blob: 8086bd0ac9fd10165098ecaa354ed52287818ebb [file] [log] [blame] [edit]
/*
* Initio A100 device driver for Linux.
*
* Copyright (c) 1994-1998 Initio Corporation
* Copyright (c) 2003-2004 Christoph Hellwig
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Revision History:
* 07/02/98 hl - v.91n Initial drivers.
* 09/14/98 hl - v1.01 Support new Kernel.
* 09/22/98 hl - v1.01a Support reset.
* 09/24/98 hl - v1.01b Fixed reset.
* 10/05/98 hl - v1.02 split the source code and release.
* 12/19/98 bv - v1.02a Use spinlocks for 2.1.95 and up
* 01/31/99 bv - v1.02b Use mdelay instead of waitForPause
* 08/08/99 bv - v1.02c Use waitForPause again.
* 06/25/02 Doug Ledford <dledford@redhat.com> - v1.02d
* - Remove limit on number of controllers
* - Port to DMA mapping API
* - Clean up interrupt handler registration
* - Fix memory leaks
* - Fix allocation of scsi host structs and private data
* 11/18/03 Christoph Hellwig <hch@lst.de>
* - Port to new probing API
* - Fix some more leaks in init failure cases
* 9/28/04 Christoph Hellwig <hch@lst.de>
* - merge the two source files
* - remove internal queueing code
* 14/06/07 Alan Cox <alan@lxorguk.ukuu.org.uk>
* - Grand cleanup and Linuxisation
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/dma-mapping.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include "a100u2w.h"
static struct orc_scb *__orc_alloc_scb(struct orc_host * host);
static void inia100_scb_handler(struct orc_host *host, struct orc_scb *scb);
static struct orc_nvram nvram, *nvramp = &nvram;
static u8 default_nvram[64] =
{
/*----------header -------------*/
0x01, /* 0x00: Sub System Vendor ID 0 */
0x11, /* 0x01: Sub System Vendor ID 1 */
0x60, /* 0x02: Sub System ID 0 */
0x10, /* 0x03: Sub System ID 1 */
0x00, /* 0x04: SubClass */
0x01, /* 0x05: Vendor ID 0 */
0x11, /* 0x06: Vendor ID 1 */
0x60, /* 0x07: Device ID 0 */
0x10, /* 0x08: Device ID 1 */
0x00, /* 0x09: Reserved */
0x00, /* 0x0A: Reserved */
0x01, /* 0x0B: Revision of Data Structure */
/* -- Host Adapter Structure --- */
0x01, /* 0x0C: Number Of SCSI Channel */
0x01, /* 0x0D: BIOS Configuration 1 */
0x00, /* 0x0E: BIOS Configuration 2 */
0x00, /* 0x0F: BIOS Configuration 3 */
/* --- SCSI Channel 0 Configuration --- */
0x07, /* 0x10: H/A ID */
0x83, /* 0x11: Channel Configuration */
0x20, /* 0x12: MAX TAG per target */
0x0A, /* 0x13: SCSI Reset Recovering time */
0x00, /* 0x14: Channel Configuration4 */
0x00, /* 0x15: Channel Configuration5 */
/* SCSI Channel 0 Target Configuration */
/* 0x16-0x25 */
0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8,
0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8,
/* --- SCSI Channel 1 Configuration --- */
0x07, /* 0x26: H/A ID */
0x83, /* 0x27: Channel Configuration */
0x20, /* 0x28: MAX TAG per target */
0x0A, /* 0x29: SCSI Reset Recovering time */
0x00, /* 0x2A: Channel Configuration4 */
0x00, /* 0x2B: Channel Configuration5 */
/* SCSI Channel 1 Target Configuration */
/* 0x2C-0x3B */
0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8,
0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8,
0x00, /* 0x3C: Reserved */
0x00, /* 0x3D: Reserved */
0x00, /* 0x3E: Reserved */
0x00 /* 0x3F: Checksum */
};
static u8 wait_chip_ready(struct orc_host * host)
{
int i;
for (i = 0; i < 10; i++) { /* Wait 1 second for report timeout */
if (inb(host->base + ORC_HCTRL) & HOSTSTOP) /* Wait HOSTSTOP set */
return 1;
mdelay(100);
}
return 0;
}
static u8 wait_firmware_ready(struct orc_host * host)
{
int i;
for (i = 0; i < 10; i++) { /* Wait 1 second for report timeout */
if (inb(host->base + ORC_HSTUS) & RREADY) /* Wait READY set */
return 1;
mdelay(100); /* wait 100ms before try again */
}
return 0;
}
/***************************************************************************/
static u8 wait_scsi_reset_done(struct orc_host * host)
{
int i;
for (i = 0; i < 10; i++) { /* Wait 1 second for report timeout */
if (!(inb(host->base + ORC_HCTRL) & SCSIRST)) /* Wait SCSIRST done */
return 1;
mdelay(100); /* wait 100ms before try again */
}
return 0;
}
