| /* ----------------------------------------------------------------------- * |
| * |
| * Copyright 2014 Intel Corporation; author: H. Peter Anvin |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * ----------------------------------------------------------------------- */ |
| |
| /* |
| * The IRET instruction, when returning to a 16-bit segment, only |
| * restores the bottom 16 bits of the user space stack pointer. This |
| * causes some 16-bit software to break, but it also leaks kernel state |
| * to user space. |
| * |
| * This works around this by creating percpu "ministacks", each of which |
| * is mapped 2^16 times 64K apart. When we detect that the return SS is |
| * on the LDT, we copy the IRET frame to the ministack and use the |
| * relevant alias to return to userspace. The ministacks are mapped |
| * readonly, so if the IRET fault we promote #GP to #DF which is an IST |
| * vector and thus has its own stack; we then do the fixup in the #DF |
| * handler. |
| * |
| * This file sets up the ministacks and the related page tables. The |
| * actual ministack invocation is in entry_64.S. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/init_task.h> |
| #include <linux/kernel.h> |
| #include <linux/percpu.h> |
| #include <linux/gfp.h> |
| #include <linux/random.h> |
| #include <asm/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/setup.h> |
| #include <asm/espfix.h> |
| |
| /* |
| * Note: we only need 6*8 = 48 bytes for the espfix stack, but round |
| * it up to a cache line to avoid unnecessary sharing. |
| */ |
| #define ESPFIX_STACK_SIZE (8*8UL) |
| #define ESPFIX_STACKS_PER_PAGE (PAGE_SIZE/ESPFIX_STACK_SIZE) |
| |
| /* There is address space for how many espfix pages? */ |
| #define ESPFIX_PAGE_SPACE (1UL << (PGDIR_SHIFT-PAGE_SHIFT-16)) |
| |
| #define ESPFIX_MAX_CPUS (ESPFIX_STACKS_PER_PAGE * ESPFIX_PAGE_SPACE) |
| #if CONFIG_NR_CPUS > ESPFIX_MAX_CPUS |
| # error "Need more than one PGD for the ESPFIX hack" |
| #endif |
| |
| #define PGALLOC_GFP (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO) |
| |
| /* This contains the *bottom* address of the espfix stack */ |
| DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_stack); |
| DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_waddr); |
| |
| /* Initialization mutex - should this be a spinlock? */ |
| static DEFINE_MUTEX(espfix_init_mutex); |
| |
| /* Page allocation bitmap - each page serves ESPFIX_STACKS_PER_PAGE CPUs */ |
| #define ESPFIX_MAX_PAGES DIV_ROUND_UP(CONFIG_NR_CPUS, ESPFIX_STACKS_PER_PAGE) |
| static void *espfix_pages[ESPFIX_MAX_PAGES]; |
| |
| static __page_aligned_bss pud_t espfix_pud_page[PTRS_PER_PUD] |
| __aligned(PAGE_SIZE); |
| |
| static unsigned int page_random, slot_random; |
| |
| /* |
| * This returns the bottom address of the espfix stack for a specific CPU. |
| * The math allows for a non-power-of-two ESPFIX_STACK_SIZE, in which case |
| * we have to account for some amount of padding at the end of each page. |
| */ |
| static inline unsigned long espfix_base_addr(unsigned int cpu) |
| { |
| unsigned long page, slot; |
| unsigned long addr; |
| |
| page = (cpu / ESPFIX_STACKS_PER_PAGE) ^ page_random; |
| slot = (cpu + slot_random) % ESPFIX_STACKS_PER_PAGE; |
| addr = (page << PAGE_SHIFT) + (slot * ESPFIX_STACK_SIZE); |
| addr = (addr & 0xffffUL) | ((addr & ~0xffffUL) << 16); |
| addr += ESPFIX_BASE_ADDR; |
| return addr; |
