| /* | 
 |  * The file intends to implement the platform dependent EEH operations on | 
 |  * powernv platform. Actually, the powernv was created in order to fully | 
 |  * hypervisor support. | 
 |  * | 
 |  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  */ | 
 |  | 
 | #include <linux/atomic.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/export.h> | 
 | #include <linux/init.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/list.h> | 
 | #include <linux/msi.h> | 
 | #include <linux/of.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/rbtree.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/spinlock.h> | 
 |  | 
 | #include <asm/eeh.h> | 
 | #include <asm/eeh_event.h> | 
 | #include <asm/firmware.h> | 
 | #include <asm/io.h> | 
 | #include <asm/iommu.h> | 
 | #include <asm/machdep.h> | 
 | #include <asm/msi_bitmap.h> | 
 | #include <asm/opal.h> | 
 | #include <asm/ppc-pci.h> | 
 | #include <asm/pnv-pci.h> | 
 |  | 
 | #include "powernv.h" | 
 | #include "pci.h" | 
 |  | 
 | static bool pnv_eeh_nb_init = false; | 
 | static int eeh_event_irq = -EINVAL; | 
 |  | 
 | static int pnv_eeh_init(void) | 
 | { | 
 | 	struct pci_controller *hose; | 
 | 	struct pnv_phb *phb; | 
 | 	int max_diag_size = PNV_PCI_DIAG_BUF_SIZE; | 
 |  | 
 | 	if (!firmware_has_feature(FW_FEATURE_OPAL)) { | 
 | 		pr_warn("%s: OPAL is required !\n", | 
 | 			__func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Set probe mode */ | 
 | 	eeh_add_flag(EEH_PROBE_MODE_DEV); | 
 |  | 
 | 	/* | 
 | 	 * P7IOC blocks PCI config access to frozen PE, but PHB3 | 
 | 	 * doesn't do that. So we have to selectively enable I/O | 
 | 	 * prior to collecting error log. | 
 | 	 */ | 
 | 	list_for_each_entry(hose, &hose_list, list_node) { | 
 | 		phb = hose->private_data; | 
 |  | 
 | 		if (phb->model == PNV_PHB_MODEL_P7IOC) | 
 | 			eeh_add_flag(EEH_ENABLE_IO_FOR_LOG); | 
 |  | 
 | 		if (phb->diag_data_size > max_diag_size) | 
 | 			max_diag_size = phb->diag_data_size; | 
 |  | 
 | 		/* | 
 | 		 * PE#0 should be regarded as valid by EEH core | 
 | 		 * if it's not the reserved one. Currently, we | 
 | 		 * have the reserved PE#255 and PE#127 for PHB3 | 
 | 		 * and P7IOC separately. So we should regard | 
 | 		 * PE#0 as valid for PHB3 and P7IOC. | 
 | 		 */ | 
 | 		if (phb->ioda.reserved_pe_idx != 0) | 
 | 			eeh_add_flag(EEH_VALID_PE_ZERO); | 
 |  | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	eeh_set_pe_aux_size(max_diag_size); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static irqreturn_t pnv_eeh_event(int irq, void *data) | 
 | { | 
 | 	/* | 
 | 	 * We simply send a special EEH event if EEH has been | 
 | 	 * enabled. We don't care about EEH events until we've | 
 | 	 * finished processing the outstanding ones. Event processing | 
 | 	 * gets unmasked in next_error() if EEH is enabled. | 
 | 	 */ | 
 | 	disable_irq_nosync(irq); | 
 |  | 
 | 	if (eeh_enabled()) | 
 | 		eeh_send_failure_event(NULL); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_FS | 
 | static ssize_t pnv_eeh_ei_write(struct file *filp, | 
 | 				const char __user *user_buf, | 
 | 				size_t count, loff_t *ppos) | 
 | { | 
 | 	struct pci_controller *hose = filp->private_data; | 
 | 	struct eeh_pe *pe; | 
 | 	int pe_no, type, func; | 
 | 	unsigned long addr, mask; | 
 | 	char buf[50]; | 
 | 	int ret; | 
 |  | 
 | 	if (!eeh_ops || !eeh_ops->err_inject) | 
 | 		return -ENXIO; | 
 |  | 
 | 	/* Copy over argument buffer */ | 
 | 	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count); | 
 | 	if (!ret) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* Retrieve parameters */ | 
 | 	ret = sscanf(buf, "%x:%x:%x:%lx:%lx", | 
 | 		     &pe_no, &type, &func, &addr, &mask); | 
 | 	if (ret != 5) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Retrieve PE */ | 
 | 	pe = eeh_pe_get(hose, pe_no, 0); | 
 | 	if (!pe) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* Do error injection */ | 
 | 	ret = eeh_ops->err_inject(pe, type, func, addr, mask); | 
 | 	return ret < 0 ? ret : count; | 
 | } | 
 |  | 
 | static const struct file_operations pnv_eeh_ei_fops = { | 
 | 	.open	= simple_open, | 
 | 	.llseek	= no_llseek, | 
 | 	.write	= pnv_eeh_ei_write, | 
 | }; | 
 |  | 
 | static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val) | 
 | { | 
 | 	struct pci_controller *hose = data; | 
 | 	struct pnv_phb *phb = hose->private_data; | 
 |  | 
 | 	out_be64(phb->regs + offset, val); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val) | 
 | { | 
 | 	struct pci_controller *hose = data; | 
 | 	struct pnv_phb *phb = hose->private_data; | 
 |  | 
 | 	*val = in_be64(phb->regs + offset); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define PNV_EEH_DBGFS_ENTRY(name, reg)				\ | 
 | static int pnv_eeh_dbgfs_set_##name(void *data, u64 val)	\ | 
 | {								\ | 
 | 	return pnv_eeh_dbgfs_set(data, reg, val);		\ | 
 | }								\ | 
 | 								\ | 
 | static int pnv_eeh_dbgfs_get_##name(void *data, u64 *val)	\ | 
 | {								\ | 
 | 	return pnv_eeh_dbgfs_get(data, reg, val);		\ | 
 | }								\ | 
 | 								\ | 
 | DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_dbgfs_ops_##name,		\ | 
 | 			pnv_eeh_dbgfs_get_##name,		\ | 
 |                         pnv_eeh_dbgfs_set_##name,		\ | 
 | 			"0x%llx\n") | 
 |  | 
 | PNV_EEH_DBGFS_ENTRY(outb, 0xD10); | 
 | PNV_EEH_DBGFS_ENTRY(inbA, 0xD90); | 
 | PNV_EEH_DBGFS_ENTRY(inbB, 0xE10); | 
 |  | 
 | #endif /* CONFIG_DEBUG_FS */ | 
 |  | 
 | /** | 
 |  * pnv_eeh_post_init - EEH platform dependent post initialization | 
 |  * | 
 |  * EEH platform dependent post initialization on powernv. When | 
 |  * the function is called, the EEH PEs and devices should have | 
 |  * been built. If the I/O cache staff has been built, EEH is | 
 |  * ready to supply service. | 
 |  */ | 
 | static int pnv_eeh_post_init(void) | 
 | { | 
 | 	struct pci_controller *hose; | 
 | 	struct pnv_phb *phb; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* Register OPAL event notifier */ | 
 | 	if (!pnv_eeh_nb_init) { | 
 | 		eeh_event_irq = opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR)); | 
 | 		if (eeh_event_irq < 0) { | 
 | 			pr_err("%s: Can't register OPAL event interrupt (%d)\n", | 
 | 			       __func__, eeh_event_irq); | 
 | 			return eeh_event_irq; | 
 | 		} | 
 |  | 
 | 		ret = request_irq(eeh_event_irq, pnv_eeh_event, | 
 | 				IRQ_TYPE_LEVEL_HIGH, "opal-eeh", NULL); | 
 | 		if (ret < 0) { | 
 | 			irq_dispose_mapping(eeh_event_irq); | 
 | 			pr_err("%s: Can't request OPAL event interrupt (%d)\n", | 
 | 			       __func__, eeh_event_irq); | 
 | 			return ret; | 
 | 		} | 
 |  | 
 | 		pnv_eeh_nb_init = true; | 
 | 	} | 
 |  | 
 | 	if (!eeh_enabled()) | 
 | 		disable_irq(eeh_event_irq); | 
 |  | 
 | 	list_for_each_entry(hose, &hose_list, list_node) { | 
 | 		phb = hose->private_data; | 
 |  | 
 | 		/* | 
 | 		 * If EEH is enabled, we're going to rely on that. | 
 | 		 * Otherwise, we restore to conventional mechanism | 
 | 		 * to clear frozen PE during PCI config access. | 
 | 		 */ | 
 | 		if (eeh_enabled()) | 
 | 			phb->flags |= PNV_PHB_FLAG_EEH; | 
 | 		else | 
 | 			phb->flags &= ~PNV_PHB_FLAG_EEH; | 
 |  | 
 | 		/* Create debugfs entries */ | 
 | #ifdef CONFIG_DEBUG_FS | 
 | 		if (phb->has_dbgfs || !phb->dbgfs) | 
