| /* |
| * Broadcom BCMSDH to gSPI Protocol Conversion Layer |
| * |
| * Copyright (C) 1999-2016, Broadcom Corporation |
| * |
| * Unless you and Broadcom execute a separate written software license |
| * agreement governing use of this software, this software is licensed to you |
| * under the terms of the GNU General Public License version 2 (the "GPL"), |
| * available at http://www.broadcom.com/licenses/GPLv2.php, with the |
| * following added to such license: |
| * |
| * As a special exception, the copyright holders of this software give you |
| * permission to link this software with independent modules, and to copy and |
| * distribute the resulting executable under terms of your choice, provided that |
| * you also meet, for each linked independent module, the terms and conditions of |
| * the license of that module. An independent module is a module which is not |
| * derived from this software. The special exception does not apply to any |
| * modifications of the software. |
| * |
| * Notwithstanding the above, under no circumstances may you combine this |
| * software in any way with any other Broadcom software provided under a license |
| * other than the GPL, without Broadcom's express prior written consent. |
| * |
| * $Id: bcmspibrcm.c 662541 2016-10-28 03:22:57Z $ |
| */ |
| |
| #define HSMODE |
| |
| #include <typedefs.h> |
| |
| #include <bcmdevs.h> |
| #include <bcmendian.h> |
| #include <bcmutils.h> |
| #include <osl.h> |
| #include <hndsoc.h> |
| #include <siutils.h> |
| #include <sbchipc.h> |
| #include <sbsdio.h> /* SDIO device core hardware definitions. */ |
| #include <spid.h> |
| |
| #include <bcmsdbus.h> /* bcmsdh to/from specific controller APIs */ |
| #include <sdiovar.h> /* ioctl/iovars */ |
| #include <sdio.h> /* SDIO Device and Protocol Specs */ |
| |
| #include <pcicfg.h> |
| |
| |
| #include <bcmspibrcm.h> |
| #include <bcmspi.h> |
| |
| /* these are for the older cores... for newer cores we have control for each of them */ |
| #define F0_RESPONSE_DELAY 16 |
| #define F1_RESPONSE_DELAY 16 |
| #define F2_RESPONSE_DELAY F0_RESPONSE_DELAY |
| |
| |
| #define GSPI_F0_RESP_DELAY 0 |
| #define GSPI_F1_RESP_DELAY F1_RESPONSE_DELAY |
| #define GSPI_F2_RESP_DELAY 0 |
| #define GSPI_F3_RESP_DELAY 0 |
| |
| #define CMDLEN 4 |
| |
| #define DWORDMODE_ON (sd->chip == BCM4329_CHIP_ID) && (sd->chiprev == 2) && (sd->dwordmode == TRUE) |
| |
| /* Globals */ |
| #if defined(DHD_DEBUG) |
| uint sd_msglevel = SDH_ERROR_VAL; |
| #else |
| uint sd_msglevel = 0; |
| #endif |
| |
| uint sd_hiok = FALSE; /* Use hi-speed mode if available? */ |
| uint sd_sdmode = SDIOH_MODE_SPI; /* Use SD4 mode by default */ |
| uint sd_f2_blocksize = 64; /* Default blocksize */ |
| |
| |
| uint sd_divisor = 2; |
| uint sd_power = 1; /* Default to SD Slot powered ON */ |
| uint sd_clock = 1; /* Default to SD Clock turned ON */ |
| uint sd_crc = 0; /* Default to SPI CRC Check turned OFF */ |
| uint sd_pci_slot = 0xFFFFffff; /* Used to force selection of a particular PCI slot */ |
| |
| uint8 spi_outbuf[SPI_MAX_PKT_LEN]; |
| uint8 spi_inbuf[SPI_MAX_PKT_LEN]; |
| |
| /* 128bytes buffer is enough to clear data-not-available and program response-delay F0 bits |
| * assuming we will not exceed F0 response delay > 100 bytes at 48MHz. |
| */ |
| #define BUF2_PKT_LEN 128 |
| uint8 spi_outbuf2[BUF2_PKT_LEN]; |
| uint8 spi_inbuf2[BUF2_PKT_LEN]; |
| |
| #define SPISWAP_WD4(x) bcmswap32(x); |
| #define SPISWAP_WD2(x) (bcmswap16(x & 0xffff)) | \ |
| (bcmswap16((x & 0xffff0000) >> 16) << 16); |
| |
| /* Prototypes */ |
| static bool bcmspi_test_card(sdioh_info_t *sd); |
| static bool bcmspi_host_device_init_adapt(sdioh_info_t *sd); |
| static int bcmspi_set_highspeed_mode(sdioh_info_t *sd, bool hsmode); |
| static int bcmspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd_arg, |
| uint32 *data, uint32 datalen); |
| static int bcmspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr, |
| int regsize, uint32 *data); |
| static int bcmspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr, |
| int regsize, uint32 data); |
| static int bcmspi_card_bytewrite(sdioh_info_t *sd, int func, uint32 regaddr, |
| uint8 *data); |
| static int bcmspi_driver_init(sdioh_info_t *sd); |
| static int bcmspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo, |
| uint32 addr, int nbytes, uint32 *data); |
| static int bcmspi_card_regread_fixedaddr(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, |
| uint32 *data); |
| static void bcmspi_cmd_getdstatus(sdioh_info_t *sd, uint32 *dstatus_buffer); |
| static int bcmspi_update_stats(sdioh_info_t *sd, uint32 cmd_arg); |
| |
| /* |
| * Public entry points & extern's |
| */ |
| extern sdioh_info_t * |
| sdioh_attach(osl_t *osh, void *bar0, uint irq) |
| { |
| sdioh_info_t *sd; |
| |
| sd_trace(("%s\n", __FUNCTION__)); |
| if ((sd = (sdioh_info_t *)MALLOC(osh, sizeof(sdioh_info_t))) == NULL) { |
| sd_err(("%s: out of memory, malloced %d bytes\n", __FUNCTION__, MALLOCED(osh))); |
| return NULL; |
| } |
| bzero((char *)sd, sizeof(sdioh_info_t)); |
| sd->osh = osh; |
| if (spi_osinit(sd) != 0) { |
| sd_err(("%s: spi_osinit() failed\n", __FUNCTION__)); |
| MFREE(sd->osh, sd, sizeof(sdioh_info_t)); |
| return NULL; |
| } |
| |
| sd->bar0 = bar0; |
| sd->irq = irq; |
| sd->intr_handler = NULL; |
| sd->intr_handler_arg = NULL; |
| sd->intr_handler_valid = FALSE; |
| |
| /* Set defaults */ |
| sd->use_client_ints = TRUE; |
| sd->sd_use_dma = FALSE; /* DMA Not supported */ |
| |
| /* Spi device default is 16bit mode, change to 4 when device is changed to 32bit |
| * mode |
| */ |
| sd->wordlen = 2; |
| |
| |
| if (!spi_hw_attach(sd)) { |
| sd_err(("%s: spi_hw_attach() failed\n", __FUNCTION__)); |
| spi_osfree(sd); |
| MFREE(sd->osh, sd, sizeof(sdioh_info_t)); |
| return (NULL); |
| } |
| |
| if (bcmspi_driver_init(sd) != SUCCESS) { |
| sd_err(("%s: bcmspi_driver_init() failed()\n", __FUNCTION__)); |
| spi_hw_detach(sd); |
| spi_osfree(sd); |
| MFREE(sd->osh, sd, sizeof(sdioh_info_t)); |
| return (NULL); |
| } |
| |
| if (spi_register_irq(sd, irq) != SUCCESS) { |
| sd_err(("%s: spi_register_irq() failed for irq = %d\n", __FUNCTION__, irq)); |
| spi_hw_detach(sd); |
| spi_osfree(sd); |
| MFREE(sd->osh, sd, sizeof(sdioh_info_t)); |
| return (NULL); |
| } |
| |
| sd_trace(("%s: Done\n", __FUNCTION__)); |
| |
| return sd; |
| } |
| |
| extern SDIOH_API_RC |
| sdioh_detach(osl_t *osh, sdioh_info_t *sd) |
| { |
| sd_trace(("%s\n", __FUNCTION__)); |
| if (sd) { |
| sd_err(("%s: detaching from hardware\n", __FUNCTION__)); |
| spi_free_irq(sd->irq, sd); |
| spi_hw_detach(sd); |
| spi_osfree(sd); |
| MFREE(sd->osh, sd, sizeof(sdioh_info_t)); |
| } |
| return SDIOH_API_RC_SUCCESS; |
| } |
| |
| /* Configure callback to client when we recieve client interrupt */ |
| extern SDIOH_API_RC |
| sdioh_interrupt_register(sdioh_info_t *sd, sdioh_cb_fn_t fn, void *argh) |
