| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * xHCI host controller driver | 
 |  * | 
 |  * Copyright (C) 2008 Intel Corp. | 
 |  * | 
 |  * Author: Sarah Sharp | 
 |  * Some code borrowed from the Linux EHCI driver. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but | 
 |  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
 |  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
 |  * for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software Foundation, | 
 |  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Ring initialization rules: | 
 |  * 1. Each segment is initialized to zero, except for link TRBs. | 
 |  * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or | 
 |  *    Consumer Cycle State (CCS), depending on ring function. | 
 |  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. | 
 |  * | 
 |  * Ring behavior rules: | 
 |  * 1. A ring is empty if enqueue == dequeue.  This means there will always be at | 
 |  *    least one free TRB in the ring.  This is useful if you want to turn that | 
 |  *    into a link TRB and expand the ring. | 
 |  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a | 
 |  *    link TRB, then load the pointer with the address in the link TRB.  If the | 
 |  *    link TRB had its toggle bit set, you may need to update the ring cycle | 
 |  *    state (see cycle bit rules).  You may have to do this multiple times | 
 |  *    until you reach a non-link TRB. | 
 |  * 3. A ring is full if enqueue++ (for the definition of increment above) | 
 |  *    equals the dequeue pointer. | 
 |  * | 
 |  * Cycle bit rules: | 
 |  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit | 
 |  *    in a link TRB, it must toggle the ring cycle state. | 
 |  * 2. When a producer increments an enqueue pointer and encounters a toggle bit | 
 |  *    in a link TRB, it must toggle the ring cycle state. | 
 |  * | 
 |  * Producer rules: | 
 |  * 1. Check if ring is full before you enqueue. | 
 |  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. | 
 |  *    Update enqueue pointer between each write (which may update the ring | 
 |  *    cycle state). | 
 |  * 3. Notify consumer.  If SW is producer, it rings the doorbell for command | 
 |  *    and endpoint rings.  If HC is the producer for the event ring, | 
 |  *    and it generates an interrupt according to interrupt modulation rules. | 
 |  * | 
 |  * Consumer rules: | 
 |  * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state, | 
 |  *    the TRB is owned by the consumer. | 
 |  * 2. Update dequeue pointer (which may update the ring cycle state) and | 
 |  *    continue processing TRBs until you reach a TRB which is not owned by you. | 
 |  * 3. Notify the producer.  SW is the consumer for the event ring, and it | 
 |  *   updates event ring dequeue pointer.  HC is the consumer for the command and | 
 |  *   endpoint rings; it generates events on the event ring for these. | 
 |  */ | 
 |  | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include "xhci.h" | 
 | #include "xhci-trace.h" | 
 | #include "xhci-mtk.h" | 
 |  | 
 | /* | 
 |  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA | 
 |  * address of the TRB. | 
 |  */ | 
 | dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, | 
 | 		union xhci_trb *trb) | 
 | { | 
 | 	unsigned long segment_offset; | 
 |  | 
 | 	if (!seg || !trb || trb < seg->trbs) | 
 | 		return 0; | 
 | 	/* offset in TRBs */ | 
 | 	segment_offset = trb - seg->trbs; | 
 | 	if (segment_offset >= TRBS_PER_SEGMENT) | 
 | 		return 0; | 
 | 	return seg->dma + (segment_offset * sizeof(*trb)); | 
 | } | 
 |  | 
 | static bool trb_is_noop(union xhci_trb *trb) | 
 | { | 