 | 			continue; | 
 |  | 
 | 		phb->has_dbgfs = 1; | 
 | 		debugfs_create_file("err_injct", 0200, | 
 | 				    phb->dbgfs, hose, | 
 | 				    &pnv_eeh_ei_fops); | 
 |  | 
 | 		debugfs_create_file("err_injct_outbound", 0600, | 
 | 				    phb->dbgfs, hose, | 
 | 				    &pnv_eeh_dbgfs_ops_outb); | 
 | 		debugfs_create_file("err_injct_inboundA", 0600, | 
 | 				    phb->dbgfs, hose, | 
 | 				    &pnv_eeh_dbgfs_ops_inbA); | 
 | 		debugfs_create_file("err_injct_inboundB", 0600, | 
 | 				    phb->dbgfs, hose, | 
 | 				    &pnv_eeh_dbgfs_ops_inbB); | 
 | #endif /* CONFIG_DEBUG_FS */ | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap) | 
 | { | 
 | 	int pos = PCI_CAPABILITY_LIST; | 
 | 	int cnt = 48;   /* Maximal number of capabilities */ | 
 | 	u32 status, id; | 
 |  | 
 | 	if (!pdn) | 
 | 		return 0; | 
 |  | 
 | 	/* Check if the device supports capabilities */ | 
 | 	pnv_pci_cfg_read(pdn, PCI_STATUS, 2, &status); | 
 | 	if (!(status & PCI_STATUS_CAP_LIST)) | 
 | 		return 0; | 
 |  | 
 | 	while (cnt--) { | 
 | 		pnv_pci_cfg_read(pdn, pos, 1, &pos); | 
 | 		if (pos < 0x40) | 
 | 			break; | 
 |  | 
 | 		pos &= ~3; | 
 | 		pnv_pci_cfg_read(pdn, pos + PCI_CAP_LIST_ID, 1, &id); | 
 | 		if (id == 0xff) | 
 | 			break; | 
 |  | 
 | 		/* Found */ | 
 | 		if (id == cap) | 
 | 			return pos; | 
 |  | 
 | 		/* Next one */ | 
 | 		pos += PCI_CAP_LIST_NEXT; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap) | 
 | { | 
 | 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn); | 
 | 	u32 header; | 
 | 	int pos = 256, ttl = (4096 - 256) / 8; | 
 |  | 
 | 	if (!edev || !edev->pcie_cap) | 
 | 		return 0; | 
 | 	if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) | 
 | 		return 0; | 
 | 	else if (!header) | 
 | 		return 0; | 
 |  | 
 | 	while (ttl-- > 0) { | 
 | 		if (PCI_EXT_CAP_ID(header) == cap && pos) | 
 | 			return pos; | 
 |  | 
 | 		pos = PCI_EXT_CAP_NEXT(header); | 
 | 		if (pos < 256) | 
 | 			break; | 
 |  | 
 | 		if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * pnv_eeh_probe - Do probe on PCI device | 
 |  * @pdn: PCI device node | 
 |  * @data: unused | 
 |  * | 
 |  * When EEH module is installed during system boot, all PCI devices | 
 |  * are checked one by one to see if it supports EEH. The function | 
 |  * is introduced for the purpose. By default, EEH has been enabled | 
 |  * on all PCI devices. That's to say, we only need do necessary | 
 |  * initialization on the corresponding eeh device and create PE | 
 |  * accordingly. | 
 |  * | 
 |  * It's notable that's unsafe to retrieve the EEH device through | 
 |  * the corresponding PCI device. During the PCI device hotplug, which | 
 |  * was possiblly triggered by EEH core, the binding between EEH device | 
 |  * and the PCI device isn't built yet. | 
 |  */ | 
 | static void *pnv_eeh_probe(struct pci_dn *pdn, void *data) | 
 | { | 
 | 	struct pci_controller *hose = pdn->phb; | 
 | 	struct pnv_phb *phb = hose->private_data; | 
 | 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn); | 
 | 	uint32_t pcie_flags; | 
 | 	int ret; | 
 | 	int config_addr = (pdn->busno << 8) | (pdn->devfn); | 
 |  | 
 | 	/* | 
 | 	 * When probing the root bridge, which doesn't have any | 
 | 	 * subordinate PCI devices. We don't have OF node for | 
 | 	 * the root bridge. So it's not reasonable to continue | 
 | 	 * the probing. | 
 | 	 */ | 
 | 	if (!edev || edev->pe) | 
 | 		return NULL; | 
 |  | 
 | 	/* Skip for PCI-ISA bridge */ | 
 | 	if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA) | 
 | 		return NULL; | 
 |  | 
 | 	/* Initialize eeh device */ | 
 | 	edev->class_code = pdn->class_code; | 
 | 	edev->mode	&= 0xFFFFFF00; | 
 | 	edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX); | 
 | 	edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP); | 
 | 	edev->af_cap   = pnv_eeh_find_cap(pdn, PCI_CAP_ID_AF); | 
 | 	edev->aer_cap  = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR); | 
 | 	if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) { | 
 | 		edev->mode |= EEH_DEV_BRIDGE; | 
 | 		if (edev->pcie_cap) { | 
 | 			pnv_pci_cfg_read(pdn, edev->pcie_cap + PCI_EXP_FLAGS, | 
 | 					 2, &pcie_flags); | 
 | 			pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4; | 
 | 			if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT) | 
 | 				edev->mode |= EEH_DEV_ROOT_PORT; | 
 | 			else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM) | 
 | 				edev->mode |= EEH_DEV_DS_PORT; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	edev->pe_config_addr = phb->ioda.pe_rmap[config_addr]; | 
 |  | 
 | 	/* Create PE */ | 
 | 	ret = eeh_add_to_parent_pe(edev); | 
 | 	if (ret) { | 
 | 		pr_warn("%s: Can't add PCI dev %04x:%02x:%02x.%01x to parent PE (%x)\n", | 
 | 			__func__, hose->global_number, pdn->busno, | 
 | 			PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn), ret); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the PE contains any one of following adapters, the | 
 | 	 * PCI config space can't be accessed when dumping EEH log. | 
 | 	 * Otherwise, we will run into fenced PHB caused by shortage | 
 | 	 * of outbound credits in the adapter. The PCI config access | 
 | 	 * should be blocked until PE reset. MMIO access is dropped | 
 | 	 * by hardware certainly. In order to drop PCI config requests, | 
 | 	 * one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which | 
 | 	 * will be checked in the backend for PE state retrival. If | 
 | 	 * the PE becomes frozen for the first time and the flag has | 
 | 	 * been set for the PE, we will set EEH_PE_CFG_BLOCKED for | 
 | 	 * that PE to block its config space. | 
 | 	 * | 
 | 	 * Broadcom BCM5718 2-ports NICs (14e4:1656) | 
 | 	 * Broadcom Austin 4-ports NICs (14e4:1657) | 
 | 	 * Broadcom Shiner 4-ports 1G NICs (14e4:168a) | 
 | 	 * Broadcom Shiner 2-ports 10G NICs (14e4:168e) | 
 | 	 */ | 
 | 	if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && | 
 | 	     pdn->device_id == 0x1656) || | 
 | 	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && | 
 | 	     pdn->device_id == 0x1657) || | 
 | 	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && | 
 | 	     pdn->device_id == 0x168a) || | 
 | 	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && | 
 | 	     pdn->device_id == 0x168e)) | 
 | 		edev->pe->state |= EEH_PE_CFG_RESTRICTED; | 
 |  | 
 | 	/* | 
 | 	 * Cache the PE primary bus, which can't be fetched when | 
 | 	 * full hotplug is in progress. In that case, all child | 
 | 	 * PCI devices of the PE are expected to be removed prior | 
 | 	 * to PE reset. | 
 | 	 */ | 
 | 	if (!(edev->pe->state & EEH_PE_PRI_BUS)) { | 
 | 		edev->pe->bus = pci_find_bus(hose->global_number, | 
 | 					     pdn->busno); | 
 | 		if (edev->pe->bus) | 
 | 			edev->pe->state |= EEH_PE_PRI_BUS; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Enable EEH explicitly so that we will do EEH check | 
 | 	 * while accessing I/O stuff | 
 | 	 */ | 
 | 	eeh_add_flag(EEH_ENABLED); | 
 |  | 
 | 	/* Save memory bars */ | 
 | 	eeh_save_bars(edev); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable | 
 |  * @pe: EEH PE | 
 |  * @option: operation to be issued | 
 |  * | 
 |  * The function is used to control the EEH functionality globally. | 
 |  * Currently, following options are support according to PAPR: | 