| { |
| sd_trace(("%s: Entering\n", __FUNCTION__)); |
| #if !defined(OOB_INTR_ONLY) || defined(OOB_PARAM) |
| OOB_PARAM_IF(dhd_get_oob_disable(argh)) { |
| sd->intr_handler = fn; |
| sd->intr_handler_arg = argh; |
| sd->intr_handler_valid = TRUE; |
| } |
| #endif /* !defined(OOB_INTR_ONLY) || defined(OOB_PARAM) */ |
| return SDIOH_API_RC_SUCCESS; |
| } |
| |
| extern SDIOH_API_RC |
| sdioh_interrupt_deregister(sdioh_info_t *sd) |
| { |
| sd_trace(("%s: Entering\n", __FUNCTION__)); |
| #if !defined(OOB_INTR_ONLY) || defined(OOB_PARAM) |
| OOB_PARAM_IF(sd->intr_handler_valid) { |
| sd->intr_handler_valid = FALSE; |
| sd->intr_handler = NULL; |
| sd->intr_handler_arg = NULL; |
| } |
| #endif /* !defined(OOB_INTR_ONLY) || defined(OOB_PARAM) */ |
| return SDIOH_API_RC_SUCCESS; |
| } |
| |
| extern SDIOH_API_RC |
| sdioh_interrupt_query(sdioh_info_t *sd, bool *onoff) |
| { |
| sd_trace(("%s: Entering\n", __FUNCTION__)); |
| *onoff = sd->client_intr_enabled; |
| return SDIOH_API_RC_SUCCESS; |
| } |
| |
| #if defined(DHD_DEBUG) |
| extern bool |
| sdioh_interrupt_pending(sdioh_info_t *sd) |
| { |
| return 0; |
| } |
| #endif |
| |
| extern SDIOH_API_RC |
| sdioh_query_device(sdioh_info_t *sd) |
| { |
| /* Return a BRCM ID appropriate to the dongle class */ |
| return (sd->num_funcs > 1) ? BCM4329_D11N_ID : BCM4318_D11G_ID; |
| } |
| |
| /* Provide dstatus bits of spi-transaction for dhd layers. */ |
| extern uint32 |
| sdioh_get_dstatus(sdioh_info_t *sd) |
| { |
| return sd->card_dstatus; |
| } |
| |
| extern void |
| sdioh_chipinfo(sdioh_info_t *sd, uint32 chip, uint32 chiprev) |
| { |
| sd->chip = chip; |
| sd->chiprev = chiprev; |
| } |
| |
| extern void |
| sdioh_dwordmode(sdioh_info_t *sd, bool set) |
| { |
| uint8 reg = 0; |
| int status; |
| |
| if ((status = sdioh_request_byte(sd, SDIOH_READ, SPI_FUNC_0, SPID_STATUS_ENABLE, ®)) != |
| SUCCESS) { |
| sd_err(("%s: Failed to set dwordmode in gSPI\n", __FUNCTION__)); |
| return; |
| } |
| |
| if (set) { |
| reg |= DWORD_PKT_LEN_EN; |
| sd->dwordmode = TRUE; |
| sd->client_block_size[SPI_FUNC_2] = 4096; /* h2spi's limit is 4KB, we support 8KB */ |
| } else { |
| reg &= ~DWORD_PKT_LEN_EN; |
| sd->dwordmode = FALSE; |
| sd->client_block_size[SPI_FUNC_2] = 2048; |
| } |
| |
| if ((status = sdioh_request_byte(sd, SDIOH_WRITE, SPI_FUNC_0, SPID_STATUS_ENABLE, ®)) != |
| SUCCESS) { |
| sd_err(("%s: Failed to set dwordmode in gSPI\n", __FUNCTION__)); |
| return; |
| } |
| } |
| |
| |
| uint |
| sdioh_query_iofnum(sdioh_info_t *sd) |
| { |
| return sd->num_funcs; |
| } |
| |
| /* IOVar table */ |
| enum { |
| IOV_MSGLEVEL = 1, |
| IOV_BLOCKMODE, |
| IOV_BLOCKSIZE, |
| IOV_DMA, |
| IOV_USEINTS, |
| IOV_NUMINTS, |
| IOV_NUMLOCALINTS, |
| IOV_HOSTREG, |
| IOV_DEVREG, |
| IOV_DIVISOR, |
| IOV_SDMODE, |
| IOV_HISPEED, |
| IOV_HCIREGS, |
| IOV_POWER, |
| IOV_CLOCK, |
| IOV_SPIERRSTATS, |
| IOV_RESP_DELAY_ALL |
| }; |
| |
| const bcm_iovar_t sdioh_iovars[] = { |
| {"sd_msglevel", IOV_MSGLEVEL, 0, IOVT_UINT32, 0 }, |
| {"sd_blocksize", IOV_BLOCKSIZE, 0, IOVT_UINT32, 0 }, /* ((fn << 16) | size) */ |
| {"sd_dma", IOV_DMA, 0, IOVT_BOOL, 0 }, |
| {"sd_ints", IOV_USEINTS, 0, IOVT_BOOL, 0 }, |
| {"sd_numints", IOV_NUMINTS, 0, IOVT_UINT32, 0 }, |
| {"sd_numlocalints", IOV_NUMLOCALINTS, 0, IOVT_UINT32, 0 }, |
| {"sd_hostreg", IOV_HOSTREG, 0, IOVT_BUFFER, sizeof(sdreg_t) }, |
| {"sd_devreg", IOV_DEVREG, 0, IOVT_BUFFER, sizeof(sdreg_t) }, |
| {"sd_divisor", IOV_DIVISOR, 0, IOVT_UINT32, 0 }, |
| {"sd_power", IOV_POWER, 0, IOVT_UINT32, 0 }, |
| {"sd_clock", IOV_CLOCK, 0, IOVT_UINT32, 0 }, |
| {"sd_mode", IOV_SDMODE, 0, IOVT_UINT32, 100}, |
| {"sd_highspeed", IOV_HISPEED, 0, IOVT_UINT32, 0}, |
| {"spi_errstats", IOV_SPIERRSTATS, 0, IOVT_BUFFER, sizeof(struct spierrstats_t) }, |
| {"spi_respdelay", IOV_RESP_DELAY_ALL, 0, IOVT_BOOL, 0 }, |
| {NULL, 0, 0, 0, 0 } |
| }; |
| |
| int |
| sdioh_iovar_op(sdioh_info_t *si, const char *name, |
| void *params, int plen, void *arg, int len, bool set) |
| { |
| const bcm_iovar_t *vi = NULL; |
| int bcmerror = 0; |
| int val_size; |
| int32 int_val = 0; |
| bool bool_val; |
| uint32 actionid; |
| /* |
| sdioh_regs_t *regs; |
| */ |
| |
| ASSERT(name); |
| ASSERT(len >= 0); |
| |
| /* Get must have return space; Set does not take qualifiers */ |
| ASSERT(set || (arg && len)); |
| ASSERT(!set || (!params && !plen)); |
| |
| sd_trace(("%s: Enter (%s %s)\n", __FUNCTION__, (set ? "set" : "get"), name)); |
| |
| if ((vi = bcm_iovar_lookup(sdioh_iovars, name)) == NULL) { |
| bcmerror = BCME_UNSUPPORTED; |
| goto exit; |
| } |
| |
| if ((bcmerror = bcm_iovar_lencheck(vi, arg, len, set)) != 0) |
| goto exit; |
| |
| /* Set up params so get and set can share the convenience variables */ |
| if (params == NULL) { |
| params = arg; |
| plen = len; |
| } |
| |
| if (vi->type == IOVT_VOID) |
| val_size = 0; |
| else if (vi->type == IOVT_BUFFER) |
| val_size = len; |
| else |
| val_size = sizeof(int); |
| |
| if (plen >= (int)sizeof(int_val)) |
| bcopy(params, &int_val, sizeof(int_val)); |
| |
| bool_val = (int_val != 0) ? TRUE : FALSE; |
| |
| actionid = set ? IOV_SVAL(vi->varid) : IOV_GVAL(vi->varid); |
| switch (actionid) { |
| case IOV_GVAL(IOV_MSGLEVEL): |
| int_val = (int32)sd_msglevel; |
| bcopy(&int_val, arg, val_size); |
| break; |
| |
| case IOV_SVAL(IOV_MSGLEVEL): |
| sd_msglevel = int_val; |
| break; |
| |
| case IOV_GVAL(IOV_BLOCKSIZE): |
| if ((uint32)int_val > si->num_funcs) { |
| bcmerror = BCME_BADARG; |
| break; |
| } |
| int_val = (int32)si->client_block_size[int_val]; |
| bcopy(&int_val, arg, val_size); |
| break; |
| |
| case IOV_GVAL(IOV_DMA): |
| int_val = (int32)si->sd_use_dma; |
| bcopy(&int_val, arg, val_size); |
| break; |
| |
| case IOV_SVAL(IOV_DMA): |
| si->sd_use_dma = (bool)int_val; |
| break; |
| |
| case IOV_GVAL(IOV_USEINTS): |
| int_val = (int32)si->use_client_ints; |
| bcopy(&int_val, arg, val_size); |
| break; |
| |
| case IOV_SVAL(IOV_USEINTS): |
| break; |
| |
| case IOV_GVAL(IOV_DIVISOR): |
| int_val = (uint32)sd_divisor; |
| bcopy(&int_val, arg, val_size); |
| break; |
| |
| case IOV_SVAL(IOV_DIVISOR): |
| sd_divisor = int_val; |
| if (!spi_start_clock(si, (uint16)sd_divisor)) { |
| sd_err(("%s: set clock failed\n", __FUNCTION__)); |
| bcmerror = BCME_ERROR; |
| } |
| break; |
| |
| case IOV_GVAL(IOV_POWER): |
| int_val = (uint32)sd_power; |
| bcopy(&int_val, arg, val_size); |
| break; |
| |
| case IOV_SVAL(IOV_POWER): |
| sd_power = int_val; |
| break; |
| |
| case IOV_GVAL(IOV_CLOCK): |
| int_val = (uint32)sd_clock; |
| bcopy(&int_val, arg, val_size); |
| break; |
| |
| case IOV_SVAL(IOV_CLOCK): |
| sd_clock = int_val; |
| break; |
| |
| case IOV_GVAL(IOV_SDMODE): |
| int_val = (uint32)sd_sdmode; |
| bcopy(&int_val, arg, val_size); |
| break; |
| |
| case IOV_SVAL(IOV_SDMODE): |
| sd_sdmode = int_val; |