/***************************************************************************/
static u8 wait_HDO_off(struct orc_host * host)
{
int i;
for (i = 0; i < 10; i++) { /* Wait 1 second for report timeout */
if (!(inb(host->base + ORC_HCTRL) & HDO)) /* Wait HDO off */
return 1;
mdelay(100); /* wait 100ms before try again */
}
return 0;
}
/***************************************************************************/
static u8 wait_hdi_set(struct orc_host * host, u8 * data)
{
int i;
for (i = 0; i < 10; i++) { /* Wait 1 second for report timeout */
if ((*data = inb(host->base + ORC_HSTUS)) & HDI)
return 1; /* Wait HDI set */
mdelay(100); /* wait 100ms before try again */
}
return 0;
}
/***************************************************************************/
static unsigned short orc_read_fwrev(struct orc_host * host)
{
u16 version;
u8 data;
outb(ORC_CMD_VERSION, host->base + ORC_HDATA);
outb(HDO, host->base + ORC_HCTRL);
if (wait_HDO_off(host) == 0) /* Wait HDO off */
return 0;
if (wait_hdi_set(host, &data) == 0) /* Wait HDI set */
return 0;
version = inb(host->base + ORC_HDATA);
outb(data, host->base + ORC_HSTUS); /* Clear HDI */
if (wait_hdi_set(host, &data) == 0) /* Wait HDI set */
return 0;
version |= inb(host->base + ORC_HDATA) << 8;
outb(data, host->base + ORC_HSTUS); /* Clear HDI */
return version;
}
/***************************************************************************/
static u8 orc_nv_write(struct orc_host * host, unsigned char address, unsigned char value)
{
outb(ORC_CMD_SET_NVM, host->base + ORC_HDATA); /* Write command */
outb(HDO, host->base + ORC_HCTRL);
if (wait_HDO_off(host) == 0) /* Wait HDO off */
return 0;
outb(address, host->base + ORC_HDATA); /* Write address */
outb(HDO, host->base + ORC_HCTRL);
if (wait_HDO_off(host) == 0) /* Wait HDO off */
return 0;
outb(value, host->base + ORC_HDATA); /* Write value */
outb(HDO, host->base + ORC_HCTRL);
if (wait_HDO_off(host) == 0) /* Wait HDO off */
return 0;
return 1;
}
/***************************************************************************/
static u8 orc_nv_read(struct orc_host * host, u8 address, u8 *ptr)
{
unsigned char data;
outb(ORC_CMD_GET_NVM, host->base + ORC_HDATA); /* Write command */
outb(HDO, host->base + ORC_HCTRL);
if (wait_HDO_off(host) == 0) /* Wait HDO off */
return 0;
outb(address, host->base + ORC_HDATA); /* Write address */
outb(HDO, host->base + ORC_HCTRL);
if (wait_HDO_off(host) == 0) /* Wait HDO off */
return 0;
if (wait_hdi_set(host, &data) == 0) /* Wait HDI set */
return 0;
*ptr = inb(host->base + ORC_HDATA);
outb(data, host->base + ORC_HSTUS); /* Clear HDI */
return 1;
}
/**
* orc_exec_sb - Queue an SCB with the HA
* @host: host adapter the SCB belongs to
* @scb: SCB to queue for execution
*/
static void orc_exec_scb(struct orc_host * host, struct orc_scb * scb)
{
scb->status = ORCSCB_POST;
outb(scb->scbidx, host->base + ORC_PQUEUE);
}
/**
* se2_rd_all - read SCSI parameters from EEPROM
* @host: Host whose EEPROM is being loaded
*
* Read SCSI H/A configuration parameters from serial EEPROM
*/
static int se2_rd_all(struct orc_host * host)
{
int i;
u8 *np, chksum = 0;
np = (u8 *) nvramp;
for (i = 0; i < 64; i++, np++) { /* <01> */
if (orc_nv_read(host, (u8) i, np) == 0)
return -1;
}
/*------ Is ckecksum ok ? ------*/
np = (u8 *) nvramp;
for (i = 0; i < 63; i++)
chksum += *np++;
if (nvramp->CheckSum != (u8) chksum)
return -1;
return 1;
}
/**
* se2_update_all - update the EEPROM
* @host: Host whose EEPROM is being updated
*
* Update changed bytes in the EEPROM image.
*/
static void se2_update_all(struct orc_host * host)
{ /* setup default pattern */
int i;
u8 *np, *np1, chksum = 0;
/* Calculate checksum first */
np = (u8 *) default_nvram;
for (i = 0; i < 63; i++)
chksum += *np++;
*np = chksum;
np = (u8 *) default_nvram;
np1 = (u8 *) nvramp;
for (i = 0; i < 64; i++, np++, np1++) {
if (*np != *np1)
orc_nv_write(host, (u8) i, *np);
}
}
/**
* read_eeprom - load EEPROM
* @host: Host EEPROM to read
*
* Read the EEPROM for a given host. If it is invalid or fails
* the restore the defaults and use them.