 |  * Enable EEH, Disable EEH, Enable MMIO and Enable DMA | 
 |  */ | 
 | static int pnv_eeh_set_option(struct eeh_pe *pe, int option) | 
 | { | 
 | 	struct pci_controller *hose = pe->phb; | 
 | 	struct pnv_phb *phb = hose->private_data; | 
 | 	bool freeze_pe = false; | 
 | 	int opt; | 
 | 	s64 rc; | 
 |  | 
 | 	switch (option) { | 
 | 	case EEH_OPT_DISABLE: | 
 | 		return -EPERM; | 
 | 	case EEH_OPT_ENABLE: | 
 | 		return 0; | 
 | 	case EEH_OPT_THAW_MMIO: | 
 | 		opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO; | 
 | 		break; | 
 | 	case EEH_OPT_THAW_DMA: | 
 | 		opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA; | 
 | 		break; | 
 | 	case EEH_OPT_FREEZE_PE: | 
 | 		freeze_pe = true; | 
 | 		opt = OPAL_EEH_ACTION_SET_FREEZE_ALL; | 
 | 		break; | 
 | 	default: | 
 | 		pr_warn("%s: Invalid option %d\n", __func__, option); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Freeze master and slave PEs if PHB supports compound PEs */ | 
 | 	if (freeze_pe) { | 
 | 		if (phb->freeze_pe) { | 
 | 			phb->freeze_pe(phb, pe->addr); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, opt); | 
 | 		if (rc != OPAL_SUCCESS) { | 
 | 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", | 
 | 				__func__, rc, phb->hose->global_number, | 
 | 				pe->addr); | 
 | 			return -EIO; | 
 | 		} | 
 |  | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Unfreeze master and slave PEs if PHB supports */ | 
 | 	if (phb->unfreeze_pe) | 
 | 		return phb->unfreeze_pe(phb, pe->addr, opt); | 
 |  | 
 | 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, opt); | 
 | 	if (rc != OPAL_SUCCESS) { | 
 | 		pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n", | 
 | 			__func__, rc, option, phb->hose->global_number, | 
 | 			pe->addr); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * pnv_eeh_get_pe_addr - Retrieve PE address | 
 |  * @pe: EEH PE | 
 |  * | 
 |  * Retrieve the PE address according to the given tranditional | 
 |  * PCI BDF (Bus/Device/Function) address. | 
 |  */ | 
 | static int pnv_eeh_get_pe_addr(struct eeh_pe *pe) | 
 | { | 
 | 	return pe->addr; | 
 | } | 
 |  | 
 | static void pnv_eeh_get_phb_diag(struct eeh_pe *pe) | 
 | { | 
 | 	struct pnv_phb *phb = pe->phb->private_data; | 
 | 	s64 rc; | 
 |  | 
 | 	rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data, | 
 | 					 phb->diag_data_size); | 
 | 	if (rc != OPAL_SUCCESS) | 
 | 		pr_warn("%s: Failure %lld getting PHB#%x diag-data\n", | 
 | 			__func__, rc, pe->phb->global_number); | 
 | } | 
 |  | 
 | static int pnv_eeh_get_phb_state(struct eeh_pe *pe) | 
 | { | 
 | 	struct pnv_phb *phb = pe->phb->private_data; | 
 | 	u8 fstate; | 
 | 	__be16 pcierr; | 
 | 	s64 rc; | 
 | 	int result = 0; | 
 |  | 
 | 	rc = opal_pci_eeh_freeze_status(phb->opal_id, | 
 | 					pe->addr, | 
 | 					&fstate, | 
 | 					&pcierr, | 
 | 					NULL); | 
 | 	if (rc != OPAL_SUCCESS) { | 
 | 		pr_warn("%s: Failure %lld getting PHB#%x state\n", | 
 | 			__func__, rc, phb->hose->global_number); | 
 | 		return EEH_STATE_NOT_SUPPORT; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check PHB state. If the PHB is frozen for the | 
 | 	 * first time, to dump the PHB diag-data. | 
 | 	 */ | 
 | 	if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) { | 
 | 		result = (EEH_STATE_MMIO_ACTIVE  | | 
 | 			  EEH_STATE_DMA_ACTIVE   | | 
 | 			  EEH_STATE_MMIO_ENABLED | | 
 | 			  EEH_STATE_DMA_ENABLED); | 
 | 	} else if (!(pe->state & EEH_PE_ISOLATED)) { | 
 | 		eeh_pe_state_mark(pe, EEH_PE_ISOLATED); | 
 | 		pnv_eeh_get_phb_diag(pe); | 
 |  | 
 | 		if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) | 
 | 			pnv_pci_dump_phb_diag_data(pe->phb, pe->data); | 
 | 	} | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 | static int pnv_eeh_get_pe_state(struct eeh_pe *pe) | 
 | { | 
 | 	struct pnv_phb *phb = pe->phb->private_data; | 
 | 	u8 fstate; | 
 | 	__be16 pcierr; | 
 | 	s64 rc; | 
 | 	int result; | 
 |  | 
 | 	/* | 
 | 	 * We don't clobber hardware frozen state until PE | 
 | 	 * reset is completed. In order to keep EEH core | 
 | 	 * moving forward, we have to return operational | 
 | 	 * state during PE reset. | 
 | 	 */ | 
 | 	if (pe->state & EEH_PE_RESET) { | 
 | 		result = (EEH_STATE_MMIO_ACTIVE  | | 
 | 			  EEH_STATE_DMA_ACTIVE   | | 
 | 			  EEH_STATE_MMIO_ENABLED | | 
 | 			  EEH_STATE_DMA_ENABLED); | 
 | 		return result; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Fetch PE state from hardware. If the PHB | 
 | 	 * supports compound PE, let it handle that. | 
 | 	 */ | 
 | 	if (phb->get_pe_state) { | 
 | 		fstate = phb->get_pe_state(phb, pe->addr); | 
 | 	} else { | 
 | 		rc = opal_pci_eeh_freeze_status(phb->opal_id, | 
 | 						pe->addr, | 
 | 						&fstate, | 
 | 						&pcierr, | 
 | 						NULL); | 
 | 		if (rc != OPAL_SUCCESS) { | 
 | 			pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n", | 
 | 				__func__, rc, phb->hose->global_number, | 
 | 				pe->addr); | 
 | 			return EEH_STATE_NOT_SUPPORT; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Figure out state */ | 
 | 	switch (fstate) { | 
 | 	case OPAL_EEH_STOPPED_NOT_FROZEN: | 
 | 		result = (EEH_STATE_MMIO_ACTIVE  | | 
 | 			  EEH_STATE_DMA_ACTIVE   | | 
 | 			  EEH_STATE_MMIO_ENABLED | | 
 | 			  EEH_STATE_DMA_ENABLED); | 
 | 		break; | 
 | 	case OPAL_EEH_STOPPED_MMIO_FREEZE: | 
 | 		result = (EEH_STATE_DMA_ACTIVE | | 
 | 			  EEH_STATE_DMA_ENABLED); | 
 | 		break; | 
 | 	case OPAL_EEH_STOPPED_DMA_FREEZE: | 
 | 		result = (EEH_STATE_MMIO_ACTIVE | | 
 | 			  EEH_STATE_MMIO_ENABLED); | 
 | 		break; | 
 | 	case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE: | 
 | 		result = 0; | 
 | 		break; | 
 | 	case OPAL_EEH_STOPPED_RESET: | 
 | 		result = EEH_STATE_RESET_ACTIVE; | 
 | 		break; | 
 | 	case OPAL_EEH_STOPPED_TEMP_UNAVAIL: | 
 | 		result = EEH_STATE_UNAVAILABLE; | 
 | 		break; | 
 | 	case OPAL_EEH_STOPPED_PERM_UNAVAIL: | 
 | 		result = EEH_STATE_NOT_SUPPORT; | 
 | 		break; | 
 | 	default: | 
 | 		result = EEH_STATE_NOT_SUPPORT; | 
 | 		pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n", | 
 | 			__func__, phb->hose->global_number, | 
 | 			pe->addr, fstate); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If PHB supports compound PE, to freeze all | 
 | 	 * slave PEs for consistency. | 
 | 	 * | 
 | 	 * If the PE is switching to frozen state for the | 
 | 	 * first time, to dump the PHB diag-data. | 
 | 	 */ | 
 | 	if (!(result & EEH_STATE_NOT_SUPPORT) && | 
 | 	    !(result & EEH_STATE_UNAVAILABLE) && | 
 | 	    !(result & EEH_STATE_MMIO_ACTIVE) && | 
 | 	    !(result & EEH_STATE_DMA_ACTIVE)  && | 
 | 	    !(pe->state & EEH_PE_ISOLATED)) { | 
 | 		if (phb->freeze_pe) | 
 | 			phb->freeze_pe(phb, pe->addr); | 
 |  | 
 | 		eeh_pe_state_mark(pe, EEH_PE_ISOLATED); | 
 | 		pnv_eeh_get_phb_diag(pe); | 
 |  | 
 | 		if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) | 
 | 			pnv_pci_dump_phb_diag_data(pe->phb, pe->data); | 
 | 	} | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 | /** | 
 |  * pnv_eeh_get_state - Retrieve PE state | 
 |  * @pe: EEH PE | 
 |  * @delay: delay while PE state is temporarily unavailable | 
 |  * | 
 |  * Retrieve the state of the specified PE. For IODA-compitable | 
 |  * platform, it should be retrieved from IODA table. Therefore, | 