 | 	return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); | 
 | } | 
 |  | 
 | static bool trb_is_link(union xhci_trb *trb) | 
 | { | 
 | 	return TRB_TYPE_LINK_LE32(trb->link.control); | 
 | } | 
 |  | 
 | static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) | 
 | { | 
 | 	return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; | 
 | } | 
 |  | 
 | static bool last_trb_on_ring(struct xhci_ring *ring, | 
 | 			struct xhci_segment *seg, union xhci_trb *trb) | 
 | { | 
 | 	return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); | 
 | } | 
 |  | 
 | static bool link_trb_toggles_cycle(union xhci_trb *trb) | 
 | { | 
 | 	return le32_to_cpu(trb->link.control) & LINK_TOGGLE; | 
 | } | 
 |  | 
 | static bool last_td_in_urb(struct xhci_td *td) | 
 | { | 
 | 	struct urb_priv *urb_priv = td->urb->hcpriv; | 
 |  | 
 | 	return urb_priv->num_tds_done == urb_priv->num_tds; | 
 | } | 
 |  | 
 | static void inc_td_cnt(struct urb *urb) | 
 | { | 
 | 	struct urb_priv *urb_priv = urb->hcpriv; | 
 |  | 
 | 	urb_priv->num_tds_done++; | 
 | } | 
 |  | 
 | static void trb_to_noop(union xhci_trb *trb, u32 noop_type) | 
 | { | 
 | 	if (trb_is_link(trb)) { | 
 | 		/* unchain chained link TRBs */ | 
 | 		trb->link.control &= cpu_to_le32(~TRB_CHAIN); | 
 | 	} else { | 
 | 		trb->generic.field[0] = 0; | 
 | 		trb->generic.field[1] = 0; | 
 | 		trb->generic.field[2] = 0; | 
 | 		/* Preserve only the cycle bit of this TRB */ | 
 | 		trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); | 
 | 		trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); | 
 | 	} | 
 | } | 
 |  | 
 | /* Updates trb to point to the next TRB in the ring, and updates seg if the next | 
 |  * TRB is in a new segment.  This does not skip over link TRBs, and it does not | 
 |  * effect the ring dequeue or enqueue pointers. | 
 |  */ | 
 | static void next_trb(struct xhci_hcd *xhci, | 
 | 		struct xhci_ring *ring, | 
 | 		struct xhci_segment **seg, | 
 | 		union xhci_trb **trb) | 
 | { | 
 | 	if (trb_is_link(*trb)) { | 
 | 		*seg = (*seg)->next; | 
 | 		*trb = ((*seg)->trbs); | 
 | 	} else { | 
 | 		(*trb)++; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * See Cycle bit rules. SW is the consumer for the event ring only. | 
 |  * Don't make a ring full of link TRBs.  That would be dumb and this would loop. | 
 |  */ | 
 | static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) | 
 | { | 
 | 	/* event ring doesn't have link trbs, check for last trb */ | 
 | 	if (ring->type == TYPE_EVENT) { | 
 | 		if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { | 
 | 			ring->dequeue++; | 
 | 			return; | 
 | 		} | 
 | 		if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) | 
 | 			ring->cycle_state ^= 1; | 
 | 		ring->deq_seg = ring->deq_seg->next; | 
 | 		ring->dequeue = ring->deq_seg->trbs; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* All other rings have link trbs */ | 
 | 	if (!trb_is_link(ring->dequeue)) { | 
 | 		ring->dequeue++; | 
 | 		ring->num_trbs_free++; | 
 | 	} | 
 | 	while (trb_is_link(ring->dequeue)) { | 
 | 		ring->deq_seg = ring->deq_seg->next; | 
 | 		ring->dequeue = ring->deq_seg->trbs; | 
 | 	} | 
 |  | 
 | 	trace_xhci_inc_deq(ring); | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * See Cycle bit rules. SW is the consumer for the event ring only. | 
 |  * Don't make a ring full of link TRBs.  That would be dumb and this would loop. | 
 |  * | 
 |  * If we've just enqueued a TRB that is in the middle of a TD (meaning the | 
 |  * chain bit is set), then set the chain bit in all the following link TRBs. | 
 |  * If we've enqueued the last TRB in a TD, make sure the following link TRBs | 
