx6q_devtype_data, },
{ .compatible = "fsl,imx28-flexcan", .data = &fsl_imx28_devtype_data, },
{ .compatible = "fsl,p1010-flexcan", .data = &fsl_p1010_devtype_data, },
{ .compatible = "fsl,vf610-flexcan", .data = &fsl_vf610_devtype_data, },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, flexcan_of_match);
static const struct platform_device_id flexcan_id_table[] = {
{ .name = "flexcan", .driver_data = (kernel_ulong_t)&fsl_p1010_devtype_data, },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(platform, flexcan_id_table);
static int flexcan_probe(struct platform_device *pdev)
{
const struct of_device_id *of_id;
const struct flexcan_devtype_data *devtype_data;
struct device_node *np = pdev->dev.of_node;
struct net_device *dev;
struct flexcan_priv *priv;
struct regulator *reg_xceiver;
struct resource *mem;
struct clk *clk_ipg = NULL, *clk_per = NULL;
void __iomem *regs;
int err, irq;
u32 clock_freq = 0;
int wakeup = 1;
reg_xceiver = devm_regulator_get(&pdev->dev, "xceiver");
if (PTR_ERR(reg_xceiver) == -EPROBE_DEFER)
return -EPROBE_DEFER;
else if (IS_ERR(reg_xceiver))
reg_xceiver = NULL;
if (pdev->dev.of_node)
of_property_read_u32(pdev->dev.of_node,
"clock-frequency", &clock_freq);
if (!clock_freq) {
clk_ipg = devm_clk_get(&pdev->dev, "ipg");
if (IS_ERR(clk_ipg)) {
dev_err(&pdev->dev, "no ipg clock defined\n");
return PTR_ERR(clk_ipg);
}
clk_per = devm_clk_get(&pdev->dev, "per");
if (IS_ERR(clk_per)) {
dev_err(&pdev->dev, "no per clock defined\n");
return PTR_ERR(clk_per);
}
clock_freq = clk_get_rate(clk_per);
}
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
irq = platform_get_irq(pdev, 0);
if (irq <= 0)
return -ENODEV;
regs = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(regs))
return PTR_ERR(regs);
of_id = of_match_device(flexcan_of_match, &pdev->dev);
if (of_id) {
devtype_data = of_id->data;
} else if (platform_get_device_id(pdev)->driver_data) {
devtype_data = (struct flexcan_devtype_data *)
platform_get_device_id(pdev)->driver_data;
} else {
return -ENODEV;
}
dev = alloc_candev(sizeof(struct flexcan_priv), 1);
if (!dev)
return -ENOMEM;
dev->netdev_ops = &flexcan_netdev_ops;
dev->irq = irq;
dev->flags |= IFF_ECHO;
priv = netdev_priv(dev);
priv->dev = &pdev->dev;
priv->can.clock.freq = clock_freq;
priv->can.bittiming_const = &flexcan_bittiming_const;
priv->can.data_bittiming_const = &flexcan_fd_data_bittiming_const;
priv->can.do_set_mode = flexcan_set_mode;
priv->can.do_get_berr_counter = flexcan_get_berr_counter;
priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_3_SAMPLES |
CAN_CTRLMODE_BERR_REPORTING;
priv->base = regs;
priv->clk_ipg = clk_ipg;
priv->clk_per = clk_per;
priv->pdata = dev_get_platdata(&pdev->dev);
priv->devtype_data = devtype_data;
priv->reg_xceiver = reg_xceiver;
netif_napi_add(dev, &priv->napi, flexcan_poll, FLEXCAN_NAPI_WEIGHT);
platform_set_drvdata(pdev, dev);
SET_NETDEV_DEV(dev, &pdev->dev);
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_RX_FIFO) {
priv->mb_mode = true;
priv->rx_int = FLEXCAN_RX_BUF_INT;
priv->iflag_default = FLEXCAN_IFLAG_DEFAULT_MB;
} else {
priv->mb_mode = false;
priv->rx_int = FLEXCAN_IFLAG_RX_FIFO_AVAILABLE;
priv->iflag_default = FLEXCAN_IFLAG_DEFAULT_FIFO;
}
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_SUPPORT_CANFD) {
if (!(of_find_property(np, "disable-fd-mode", NULL))) {
priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
priv->can.bittiming_const = &flexcan_fd_bittiming_const;