 |  * we prefer passing down to hardware implementation to handle | 
 |  * it. | 
 |  */ | 
 | static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (pe->type & EEH_PE_PHB) | 
 | 		ret = pnv_eeh_get_phb_state(pe); | 
 | 	else | 
 | 		ret = pnv_eeh_get_pe_state(pe); | 
 |  | 
 | 	if (!delay) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * If the PE state is temporarily unavailable, | 
 | 	 * to inform the EEH core delay for default | 
 | 	 * period (1 second) | 
 | 	 */ | 
 | 	*delay = 0; | 
 | 	if (ret & EEH_STATE_UNAVAILABLE) | 
 | 		*delay = 1000; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static s64 pnv_eeh_poll(unsigned long id) | 
 | { | 
 | 	s64 rc = OPAL_HARDWARE; | 
 |  | 
 | 	while (1) { | 
 | 		rc = opal_pci_poll(id); | 
 | 		if (rc <= 0) | 
 | 			break; | 
 |  | 
 | 		if (system_state < SYSTEM_RUNNING) | 
 | 			udelay(1000 * rc); | 
 | 		else | 
 | 			msleep(rc); | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | int pnv_eeh_phb_reset(struct pci_controller *hose, int option) | 
 | { | 
 | 	struct pnv_phb *phb = hose->private_data; | 
 | 	s64 rc = OPAL_HARDWARE; | 
 |  | 
 | 	pr_debug("%s: Reset PHB#%x, option=%d\n", | 
 | 		 __func__, hose->global_number, option); | 
 |  | 
 | 	/* Issue PHB complete reset request */ | 
 | 	if (option == EEH_RESET_FUNDAMENTAL || | 
 | 	    option == EEH_RESET_HOT) | 
 | 		rc = opal_pci_reset(phb->opal_id, | 
 | 				    OPAL_RESET_PHB_COMPLETE, | 
 | 				    OPAL_ASSERT_RESET); | 
 | 	else if (option == EEH_RESET_DEACTIVATE) | 
 | 		rc = opal_pci_reset(phb->opal_id, | 
 | 				    OPAL_RESET_PHB_COMPLETE, | 
 | 				    OPAL_DEASSERT_RESET); | 
 | 	if (rc < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Poll state of the PHB until the request is done | 
 | 	 * successfully. The PHB reset is usually PHB complete | 
 | 	 * reset followed by hot reset on root bus. So we also | 
 | 	 * need the PCI bus settlement delay. | 
 | 	 */ | 
 | 	if (rc > 0) | 
 | 		rc = pnv_eeh_poll(phb->opal_id); | 
 | 	if (option == EEH_RESET_DEACTIVATE) { | 
 | 		if (system_state < SYSTEM_RUNNING) | 
 | 			udelay(1000 * EEH_PE_RST_SETTLE_TIME); | 
 | 		else | 
 | 			msleep(EEH_PE_RST_SETTLE_TIME); | 
 | 	} | 
 | out: | 
 | 	if (rc != OPAL_SUCCESS) | 
 | 		return -EIO; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pnv_eeh_root_reset(struct pci_controller *hose, int option) | 
 | { | 
 | 	struct pnv_phb *phb = hose->private_data; | 
 | 	s64 rc = OPAL_HARDWARE; | 
 |  | 
 | 	pr_debug("%s: Reset PHB#%x, option=%d\n", | 
 | 		 __func__, hose->global_number, option); | 
 |  | 
 | 	/* | 
 | 	 * During the reset deassert time, we needn't care | 
 | 	 * the reset scope because the firmware does nothing | 
 | 	 * for fundamental or hot reset during deassert phase. | 
 | 	 */ | 
 | 	if (option == EEH_RESET_FUNDAMENTAL) | 
 | 		rc = opal_pci_reset(phb->opal_id, | 
 | 				    OPAL_RESET_PCI_FUNDAMENTAL, | 
 | 				    OPAL_ASSERT_RESET); | 
 | 	else if (option == EEH_RESET_HOT) | 
 | 		rc = opal_pci_reset(phb->opal_id, | 
 | 				    OPAL_RESET_PCI_HOT, | 
 | 				    OPAL_ASSERT_RESET); | 
 | 	else if (option == EEH_RESET_DEACTIVATE) | 
 | 		rc = opal_pci_reset(phb->opal_id, | 
 | 				    OPAL_RESET_PCI_HOT, | 
 | 				    OPAL_DEASSERT_RESET); | 
 | 	if (rc < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* Poll state of the PHB until the request is done */ | 
 | 	if (rc > 0) | 
 | 		rc = pnv_eeh_poll(phb->opal_id); | 
 | 	if (option == EEH_RESET_DEACTIVATE) | 
 | 		msleep(EEH_PE_RST_SETTLE_TIME); | 
 | out: | 
 | 	if (rc != OPAL_SUCCESS) | 
 | 		return -EIO; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __pnv_eeh_bridge_reset(struct pci_dev *dev, int option) | 
 | { | 
 | 	struct pci_dn *pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn); | 
 | 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn); | 
 | 	int aer = edev ? edev->aer_cap : 0; | 
 | 	u32 ctrl; | 
 |  | 
 | 	pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n", | 
 | 		 __func__, pci_domain_nr(dev->bus), | 
 | 		 dev->bus->number, option); | 
 |  | 
 | 	switch (option) { | 
 | 	case EEH_RESET_FUNDAMENTAL: | 
 | 	case EEH_RESET_HOT: | 
 | 		/* Don't report linkDown event */ | 
 | 		if (aer) { | 
 | 			eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK, | 
 | 					     4, &ctrl); | 
 | 			ctrl |= PCI_ERR_UNC_SURPDN; | 
 | 			eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK, | 
 | 					      4, ctrl); | 
 | 		} | 
 |  | 
 | 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl); | 
 | 		ctrl |= PCI_BRIDGE_CTL_BUS_RESET; | 
 | 		eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl); | 
 |  | 
 | 		msleep(EEH_PE_RST_HOLD_TIME); | 
 | 		break; | 
 | 	case EEH_RESET_DEACTIVATE: | 
 | 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl); | 
 | 		ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; | 
 | 		eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl); | 
 |  | 
 | 		msleep(EEH_PE_RST_SETTLE_TIME); | 
 |  | 
 | 		/* Continue reporting linkDown event */ | 
 | 		if (aer) { | 
 | 			eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK, | 
 | 					     4, &ctrl); | 
 | 			ctrl &= ~PCI_ERR_UNC_SURPDN; | 
 | 			eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK, | 
 | 					      4, ctrl); | 
 | 		} | 
 |  | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pnv_eeh_bridge_reset(struct pci_dev *pdev, int option) | 
 | { | 
 | 	struct pci_controller *hose = pci_bus_to_host(pdev->bus); | 
 | 	struct pnv_phb *phb = hose->private_data; | 
 | 	struct device_node *dn = pci_device_to_OF_node(pdev); | 
 | 	uint64_t id = PCI_SLOT_ID(phb->opal_id, | 
 | 				  (pdev->bus->number << 8) | pdev->devfn); | 
 | 	uint8_t scope; | 
 | 	int64_t rc; | 
 |  | 
 | 	/* Hot reset to the bus if firmware cannot handle */ | 
 | 	if (!dn || !of_get_property(dn, "ibm,reset-by-firmware", NULL)) | 
 | 		return __pnv_eeh_bridge_reset(pdev, option); | 
 |  | 
 | 	switch (option) { | 
 | 	case EEH_RESET_FUNDAMENTAL: | 
 | 		scope = OPAL_RESET_PCI_FUNDAMENTAL; | 
 | 		break; | 
 | 	case EEH_RESET_HOT: | 
 | 		scope = OPAL_RESET_PCI_HOT; | 
 | 		break; | 
 | 	case EEH_RESET_DEACTIVATE: | 
 | 		return 0; | 
 | 	default: | 
 | 		dev_dbg(&pdev->dev, "%s: Unsupported reset %d\n", | 
 | 			__func__, option); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	rc = opal_pci_reset(id, scope, OPAL_ASSERT_RESET); | 
 | 	if (rc <= OPAL_SUCCESS) | 
 | 		goto out; | 
 |  | 
 | 	rc = pnv_eeh_poll(id); | 
 | out: | 
 | 	return (rc == OPAL_SUCCESS) ? 0 : -EIO; | 
 | } | 
 |  | 
 | void pnv_pci_reset_secondary_bus(struct pci_dev *dev) | 
 | { | 
 | 	struct pci_controller *hose; | 
 |  | 
 | 	if (pci_is_root_bus(dev->bus)) { | 
 | 		hose = pci_bus_to_host(dev->bus); | 
 | 		pnv_eeh_root_reset(hose, EEH_RESET_HOT); | 
 | 		pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE); | 
 | 	} else { | 
 | 		pnv_eeh_bridge_reset(dev, EEH_RESET_HOT); | 
 | 		pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE); | 
 | 	} | 
 | } | 
 |  | 
 | static void pnv_eeh_wait_for_pending(struct pci_dn *pdn, const char *type, | 
 | 				     int pos, u16 mask) | 
 | { | 
 | 	int i, status = 0; | 
 |  | 
 | 	/* Wait for Transaction Pending bit to be cleared */ | 
 | 	for (i = 0; i < 4; i++) { | 
 | 		eeh_ops->read_config(pdn, pos, 2, &status); | 
 | 		if (!(status & mask)) | 