 |  * have their chain bit cleared (so that each Link TRB is a separate TD). | 
 |  * | 
 |  * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit | 
 |  * set, but other sections talk about dealing with the chain bit set.  This was | 
 |  * fixed in the 0.96 specification errata, but we have to assume that all 0.95 | 
 |  * xHCI hardware can't handle the chain bit being cleared on a link TRB. | 
 |  * | 
 |  * @more_trbs_coming:	Will you enqueue more TRBs before calling | 
 |  *			prepare_transfer()? | 
 |  */ | 
 | static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, | 
 | 			bool more_trbs_coming) | 
 | { | 
 | 	u32 chain; | 
 | 	union xhci_trb *next; | 
 |  | 
 | 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; | 
 | 	/* If this is not event ring, there is one less usable TRB */ | 
 | 	if (!trb_is_link(ring->enqueue)) | 
 | 		ring->num_trbs_free--; | 
 | 	next = ++(ring->enqueue); | 
 |  | 
 | 	/* Update the dequeue pointer further if that was a link TRB */ | 
 | 	while (trb_is_link(next)) { | 
 |  | 
 | 		/* | 
 | 		 * If the caller doesn't plan on enqueueing more TDs before | 
 | 		 * ringing the doorbell, then we don't want to give the link TRB | 
 | 		 * to the hardware just yet. We'll give the link TRB back in | 
 | 		 * prepare_ring() just before we enqueue the TD at the top of | 
 | 		 * the ring. | 
 | 		 */ | 
 | 		if (!chain && !more_trbs_coming) | 
 | 			break; | 
 |  | 
 | 		/* If we're not dealing with 0.95 hardware or isoc rings on | 
 | 		 * AMD 0.96 host, carry over the chain bit of the previous TRB | 
 | 		 * (which may mean the chain bit is cleared). | 
 | 		 */ | 
 | 		if (!(ring->type == TYPE_ISOC && | 
 | 		      (xhci->quirks & XHCI_AMD_0x96_HOST)) && | 
 | 		    !xhci_link_trb_quirk(xhci)) { | 
 | 			next->link.control &= cpu_to_le32(~TRB_CHAIN); | 
 | 			next->link.control |= cpu_to_le32(chain); | 
 | 		} | 
 | 		/* Give this link TRB to the hardware */ | 
 | 		wmb(); | 
 | 		next->link.control ^= cpu_to_le32(TRB_CYCLE); | 
 |  | 
 | 		/* Toggle the cycle bit after the last ring segment. */ | 
 | 		if (link_trb_toggles_cycle(next)) | 
 | 			ring->cycle_state ^= 1; | 
 |  | 
 | 		ring->enq_seg = ring->enq_seg->next; | 
 | 		ring->enqueue = ring->enq_seg->trbs; | 
 | 		next = ring->enqueue; | 
 | 	} | 
 |  | 
 | 	trace_xhci_inc_enq(ring); | 
 | } | 
 |  | 
 | /* | 
 |  * Check to see if there's room to enqueue num_trbs on the ring and make sure | 
 |  * enqueue pointer will not advance into dequeue segment. See rules above. | 
 |  */ | 
 | static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, | 
 | 		unsigned int num_trbs) | 
 | { | 
 | 	int num_trbs_in_deq_seg; | 
 |  | 
 | 	if (ring->num_trbs_free < num_trbs) | 
 | 		return 0; | 
 |  | 
 | 	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { | 
 | 		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; | 
 | 		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* Ring the host controller doorbell after placing a command on the ring */ | 
 | void xhci_ring_cmd_db(struct xhci_hcd *xhci) | 
 | { | 
 | 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) | 
 | 		return; | 
 |  | 
 | 	xhci_dbg(xhci, "// Ding dong!\n"); | 
 | 	writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); | 
 | 	/* Flush PCI posted writes */ | 
 | 	readl(&xhci->dba->doorbell[0]); | 
 | } | 
 |  | 
 | static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) | 
 | { | 
 | 	return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); | 
 | } | 
 |  | 
 | static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) | 
 | { | 
 | 	return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, | 
 | 					cmd_list); | 
 | } | 
 |  | 
 | /* | 