| } |
| |
| #define PTE_STRIDE (65536/PAGE_SIZE) |
| #define ESPFIX_PTE_CLONES (PTRS_PER_PTE/PTE_STRIDE) |
| #define ESPFIX_PMD_CLONES PTRS_PER_PMD |
| #define ESPFIX_PUD_CLONES (65536/(ESPFIX_PTE_CLONES*ESPFIX_PMD_CLONES)) |
| |
| #define PGTABLE_PROT ((_KERNPG_TABLE & ~_PAGE_RW) | _PAGE_NX) |
| |
| static void init_espfix_random(void) |
| { |
| unsigned long rand; |
| |
| /* |
| * This is run before the entropy pools are initialized, |
| * but this is hopefully better than nothing. |
| */ |
| if (!arch_get_random_long(&rand)) { |
| /* The constant is an arbitrary large prime */ |
| rand = rdtsc(); |
| rand *= 0xc345c6b72fd16123UL; |
| } |
| |
| slot_random = rand % ESPFIX_STACKS_PER_PAGE; |
| page_random = (rand / ESPFIX_STACKS_PER_PAGE) |
| & (ESPFIX_PAGE_SPACE - 1); |
| } |
| |
| void __init init_espfix_bsp(void) |
| { |
| pgd_t *pgd_p; |
| |
| /* Install the espfix pud into the kernel page directory */ |
| pgd_p = &init_level4_pgt[pgd_index(ESPFIX_BASE_ADDR)]; |
| pgd_populate(&init_mm, pgd_p, (pud_t *)espfix_pud_page); |
| |
| /* Randomize the locations */ |
| init_espfix_random(); |
| |
| /* The rest is the same as for any other processor */ |
| init_espfix_ap(0); |
| } |
| |
| void init_espfix_ap(int cpu) |
| { |
| unsigned int page; |
| unsigned long addr; |
| pud_t pud, *pud_p; |
| pmd_t pmd, *pmd_p; |
| pte_t pte, *pte_p; |
| int n, node; |
| void *stack_page; |
| pteval_t ptemask; |
| |
| /* We only have to do this once... */ |
| if (likely(per_cpu(espfix_stack, cpu))) |
| return; /* Already initialized */ |
| |
| addr = espfix_base_addr(cpu); |
| page = cpu/ESPFIX_STACKS_PER_PAGE; |
| |
| /* Did another CPU already set this up? */ |
| stack_page = ACCESS_ONCE(espfix_pages[page]); |
| if (likely(stack_page)) |
| goto done; |
| |
| mutex_lock(&espfix_init_mutex); |
| |
| /* Did we race on the lock? */ |
| stack_page = ACCESS_ONCE(espfix_pages[page]); |
| if (stack_page) |
| goto unlock_done; |
| |
| node = cpu_to_node(cpu); |
| ptemask = __supported_pte_mask; |
| |
| pud_p = &espfix_pud_page[pud_index(addr)]; |
| pud = *pud_p; |
| if (!pud_present(pud)) { |
| struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0); |
| |
| pmd_p = (pmd_t *)page_address(page); |
| pud = __pud(__pa(pmd_p) | (PGTABLE_PROT & ptemask)); |
| paravirt_alloc_pmd(&init_mm, __pa(pmd_p) >> PAGE_SHIFT); |
| for (n = 0; n < ESPFIX_PUD_CLONES; n++) |
| set_pud(&pud_p[n], pud); |
| } |
| |
| pmd_p = pmd_offset(&pud, addr); |
| pmd = *pmd_p; |
| if (!pmd_present(pmd)) { |
| struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0); |
| |
| pte_p = (pte_t *)page_address(page); |
| pmd = __pmd(__pa(pte_p) | (PGTABLE_PROT & ptemask)); |
| paravirt_alloc_pte(&init_mm, __pa(pte_p) >> PAGE_SHIFT); |
| for (n = 0; n < ESPFIX_PMD_CLONES; n++) |
| set_pmd(&pmd_p[n], pmd); |
| } |
| |
| pte_p = pte_offset_kernel(&pmd, addr); |
| stack_page = page_address(alloc_pages_node(node, GFP_KERNEL, 0)); |
| pte = __pte(__pa(stack_page) | (__PAGE_KERNEL_RO & ptemask)); |
| for (n = 0; n < ESPFIX_PTE_CLONES; n++) |
| set_pte(&pte_p[n*PTE_STRIDE], pte); |
| |
| /* Job is done for this CPU and any CPU which shares this page */ |
| ACCESS_ONCE(espfix_pages[page]) = stack_page; |
| |
| unlock_done: |
| mutex_unlock(&espfix_init_mutex); |
| done: |
| per_cpu(espfix_stack, cpu) = addr; |
| per_cpu(espfix_waddr, cpu) = (unsigned long)stack_page |
| + (addr & ~PAGE_MASK); |
| } |