 | 			return; | 
 |  | 
 | 		msleep((1 << i) * 100); | 
 | 	} | 
 |  | 
 | 	pr_warn("%s: Pending transaction while issuing %sFLR to %04x:%02x:%02x.%01x\n", | 
 | 		__func__, type, | 
 | 		pdn->phb->global_number, pdn->busno, | 
 | 		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn)); | 
 | } | 
 |  | 
 | static int pnv_eeh_do_flr(struct pci_dn *pdn, int option) | 
 | { | 
 | 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn); | 
 | 	u32 reg = 0; | 
 |  | 
 | 	if (WARN_ON(!edev->pcie_cap)) | 
 | 		return -ENOTTY; | 
 |  | 
 | 	eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP, 4, ®); | 
 | 	if (!(reg & PCI_EXP_DEVCAP_FLR)) | 
 | 		return -ENOTTY; | 
 |  | 
 | 	switch (option) { | 
 | 	case EEH_RESET_HOT: | 
 | 	case EEH_RESET_FUNDAMENTAL: | 
 | 		pnv_eeh_wait_for_pending(pdn, "", | 
 | 					 edev->pcie_cap + PCI_EXP_DEVSTA, | 
 | 					 PCI_EXP_DEVSTA_TRPND); | 
 | 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, | 
 | 				     4, ®); | 
 | 		reg |= PCI_EXP_DEVCTL_BCR_FLR; | 
 | 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, | 
 | 				      4, reg); | 
 | 		msleep(EEH_PE_RST_HOLD_TIME); | 
 | 		break; | 
 | 	case EEH_RESET_DEACTIVATE: | 
 | 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, | 
 | 				     4, ®); | 
 | 		reg &= ~PCI_EXP_DEVCTL_BCR_FLR; | 
 | 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, | 
 | 				      4, reg); | 
 | 		msleep(EEH_PE_RST_SETTLE_TIME); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pnv_eeh_do_af_flr(struct pci_dn *pdn, int option) | 
 | { | 
 | 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn); | 
 | 	u32 cap = 0; | 
 |  | 
 | 	if (WARN_ON(!edev->af_cap)) | 
 | 		return -ENOTTY; | 
 |  | 
 | 	eeh_ops->read_config(pdn, edev->af_cap + PCI_AF_CAP, 1, &cap); | 
 | 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) | 
 | 		return -ENOTTY; | 
 |  | 
 | 	switch (option) { | 
 | 	case EEH_RESET_HOT: | 
 | 	case EEH_RESET_FUNDAMENTAL: | 
 | 		/* | 
 | 		 * Wait for Transaction Pending bit to clear. A word-aligned | 
 | 		 * test is used, so we use the conrol offset rather than status | 
 | 		 * and shift the test bit to match. | 
 | 		 */ | 
 | 		pnv_eeh_wait_for_pending(pdn, "AF", | 
 | 					 edev->af_cap + PCI_AF_CTRL, | 
 | 					 PCI_AF_STATUS_TP << 8); | 
 | 		eeh_ops->write_config(pdn, edev->af_cap + PCI_AF_CTRL, | 
 | 				      1, PCI_AF_CTRL_FLR); | 
 | 		msleep(EEH_PE_RST_HOLD_TIME); | 
 | 		break; | 
 | 	case EEH_RESET_DEACTIVATE: | 
 | 		eeh_ops->write_config(pdn, edev->af_cap + PCI_AF_CTRL, 1, 0); | 
 | 		msleep(EEH_PE_RST_SETTLE_TIME); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pnv_eeh_reset_vf_pe(struct eeh_pe *pe, int option) | 
 | { | 
 | 	struct eeh_dev *edev; | 
 | 	struct pci_dn *pdn; | 
 | 	int ret; | 
 |  | 
 | 	/* The VF PE should have only one child device */ | 
 | 	edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, list); | 
 | 	pdn = eeh_dev_to_pdn(edev); | 
 | 	if (!pdn) | 
 | 		return -ENXIO; | 
 |  | 
 | 	ret = pnv_eeh_do_flr(pdn, option); | 
 | 	if (!ret) | 
 | 		return ret; | 
 |  | 
 | 	return pnv_eeh_do_af_flr(pdn, option); | 
 | } | 
 |  | 
 | /** | 
 |  * pnv_eeh_reset - Reset the specified PE | 
 |  * @pe: EEH PE | 
 |  * @option: reset option | 
 |  * | 
 |  * Do reset on the indicated PE. For PCI bus sensitive PE, | 
 |  * we need to reset the parent p2p bridge. The PHB has to | 
 |  * be reinitialized if the p2p bridge is root bridge. For | 
 |  * PCI device sensitive PE, we will try to reset the device | 
 |  * through FLR. For now, we don't have OPAL APIs to do HARD | 
 |  * reset yet, so all reset would be SOFT (HOT) reset. | 
 |  */ | 
 | static int pnv_eeh_reset(struct eeh_pe *pe, int option) | 
 | { | 
 | 	struct pci_controller *hose = pe->phb; | 
 | 	struct pnv_phb *phb; | 
 | 	struct pci_bus *bus; | 
 | 	int64_t rc; | 
 |  | 
 | 	/* | 
 | 	 * For PHB reset, we always have complete reset. For those PEs whose | 
 | 	 * primary bus derived from root complex (root bus) or root port | 
 | 	 * (usually bus#1), we apply hot or fundamental reset on the root port. | 
 | 	 * For other PEs, we always have hot reset on the PE primary bus. | 
 | 	 * | 
 | 	 * Here, we have different design to pHyp, which always clear the | 
 | 	 * frozen state during PE reset. However, the good idea here from | 
 | 	 * benh is to keep frozen state before we get PE reset done completely | 
 | 	 * (until BAR restore). With the frozen state, HW drops illegal IO | 
 | 	 * or MMIO access, which can incur recrusive frozen PE during PE | 
 | 	 * reset. The side effect is that EEH core has to clear the frozen | 
 | 	 * state explicitly after BAR restore. | 
 | 	 */ | 
 | 	if (pe->type & EEH_PE_PHB) | 
 | 		return pnv_eeh_phb_reset(hose, option); | 
 |  | 
 | 	/* | 
 | 	 * The frozen PE might be caused by PAPR error injection | 
 | 	 * registers, which are expected to be cleared after hitting | 
 | 	 * frozen PE as stated in the hardware spec. Unfortunately, | 
 | 	 * that's not true on P7IOC. So we have to clear it manually | 
 | 	 * to avoid recursive EEH errors during recovery. | 
 | 	 */ | 
 | 	phb = hose->private_data; | 
 | 	if (phb->model == PNV_PHB_MODEL_P7IOC && | 
 | 	    (option == EEH_RESET_HOT || | 
 | 	     option == EEH_RESET_FUNDAMENTAL)) { | 
 | 		rc = opal_pci_reset(phb->opal_id, | 
 | 				    OPAL_RESET_PHB_ERROR, | 
 | 				    OPAL_ASSERT_RESET); | 
 | 		if (rc != OPAL_SUCCESS) { | 
 | 			pr_warn("%s: Failure %lld clearing error injection registers\n", | 
 | 				__func__, rc); | 
 | 			return -EIO; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (pe->type & EEH_PE_VF) | 
 | 		return pnv_eeh_reset_vf_pe(pe, option); | 
 |  | 
 | 	bus = eeh_pe_bus_get(pe); | 
 | 	if (!bus) { | 
 | 		pr_err("%s: Cannot find PCI bus for PHB#%x-PE#%x\n", | 
 | 			__func__, pe->phb->global_number, pe->addr); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If dealing with the root bus (or the bus underneath the | 
 | 	 * root port), we reset the bus underneath the root port. | 
 | 	 * | 
 | 	 * The cxl driver depends on this behaviour for bi-modal card | 
 | 	 * switching. | 
 | 	 */ | 
 | 	if (pci_is_root_bus(bus) || | 
 | 	    pci_is_root_bus(bus->parent)) | 
 | 		return pnv_eeh_root_reset(hose, option); | 
 |  | 
 | 	return pnv_eeh_bridge_reset(bus->self, option); | 
 | } | 
 |  | 
 | /** | 
 |  * pnv_eeh_wait_state - Wait for PE state | 
 |  * @pe: EEH PE | 
 |  * @max_wait: maximal period in millisecond | 
 |  * | 
 |  * Wait for the state of associated PE. It might take some time | 
 |  * to retrieve the PE's state. | 
 |  */ | 
 | static int pnv_eeh_wait_state(struct eeh_pe *pe, int max_wait) | 
 | { | 
 | 	int ret; | 
 | 	int mwait; | 
 |  | 
 | 	while (1) { | 
 | 		ret = pnv_eeh_get_state(pe, &mwait); | 
 |  | 
 | 		/* | 
 | 		 * If the PE's state is temporarily unavailable, | 
 | 		 * we have to wait for the specified time. Otherwise, | 
 | 		 * the PE's state will be returned immediately. | 
 | 		 */ | 
 | 		if (ret != EEH_STATE_UNAVAILABLE) | 
 | 			return ret; | 
 |  | 
 | 		if (max_wait <= 0) { | 
 | 			pr_warn("%s: Timeout getting PE#%x's state (%d)\n", | 
 | 				__func__, pe->addr, max_wait); | 
 | 			return EEH_STATE_NOT_SUPPORT; | 
 | 		} | 
 |  | 
 | 		max_wait -= mwait; | 
 | 		msleep(mwait); | 