| break; |
| |
| case IOV_GVAL(IOV_HISPEED): |
| int_val = (uint32)sd_hiok; |
| bcopy(&int_val, arg, val_size); |
| break; |
| |
| case IOV_SVAL(IOV_HISPEED): |
| sd_hiok = int_val; |
| |
| if (!bcmspi_set_highspeed_mode(si, (bool)sd_hiok)) { |
| sd_err(("%s: Failed changing highspeed mode to %d.\n", |
| __FUNCTION__, sd_hiok)); |
| bcmerror = BCME_ERROR; |
| return ERROR; |
| } |
| break; |
| |
| case IOV_GVAL(IOV_NUMINTS): |
| int_val = (int32)si->intrcount; |
| bcopy(&int_val, arg, val_size); |
| break; |
| |
| case IOV_GVAL(IOV_NUMLOCALINTS): |
| int_val = (int32)si->local_intrcount; |
| bcopy(&int_val, arg, val_size); |
| break; |
| case IOV_GVAL(IOV_DEVREG): |
| { |
| sdreg_t *sd_ptr = (sdreg_t *)params; |
| uint8 data; |
| |
| if (sdioh_cfg_read(si, sd_ptr->func, sd_ptr->offset, &data)) { |
| bcmerror = BCME_SDIO_ERROR; |
| break; |
| } |
| |
| int_val = (int)data; |
| bcopy(&int_val, arg, sizeof(int_val)); |
| break; |
| } |
| |
| case IOV_SVAL(IOV_DEVREG): |
| { |
| sdreg_t *sd_ptr = (sdreg_t *)params; |
| uint8 data = (uint8)sd_ptr->value; |
| |
| if (sdioh_cfg_write(si, sd_ptr->func, sd_ptr->offset, &data)) { |
| bcmerror = BCME_SDIO_ERROR; |
| break; |
| } |
| break; |
| } |
| |
| |
| case IOV_GVAL(IOV_SPIERRSTATS): |
| { |
| bcopy(&si->spierrstats, arg, sizeof(struct spierrstats_t)); |
| break; |
| } |
| |
| case IOV_SVAL(IOV_SPIERRSTATS): |
| { |
| bzero(&si->spierrstats, sizeof(struct spierrstats_t)); |
| break; |
| } |
| |
| case IOV_GVAL(IOV_RESP_DELAY_ALL): |
| int_val = (int32)si->resp_delay_all; |
| bcopy(&int_val, arg, val_size); |
| break; |
| |
| case IOV_SVAL(IOV_RESP_DELAY_ALL): |
| si->resp_delay_all = (bool)int_val; |
| int_val = STATUS_ENABLE|INTR_WITH_STATUS; |
| if (si->resp_delay_all) |
| int_val |= RESP_DELAY_ALL; |
| else { |
| if (bcmspi_card_regwrite(si, SPI_FUNC_0, SPID_RESPONSE_DELAY, 1, |
| F1_RESPONSE_DELAY) != SUCCESS) { |
| sd_err(("%s: Unable to set response delay.\n", __FUNCTION__)); |
| bcmerror = BCME_SDIO_ERROR; |
| break; |
| } |
| } |
| |
| if (bcmspi_card_regwrite(si, SPI_FUNC_0, SPID_STATUS_ENABLE, 1, int_val) |
| != SUCCESS) { |
| sd_err(("%s: Unable to set response delay.\n", __FUNCTION__)); |
| bcmerror = BCME_SDIO_ERROR; |
| break; |
| } |
| break; |
| |
| default: |
| bcmerror = BCME_UNSUPPORTED; |
| break; |
| } |
| exit: |
| |
| return bcmerror; |
| } |
| |
| extern SDIOH_API_RC |
| sdioh_cfg_read(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data) |
| { |
| SDIOH_API_RC status; |
| /* No lock needed since sdioh_request_byte does locking */ |
| status = sdioh_request_byte(sd, SDIOH_READ, fnc_num, addr, data); |
| return status; |
| } |
| |
| extern SDIOH_API_RC |
| sdioh_cfg_write(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data) |
| { |
| /* No lock needed since sdioh_request_byte does locking */ |
| SDIOH_API_RC status; |
| |
| if ((fnc_num == SPI_FUNC_1) && (addr == SBSDIO_FUNC1_FRAMECTRL)) { |
| uint8 dummy_data; |
| status = sdioh_cfg_read(sd, fnc_num, addr, &dummy_data); |
| if (status) { |
| sd_err(("sdioh_cfg_read() failed.\n")); |
| return status; |
| } |
| } |
| |
| status = sdioh_request_byte(sd, SDIOH_WRITE, fnc_num, addr, data); |
| return status; |
| } |
| |
| extern SDIOH_API_RC |
| sdioh_cis_read(sdioh_info_t *sd, uint func, uint8 *cisd, uint32 length) |
| { |
| uint32 count; |
| int offset; |
| uint32 cis_byte; |
| uint16 *cis = (uint16 *)cisd; |
| uint bar0 = SI_ENUM_BASE; |
| int status; |
| uint8 data; |
| |
| sd_trace(("%s: Func %d\n", __FUNCTION__, func)); |
| |
| spi_lock(sd); |
| |
| /* Set sb window address to 0x18000000 */ |
| data = (bar0 >> 8) & SBSDIO_SBADDRLOW_MASK; |
| status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRLOW, &data); |
| if (status == SUCCESS) { |
| data = (bar0 >> 16) & SBSDIO_SBADDRMID_MASK; |
| status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRMID, &data); |
| } else { |
| sd_err(("%s: Unable to set sb-addr-windows\n", __FUNCTION__)); |
| spi_unlock(sd); |
| return (BCME_ERROR); |
| } |
| if (status == SUCCESS) { |
| data = (bar0 >> 24) & SBSDIO_SBADDRHIGH_MASK; |
| status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRHIGH, &data); |
| } else { |
| sd_err(("%s: Unable to set sb-addr-windows\n", __FUNCTION__)); |
| spi_unlock(sd); |
| return (BCME_ERROR); |
| } |
| |
| offset = CC_SROM_OTP; /* OTP offset in chipcommon. */ |
| for (count = 0; count < length/2; count++) { |
| if (bcmspi_card_regread (sd, SDIO_FUNC_1, offset, 2, &cis_byte) < 0) { |
| sd_err(("%s: regread failed: Can't read CIS\n", __FUNCTION__)); |
| spi_unlock(sd); |
| return (BCME_ERROR); |
| } |
| |
| *cis = (uint16)cis_byte; |
| cis++; |
| offset += 2; |
| } |
| |
| spi_unlock(sd); |
| |
| return (BCME_OK); |
| } |
| |
| extern SDIOH_API_RC |
| sdioh_request_byte(sdioh_info_t *sd, uint rw, uint func, uint regaddr, uint8 *byte) |
| { |
| int status; |
| uint32 cmd_arg; |
| uint32 dstatus; |
| uint32 data = (uint32)(*byte); |
| |
| spi_lock(sd); |
| |
| cmd_arg = 0; |
| cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); |
| cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */ |
| cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr); |
| cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, rw == SDIOH_READ ? 0 : 1); |
| cmd_arg = SFIELD(cmd_arg, SPI_LEN, 1); |
| |
| if (rw == SDIOH_READ) { |
| sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x\n", |
| __FUNCTION__, cmd_arg, func, regaddr)); |
| } else { |
| sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x data=0x%x\n", |
| __FUNCTION__, cmd_arg, func, regaddr, data)); |
| } |
| |
| if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, 1)) != SUCCESS) { |
| spi_unlock(sd); |
| return status; |
| } |
| |
| if (rw == SDIOH_READ) { |
| *byte = (uint8)data; |
| sd_trace(("%s: RD result=0x%x\n", __FUNCTION__, *byte)); |
| } |
| |
| bcmspi_cmd_getdstatus(sd, &dstatus); |
| if (dstatus) |
| sd_trace(("dstatus=0x%x\n", dstatus)); |
| |
| spi_unlock(sd); |
| return SDIOH_API_RC_SUCCESS; |
| } |
| |
| extern SDIOH_API_RC |
| sdioh_request_word(sdioh_info_t *sd, uint cmd_type, uint rw, uint func, uint addr, |
| uint32 *word, uint nbytes) |
| { |
| int status; |
| |
| spi_lock(sd); |
| |
| if (rw == SDIOH_READ) |
| status = bcmspi_card_regread(sd, func, addr, nbytes, word); |
| else |
| status = bcmspi_card_regwrite(sd, func, addr, nbytes, *word); |
| |
| spi_unlock(sd); |
| return (status == SUCCESS ? SDIOH_API_RC_SUCCESS : SDIOH_API_RC_FAIL); |
| } |
| |
| extern SDIOH_API_RC |
| sdioh_request_buffer(sdioh_info_t *sd, uint pio_dma, uint fix_inc, uint rw, uint func, |
| uint addr, uint reg_width, uint buflen_u, uint8 *buffer, void *pkt) |
| { |
| int len; |
| int buflen = (int)buflen_u; |
| bool fifo = (fix_inc == SDIOH_DATA_FIX); |
| |
| spi_lock(sd); |
| |
| ASSERT(reg_width == 4); |
| ASSERT(buflen_u < (1 << 30)); |
| ASSERT(sd->client_block_size[func]); |