*/
static void read_eeprom(struct orc_host * host)
{
if (se2_rd_all(host) != 1) {
se2_update_all(host); /* setup default pattern */
se2_rd_all(host); /* load again */
}
}
/**
* orc_load_firmware - initialise firmware
* @host: Host to set up
*
* Load the firmware from the EEPROM into controller SRAM. This
* is basically a 4K block copy and then a 4K block read to check
* correctness. The rest is convulted by the indirect interfaces
* in the hardware
*/
static u8 orc_load_firmware(struct orc_host * host)
{
u32 data32;
u16 bios_addr;
u16 i;
u8 *data32_ptr, data;
/* Set up the EEPROM for access */
data = inb(host->base + ORC_GCFG);
outb(data | EEPRG, host->base + ORC_GCFG); /* Enable EEPROM programming */
outb(0x00, host->base + ORC_EBIOSADR2);
outw(0x0000, host->base + ORC_EBIOSADR0);
if (inb(host->base + ORC_EBIOSDATA) != 0x55) {
outb(data, host->base + ORC_GCFG); /* Disable EEPROM programming */
return 0;
}
outw(0x0001, host->base + ORC_EBIOSADR0);
if (inb(host->base + ORC_EBIOSDATA) != 0xAA) {
outb(data, host->base + ORC_GCFG); /* Disable EEPROM programming */
return 0;
}
outb(PRGMRST | DOWNLOAD, host->base + ORC_RISCCTL); /* Enable SRAM programming */
data32_ptr = (u8 *) & data32;
data32 = cpu_to_le32(0); /* Initial FW address to 0 */
outw(0x0010, host->base + ORC_EBIOSADR0);
*data32_ptr = inb(host->base + ORC_EBIOSDATA); /* Read from BIOS */
outw(0x0011, host->base + ORC_EBIOSADR0);
*(data32_ptr + 1) = inb(host->base + ORC_EBIOSDATA); /* Read from BIOS */
outw(0x0012, host->base + ORC_EBIOSADR0);
*(data32_ptr + 2) = inb(host->base + ORC_EBIOSDATA); /* Read from BIOS */
outw(*(data32_ptr + 2), host->base + ORC_EBIOSADR2);
outl(le32_to_cpu(data32), host->base + ORC_FWBASEADR); /* Write FW address */
/* Copy the code from the BIOS to the SRAM */
udelay(500); /* Required on Sun Ultra 5 ... 350 -> failures */
bios_addr = (u16) le32_to_cpu(data32); /* FW code locate at BIOS address + ? */
for (i = 0, data32_ptr = (u8 *) & data32; /* Download the code */
i < 0x1000; /* Firmware code size = 4K */
i++, bios_addr++) {
outw(bios_addr, host->base + ORC_EBIOSADR0);
*data32_ptr++ = inb(host->base + ORC_EBIOSDATA); /* Read from BIOS */
if ((i % 4) == 3) {
outl(le32_to_cpu(data32), host->base + ORC_RISCRAM); /* Write every 4 bytes */
data32_ptr = (u8 *) & data32;
}
}
/* Go back and check they match */
outb(PRGMRST | DOWNLOAD, host->base + ORC_RISCCTL); /* Reset program count 0 */
bios_addr -= 0x1000; /* Reset the BIOS address */
for (i = 0, data32_ptr = (u8 *) & data32; /* Check the code */
i < 0x1000; /* Firmware code size = 4K */
i++, bios_addr++) {
outw(bios_addr, host->base + ORC_EBIOSADR0);
*data32_ptr++ = inb(host->base + ORC_EBIOSDATA); /* Read from BIOS */
if ((i % 4) == 3) {
if (inl(host->base + ORC_RISCRAM) != le32_to_cpu(data32)) {
outb(PRGMRST, host->base + ORC_RISCCTL); /* Reset program to 0 */
outb(data, host->base + ORC_GCFG); /*Disable EEPROM programming */
return 0;
}
data32_ptr = (u8 *) & data32;
}
}
/* Success */
outb(PRGMRST, host->base + ORC_RISCCTL); /* Reset program to 0 */
outb(data, host->base + ORC_GCFG); /* Disable EEPROM programming */
return 1;
}
/***************************************************************************/
static void setup_SCBs(struct orc_host * host)
{
struct orc_scb *scb;
int i;
struct orc_extended_scb *escb;
dma_addr_t escb_phys;
/* Setup SCB base and SCB Size registers */
outb(ORC_MAXQUEUE, host->base + ORC_SCBSIZE); /* Total number of SCBs */
/* SCB base address 0 */
outl(host->scb_phys, host->base + ORC_SCBBASE0);
/* SCB base address 1 */
outl(host->scb_phys, host->base + ORC_SCBBASE1);
/* setup scatter list address with one buffer */
scb = host->scb_virt;
escb = host->escb_virt;
for (i = 0; i < ORC_MAXQUEUE; i++) {
escb_phys = (host->escb_phys + (sizeof(struct orc_extended_scb) * i));
scb->sg_addr = cpu_to_le32((u32) escb_phys);
scb->sense_addr = cpu_to_le32((u32) escb_phys);
scb->escb = escb;
scb->scbidx = i;
scb++;
escb++;
}
}
/**
* init_alloc_map - initialise allocation map
* @host: host map to configure
*
* Initialise the allocation maps for this device. If the device
* is not quiescent the caller must hold the allocation lock
*/
static void init_alloc_map(struct orc_host * host)
{
u8 i, j;
for (i = 0; i < MAX_CHANNELS; i++) {
for (j = 0; j < 8; j++) {
host->allocation_map[i][j] = 0xffffffff;
}
}
}
/**
* init_orchid - initialise the host adapter
* @host:host adapter to initialise
*
* Initialise the controller and if necessary load the firmware.