 |  * Turn all commands on command ring with status set to "aborted" to no-op trbs. | 
 |  * If there are other commands waiting then restart the ring and kick the timer. | 
 |  * This must be called with command ring stopped and xhci->lock held. | 
 |  */ | 
 | static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, | 
 | 					 struct xhci_command *cur_cmd) | 
 | { | 
 | 	struct xhci_command *i_cmd; | 
 |  | 
 | 	/* Turn all aborted commands in list to no-ops, then restart */ | 
 | 	list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { | 
 |  | 
 | 		if (i_cmd->status != COMP_COMMAND_ABORTED) | 
 | 			continue; | 
 |  | 
 | 		i_cmd->status = COMP_COMMAND_RING_STOPPED; | 
 |  | 
 | 		xhci_dbg(xhci, "Turn aborted command %p to no-op\n", | 
 | 			 i_cmd->command_trb); | 
 |  | 
 | 		trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); | 
 |  | 
 | 		/* | 
 | 		 * caller waiting for completion is called when command | 
 | 		 *  completion event is received for these no-op commands | 
 | 		 */ | 
 | 	} | 
 |  | 
 | 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; | 
 |  | 
 | 	/* ring command ring doorbell to restart the command ring */ | 
 | 	if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && | 
 | 	    !(xhci->xhc_state & XHCI_STATE_DYING)) { | 
 | 		xhci->current_cmd = cur_cmd; | 
 | 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); | 
 | 		xhci_ring_cmd_db(xhci); | 
 | 	} | 
 | } | 
 |  | 
 | /* Must be called with xhci->lock held, releases and aquires lock back */ | 
 | static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) | 
 | { | 
 | 	u64 temp_64; | 
 | 	int ret; | 
 |  | 
 | 	xhci_dbg(xhci, "Abort command ring\n"); | 
 |  | 
 | 	reinit_completion(&xhci->cmd_ring_stop_completion); | 
 |  | 
 | 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); | 
 | 	xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, | 
 | 			&xhci->op_regs->cmd_ring); | 
 |  | 
 | 	/* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the | 
 | 	 * completion of the Command Abort operation. If CRR is not negated in 5 | 
 | 	 * seconds then driver handles it as if host died (-ENODEV). | 
 | 	 * In the future we should distinguish between -ENODEV and -ETIMEDOUT | 
 | 	 * and try to recover a -ETIMEDOUT with a host controller reset. | 
 | 	 */ | 
 | 	ret = xhci_handshake(&xhci->op_regs->cmd_ring, | 
 | 			CMD_RING_RUNNING, 0, 5 * 1000 * 1000); | 
 | 	if (ret < 0) { | 
 | 		xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); | 
 | 		xhci_halt(xhci); | 
 | 		xhci_hc_died(xhci); | 
 | 		return ret; | 
 | 	} | 
 | 	/* | 
 | 	 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, | 
 | 	 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared | 
 | 	 * but the completion event in never sent. Wait 2 secs (arbitrary | 
 | 	 * number) to handle those cases after negation of CMD_RING_RUNNING. | 
 | 	 */ | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 	ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, | 
 | 					  msecs_to_jiffies(2000)); | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	if (!ret) { | 
 | 		xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); | 
 | 		xhci_cleanup_command_queue(xhci); | 
 | 	} else { | 
 | 		xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, | 
 | 		unsigned int slot_id, | 
 | 		unsigned int ep_index, | 
 | 		unsigned int stream_id) | 
 | { | 
 | 	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; | 
 | 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; | 
 | 	unsigned int ep_state = ep->ep_state; | 
 |  | 
 | 	/* Don't ring the doorbell for this endpoint if there are pending | 
 | 	 * cancellations because we don't want to interrupt processing. | 