| |
| sd_data(("%s: %c len %d r_cnt %d t_cnt %d, pkt @0x%p\n", |
| __FUNCTION__, rw == SDIOH_READ ? 'R' : 'W', |
| buflen_u, sd->r_cnt, sd->t_cnt, pkt)); |
| |
| /* Break buffer down into blocksize chunks. */ |
| while (buflen > 0) { |
| len = MIN(sd->client_block_size[func], buflen); |
| if (bcmspi_card_buf(sd, rw, func, fifo, addr, len, (uint32 *)buffer) != SUCCESS) { |
| sd_err(("%s: bcmspi_card_buf %s failed\n", |
| __FUNCTION__, rw == SDIOH_READ ? "Read" : "Write")); |
| spi_unlock(sd); |
| return SDIOH_API_RC_FAIL; |
| } |
| buffer += len; |
| buflen -= len; |
| if (!fifo) |
| addr += len; |
| } |
| spi_unlock(sd); |
| return SDIOH_API_RC_SUCCESS; |
| } |
| |
| /* This function allows write to gspi bus when another rd/wr function is deep down the call stack. |
| * Its main aim is to have simpler spi writes rather than recursive writes. |
| * e.g. When there is a need to program response delay on the fly after detecting the SPI-func |
| * this call will allow to program the response delay. |
| */ |
| static int |
| bcmspi_card_byterewrite(sdioh_info_t *sd, int func, uint32 regaddr, uint8 byte) |
| { |
| uint32 cmd_arg; |
| uint32 datalen = 1; |
| uint32 hostlen; |
| |
| cmd_arg = 0; |
| |
| cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1); |
| cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */ |
| cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); |
| cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr); |
| cmd_arg = SFIELD(cmd_arg, SPI_LEN, datalen); |
| |
| sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg)); |
| |
| |
| /* Set up and issue the SPI command. MSByte goes out on bus first. Increase datalen |
| * according to the wordlen mode(16/32bit) the device is in. |
| */ |
| ASSERT(sd->wordlen == 4 || sd->wordlen == 2); |
| datalen = ROUNDUP(datalen, sd->wordlen); |
| |
| /* Start by copying command in the spi-outbuffer */ |
| if (sd->wordlen == 4) { /* 32bit spid */ |
| *(uint32 *)spi_outbuf2 = SPISWAP_WD4(cmd_arg); |
| if (datalen & 0x3) |
| datalen += (4 - (datalen & 0x3)); |
| } else if (sd->wordlen == 2) { /* 16bit spid */ |
| *(uint32 *)spi_outbuf2 = SPISWAP_WD2(cmd_arg); |
| if (datalen & 0x1) |
| datalen++; |
| } else { |
| sd_err(("%s: Host is %d bit spid, could not create SPI command.\n", |
| __FUNCTION__, 8 * sd->wordlen)); |
| return ERROR; |
| } |
| |
| /* for Write, put the data into the output buffer */ |
| if (datalen != 0) { |
| if (sd->wordlen == 4) { /* 32bit spid */ |
| *(uint32 *)&spi_outbuf2[CMDLEN] = SPISWAP_WD4(byte); |
| } else if (sd->wordlen == 2) { /* 16bit spid */ |
| *(uint32 *)&spi_outbuf2[CMDLEN] = SPISWAP_WD2(byte); |
| } |
| } |
| |
| /* +4 for cmd, +4 for dstatus */ |
| hostlen = datalen + 8; |
| hostlen += (4 - (hostlen & 0x3)); |
| spi_sendrecv(sd, spi_outbuf2, spi_inbuf2, hostlen); |
| |
| /* Last 4bytes are dstatus. Device is configured to return status bits. */ |
| if (sd->wordlen == 4) { /* 32bit spid */ |
| sd->card_dstatus = SPISWAP_WD4(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]); |
| } else if (sd->wordlen == 2) { /* 16bit spid */ |
| sd->card_dstatus = SPISWAP_WD2(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]); |
| } else { |
| sd_err(("%s: Host is %d bit machine, could not read SPI dstatus.\n", |
| __FUNCTION__, 8 * sd->wordlen)); |
| return ERROR; |
| } |
| |
| if (sd->card_dstatus) |
| sd_trace(("dstatus after byte rewrite = 0x%x\n", sd->card_dstatus)); |
| |
| return (BCME_OK); |
| } |
| |
| /* Program the response delay corresponding to the spi function */ |
| static int |
| bcmspi_prog_resp_delay(sdioh_info_t *sd, int func, uint8 resp_delay) |
| { |
| if (sd->resp_delay_all == FALSE) |
| return (BCME_OK); |
| |
| if (sd->prev_fun == func) |
| return (BCME_OK); |
| |
| if (F0_RESPONSE_DELAY == F1_RESPONSE_DELAY) |
| return (BCME_OK); |
| |
| bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_RESPONSE_DELAY, resp_delay); |
| |
| /* Remember function for which to avoid reprogramming resp-delay in next iteration */ |
| sd->prev_fun = func; |
| |
| return (BCME_OK); |
| |
| } |
| |
| #define GSPI_RESYNC_PATTERN 0x0 |
| |
| /* A resync pattern is a 32bit MOSI line with all zeros. Its a special command in gSPI. |
| * It resets the spi-bkplane logic so that all F1 related ping-pong buffer logic is |
| * synchronised and all queued resuests are cancelled. |
| */ |
| static int |
| bcmspi_resync_f1(sdioh_info_t *sd) |
| { |
| uint32 cmd_arg = GSPI_RESYNC_PATTERN, data = 0, datalen = 0; |
| |
| |
| /* Set up and issue the SPI command. MSByte goes out on bus first. Increase datalen |
| * according to the wordlen mode(16/32bit) the device is in. |
| */ |
| ASSERT(sd->wordlen == 4 || sd->wordlen == 2); |
| datalen = ROUNDUP(datalen, sd->wordlen); |
| |
| /* Start by copying command in the spi-outbuffer */ |
| *(uint32 *)spi_outbuf2 = cmd_arg; |
| |
| /* for Write, put the data into the output buffer */ |
| *(uint32 *)&spi_outbuf2[CMDLEN] = data; |
| |
| /* +4 for cmd, +4 for dstatus */ |
| spi_sendrecv(sd, spi_outbuf2, spi_inbuf2, datalen + 8); |
| |
| /* Last 4bytes are dstatus. Device is configured to return status bits. */ |
| if (sd->wordlen == 4) { /* 32bit spid */ |
| sd->card_dstatus = SPISWAP_WD4(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]); |
| } else if (sd->wordlen == 2) { /* 16bit spid */ |
| sd->card_dstatus = SPISWAP_WD2(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]); |
| } else { |
| sd_err(("%s: Host is %d bit machine, could not read SPI dstatus.\n", |
| __FUNCTION__, 8 * sd->wordlen)); |
| return ERROR; |
| } |
| |
| if (sd->card_dstatus) |
| sd_trace(("dstatus after resync pattern write = 0x%x\n", sd->card_dstatus)); |
| |
| return (BCME_OK); |
| } |
| |
| uint32 dstatus_count = 0; |
| |
| static int |
| bcmspi_update_stats(sdioh_info_t *sd, uint32 cmd_arg) |
| { |
| uint32 dstatus = sd->card_dstatus; |
| struct spierrstats_t *spierrstats = &sd->spierrstats; |
| int err = SUCCESS; |
| |
| sd_trace(("cmd = 0x%x, dstatus = 0x%x\n", cmd_arg, dstatus)); |
| |
| /* Store dstatus of last few gSPI transactions */ |
| spierrstats->dstatus[dstatus_count % NUM_PREV_TRANSACTIONS] = dstatus; |
| spierrstats->spicmd[dstatus_count % NUM_PREV_TRANSACTIONS] = cmd_arg; |
| dstatus_count++; |
| |
| if (sd->card_init_done == FALSE) |
| return err; |
| |
| if (dstatus & STATUS_DATA_NOT_AVAILABLE) { |
| spierrstats->dna++; |
| sd_trace(("Read data not available on F1 addr = 0x%x\n", |
| GFIELD(cmd_arg, SPI_REG_ADDR))); |
| /* Clear dna bit */ |
| bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_INTR_REG, DATA_UNAVAILABLE); |
| } |
| |
| if (dstatus & STATUS_UNDERFLOW) { |
| spierrstats->rdunderflow++; |
| sd_err(("FIFO underflow happened due to current F2 read command.\n")); |
| } |
| |
| if (dstatus & STATUS_OVERFLOW) { |
| spierrstats->wroverflow++; |