*
* Returns -1 if the initialisation fails.
*/
static int init_orchid(struct orc_host * host)
{
u8 *ptr;
u16 revision;
u8 i;
init_alloc_map(host);
outb(0xFF, host->base + ORC_GIMSK); /* Disable all interrupts */
if (inb(host->base + ORC_HSTUS) & RREADY) { /* Orchid is ready */
revision = orc_read_fwrev(host);
if (revision == 0xFFFF) {
outb(DEVRST, host->base + ORC_HCTRL); /* Reset Host Adapter */
if (wait_chip_ready(host) == 0)
return -1;
orc_load_firmware(host); /* Download FW */
setup_SCBs(host); /* Setup SCB base and SCB Size registers */
outb(0x00, host->base + ORC_HCTRL); /* clear HOSTSTOP */
if (wait_firmware_ready(host) == 0)
return -1;
/* Wait for firmware ready */
} else {
setup_SCBs(host); /* Setup SCB base and SCB Size registers */
}
} else { /* Orchid is not Ready */
outb(DEVRST, host->base + ORC_HCTRL); /* Reset Host Adapter */
if (wait_chip_ready(host) == 0)
return -1;
orc_load_firmware(host); /* Download FW */
setup_SCBs(host); /* Setup SCB base and SCB Size registers */
outb(HDO, host->base + ORC_HCTRL); /* Do Hardware Reset & */
/* clear HOSTSTOP */
if (wait_firmware_ready(host) == 0) /* Wait for firmware ready */
return -1;
}
/* Load an EEProm copy into RAM */
/* Assumes single threaded at this point */
read_eeprom(host);
if (nvramp->revision != 1)
return -1;
host->scsi_id = nvramp->scsi_id;
host->BIOScfg = nvramp->BIOSConfig1;
host->max_targets = MAX_TARGETS;
ptr = (u8 *) & (nvramp->Target00Config);
for (i = 0; i < 16; ptr++, i++) {
host->target_flag[i] = *ptr;
host->max_tags[i] = ORC_MAXTAGS;
}
if (nvramp->SCSI0Config & NCC_BUSRESET)
host->flags |= HCF_SCSI_RESET;
outb(0xFB, host->base + ORC_GIMSK); /* enable RP FIFO interrupt */
return 0;
}
/**
* orc_reset_scsi_bus - perform bus reset
* @host: host being reset
*
* Perform a full bus reset on the adapter.
*/
static int orc_reset_scsi_bus(struct orc_host * host)
{ /* I need Host Control Block Information */
unsigned long flags;
spin_lock_irqsave(&host->allocation_lock, flags);
init_alloc_map(host);
/* reset scsi bus */
outb(SCSIRST, host->base + ORC_HCTRL);
/* FIXME: We can spend up to a second with the lock held and
interrupts off here */
if (wait_scsi_reset_done(host) == 0) {
spin_unlock_irqrestore(&host->allocation_lock, flags);
return FAILED;
} else {
spin_unlock_irqrestore(&host->allocation_lock, flags);
return SUCCESS;
}
}
/**
* orc_device_reset - device reset handler
* @host: host to reset
* @cmd: command causing the reset
* @target; target device
*
* Reset registers, reset a hanging bus and kill active and disconnected
* commands for target w/o soft reset
*/
static int orc_device_reset(struct orc_host * host, struct scsi_cmnd *cmd, unsigned int target)
{ /* I need Host Control Block Information */
struct orc_scb *scb;
struct orc_extended_scb *escb;
struct orc_scb *host_scb;
u8 i;
unsigned long flags;
spin_lock_irqsave(&(host->allocation_lock), flags);
scb = (struct orc_scb *) NULL;
escb = (struct orc_extended_scb *) NULL;
/* setup scatter list address with one buffer */
host_scb = host->scb_virt;
/* FIXME: is this safe if we then fail to issue the reset or race
a completion ? */
init_alloc_map(host);
/* Find the scb corresponding to the command */
for (i = 0; i < ORC_MAXQUEUE; i++) {
escb = host_scb->escb;
if (host_scb->status && escb->srb == cmd)
break;
host_scb++;
}
if (i == ORC_MAXQUEUE) {
printk(KERN_ERR "Unable to Reset - No SCB Found\n");
spin_unlock_irqrestore(&(host->allocation_lock), flags);
return FAILED;
}
/* Allocate a new SCB for the reset command to the firmware */
if ((scb = __orc_alloc_scb(host)) == NULL) {
/* Can't happen.. */
spin_unlock_irqrestore(&(host->allocation_lock), flags);
return FAILED;
}
/* Reset device is handled by the firmware, we fill in an SCB and
fire it at the controller, it does the rest */
scb->opcode = ORC_BUSDEVRST;
scb->target = target;
scb->hastat = 0;
scb->tastat = 0;
scb->status = 0x0;
scb->link = 0xFF;
scb->reserved0 = 0;
scb->reserved1 = 0;
scb->xferlen = cpu_to_le32(0);
scb->sg_len = cpu_to_le32(0);
escb->srb = NULL;
escb->srb = cmd;
orc_exec_scb(host, scb); /* Start execute SCB */
spin_unlock_irqrestore(&host->allocation_lock, flags);
return SUCCESS;
}
/**
* __orc_alloc_scb - allocate an SCB
* @host: host to allocate from
*
* Allocate an SCB and return a pointer to the SCB object. NULL
* is returned if no SCB is free. The caller must already hold
* the allocator lock at this point.