 | 	 * We don't want to restart any stream rings if there's a set dequeue | 
 | 	 * pointer command pending because the device can choose to start any | 
 | 	 * stream once the endpoint is on the HW schedule. | 
 | 	 */ | 
 | 	if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || | 
 | 	    (ep_state & EP_HALTED)) | 
 | 		return; | 
 | 	writel(DB_VALUE(ep_index, stream_id), db_addr); | 
 | 	/* The CPU has better things to do at this point than wait for a | 
 | 	 * write-posting flush.  It'll get there soon enough. | 
 | 	 */ | 
 | } | 
 |  | 
 | /* Ring the doorbell for any rings with pending URBs */ | 
 | static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, | 
 | 		unsigned int slot_id, | 
 | 		unsigned int ep_index) | 
 | { | 
 | 	unsigned int stream_id; | 
 | 	struct xhci_virt_ep *ep; | 
 |  | 
 | 	ep = &xhci->devs[slot_id]->eps[ep_index]; | 
 |  | 
 | 	/* A ring has pending URBs if its TD list is not empty */ | 
 | 	if (!(ep->ep_state & EP_HAS_STREAMS)) { | 
 | 		if (ep->ring && !(list_empty(&ep->ring->td_list))) | 
 | 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	for (stream_id = 1; stream_id < ep->stream_info->num_streams; | 
 | 			stream_id++) { | 
 | 		struct xhci_stream_info *stream_info = ep->stream_info; | 
 | 		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) | 
 | 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, | 
 | 						stream_id); | 
 | 	} | 
 | } | 
 |  | 
 | /* Get the right ring for the given slot_id, ep_index and stream_id. | 
 |  * If the endpoint supports streams, boundary check the URB's stream ID. | 
 |  * If the endpoint doesn't support streams, return the singular endpoint ring. | 
 |  */ | 
 | struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, | 
 | 		unsigned int slot_id, unsigned int ep_index, | 
 | 		unsigned int stream_id) | 
 | { | 
 | 	struct xhci_virt_ep *ep; | 
 |  | 
 | 	ep = &xhci->devs[slot_id]->eps[ep_index]; | 
 | 	/* Common case: no streams */ | 
 | 	if (!(ep->ep_state & EP_HAS_STREAMS)) | 
 | 		return ep->ring; | 
 |  | 
 | 	if (stream_id == 0) { | 
 | 		xhci_warn(xhci, | 
 | 				"WARN: Slot ID %u, ep index %u has streams, " | 
 | 				"but URB has no stream ID.\n", | 
 | 				slot_id, ep_index); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (stream_id < ep->stream_info->num_streams) | 
 | 		return ep->stream_info->stream_rings[stream_id]; | 
 |  | 
 | 	xhci_warn(xhci, | 
 | 			"WARN: Slot ID %u, ep index %u has " | 
 | 			"stream IDs 1 to %u allocated, " | 
 | 			"but stream ID %u is requested.\n", | 
 | 			slot_id, ep_index, | 
 | 			ep->stream_info->num_streams - 1, | 
 | 			stream_id); | 
 | 	return NULL; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Get the hw dequeue pointer xHC stopped on, either directly from the | 
 |  * endpoint context, or if streams are in use from the stream context. | 
 |  * The returned hw_dequeue contains the lowest four bits with cycle state | 
 |  * and possbile stream context type. | 
 |  */ | 
 | static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, | 
 | 			   unsigned int ep_index, unsigned int stream_id) | 
 | { | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	struct xhci_stream_ctx *st_ctx; | 
 | 	struct xhci_virt_ep *ep; | 
 |  | 
 | 	ep = &vdev->eps[ep_index]; | 
 |  | 
 | 	if (ep->ep_state & EP_HAS_STREAMS) { | 
 | 		st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; | 
 | 		return le64_to_cpu(st_ctx->stream_ring); | 
 | 	} | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); | 
 | 	return le64_to_cpu(ep_ctx->deq); | 
 | } | 
 |  | 
 | /* | 
 |  * Move the xHC's endpoint ring dequeue pointer past cur_td. | 
 |  * Record the new state of the xHC's endpoint ring dequeue segment, | 