| sd_err(("FIFO overflow happened due to current (F1/F2) write command.\n")); |
| bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_INTR_REG, F1_OVERFLOW); |
| bcmspi_resync_f1(sd); |
| sd_err(("Recovering from F1 FIFO overflow.\n")); |
| } |
| |
| if (dstatus & STATUS_F2_INTR) { |
| spierrstats->f2interrupt++; |
| sd_trace(("Interrupt from F2. SW should clear corresponding IntStatus bits\n")); |
| } |
| |
| if (dstatus & STATUS_F3_INTR) { |
| spierrstats->f3interrupt++; |
| sd_err(("Interrupt from F3. SW should clear corresponding IntStatus bits\n")); |
| } |
| |
| if (dstatus & STATUS_HOST_CMD_DATA_ERR) { |
| spierrstats->hostcmddataerr++; |
| sd_err(("Error in CMD or Host data, detected by CRC/Checksum (optional)\n")); |
| } |
| |
| if (dstatus & STATUS_F2_PKT_AVAILABLE) { |
| spierrstats->f2pktavailable++; |
| sd_trace(("Packet is available/ready in F2 TX FIFO\n")); |
| sd_trace(("Packet length = %d\n", sd->dwordmode ? |
| ((dstatus & STATUS_F2_PKT_LEN_MASK) >> (STATUS_F2_PKT_LEN_SHIFT - 2)) : |
| ((dstatus & STATUS_F2_PKT_LEN_MASK) >> STATUS_F2_PKT_LEN_SHIFT))); |
| } |
| |
| if (dstatus & STATUS_F3_PKT_AVAILABLE) { |
| spierrstats->f3pktavailable++; |
| sd_err(("Packet is available/ready in F3 TX FIFO\n")); |
| sd_err(("Packet length = %d\n", |
| (dstatus & STATUS_F3_PKT_LEN_MASK) >> STATUS_F3_PKT_LEN_SHIFT)); |
| } |
| |
| return err; |
| } |
| |
| extern int |
| sdioh_abort(sdioh_info_t *sd, uint func) |
| { |
| return 0; |
| } |
| |
| int |
| sdioh_start(sdioh_info_t *sd, int stage) |
| { |
| return SUCCESS; |
| } |
| |
| int |
| sdioh_stop(sdioh_info_t *sd) |
| { |
| return SUCCESS; |
| } |
| |
| int |
| sdioh_waitlockfree(sdioh_info_t *sd) |
| { |
| return SUCCESS; |
| } |
| |
| |
| /* |
| * Private/Static work routines |
| */ |
| static int |
| bcmspi_host_init(sdioh_info_t *sd) |
| { |
| |
| /* Default power on mode */ |
| sd->sd_mode = SDIOH_MODE_SPI; |
| sd->polled_mode = TRUE; |
| sd->host_init_done = TRUE; |
| sd->card_init_done = FALSE; |
| sd->adapter_slot = 1; |
| |
| return (SUCCESS); |
| } |
| |
| static int |
| get_client_blocksize(sdioh_info_t *sd) |
| { |
| uint32 regdata[2]; |
| int status; |
| |
| /* Find F1/F2/F3 max packet size */ |
| if ((status = bcmspi_card_regread(sd, 0, SPID_F1_INFO_REG, |
| 8, regdata)) != SUCCESS) { |
| return status; |
| } |
| |
| sd_trace(("pkt_size regdata[0] = 0x%x, regdata[1] = 0x%x\n", |
| regdata[0], regdata[1])); |
| |
| sd->client_block_size[1] = (regdata[0] & F1_MAX_PKT_SIZE) >> 2; |
| sd_trace(("Func1 blocksize = %d\n", sd->client_block_size[1])); |
| ASSERT(sd->client_block_size[1] == BLOCK_SIZE_F1); |
| |
| sd->client_block_size[2] = ((regdata[0] >> 16) & F2_MAX_PKT_SIZE) >> 2; |
| sd_trace(("Func2 blocksize = %d\n", sd->client_block_size[2])); |
| ASSERT(sd->client_block_size[2] == BLOCK_SIZE_F2); |
| |
| sd->client_block_size[3] = (regdata[1] & F3_MAX_PKT_SIZE) >> 2; |
| sd_trace(("Func3 blocksize = %d\n", sd->client_block_size[3])); |
| ASSERT(sd->client_block_size[3] == BLOCK_SIZE_F3); |
| |
| return 0; |
| } |
| |
| static int |
| bcmspi_client_init(sdioh_info_t *sd) |
| { |
| uint32 status_en_reg = 0; |
| sd_trace(("%s: Powering up slot %d\n", __FUNCTION__, sd->adapter_slot)); |
| |
| #ifdef HSMODE |
| if (!spi_start_clock(sd, (uint16)sd_divisor)) { |
| sd_err(("spi_start_clock failed\n")); |
| return ERROR; |
| } |
| #else |
| /* Start at ~400KHz clock rate for initialization */ |
| if (!spi_start_clock(sd, 128)) { |
| sd_err(("spi_start_clock failed\n")); |
| return ERROR; |
| } |
| #endif /* HSMODE */ |
| |
| if (!bcmspi_host_device_init_adapt(sd)) { |
| sd_err(("bcmspi_host_device_init_adapt failed\n")); |
| return ERROR; |
| } |
| |
| if (!bcmspi_test_card(sd)) { |
| sd_err(("bcmspi_test_card failed\n")); |
| return ERROR; |
| } |
| |
| sd->num_funcs = SPI_MAX_IOFUNCS; |
| |
| get_client_blocksize(sd); |
| |
| /* Apply resync pattern cmd with all zeros to reset spi-bkplane F1 logic */ |
| bcmspi_resync_f1(sd); |
| |
| sd->dwordmode = FALSE; |
| |
| bcmspi_card_regread(sd, 0, SPID_STATUS_ENABLE, 1, &status_en_reg); |
| |
| sd_trace(("%s: Enabling interrupt with dstatus \n", __FUNCTION__)); |
| status_en_reg |= INTR_WITH_STATUS; |
| |
| if (bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_STATUS_ENABLE, 1, |
| status_en_reg & 0xff) != SUCCESS) { |
| sd_err(("%s: Unable to set response delay for all fun's.\n", __FUNCTION__)); |
| return ERROR; |
| } |
| |
| #ifndef HSMODE |
| /* After configuring for High-Speed mode, set the desired clock rate. */ |
| if (!spi_start_clock(sd, 4)) { |
| sd_err(("spi_start_clock failed\n")); |
| return ERROR; |
| } |
| #endif /* HSMODE */ |
| |
| /* check to see if the response delay needs to be programmed properly */ |
| { |
| uint32 f1_respdelay = 0; |
| bcmspi_card_regread(sd, 0, SPID_RESP_DELAY_F1, 1, &f1_respdelay); |
| if ((f1_respdelay == 0) || (f1_respdelay == 0xFF)) { |
| /* older sdiodevice core and has no separte resp delay for each of */ |
| sd_err(("older corerev < 4 so use the same resp delay for all funcs\n")); |
| sd->resp_delay_new = FALSE; |
| } |
| else { |
| /* older sdiodevice core and has no separte resp delay for each of */ |
| int ret_val; |
| sd->resp_delay_new = TRUE; |
| sd_err(("new corerev >= 4 so set the resp delay for each of the funcs\n")); |
| sd_trace(("resp delay for funcs f0(%d), f1(%d), f2(%d), f3(%d)\n", |
| GSPI_F0_RESP_DELAY, GSPI_F1_RESP_DELAY, |
| GSPI_F2_RESP_DELAY, GSPI_F3_RESP_DELAY)); |
| ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F0, 1, |
| GSPI_F0_RESP_DELAY); |
| if (ret_val != SUCCESS) { |
| sd_err(("%s: Unable to set response delay for F0\n", __FUNCTION__)); |
| return ERROR; |
| } |
| ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F1, 1, |
| GSPI_F1_RESP_DELAY); |
| if (ret_val != SUCCESS) { |
| sd_err(("%s: Unable to set response delay for F1\n", __FUNCTION__)); |
| return ERROR; |
| } |
| ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F2, 1, |
| GSPI_F2_RESP_DELAY); |
| if (ret_val != SUCCESS) { |
| sd_err(("%s: Unable to set response delay for F2\n", __FUNCTION__)); |
| return ERROR; |
| } |
| ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F3, 1, |
| GSPI_F3_RESP_DELAY); |
| if (ret_val != SUCCESS) { |
| sd_err(("%s: Unable to set response delay for F2\n", __FUNCTION__)); |
| return ERROR; |
| } |
| } |
| } |
| |
| |
| sd->card_init_done = TRUE; |
| |
| /* get the device rev to program the prop respdelays */ |
| |
| return SUCCESS; |
| } |
| |
| static int |
| bcmspi_set_highspeed_mode(sdioh_info_t *sd, bool hsmode) |
| { |
| uint32 regdata; |
| int status; |
| |
| if ((status = bcmspi_card_regread(sd, 0, SPID_CONFIG, |
| 4, ®data)) != SUCCESS) |
| return status; |
| |
| sd_trace(("In %s spih-ctrl = 0x%x \n", __FUNCTION__, regdata)); |
| |
| |
| if (hsmode == TRUE) { |
| sd_trace(("Attempting to enable High-Speed mode.\n")); |
| |
| if (regdata & HIGH_SPEED_MODE) { |