*/
static struct orc_scb *__orc_alloc_scb(struct orc_host * host)
{
u8 channel;
unsigned long idx;
u8 index;
u8 i;
channel = host->index;
for (i = 0; i < 8; i++) {
for (index = 0; index < 32; index++) {
if ((host->allocation_map[channel][i] >> index) & 0x01) {
host->allocation_map[channel][i] &= ~(1 << index);
idx = index + 32 * i;
/*
* Translate the index to a structure instance
*/
return host->scb_virt + idx;
}
}
}
return NULL;
}
/**
* orc_alloc_scb - allocate an SCB
* @host: host to allocate from
*
* Allocate an SCB and return a pointer to the SCB object. NULL
* is returned if no SCB is free.
*/
static struct orc_scb *orc_alloc_scb(struct orc_host * host)
{
struct orc_scb *scb;
unsigned long flags;
spin_lock_irqsave(&host->allocation_lock, flags);
scb = __orc_alloc_scb(host);
spin_unlock_irqrestore(&host->allocation_lock, flags);
return scb;
}
/**
* orc_release_scb - release an SCB
* @host: host owning the SCB
* @scb: SCB that is now free
*
* Called to return a completed SCB to the allocation pool. Before
* calling the SCB must be out of use on both the host and the HA.
*/
static void orc_release_scb(struct orc_host *host, struct orc_scb *scb)
{
unsigned long flags;
u8 index, i, channel;
spin_lock_irqsave(&(host->allocation_lock), flags);
channel = host->index; /* Channel */
index = scb->scbidx;
i = index / 32;
index %= 32;
host->allocation_map[channel][i] |= (1 << index);
spin_unlock_irqrestore(&(host->allocation_lock), flags);
}
/**
* orchid_abort_scb - abort a command
*
* Abort a queued command that has been passed to the firmware layer
* if possible. This is all handled by the firmware. We aks the firmware
* and it either aborts the command or fails
*/
static int orchid_abort_scb(struct orc_host * host, struct orc_scb * scb)
{
unsigned char data, status;
outb(ORC_CMD_ABORT_SCB, host->base + ORC_HDATA); /* Write command */
outb(HDO, host->base + ORC_HCTRL);
if (wait_HDO_off(host) == 0) /* Wait HDO off */
return 0;
outb(scb->scbidx, host->base + ORC_HDATA); /* Write address */
outb(HDO, host->base + ORC_HCTRL);
if (wait_HDO_off(host) == 0) /* Wait HDO off */
return 0;
if (wait_hdi_set(host, &data) == 0) /* Wait HDI set */
return 0;
status = inb(host->base + ORC_HDATA);
outb(data, host->base + ORC_HSTUS); /* Clear HDI */
if (status == 1) /* 0 - Successfully */
return 0; /* 1 - Fail */
return 1;
}
static int inia100_abort_cmd(struct orc_host * host, struct scsi_cmnd *cmd)
{
struct orc_extended_scb *escb;
struct orc_scb *scb;
u8 i;
unsigned long flags;
spin_lock_irqsave(&(host->allocation_lock), flags);
scb = host->scb_virt;
/* Walk the queue until we find the SCB that belongs to the command
block. This isn't a performance critical path so a walk in the park
here does no harm */
for (i = 0; i < ORC_MAXQUEUE; i++, scb++) {
escb = scb->escb;
if (scb->status && escb->srb == cmd) {
if (scb->tag_msg == 0) {
goto out;
} else {
/* Issue an ABORT to the firmware */
if (orchid_abort_scb(host, scb)) {
escb->srb = NULL;
spin_unlock_irqrestore(&host->allocation_lock, flags);
return SUCCESS;
} else
goto out;
}
}
}
out:
spin_unlock_irqrestore(&host->allocation_lock, flags);
return FAILED;
}
/**
* orc_interrupt - IRQ processing
* @host: Host causing the interrupt
*
* This function is called from the IRQ handler and protected
* by the host lock. While the controller reports that there are
* scb's for processing we pull them off the controller, turn the
* index into a host address pointer to the scb and call the scb
* handler.