if (!(priv->devtype_data->quirks &
FLEXCAN_QUIRK_DISABLE_RX_FIFO)) {
dev_err(&pdev->dev, "canfd mode can't work on fifo mode\n");
err = -EINVAL;
goto failed_register;
}
}
}
pm_runtime_enable(&pdev->dev);
err = pm_runtime_get_sync(&pdev->dev);
if (err < 0) {
dev_err(&pdev->dev, "pm_runtime_get failed(%d)\n", err);
goto failed_rpm_disable;
}
err = register_flexcandev(dev);
if (err) {
dev_err(&pdev->dev, "registering netdev failed\n");
goto failed_rpm_put;
}
devm_can_led_init(dev);
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_RXFG) {
err = flexcan_of_parse_stop_mode(pdev);
if (err) {
wakeup = 0;
dev_dbg(&pdev->dev, "failed to parse stop-mode\n");
}
}
device_set_wakeup_capable(&pdev->dev, wakeup);
pm_runtime_put(&pdev->dev);
dev_info(&pdev->dev, "device registered (reg_base=%p, irq=%d)\n",
priv->base, dev->irq);
return 0;
failed_rpm_put:
pm_runtime_put(priv->dev);
failed_rpm_disable:
pm_runtime_disable(&pdev->dev);
failed_register:
free_candev(dev);
return err;
}
static int flexcan_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct flexcan_priv *priv = netdev_priv(dev);
unregister_flexcandev(dev);
pm_runtime_disable(&pdev->dev);
netif_napi_del(&priv->napi);
free_candev(dev);
return 0;
}
static int __maybe_unused flexcan_suspend(struct device *device)
{
struct net_device *dev = dev_get_drvdata(device);
struct flexcan_priv *priv = netdev_priv(dev);
int ret = 0;
if (netif_running(dev)) {
netif_stop_queue(dev);
netif_device_detach(dev);
/*
* if wakeup is enabled, enter stop mode
* else enter disabled mode.
*/
if (device_may_wakeup(device)) {
enable_irq_wake(dev->irq);
flexcan_enter_stop_mode(priv);
} else {
flexcan_chip_stop(dev);
ret = pm_runtime_force_suspend(device);
}
}
priv->can.state = CAN_STATE_SLEEPING;
pinctrl_pm_select_sleep_state(device);
return ret;
}
static int __maybe_unused flexcan_resume(struct device *device)
{
struct net_device *dev = dev_get_drvdata(device);
struct flexcan_priv *priv = netdev_priv(dev);
int err = 0;
pinctrl_pm_select_default_state(device);
priv->can.state = CAN_STATE_ERROR_ACTIVE;
if (netif_running(dev)) {
err = pm_runtime_force_resume(device);
if (err)
return err;
netif_device_attach(dev);
netif_start_queue(dev);
if (device_may_wakeup(device)) {
disable_irq_wake(dev->irq);
flexcan_exit_stop_mode(priv);
}
err = flexcan_chip_start(dev);
}
return err;
}
static int __maybe_unused flexcan_runtime_suspend(struct device *device)
{
struct net_device *dev = dev_get_drvdata(device);
struct flexcan_priv *priv = netdev_priv(dev);
flexcan_clks_disable(priv);
return 0;
}
static int __maybe_unused flexcan_runtime_resume(struct device *device)
{
struct net_device *dev = dev_get_drvdata(device);
struct flexcan_priv *priv = netdev_priv(dev);
flexcan_clks_enable(priv);
return 0;
}
static const struct dev_pm_ops flexcan_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(flexcan_suspend, flexcan_resume)
SET_RUNTIME_PM_OPS(flexcan_runtime_suspend, flexcan_runtime_resume, NULL)
};
static struct platform_driver flexcan_driver = {
.driver = {
.name = DRV_NAME,
.pm = &flexcan_pm_ops,
.of_match_table = flexcan_of_match,
},
.probe = flexcan_probe,
.remove = flexcan_remove,
.id_table = flexcan_id_table,
};
module_platform_driver(flexcan_driver);
MODULE_AUTHOR("Sascha Hauer <kernel@pengutronix.de>, "
"Marc Kleine-Budde <kernel@pengutronix.de>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CAN port driver for flexcan based chip");