| sd_trace(("Device is already in High-Speed mode.\n")); |
| return status; |
| } else { |
| regdata |= HIGH_SPEED_MODE; |
| sd_trace(("Writing %08x to device at %08x\n", regdata, SPID_CONFIG)); |
| if ((status = bcmspi_card_regwrite(sd, 0, SPID_CONFIG, |
| 4, regdata)) != SUCCESS) { |
| return status; |
| } |
| } |
| } else { |
| sd_trace(("Attempting to disable High-Speed mode.\n")); |
| |
| if (regdata & HIGH_SPEED_MODE) { |
| regdata &= ~HIGH_SPEED_MODE; |
| sd_trace(("Writing %08x to device at %08x\n", regdata, SPID_CONFIG)); |
| if ((status = bcmspi_card_regwrite(sd, 0, SPID_CONFIG, |
| 4, regdata)) != SUCCESS) |
| return status; |
| } |
| else { |
| sd_trace(("Device is already in Low-Speed mode.\n")); |
| return status; |
| } |
| } |
| spi_controller_highspeed_mode(sd, hsmode); |
| |
| return TRUE; |
| } |
| |
| #define bcmspi_find_curr_mode(sd) { \ |
| sd->wordlen = 2; \ |
| status = bcmspi_card_regread_fixedaddr(sd, 0, SPID_TEST_READ, 4, ®data); \ |
| regdata &= 0xff; \ |
| if ((regdata == 0xad) || (regdata == 0x5b) || \ |
| (regdata == 0x5d) || (regdata == 0x5a)) \ |
| break; \ |
| sd->wordlen = 4; \ |
| status = bcmspi_card_regread_fixedaddr(sd, 0, SPID_TEST_READ, 4, ®data); \ |
| regdata &= 0xff; \ |
| if ((regdata == 0xad) || (regdata == 0x5b) || \ |
| (regdata == 0x5d) || (regdata == 0x5a)) \ |
| break; \ |
| sd_trace(("Silicon testability issue: regdata = 0x%x." \ |
| " Expected 0xad, 0x5a, 0x5b or 0x5d.\n", regdata)); \ |
| OSL_DELAY(100000); \ |
| } |
| |
| #define INIT_ADAPT_LOOP 100 |
| |
| /* Adapt clock-phase-speed-bitwidth between host and device */ |
| static bool |
| bcmspi_host_device_init_adapt(sdioh_info_t *sd) |
| { |
| uint32 wrregdata, regdata = 0; |
| int status; |
| int i; |
| |
| /* Due to a silicon testability issue, the first command from the Host |
| * to the device will get corrupted (first bit will be lost). So the |
| * Host should poll the device with a safe read request. ie: The Host |
| * should try to read F0 addr 0x14 using the Fixed address mode |
| * (This will prevent a unintended write command to be detected by device) |
| */ |
| for (i = 0; i < INIT_ADAPT_LOOP; i++) { |
| /* If device was not power-cycled it will stay in 32bit mode with |
| * response-delay-all bit set. Alternate the iteration so that |
| * read either with or without response-delay for F0 to succeed. |
| */ |
| bcmspi_find_curr_mode(sd); |
| sd->resp_delay_all = (i & 0x1) ? TRUE : FALSE; |
| |
| bcmspi_find_curr_mode(sd); |
| sd->dwordmode = TRUE; |
| |
| bcmspi_find_curr_mode(sd); |
| sd->dwordmode = FALSE; |
| } |
| |
| /* Bail out, device not detected */ |
| if (i == INIT_ADAPT_LOOP) |
| return FALSE; |
| |
| /* Softreset the spid logic */ |
| if ((sd->dwordmode) || (sd->wordlen == 4)) { |
| bcmspi_card_regwrite(sd, 0, SPID_RESET_BP, 1, RESET_ON_WLAN_BP_RESET|RESET_SPI); |
| bcmspi_card_regread(sd, 0, SPID_RESET_BP, 1, ®data); |
| sd_trace(("reset reg read = 0x%x\n", regdata)); |
| sd_trace(("dwordmode = %d, wordlen = %d, resp_delay_all = %d\n", sd->dwordmode, |
| sd->wordlen, sd->resp_delay_all)); |
| /* Restore default state after softreset */ |
| sd->wordlen = 2; |
| sd->dwordmode = FALSE; |
| } |
| |
| if (sd->wordlen == 4) { |
| if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, ®data)) != |
| SUCCESS) |
| return FALSE; |
| if (regdata == TEST_RO_DATA_32BIT_LE) { |
| sd_trace(("Spid is already in 32bit LE mode. Value read = 0x%x\n", |
| regdata)); |
| sd_trace(("Spid power was left on.\n")); |
| } else { |
| sd_err(("Spid power was left on but signature read failed." |
| " Value read = 0x%x\n", regdata)); |
| return FALSE; |
| } |
| } else { |
| sd->wordlen = 2; |
| |
| #define CTRL_REG_DEFAULT 0x00010430 /* according to the host m/c */ |
| |
| wrregdata = (CTRL_REG_DEFAULT); |
| |
| if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, ®data)) != SUCCESS) |
| return FALSE; |
| sd_trace(("(we are still in 16bit mode) 32bit READ LE regdata = 0x%x\n", regdata)); |
| |
| #ifndef HSMODE |
| wrregdata |= (CLOCK_PHASE | CLOCK_POLARITY); |
| wrregdata &= ~HIGH_SPEED_MODE; |
| bcmspi_card_regwrite(sd, 0, SPID_CONFIG, 4, wrregdata); |
| #endif /* HSMODE */ |
| |
| for (i = 0; i < INIT_ADAPT_LOOP; i++) { |
| if ((regdata == 0xfdda7d5b) || (regdata == 0xfdda7d5a)) { |
| sd_trace(("0xfeedbead was leftshifted by 1-bit.\n")); |
| if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, |
| ®data)) != SUCCESS) |
| return FALSE; |
| } |
| OSL_DELAY(1000); |
| } |
| |
| /* Change to host controller intr-polarity of active-low */ |
| wrregdata &= ~INTR_POLARITY; |
| sd_trace(("(we are still in 16bit mode) 32bit Write LE reg-ctrl-data = 0x%x\n", |
| wrregdata)); |
| /* Change to 32bit mode */ |
| wrregdata |= WORD_LENGTH_32; |
| bcmspi_card_regwrite(sd, 0, SPID_CONFIG, 4, wrregdata); |
| |
| /* Change command/data packaging in 32bit LE mode */ |
| sd->wordlen = 4; |
| |
| if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, ®data)) != SUCCESS) |
| return FALSE; |
| |
| if (regdata == TEST_RO_DATA_32BIT_LE) { |
| sd_trace(("Read spid passed. Value read = 0x%x\n", regdata)); |
| sd_trace(("Spid had power-on cycle OR spi was soft-resetted \n")); |
| } else { |
| sd_err(("Stale spid reg values read as it was kept powered. Value read =" |
| "0x%x\n", regdata)); |
| return FALSE; |
| } |
| } |
| |
| |
| return TRUE; |
| } |
| |
| static bool |
| bcmspi_test_card(sdioh_info_t *sd) |
| { |
| uint32 regdata; |
| int status; |
| |
| if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, ®data)) != SUCCESS) |
| return FALSE; |
| |
| if (regdata == (TEST_RO_DATA_32BIT_LE)) |
| sd_trace(("32bit LE regdata = 0x%x\n", regdata)); |
| else { |
| sd_trace(("Incorrect 32bit LE regdata = 0x%x\n", regdata)); |
| return FALSE; |
| } |
| |
| |
| #define RW_PATTERN1 0xA0A1A2A3 |
| #define RW_PATTERN2 0x4B5B6B7B |
| |
| regdata = RW_PATTERN1; |
| if ((status = bcmspi_card_regwrite(sd, 0, SPID_TEST_RW, 4, regdata)) != SUCCESS) |
| return FALSE; |
| regdata = 0; |
| if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_RW, 4, ®data)) != SUCCESS) |
| return FALSE; |
| if (regdata != RW_PATTERN1) { |
| sd_err(("Write-Read spid failed. Value wrote = 0x%x, Value read = 0x%x\n", |
| RW_PATTERN1, regdata)); |
| return FALSE; |
| } else |
| sd_trace(("R/W spid passed. Value read = 0x%x\n", regdata)); |
| |
| regdata = RW_PATTERN2; |
| if ((status = bcmspi_card_regwrite(sd, 0, SPID_TEST_RW, 4, regdata)) != SUCCESS) |
| return FALSE; |
| regdata = 0; |
| if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_RW, 4, ®data)) != SUCCESS) |
| return FALSE; |
| if (regdata != RW_PATTERN2) { |
| sd_err(("Write-Read spid failed. Value wrote = 0x%x, Value read = 0x%x\n", |
| RW_PATTERN2, regdata)); |
| return FALSE; |
| } else |
| sd_trace(("R/W spid passed. Value read = 0x%x\n", regdata)); |
| |
| return TRUE; |
| } |
| |