*
* Returns IRQ_HANDLED if any SCBs were processed, IRQ_NONE otherwise
*/
static irqreturn_t orc_interrupt(struct orc_host * host)
{
u8 scb_index;
struct orc_scb *scb;
/* Check if we have an SCB queued for servicing */
if (inb(host->base + ORC_RQUEUECNT) == 0)
return IRQ_NONE;
do {
/* Get the SCB index of the SCB to service */
scb_index = inb(host->base + ORC_RQUEUE);
/* Translate it back to a host pointer */
scb = (struct orc_scb *) ((unsigned long) host->scb_virt + (unsigned long) (sizeof(struct orc_scb) * scb_index));
scb->status = 0x0;
/* Process the SCB */
inia100_scb_handler(host, scb);
} while (inb(host->base + ORC_RQUEUECNT));
return IRQ_HANDLED;
} /* End of I1060Interrupt() */
/**
* inia100_build_scb - build SCB
* @host: host owing the control block
* @scb: control block to use
* @cmd: Mid layer command
*
* Build a host adapter control block from the SCSI mid layer command
*/
static int inia100_build_scb(struct orc_host * host, struct orc_scb * scb, struct scsi_cmnd * cmd)
{ /* Create corresponding SCB */
struct scatterlist *sg;
struct orc_sgent *sgent; /* Pointer to SG list */
int i, count_sg;
struct orc_extended_scb *escb;
/* Links between the escb, scb and Linux scsi midlayer cmd */
escb = scb->escb;
escb->srb = cmd;
sgent = NULL;
/* Set up the SCB to do a SCSI command block */
scb->opcode = ORC_EXECSCSI;
scb->flags = SCF_NO_DCHK; /* Clear done bit */
scb->target = cmd->device->id;
scb->lun = cmd->device->lun;
scb->reserved0 = 0;
scb->reserved1 = 0;
scb->sg_len = cpu_to_le32(0);
scb->xferlen = cpu_to_le32((u32) scsi_bufflen(cmd));
sgent = (struct orc_sgent *) & escb->sglist[0];
count_sg = scsi_dma_map(cmd);
if (count_sg < 0)
return count_sg;
BUG_ON(count_sg > TOTAL_SG_ENTRY);
/* Build the scatter gather lists */
if (count_sg) {
scb->sg_len = cpu_to_le32((u32) (count_sg * 8));
scsi_for_each_sg(cmd, sg, count_sg, i) {
sgent->base = cpu_to_le32((u32) sg_dma_address(sg));
sgent->length = cpu_to_le32((u32) sg_dma_len(sg));
sgent++;
}
} else {
scb->sg_len = cpu_to_le32(0);
sgent->base = cpu_to_le32(0);
sgent->length = cpu_to_le32(0);
}
scb->sg_addr = (u32) scb->sense_addr; /* sense_addr is already little endian */
scb->hastat = 0;
scb->tastat = 0;
scb->link = 0xFF;
scb->sense_len = SENSE_SIZE;
scb->cdb_len = cmd->cmd_len;
if (scb->cdb_len >= IMAX_CDB) {
printk("max cdb length= %x\n", cmd->cmd_len);
scb->cdb_len = IMAX_CDB;
}
scb->ident = (u8)(cmd->device->lun & 0xff) | DISC_ALLOW;
if (cmd->device->tagged_supported) { /* Tag Support */
scb->tag_msg = SIMPLE_QUEUE_TAG; /* Do simple tag only */
} else {
scb->tag_msg = 0; /* No tag support */
}
memcpy(scb->cdb, cmd->cmnd, scb->cdb_len);
return 0;
}
/**
* inia100_queue - queue command with host
* @cmd: Command block
* @done: Completion function
*
* Called by the mid layer to queue a command. Process the command
* block, build the host specific scb structures and if there is room
* queue the command down to the controller
*/
static int inia100_queue_lck(struct scsi_cmnd * cmd, void (*done) (struct scsi_cmnd *))
{
struct orc_scb *scb;
struct orc_host *host; /* Point to Host adapter control block */
host = (struct orc_host *) cmd->device->host->hostdata;
cmd->scsi_done = done;
/* Get free SCSI control block */
if ((scb = orc_alloc_scb(host)) == NULL)
return SCSI_MLQUEUE_HOST_BUSY;
if (inia100_build_scb(host, scb, cmd)) {
orc_release_scb(host, scb);
return SCSI_MLQUEUE_HOST_BUSY;
}
orc_exec_scb(host, scb); /* Start execute SCB */
return 0;
}
static DEF_SCSI_QCMD(inia100_queue)
/*****************************************************************************
Function name : inia100_abort
Description : Abort a queued command.