 | 	} | 
 |  | 
 | 	return EEH_STATE_NOT_SUPPORT; | 
 | } | 
 |  | 
 | /** | 
 |  * pnv_eeh_get_log - Retrieve error log | 
 |  * @pe: EEH PE | 
 |  * @severity: temporary or permanent error log | 
 |  * @drv_log: driver log to be combined with retrieved error log | 
 |  * @len: length of driver log | 
 |  * | 
 |  * Retrieve the temporary or permanent error from the PE. | 
 |  */ | 
 | static int pnv_eeh_get_log(struct eeh_pe *pe, int severity, | 
 | 			   char *drv_log, unsigned long len) | 
 | { | 
 | 	if (!eeh_has_flag(EEH_EARLY_DUMP_LOG)) | 
 | 		pnv_pci_dump_phb_diag_data(pe->phb, pe->data); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE | 
 |  * @pe: EEH PE | 
 |  * | 
 |  * The function will be called to reconfigure the bridges included | 
 |  * in the specified PE so that the mulfunctional PE would be recovered | 
 |  * again. | 
 |  */ | 
 | static int pnv_eeh_configure_bridge(struct eeh_pe *pe) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * pnv_pe_err_inject - Inject specified error to the indicated PE | 
 |  * @pe: the indicated PE | 
 |  * @type: error type | 
 |  * @func: specific error type | 
 |  * @addr: address | 
 |  * @mask: address mask | 
 |  * | 
 |  * The routine is called to inject specified error, which is | 
 |  * determined by @type and @func, to the indicated PE for | 
 |  * testing purpose. | 
 |  */ | 
 | static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func, | 
 | 			      unsigned long addr, unsigned long mask) | 
 | { | 
 | 	struct pci_controller *hose = pe->phb; | 
 | 	struct pnv_phb *phb = hose->private_data; | 
 | 	s64 rc; | 
 |  | 
 | 	if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR && | 
 | 	    type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) { | 
 | 		pr_warn("%s: Invalid error type %d\n", | 
 | 			__func__, type); | 
 | 		return -ERANGE; | 
 | 	} | 
 |  | 
 | 	if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR || | 
 | 	    func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) { | 
 | 		pr_warn("%s: Invalid error function %d\n", | 
 | 			__func__, func); | 
 | 		return -ERANGE; | 
 | 	} | 
 |  | 
 | 	/* Firmware supports error injection ? */ | 
 | 	if (!opal_check_token(OPAL_PCI_ERR_INJECT)) { | 
 | 		pr_warn("%s: Firmware doesn't support error injection\n", | 
 | 			__func__); | 
 | 		return -ENXIO; | 
 | 	} | 
 |  | 
 | 	/* Do error injection */ | 
 | 	rc = opal_pci_err_inject(phb->opal_id, pe->addr, | 
 | 				 type, func, addr, mask); | 
 | 	if (rc != OPAL_SUCCESS) { | 
 | 		pr_warn("%s: Failure %lld injecting error " | 
 | 			"%d-%d to PHB#%x-PE#%x\n", | 
 | 			__func__, rc, type, func, | 
 | 			hose->global_number, pe->addr); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline bool pnv_eeh_cfg_blocked(struct pci_dn *pdn) | 
 | { | 
 | 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn); | 
 |  | 
 | 	if (!edev || !edev->pe) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * We will issue FLR or AF FLR to all VFs, which are contained | 
 | 	 * in VF PE. It relies on the EEH PCI config accessors. So we | 
 | 	 * can't block them during the window. | 
 | 	 */ | 
 | 	if (edev->physfn && (edev->pe->state & EEH_PE_RESET)) | 
 | 		return false; | 
 |  | 
 | 	if (edev->pe->state & EEH_PE_CFG_BLOCKED) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static int pnv_eeh_read_config(struct pci_dn *pdn, | 
 | 			       int where, int size, u32 *val) | 
 | { | 
 | 	if (!pdn) | 
 | 		return PCIBIOS_DEVICE_NOT_FOUND; | 
 |  | 
 | 	if (pnv_eeh_cfg_blocked(pdn)) { | 
 | 		*val = 0xFFFFFFFF; | 
 | 		return PCIBIOS_SET_FAILED; | 
 | 	} | 
 |  | 
 | 	return pnv_pci_cfg_read(pdn, where, size, val); | 
 | } | 
 |  | 
 | static int pnv_eeh_write_config(struct pci_dn *pdn, | 
 | 				int where, int size, u32 val) | 
 | { | 
 | 	if (!pdn) | 
 | 		return PCIBIOS_DEVICE_NOT_FOUND; | 
 |  | 
 | 	if (pnv_eeh_cfg_blocked(pdn)) | 
 | 		return PCIBIOS_SET_FAILED; | 
 |  | 
 | 	return pnv_pci_cfg_write(pdn, where, size, val); | 
 | } | 
 |  | 
 | static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data) | 
 | { | 
 | 	/* GEM */ | 
 | 	if (data->gemXfir || data->gemRfir || | 
 | 	    data->gemRirqfir || data->gemMask || data->gemRwof) | 
 | 		pr_info("  GEM: %016llx %016llx %016llx %016llx %016llx\n", | 
 | 			be64_to_cpu(data->gemXfir), | 
 | 			be64_to_cpu(data->gemRfir), | 
 | 			be64_to_cpu(data->gemRirqfir), | 
 | 			be64_to_cpu(data->gemMask), | 
 | 			be64_to_cpu(data->gemRwof)); | 
 |  | 
 | 	/* LEM */ | 
 | 	if (data->lemFir || data->lemErrMask || | 
 | 	    data->lemAction0 || data->lemAction1 || data->lemWof) | 
 | 		pr_info("  LEM: %016llx %016llx %016llx %016llx %016llx\n", | 
 | 			be64_to_cpu(data->lemFir), | 
 | 			be64_to_cpu(data->lemErrMask), | 
 | 			be64_to_cpu(data->lemAction0), | 
 | 			be64_to_cpu(data->lemAction1), | 
 | 			be64_to_cpu(data->lemWof)); | 
 | } | 
 |  | 
 | static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose) | 
 | { | 
 | 	struct pnv_phb *phb = hose->private_data; | 
 | 	struct OpalIoP7IOCErrorData *data = | 
 | 		(struct OpalIoP7IOCErrorData*)phb->diag_data; | 
 | 	long rc; | 
 |  | 
 | 	rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data)); | 
 | 	if (rc != OPAL_SUCCESS) { | 
 | 		pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n", | 
 | 			__func__, phb->hub_id, rc); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	switch (be16_to_cpu(data->type)) { | 
 | 	case OPAL_P7IOC_DIAG_TYPE_RGC: | 
 | 		pr_info("P7IOC diag-data for RGC\n\n"); | 
 | 		pnv_eeh_dump_hub_diag_common(data); | 
 | 		if (data->rgc.rgcStatus || data->rgc.rgcLdcp) | 
 | 			pr_info("  RGC: %016llx %016llx\n", | 
 | 				be64_to_cpu(data->rgc.rgcStatus), | 
 | 				be64_to_cpu(data->rgc.rgcLdcp)); | 
 | 		break; | 
 | 	case OPAL_P7IOC_DIAG_TYPE_BI: | 
 | 		pr_info("P7IOC diag-data for BI %s\n\n", | 
 | 			data->bi.biDownbound ? "Downbound" : "Upbound"); | 
 | 		pnv_eeh_dump_hub_diag_common(data); | 
 | 		if (data->bi.biLdcp0 || data->bi.biLdcp1 || | 
 | 		    data->bi.biLdcp2 || data->bi.biFenceStatus) | 
 | 			pr_info("  BI:  %016llx %016llx %016llx %016llx\n", | 
 | 				be64_to_cpu(data->bi.biLdcp0), | 
 | 				be64_to_cpu(data->bi.biLdcp1), | 
 | 				be64_to_cpu(data->bi.biLdcp2), | 
 | 				be64_to_cpu(data->bi.biFenceStatus)); | 
 | 		break; | 
 | 	case OPAL_P7IOC_DIAG_TYPE_CI: | 
 | 		pr_info("P7IOC diag-data for CI Port %d\n\n", | 
 | 			data->ci.ciPort); | 
 | 		pnv_eeh_dump_hub_diag_common(data); | 
 | 		if (data->ci.ciPortStatus || data->ci.ciPortLdcp) | 
 | 			pr_info("  CI:  %016llx %016llx\n", | 
 | 				be64_to_cpu(data->ci.ciPortStatus), | 
 | 				be64_to_cpu(data->ci.ciPortLdcp)); | 
 | 		break; | 
 | 	case OPAL_P7IOC_DIAG_TYPE_MISC: | 
 | 		pr_info("P7IOC diag-data for MISC\n\n"); | 
 | 		pnv_eeh_dump_hub_diag_common(data); | 
 | 		break; | 
 | 	case OPAL_P7IOC_DIAG_TYPE_I2C: | 
 | 		pr_info("P7IOC diag-data for I2C\n\n"); | 
 | 		pnv_eeh_dump_hub_diag_common(data); | 
 | 		break; | 
 | 	default: | 
 | 		pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n", | 
 | 			__func__, phb->hub_id, data->type); | 
 | 	} | 
 | } | 
 |  | 
 | static int pnv_eeh_get_pe(struct pci_controller *hose, | 
 | 			  u16 pe_no, struct eeh_pe **pe) | 
 | { | 
 | 	struct pnv_phb *phb = hose->private_data; | 