| static int |
| bcmspi_driver_init(sdioh_info_t *sd) |
| { |
| sd_trace(("%s\n", __FUNCTION__)); |
| if ((bcmspi_host_init(sd)) != SUCCESS) { |
| return ERROR; |
| } |
| |
| if (bcmspi_client_init(sd) != SUCCESS) { |
| return ERROR; |
| } |
| |
| return SUCCESS; |
| } |
| |
| /* Read device reg */ |
| static int |
| bcmspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data) |
| { |
| int status; |
| uint32 cmd_arg, dstatus; |
| |
| ASSERT(regsize); |
| |
| if (func == 2) |
| sd_trace(("Reg access on F2 will generate error indication in dstatus bits.\n")); |
| |
| cmd_arg = 0; |
| cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 0); |
| cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */ |
| cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); |
| cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr); |
| cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize == BLOCK_SIZE_F2 ? 0 : regsize); |
| |
| sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d\n", |
| __FUNCTION__, cmd_arg, func, regaddr, regsize)); |
| |
| if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, regsize)) != SUCCESS) |
| return status; |
| |
| bcmspi_cmd_getdstatus(sd, &dstatus); |
| if (dstatus) |
| sd_trace(("dstatus =0x%x\n", dstatus)); |
| |
| return SUCCESS; |
| } |
| |
| static int |
| bcmspi_card_regread_fixedaddr(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data) |
| { |
| |
| int status; |
| uint32 cmd_arg; |
| uint32 dstatus; |
| |
| ASSERT(regsize); |
| |
| if (func == 2) |
| sd_trace(("Reg access on F2 will generate error indication in dstatus bits.\n")); |
| |
| cmd_arg = 0; |
| cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 0); |
| cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 0); /* Fixed access */ |
| cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); |
| cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr); |
| cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize); |
| |
| sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d\n", |
| __FUNCTION__, cmd_arg, func, regaddr, regsize)); |
| |
| if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, regsize)) != SUCCESS) |
| return status; |
| |
| sd_trace(("%s: RD result=0x%x\n", __FUNCTION__, *data)); |
| |
| bcmspi_cmd_getdstatus(sd, &dstatus); |
| sd_trace(("dstatus =0x%x\n", dstatus)); |
| return SUCCESS; |
| } |
| |
| /* write a device register */ |
| static int |
| bcmspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 data) |
| { |
| int status; |
| uint32 cmd_arg, dstatus; |
| |
| ASSERT(regsize); |
| |
| cmd_arg = 0; |
| |
| cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1); |
| cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */ |
| cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); |
| cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr); |
| cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize == BLOCK_SIZE_F2 ? 0 : regsize); |
| |
| sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d data=0x%x\n", |
| __FUNCTION__, cmd_arg, func, regaddr, regsize, data)); |
| |
| if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, regsize)) != SUCCESS) |
| return status; |
| |
| bcmspi_cmd_getdstatus(sd, &dstatus); |
| if (dstatus) |
| sd_trace(("dstatus=0x%x\n", dstatus)); |
| |
| return SUCCESS; |
| } |
| |
| /* write a device register - 1 byte */ |
| static int |
| bcmspi_card_bytewrite(sdioh_info_t *sd, int func, uint32 regaddr, uint8 *byte) |
| { |
| int status; |
| uint32 cmd_arg; |
| uint32 dstatus; |
| uint32 data = (uint32)(*byte); |
| |
| cmd_arg = 0; |
| cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); |
| cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */ |
| cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr); |
| cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1); |
| cmd_arg = SFIELD(cmd_arg, SPI_LEN, 1); |
| |
| sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x data=0x%x\n", |
| __FUNCTION__, cmd_arg, func, regaddr, data)); |
| |
| if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, 1)) != SUCCESS) |
| return status; |
| |
| bcmspi_cmd_getdstatus(sd, &dstatus); |
| if (dstatus) |
| sd_trace(("dstatus =0x%x\n", dstatus)); |
| |
| return SUCCESS; |
| } |
| |
| void |
| bcmspi_cmd_getdstatus(sdioh_info_t *sd, uint32 *dstatus_buffer) |
| { |
| *dstatus_buffer = sd->card_dstatus; |
| } |
| |
| /* 'data' is of type uint32 whereas other buffers are of type uint8 */ |
| static int |
| bcmspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd_arg, |
| uint32 *data, uint32 datalen) |
| { |
| uint32 i, j; |
| uint8 resp_delay = 0; |
| int err = SUCCESS; |
| uint32 hostlen; |
| uint32 spilen = 0; |
| uint32 dstatus_idx = 0; |
| uint16 templen, buslen, len, *ptr = NULL; |
| |
| sd_trace(("spi cmd = 0x%x\n", cmd_arg)); |
| |
| if (DWORDMODE_ON) { |
| spilen = GFIELD(cmd_arg, SPI_LEN); |
| if ((GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_0) || |
| (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_1)) |
| dstatus_idx = spilen * 3; |
| |
| if ((GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2) && |
| (GFIELD(cmd_arg, SPI_RW_FLAG) == 1)) { |
| spilen = spilen << 2; |
| dstatus_idx = (spilen % 16) ? (16 - (spilen % 16)) : 0; |
| /* convert len to mod16 size */ |
| spilen = ROUNDUP(spilen, 16); |
| cmd_arg = SFIELD(cmd_arg, SPI_LEN, (spilen >> 2)); |
| } |
| } |
| |
| /* Set up and issue the SPI command. MSByte goes out on bus first. Increase datalen |
| * according to the wordlen mode(16/32bit) the device is in. |
| */ |
| if (sd->wordlen == 4) { /* 32bit spid */ |
| *(uint32 *)spi_outbuf = SPISWAP_WD4(cmd_arg); |
| if (datalen & 0x3) |
| datalen += (4 - (datalen & 0x3)); |
| } else if (sd->wordlen == 2) { /* 16bit spid */ |
| *(uint32 *)spi_outbuf = SPISWAP_WD2(cmd_arg); |
| if (datalen & 0x1) |
| datalen++; |
| if (datalen < 4) |
| datalen = ROUNDUP(datalen, 4); |
| } else { |
| sd_err(("Host is %d bit spid, could not create SPI command.\n", |
| 8 * sd->wordlen)); |
| return ERROR; |
| } |
| |
| /* for Write, put the data into the output buffer */ |
| if (GFIELD(cmd_arg, SPI_RW_FLAG) == 1) { |
| /* We send len field of hw-header always a mod16 size, both from host and dongle */ |
| if (DWORDMODE_ON) { |
| if (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2) { |
| ptr = (uint16 *)&data[0]; |
| templen = *ptr; |
| /* ASSERT(*ptr == ~*(ptr + 1)); */ |
| templen = ROUNDUP(templen, 16); |
| *ptr = templen; |
| sd_trace(("actual tx len = %d\n", (uint16)(~*(ptr+1)))); |
| } |
| } |
| |
| if (datalen != 0) { |
| for (i = 0; i < datalen/4; i++) { |
| if (sd->wordlen == 4) { /* 32bit spid */ |
| *(uint32 *)&spi_outbuf[i * 4 + CMDLEN] = |
| SPISWAP_WD4(data[i]); |
| } else if (sd->wordlen == 2) { /* 16bit spid */ |
| *(uint32 *)&spi_outbuf[i * 4 + CMDLEN] = |
| SPISWAP_WD2(data[i]); |
| } |
| } |
| } |
| } |
| |