(commands that are on the bus can't be aborted easily)
Input : host - Pointer to host adapter structure
Output : None.
Return : pSRB - Pointer to SCSI request block.
*****************************************************************************/
static int inia100_abort(struct scsi_cmnd * cmd)
{
struct orc_host *host;
host = (struct orc_host *) cmd->device->host->hostdata;
return inia100_abort_cmd(host, cmd);
}
/*****************************************************************************
Function name : inia100_reset
Description : Reset registers, reset a hanging bus and
kill active and disconnected commands for target w/o soft reset
Input : host - Pointer to host adapter structure
Output : None.
Return : pSRB - Pointer to SCSI request block.
*****************************************************************************/
static int inia100_bus_reset(struct scsi_cmnd * cmd)
{ /* I need Host Control Block Information */
struct orc_host *host;
host = (struct orc_host *) cmd->device->host->hostdata;
return orc_reset_scsi_bus(host);
}
/*****************************************************************************
Function name : inia100_device_reset
Description : Reset the device
Input : host - Pointer to host adapter structure
Output : None.
Return : pSRB - Pointer to SCSI request block.
*****************************************************************************/
static int inia100_device_reset(struct scsi_cmnd * cmd)
{ /* I need Host Control Block Information */
struct orc_host *host;
host = (struct orc_host *) cmd->device->host->hostdata;
return orc_device_reset(host, cmd, scmd_id(cmd));
}
/**
* inia100_scb_handler - interrupt callback
* @host: Host causing the interrupt
* @scb: SCB the controller returned as needing processing
*
* Perform completion processing on a control block. Do the conversions
* from host to SCSI midlayer error coding, save any sense data and
* the complete with the midlayer and recycle the scb.
*/
static void inia100_scb_handler(struct orc_host *host, struct orc_scb *scb)
{
struct scsi_cmnd *cmd; /* Pointer to SCSI request block */
struct orc_extended_scb *escb;
escb = scb->escb;
if ((cmd = (struct scsi_cmnd *) escb->srb) == NULL) {
printk(KERN_ERR "inia100_scb_handler: SRB pointer is empty\n");
orc_release_scb(host, scb); /* Release SCB for current channel */
return;
}
escb->srb = NULL;
switch (scb->hastat) {
case 0x0:
case 0xa: /* Linked command complete without error and linked normally */
case 0xb: /* Linked command complete without error interrupt generated */
scb->hastat = 0;
break;
case 0x11: /* Selection time out-The initiator selection or target
reselection was not complete within the SCSI Time out period */
scb->hastat = DID_TIME_OUT;
break;
case 0x14: /* Target bus phase sequence failure-An invalid bus phase or bus
phase sequence was requested by the target. The host adapter
will generate a SCSI Reset Condition, notifying the host with
a SCRD interrupt */
scb->hastat = DID_RESET;
break;
case 0x1a: /* SCB Aborted. 07/21/98 */
scb->hastat = DID_ABORT;
break;
case 0x12: /* Data overrun/underrun-The target attempted to transfer more data
than was allocated by the Data Length field or the sum of the
Scatter / Gather Data Length fields. */
case 0x13: /* Unexpected bus free-The target dropped the SCSI BSY at an unexpected time. */
case 0x16: /* Invalid CCB Operation Code-The first byte of the CCB was invalid. */
default:
printk(KERN_DEBUG "inia100: %x %x\n", scb->hastat, scb->tastat);
scb->hastat = DID_ERROR; /* Couldn't find any better */
break;
}
if (scb->tastat == 2) { /* Check condition */
memcpy((unsigned char *) &cmd->sense_buffer[0],
(unsigned char *) &escb->sglist[0], SENSE_SIZE);
}
cmd->result = scb->tastat | (scb->hastat << 16);
scsi_dma_unmap(cmd);
cmd->scsi_done(cmd); /* Notify system DONE */
orc_release_scb(host, scb); /* Release SCB for current channel */
}
/**
* inia100_intr - interrupt handler
* @irqno: Interrupt value
* @devid: Host adapter
*
* Entry point for IRQ handling. All the real work is performed
* by orc_interrupt.