 | 	struct pnv_ioda_pe *pnv_pe; | 
 | 	struct eeh_pe *dev_pe; | 
 |  | 
 | 	/* | 
 | 	 * If PHB supports compound PE, to fetch | 
 | 	 * the master PE because slave PE is invisible | 
 | 	 * to EEH core. | 
 | 	 */ | 
 | 	pnv_pe = &phb->ioda.pe_array[pe_no]; | 
 | 	if (pnv_pe->flags & PNV_IODA_PE_SLAVE) { | 
 | 		pnv_pe = pnv_pe->master; | 
 | 		WARN_ON(!pnv_pe || | 
 | 			!(pnv_pe->flags & PNV_IODA_PE_MASTER)); | 
 | 		pe_no = pnv_pe->pe_number; | 
 | 	} | 
 |  | 
 | 	/* Find the PE according to PE# */ | 
 | 	dev_pe = eeh_pe_get(hose, pe_no, 0); | 
 | 	if (!dev_pe) | 
 | 		return -EEXIST; | 
 |  | 
 | 	/* Freeze the (compound) PE */ | 
 | 	*pe = dev_pe; | 
 | 	if (!(dev_pe->state & EEH_PE_ISOLATED)) | 
 | 		phb->freeze_pe(phb, pe_no); | 
 |  | 
 | 	/* | 
 | 	 * At this point, we're sure the (compound) PE should | 
 | 	 * have been frozen. However, we still need poke until | 
 | 	 * hitting the frozen PE on top level. | 
 | 	 */ | 
 | 	dev_pe = dev_pe->parent; | 
 | 	while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) { | 
 | 		int ret; | 
 | 		int active_flags = (EEH_STATE_MMIO_ACTIVE | | 
 | 				    EEH_STATE_DMA_ACTIVE); | 
 |  | 
 | 		ret = eeh_ops->get_state(dev_pe, NULL); | 
 | 		if (ret <= 0 || (ret & active_flags) == active_flags) { | 
 | 			dev_pe = dev_pe->parent; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Frozen parent PE */ | 
 | 		*pe = dev_pe; | 
 | 		if (!(dev_pe->state & EEH_PE_ISOLATED)) | 
 | 			phb->freeze_pe(phb, dev_pe->addr); | 
 |  | 
 | 		/* Next one */ | 
 | 		dev_pe = dev_pe->parent; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * pnv_eeh_next_error - Retrieve next EEH error to handle | 
 |  * @pe: Affected PE | 
 |  * | 
 |  * The function is expected to be called by EEH core while it gets | 
 |  * special EEH event (without binding PE). The function calls to | 
 |  * OPAL APIs for next error to handle. The informational error is | 
 |  * handled internally by platform. However, the dead IOC, dead PHB, | 
 |  * fenced PHB and frozen PE should be handled by EEH core eventually. | 
 |  */ | 
 | static int pnv_eeh_next_error(struct eeh_pe **pe) | 
 | { | 
 | 	struct pci_controller *hose; | 
 | 	struct pnv_phb *phb; | 
 | 	struct eeh_pe *phb_pe, *parent_pe; | 
 | 	__be64 frozen_pe_no; | 
 | 	__be16 err_type, severity; | 
 | 	int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE); | 
 | 	long rc; | 
 | 	int state, ret = EEH_NEXT_ERR_NONE; | 
 |  | 
 | 	/* | 
 | 	 * While running here, it's safe to purge the event queue. The | 
 | 	 * event should still be masked. | 
 | 	 */ | 
 | 	eeh_remove_event(NULL, false); | 
 |  | 
 | 	list_for_each_entry(hose, &hose_list, list_node) { | 
 | 		/* | 
 | 		 * If the subordinate PCI buses of the PHB has been | 
 | 		 * removed or is exactly under error recovery, we | 
 | 		 * needn't take care of it any more. | 
 | 		 */ | 
 | 		phb = hose->private_data; | 
 | 		phb_pe = eeh_phb_pe_get(hose); | 
 | 		if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED)) | 
 | 			continue; | 
 |  | 
 | 		rc = opal_pci_next_error(phb->opal_id, | 
 | 					 &frozen_pe_no, &err_type, &severity); | 
 | 		if (rc != OPAL_SUCCESS) { | 
 | 			pr_devel("%s: Invalid return value on " | 
 | 				 "PHB#%x (0x%lx) from opal_pci_next_error", | 
 | 				 __func__, hose->global_number, rc); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* If the PHB doesn't have error, stop processing */ | 
 | 		if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR || | 
 | 		    be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) { | 
 | 			pr_devel("%s: No error found on PHB#%x\n", | 
 | 				 __func__, hose->global_number); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Processing the error. We're expecting the error with | 
 | 		 * highest priority reported upon multiple errors on the | 
 | 		 * specific PHB. | 
 | 		 */ | 
 | 		pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n", | 
 | 			__func__, be16_to_cpu(err_type), | 
 | 			be16_to_cpu(severity), be64_to_cpu(frozen_pe_no), | 
 | 			hose->global_number); | 
 | 		switch (be16_to_cpu(err_type)) { | 
 | 		case OPAL_EEH_IOC_ERROR: | 
 | 			if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) { | 
 | 				pr_err("EEH: dead IOC detected\n"); | 
 | 				ret = EEH_NEXT_ERR_DEAD_IOC; | 
 | 			} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) { | 
 | 				pr_info("EEH: IOC informative error " | 
 | 					"detected\n"); | 
 | 				pnv_eeh_get_and_dump_hub_diag(hose); | 
 | 				ret = EEH_NEXT_ERR_NONE; | 
 | 			} | 
 |  | 
 | 			break; | 
 | 		case OPAL_EEH_PHB_ERROR: | 
 | 			if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) { | 
 | 				*pe = phb_pe; | 
 | 				pr_err("EEH: dead PHB#%x detected, " | 
 | 				       "location: %s\n", | 
 | 					hose->global_number, | 
 | 					eeh_pe_loc_get(phb_pe)); | 
 | 				ret = EEH_NEXT_ERR_DEAD_PHB; | 
 | 			} else if (be16_to_cpu(severity) == | 
 | 				   OPAL_EEH_SEV_PHB_FENCED) { | 
 | 				*pe = phb_pe; | 
 | 				pr_err("EEH: Fenced PHB#%x detected, " | 
 | 				       "location: %s\n", | 
 | 					hose->global_number, | 
 | 					eeh_pe_loc_get(phb_pe)); | 
 | 				ret = EEH_NEXT_ERR_FENCED_PHB; | 
 | 			} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) { | 
 | 				pr_info("EEH: PHB#%x informative error " | 
 | 					"detected, location: %s\n", | 
 | 					hose->global_number, | 
 | 					eeh_pe_loc_get(phb_pe)); | 
 | 				pnv_eeh_get_phb_diag(phb_pe); | 
 | 				pnv_pci_dump_phb_diag_data(hose, phb_pe->data); | 
 | 				ret = EEH_NEXT_ERR_NONE; | 
 | 			} | 
 |  | 
 | 			break; | 
 | 		case OPAL_EEH_PE_ERROR: | 
 | 			/* | 
 | 			 * If we can't find the corresponding PE, we | 
 | 			 * just try to unfreeze. | 
 | 			 */ | 
 | 			if (pnv_eeh_get_pe(hose, | 
 | 				be64_to_cpu(frozen_pe_no), pe)) { | 
 | 				pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n", | 
 | 					hose->global_number, be64_to_cpu(frozen_pe_no)); | 
 | 				pr_info("EEH: PHB location: %s\n", | 
 | 					eeh_pe_loc_get(phb_pe)); | 
 |  | 
 | 				/* Dump PHB diag-data */ | 
 | 				rc = opal_pci_get_phb_diag_data2(phb->opal_id, | 
 | 					phb->diag_data, phb->diag_data_size); | 
 | 				if (rc == OPAL_SUCCESS) | 
 | 					pnv_pci_dump_phb_diag_data(hose, | 
 | 							phb->diag_data); | 
 |  | 
 | 				/* Try best to clear it */ | 
 | 				opal_pci_eeh_freeze_clear(phb->opal_id, | 
 | 					be64_to_cpu(frozen_pe_no), | 
 | 					OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); | 
 | 				ret = EEH_NEXT_ERR_NONE; | 
 | 			} else if ((*pe)->state & EEH_PE_ISOLATED || | 
 | 				   eeh_pe_passed(*pe)) { | 
 | 				ret = EEH_NEXT_ERR_NONE; | 
 | 			} else { | 
 | 				pr_err("EEH: Frozen PE#%x " | 
 | 				       "on PHB#%x detected\n", | 
 | 				       (*pe)->addr, | 
 | 					(*pe)->phb->global_number); | 
 | 				pr_err("EEH: PE location: %s, " | 
 | 				       "PHB location: %s\n", | 
 | 				       eeh_pe_loc_get(*pe), | 
 | 				       eeh_pe_loc_get(phb_pe)); | 
 | 				ret = EEH_NEXT_ERR_FROZEN_PE; | 
 | 			} | 
 |  | 
 | 			break; | 
 | 		default: | 
 | 			pr_warn("%s: Unexpected error type %d\n", | 
 | 				__func__, be16_to_cpu(err_type)); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * EEH core will try recover from fenced PHB or | 
 | 		 * frozen PE. In the time for frozen PE, EEH core | 