| /* Append resp-delay number of bytes and clock them out for F0/1/2 reads. */ |
| if ((GFIELD(cmd_arg, SPI_RW_FLAG) == 0)) { |
| int func = GFIELD(cmd_arg, SPI_FUNCTION); |
| switch (func) { |
| case 0: |
| if (sd->resp_delay_new) |
| resp_delay = GSPI_F0_RESP_DELAY; |
| else |
| resp_delay = sd->resp_delay_all ? F0_RESPONSE_DELAY : 0; |
| break; |
| case 1: |
| if (sd->resp_delay_new) |
| resp_delay = GSPI_F1_RESP_DELAY; |
| else |
| resp_delay = F1_RESPONSE_DELAY; |
| break; |
| case 2: |
| if (sd->resp_delay_new) |
| resp_delay = GSPI_F2_RESP_DELAY; |
| else |
| resp_delay = sd->resp_delay_all ? F2_RESPONSE_DELAY : 0; |
| break; |
| default: |
| ASSERT(0); |
| break; |
| } |
| /* Program response delay */ |
| if (sd->resp_delay_new == FALSE) |
| bcmspi_prog_resp_delay(sd, func, resp_delay); |
| } |
| |
| /* +4 for cmd and +4 for dstatus */ |
| hostlen = datalen + 8 + resp_delay; |
| hostlen += dstatus_idx; |
| hostlen += (4 - (hostlen & 0x3)); |
| spi_sendrecv(sd, spi_outbuf, spi_inbuf, hostlen); |
| |
| /* for Read, get the data into the input buffer */ |
| if (datalen != 0) { |
| if (GFIELD(cmd_arg, SPI_RW_FLAG) == 0) { /* if read cmd */ |
| for (j = 0; j < datalen/4; j++) { |
| if (sd->wordlen == 4) { /* 32bit spid */ |
| data[j] = SPISWAP_WD4(*(uint32 *)&spi_inbuf[j * 4 + |
| CMDLEN + resp_delay]); |
| } else if (sd->wordlen == 2) { /* 16bit spid */ |
| data[j] = SPISWAP_WD2(*(uint32 *)&spi_inbuf[j * 4 + |
| CMDLEN + resp_delay]); |
| } |
| } |
| |
| if ((DWORDMODE_ON) && (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2)) { |
| ptr = (uint16 *)&data[0]; |
| templen = *ptr; |
| buslen = len = ~(*(ptr + 1)); |
| buslen = ROUNDUP(buslen, 16); |
| /* populate actual len in hw-header */ |
| if (templen == buslen) |
| *ptr = len; |
| } |
| } |
| } |
| |
| /* Restore back the len field of the hw header */ |
| if (DWORDMODE_ON) { |
| if ((GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2) && |
| (GFIELD(cmd_arg, SPI_RW_FLAG) == 1)) { |
| ptr = (uint16 *)&data[0]; |
| *ptr = (uint16)(~*(ptr+1)); |
| } |
| } |
| |
| dstatus_idx += (datalen + CMDLEN + resp_delay); |
| /* Last 4bytes are dstatus. Device is configured to return status bits. */ |
| if (sd->wordlen == 4) { /* 32bit spid */ |
| sd->card_dstatus = SPISWAP_WD4(*(uint32 *)&spi_inbuf[dstatus_idx]); |
| } else if (sd->wordlen == 2) { /* 16bit spid */ |
| sd->card_dstatus = SPISWAP_WD2(*(uint32 *)&spi_inbuf[dstatus_idx]); |
| } else { |
| sd_err(("Host is %d bit machine, could not read SPI dstatus.\n", |
| 8 * sd->wordlen)); |
| return ERROR; |
| } |
| if (sd->card_dstatus == 0xffffffff) { |
| sd_err(("looks like not a GSPI device or device is not powered.\n")); |
| } |
| |
| err = bcmspi_update_stats(sd, cmd_arg); |
| |
| return err; |
| |
| } |
| |
| static int |
| bcmspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo, |
| uint32 addr, int nbytes, uint32 *data) |
| { |
| int status; |
| uint32 cmd_arg; |
| bool write = rw == SDIOH_READ ? 0 : 1; |
| uint retries = 0; |
| |
| bool enable; |
| uint32 spilen; |
| |
| cmd_arg = 0; |
| |
| ASSERT(nbytes); |
| ASSERT(nbytes <= sd->client_block_size[func]); |
| |
| if (write) sd->t_cnt++; else sd->r_cnt++; |
| |
| if (func == 2) { |
| /* Frame len check limited by gSPI. */ |
| if ((nbytes > 2000) && write) { |
| sd_trace((">2KB write: F2 wr of %d bytes\n", nbytes)); |
| } |
| /* ASSERT(nbytes <= 2048); Fix bigger len gspi issue and uncomment. */ |
| /* If F2 fifo on device is not ready to receive data, don't do F2 transfer */ |
| if (write) { |
| uint32 dstatus; |
| /* check F2 ready with cached one */ |
| bcmspi_cmd_getdstatus(sd, &dstatus); |
| if ((dstatus & STATUS_F2_RX_READY) == 0) { |
| retries = WAIT_F2RXFIFORDY; |
| enable = 0; |
| while (retries-- && !enable) { |
| OSL_DELAY(WAIT_F2RXFIFORDY_DELAY * 1000); |
| bcmspi_card_regread(sd, SPI_FUNC_0, SPID_STATUS_REG, 4, |
| &dstatus); |
| if (dstatus & STATUS_F2_RX_READY) |
| enable = TRUE; |
| } |
| if (!enable) { |
| struct spierrstats_t *spierrstats = &sd->spierrstats; |
| spierrstats->f2rxnotready++; |
| sd_err(("F2 FIFO is not ready to receive data.\n")); |
| return ERROR; |
| } |
| sd_trace(("No of retries on F2 ready %d\n", |
| (WAIT_F2RXFIFORDY - retries))); |
| } |
| } |
| } |
| |
| /* F2 transfers happen on 0 addr */ |
| addr = (func == 2) ? 0 : addr; |
| |
| /* In pio mode buffer is read using fixed address fifo in func 1 */ |
| if ((func == 1) && (fifo)) |
| cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 0); |
| else |
| cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); |
| |
| cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); |
| cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, addr); |
| cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, write); |
| spilen = sd->data_xfer_count = MIN(sd->client_block_size[func], nbytes); |
| if ((sd->dwordmode == TRUE) && (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2)) { |
| /* convert len to mod4 size */ |
| spilen = spilen + ((spilen & 0x3) ? (4 - (spilen & 0x3)): 0); |
| cmd_arg = SFIELD(cmd_arg, SPI_LEN, (spilen >> 2)); |
| } else |
| cmd_arg = SFIELD(cmd_arg, SPI_LEN, spilen); |
| |
| if ((func == 2) && (fifo == 1)) { |
| sd_data(("%s: %s func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n", |
| __FUNCTION__, write ? "Wr" : "Rd", func, "INCR", |
| addr, nbytes, sd->r_cnt, sd->t_cnt)); |
| } |
| |
| sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg)); |
| sd_data(("%s: %s func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n", |
| __FUNCTION__, write ? "Wd" : "Rd", func, "INCR", |
| addr, nbytes, sd->r_cnt, sd->t_cnt)); |
| |
| |
| if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, nbytes)) != SUCCESS) { |
| sd_err(("%s: cmd_issue failed for %s\n", __FUNCTION__, |
| (write ? "write" : "read"))); |
| return status; |
| } |
| |
| /* gSPI expects that hw-header-len is equal to spi-command-len */ |
| if ((func == 2) && (rw == SDIOH_WRITE) && (sd->dwordmode == FALSE)) { |
| ASSERT((uint16)sd->data_xfer_count == (uint16)(*data & 0xffff)); |
| ASSERT((uint16)sd->data_xfer_count == (uint16)(~((*data & 0xffff0000) >> 16))); |
| } |
| |
| if ((nbytes > 2000) && !write) { |
| sd_trace((">2KB read: F2 rd of %d bytes\n", nbytes)); |
| } |
| |
| return SUCCESS; |
| } |
| |
| /* Reset and re-initialize the device */ |
| int |
| sdioh_sdio_reset(sdioh_info_t *si) |
| { |
| si->card_init_done = FALSE; |
| return bcmspi_client_init(si); |
| } |
| |
| SDIOH_API_RC |
| sdioh_gpioouten(sdioh_info_t *sd, uint32 gpio) |
| { |
| return SDIOH_API_RC_FAIL; |
| } |
| |
| SDIOH_API_RC |
| sdioh_gpioout(sdioh_info_t *sd, uint32 gpio, bool enab) |
| { |
| return SDIOH_API_RC_FAIL; |
| } |
| |
| bool |
| sdioh_gpioin(sdioh_info_t *sd, uint32 gpio) |
| { |
| return FALSE; |
| } |
| |
| SDIOH_API_RC |
| sdioh_gpio_init(sdioh_info_t *sd) |
| { |
| return SDIOH_API_RC_FAIL; |
| } |