*/
static irqreturn_t inia100_intr(int irqno, void *devid)
{
struct Scsi_Host *shost = (struct Scsi_Host *)devid;
struct orc_host *host = (struct orc_host *)shost->hostdata;
unsigned long flags;
irqreturn_t res;
spin_lock_irqsave(shost->host_lock, flags);
res = orc_interrupt(host);
spin_unlock_irqrestore(shost->host_lock, flags);
return res;
}
static struct scsi_host_template inia100_template = {
.proc_name = "inia100",
.name = inia100_REVID,
.queuecommand = inia100_queue,
.eh_abort_handler = inia100_abort,
.eh_bus_reset_handler = inia100_bus_reset,
.eh_device_reset_handler = inia100_device_reset,
.can_queue = 1,
.this_id = 1,
.sg_tablesize = SG_ALL,
.use_clustering = ENABLE_CLUSTERING,
};
static int inia100_probe_one(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct Scsi_Host *shost;
struct orc_host *host;
unsigned long port, bios;
int error = -ENODEV;
u32 sz;
unsigned long biosaddr;
char *bios_phys;
if (pci_enable_device(pdev))
goto out;
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
printk(KERN_WARNING "Unable to set 32bit DMA "
"on inia100 adapter, ignoring.\n");
goto out_disable_device;
}
pci_set_master(pdev);
port = pci_resource_start(pdev, 0);
if (!request_region(port, 256, "inia100")) {
printk(KERN_WARNING "inia100: io port 0x%lx, is busy.\n", port);
goto out_disable_device;
}
/* <02> read from base address + 0x50 offset to get the bios value. */
bios = inw(port + 0x50);
shost = scsi_host_alloc(&inia100_template, sizeof(struct orc_host));
if (!shost)
goto out_release_region;
host = (struct orc_host *)shost->hostdata;
host->pdev = pdev;
host->base = port;
host->BIOScfg = bios;
spin_lock_init(&host->allocation_lock);
/* Get total memory needed for SCB */
sz = ORC_MAXQUEUE * sizeof(struct orc_scb);
host->scb_virt = pci_zalloc_consistent(pdev, sz, &host->scb_phys);
if (!host->scb_virt) {
printk("inia100: SCB memory allocation error\n");
goto out_host_put;
}
/* Get total memory needed for ESCB */
sz = ORC_MAXQUEUE * sizeof(struct orc_extended_scb);
host->escb_virt = pci_zalloc_consistent(pdev, sz, &host->escb_phys);
if (!host->escb_virt) {
printk("inia100: ESCB memory allocation error\n");
goto out_free_scb_array;
}
biosaddr = host->BIOScfg;
biosaddr = (biosaddr << 4);
bios_phys = phys_to_virt(biosaddr);
if (init_orchid(host)) { /* Initialize orchid chip */
printk("inia100: initial orchid fail!!\n");
goto out_free_escb_array;
}
shost->io_port = host->base;
shost->n_io_port = 0xff;
shost->can_queue = ORC_MAXQUEUE;
shost->unique_id = shost->io_port;
shost->max_id = host->max_targets;
shost->max_lun = 16;
shost->irq = pdev->irq;
shost->this_id = host->scsi_id; /* Assign HCS index */
shost->sg_tablesize = TOTAL_SG_ENTRY;
/* Initial orc chip */
error = request_irq(pdev->irq, inia100_intr, IRQF_SHARED,
"inia100", shost);
if (error < 0) {
printk(KERN_WARNING "inia100: unable to get irq %d\n",
pdev->irq);
goto out_free_escb_array;
}
pci_set_drvdata(pdev, shost);
error = scsi_add_host(shost, &pdev->dev);
if (error)
goto out_free_irq;
scsi_scan_host(shost);
return 0;
out_free_irq:
free_irq(shost->irq, shost);
out_free_escb_array:
pci_free_consistent(pdev, ORC_MAXQUEUE * sizeof(struct orc_extended_scb),
host->escb_virt, host->escb_phys);
out_free_scb_array:
pci_free_consistent(pdev, ORC_MAXQUEUE * sizeof(struct orc_scb),
host->scb_virt, host->scb_phys);
out_host_put:
scsi_host_put(shost);
out_release_region:
release_region(port, 256);
out_disable_device:
pci_disable_device(pdev);
out:
return error;
}
static void inia100_remove_one(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct orc_host *host = (struct orc_host *)shost->hostdata;
scsi_remove_host(shost);
free_irq(shost->irq, shost);
pci_free_consistent(pdev, ORC_MAXQUEUE * sizeof(struct orc_extended_scb),
host->escb_virt, host->escb_phys);
pci_free_consistent(pdev, ORC_MAXQUEUE * sizeof(struct orc_scb),
host->scb_virt, host->scb_phys);
release_region(shost->io_port, 256);
scsi_host_put(shost);
}
static struct pci_device_id inia100_pci_tbl[] = {
{PCI_VENDOR_ID_INIT, 0x1060, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0,}
};
MODULE_DEVICE_TABLE(pci, inia100_pci_tbl);
static struct pci_driver inia100_pci_driver = {
.name = "inia100",
.id_table = inia100_pci_tbl,
.probe = inia100_probe_one,
.remove = inia100_remove_one,
};
static int __init inia100_init(void)
{
return pci_register_driver(&inia100_pci_driver);
}
static void __exit inia100_exit(void)
{
pci_unregister_driver(&inia100_pci_driver);
}
MODULE_DESCRIPTION("Initio A100U2W SCSI driver");
MODULE_AUTHOR("Initio Corporation");
MODULE_LICENSE("Dual BSD/GPL");
module_init(inia100_init);
module_exit(inia100_exit);