 | 		 * enable IO path for that before collecting logs, | 
 | 		 * but it ruins the site. So we have to dump the | 
 | 		 * log in advance here. | 
 | 		 */ | 
 | 		if ((ret == EEH_NEXT_ERR_FROZEN_PE  || | 
 | 		    ret == EEH_NEXT_ERR_FENCED_PHB) && | 
 | 		    !((*pe)->state & EEH_PE_ISOLATED)) { | 
 | 			eeh_pe_state_mark(*pe, EEH_PE_ISOLATED); | 
 | 			pnv_eeh_get_phb_diag(*pe); | 
 |  | 
 | 			if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) | 
 | 				pnv_pci_dump_phb_diag_data((*pe)->phb, | 
 | 							   (*pe)->data); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We probably have the frozen parent PE out there and | 
 | 		 * we need have to handle frozen parent PE firstly. | 
 | 		 */ | 
 | 		if (ret == EEH_NEXT_ERR_FROZEN_PE) { | 
 | 			parent_pe = (*pe)->parent; | 
 | 			while (parent_pe) { | 
 | 				/* Hit the ceiling ? */ | 
 | 				if (parent_pe->type & EEH_PE_PHB) | 
 | 					break; | 
 |  | 
 | 				/* Frozen parent PE ? */ | 
 | 				state = eeh_ops->get_state(parent_pe, NULL); | 
 | 				if (state > 0 && | 
 | 				    (state & active_flags) != active_flags) | 
 | 					*pe = parent_pe; | 
 |  | 
 | 				/* Next parent level */ | 
 | 				parent_pe = parent_pe->parent; | 
 | 			} | 
 |  | 
 | 			/* We possibly migrate to another PE */ | 
 | 			eeh_pe_state_mark(*pe, EEH_PE_ISOLATED); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If we have no errors on the specific PHB or only | 
 | 		 * informative error there, we continue poking it. | 
 | 		 * Otherwise, we need actions to be taken by upper | 
 | 		 * layer. | 
 | 		 */ | 
 | 		if (ret > EEH_NEXT_ERR_INF) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* Unmask the event */ | 
 | 	if (ret == EEH_NEXT_ERR_NONE && eeh_enabled()) | 
 | 		enable_irq(eeh_event_irq); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int pnv_eeh_restore_vf_config(struct pci_dn *pdn) | 
 | { | 
 | 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn); | 
 | 	u32 devctl, cmd, cap2, aer_capctl; | 
 | 	int old_mps; | 
 |  | 
 | 	if (edev->pcie_cap) { | 
 | 		/* Restore MPS */ | 
 | 		old_mps = (ffs(pdn->mps) - 8) << 5; | 
 | 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, | 
 | 				     2, &devctl); | 
 | 		devctl &= ~PCI_EXP_DEVCTL_PAYLOAD; | 
 | 		devctl |= old_mps; | 
 | 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, | 
 | 				      2, devctl); | 
 |  | 
 | 		/* Disable Completion Timeout */ | 
 | 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2, | 
 | 				     4, &cap2); | 
 | 		if (cap2 & 0x10) { | 
 | 			eeh_ops->read_config(pdn, | 
 | 					     edev->pcie_cap + PCI_EXP_DEVCTL2, | 
 | 					     4, &cap2); | 
 | 			cap2 |= 0x10; | 
 | 			eeh_ops->write_config(pdn, | 
 | 					      edev->pcie_cap + PCI_EXP_DEVCTL2, | 
 | 					      4, cap2); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Enable SERR and parity checking */ | 
 | 	eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd); | 
 | 	cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR); | 
 | 	eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd); | 
 |  | 
 | 	/* Enable report various errors */ | 
 | 	if (edev->pcie_cap) { | 
 | 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, | 
 | 				     2, &devctl); | 
 | 		devctl &= ~PCI_EXP_DEVCTL_CERE; | 
 | 		devctl |= (PCI_EXP_DEVCTL_NFERE | | 
 | 			   PCI_EXP_DEVCTL_FERE | | 
 | 			   PCI_EXP_DEVCTL_URRE); | 
 | 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, | 
 | 				      2, devctl); | 
 | 	} | 
 |  | 
 | 	/* Enable ECRC generation and check */ | 
 | 	if (edev->pcie_cap && edev->aer_cap) { | 
 | 		eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP, | 
 | 				     4, &aer_capctl); | 
 | 		aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE); | 
 | 		eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP, | 
 | 				      4, aer_capctl); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pnv_eeh_restore_config(struct pci_dn *pdn) | 
 | { | 
 | 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn); | 
 | 	struct pnv_phb *phb; | 
 | 	s64 ret; | 
 | 	int config_addr = (pdn->busno << 8) | (pdn->devfn); | 
 |  | 
 | 	if (!edev) | 
 | 		return -EEXIST; | 
 |  | 
 | 	/* | 
 | 	 * We have to restore the PCI config space after reset since the | 
 | 	 * firmware can't see SRIOV VFs. | 
 | 	 * | 
 | 	 * FIXME: The MPS, error routing rules, timeout setting are worthy | 
 | 	 * to be exported by firmware in extendible way. | 
 | 	 */ | 
 | 	if (edev->physfn) { | 
 | 		ret = pnv_eeh_restore_vf_config(pdn); | 
 | 	} else { | 
 | 		phb = pdn->phb->private_data; | 
 | 		ret = opal_pci_reinit(phb->opal_id, | 
 | 				      OPAL_REINIT_PCI_DEV, config_addr); | 
 | 	} | 
 |  | 
 | 	if (ret) { | 
 | 		pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n", | 
 | 			__func__, config_addr, ret); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct eeh_ops pnv_eeh_ops = { | 
 | 	.name                   = "powernv", | 
 | 	.init                   = pnv_eeh_init, | 
 | 	.post_init              = pnv_eeh_post_init, | 
 | 	.probe			= pnv_eeh_probe, | 
 | 	.set_option             = pnv_eeh_set_option, | 
 | 	.get_pe_addr            = pnv_eeh_get_pe_addr, | 
 | 	.get_state              = pnv_eeh_get_state, | 
 | 	.reset                  = pnv_eeh_reset, | 
 | 	.wait_state             = pnv_eeh_wait_state, | 
 | 	.get_log                = pnv_eeh_get_log, | 
 | 	.configure_bridge       = pnv_eeh_configure_bridge, | 
 | 	.err_inject		= pnv_eeh_err_inject, | 
 | 	.read_config            = pnv_eeh_read_config, | 
 | 	.write_config           = pnv_eeh_write_config, | 
 | 	.next_error		= pnv_eeh_next_error, | 
 | 	.restore_config		= pnv_eeh_restore_config | 
 | }; | 
 |  | 
 | void pcibios_bus_add_device(struct pci_dev *pdev) | 
 | { | 
 | 	struct pci_dn *pdn = pci_get_pdn(pdev); | 
 |  | 
 | 	if (!pdev->is_virtfn) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * The following operations will fail if VF's sysfs files | 
 | 	 * aren't created or its resources aren't finalized. | 
 | 	 */ | 
 | 	eeh_add_device_early(pdn); | 
 | 	eeh_add_device_late(pdev); | 
 | 	eeh_sysfs_add_device(pdev); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PCI_IOV | 
 | static void pnv_pci_fixup_vf_mps(struct pci_dev *pdev) | 
 | { | 
 | 	struct pci_dn *pdn = pci_get_pdn(pdev); | 
 | 	int parent_mps; | 
 |  | 
 | 	if (!pdev->is_virtfn) | 
 | 		return; | 
 |  | 
 | 	/* Synchronize MPS for VF and PF */ | 
 | 	parent_mps = pcie_get_mps(pdev->physfn); | 
 | 	if ((128 << pdev->pcie_mpss) >= parent_mps) | 
 | 		pcie_set_mps(pdev, parent_mps); | 
 | 	pdn->mps = pcie_get_mps(pdev); | 
 | } | 
 | DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pnv_pci_fixup_vf_mps); | 
 | #endif /* CONFIG_PCI_IOV */ | 
 |  | 
 | /** | 
 |  * eeh_powernv_init - Register platform dependent EEH operations | 
 |  * | 
 |  * EEH initialization on powernv platform. This function should be | 
 |  * called before any EEH related functions. | 
 |  */ | 
 | static int __init eeh_powernv_init(void) | 
 | { | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	ret = eeh_ops_register(&pnv_eeh_ops); | 
 | 	if (!ret) | 
 | 		pr_info("EEH: PowerNV platform initialized\n"); | 
 | 	else | 
 | 		pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 | machine_early_initcall(powernv, eeh_powernv_init); |