 |  * dequeue pointer, stream id, and new consumer cycle state in state. | 
 |  * Update our internal representation of the ring's dequeue pointer. | 
 |  * | 
 |  * We do this in three jumps: | 
 |  *  - First we update our new ring state to be the same as when the xHC stopped. | 
 |  *  - Then we traverse the ring to find the segment that contains | 
 |  *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass | 
 |  *    any link TRBs with the toggle cycle bit set. | 
 |  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit | 
 |  *    if we've moved it past a link TRB with the toggle cycle bit set. | 
 |  * | 
 |  * Some of the uses of xhci_generic_trb are grotty, but if they're done | 
 |  * with correct __le32 accesses they should work fine.  Only users of this are | 
 |  * in here. | 
 |  */ | 
 | void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, | 
 | 		unsigned int slot_id, unsigned int ep_index, | 
 | 		unsigned int stream_id, struct xhci_td *cur_td, | 
 | 		struct xhci_dequeue_state *state) | 
 | { | 
 | 	struct xhci_virt_device *dev = xhci->devs[slot_id]; | 
 | 	struct xhci_virt_ep *ep = &dev->eps[ep_index]; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct xhci_segment *new_seg; | 
 | 	union xhci_trb *new_deq; | 
 | 	dma_addr_t addr; | 
 | 	u64 hw_dequeue; | 
 | 	bool cycle_found = false; | 
 | 	bool td_last_trb_found = false; | 
 |  | 
 | 	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, | 
 | 			ep_index, stream_id); | 
 | 	if (!ep_ring) { | 
 | 		xhci_warn(xhci, "WARN can't find new dequeue state " | 
 | 				"for invalid stream ID %u.\n", | 
 | 				stream_id); | 
 | 		return; | 
 | 	} | 
 | 	/* Dig out the cycle state saved by the xHC during the stop ep cmd */ | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, | 
 | 			"Finding endpoint context"); | 
 |  | 
 | 	hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); | 
 | 	new_seg = ep_ring->deq_seg; | 
 | 	new_deq = ep_ring->dequeue; | 
 | 	state->new_cycle_state = hw_dequeue & 0x1; | 
 | 	state->stream_id = stream_id; | 
 |  | 
 | 	/* | 
 | 	 * We want to find the pointer, segment and cycle state of the new trb | 
 | 	 * (the one after current TD's last_trb). We know the cycle state at | 
 | 	 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are | 
 | 	 * found. | 
 | 	 */ | 
 | 	do { | 
 | 		if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) | 
 | 		    == (dma_addr_t)(hw_dequeue & ~0xf)) { | 
 | 			cycle_found = true; | 
 | 			if (td_last_trb_found) | 
 | 				break; | 
 | 		} | 
 | 		if (new_deq == cur_td->last_trb) | 
 | 			td_last_trb_found = true; | 
 |  | 
 | 		if (cycle_found && trb_is_link(new_deq) && | 
 | 		    link_trb_toggles_cycle(new_deq)) | 
 | 			state->new_cycle_state ^= 0x1; | 
 |  | 
 | 		next_trb(xhci, ep_ring, &new_seg, &new_deq); | 
 |  | 
 | 		/* Search wrapped around, bail out */ | 
 | 		if (new_deq == ep->ring->dequeue) { | 
 | 			xhci_err(xhci, "Error: Failed finding new dequeue state\n"); | 
 | 			state->new_deq_seg = NULL; | 
 | 			state->new_deq_ptr = NULL; | 
 | 			return; | 
 | 		} | 
 |  | 
 | 	} while (!cycle_found || !td_last_trb_found); | 
 |  | 
 | 	state->new_deq_seg = new_seg; | 
 | 	state->new_deq_ptr = new_deq; | 
 |  | 
 | 	/* Don't update the ring cycle state for the producer (us). */ | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, | 
 | 			"Cycle state = 0x%x", state->new_cycle_state); | 
 |  | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, | 
 | 			"New dequeue segment = %p (virtual)", | 
 | 			state->new_deq_seg); | 
 | 	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, | 
 | 			"New dequeue pointer = 0x%llx (DMA)", | 
 | 			(unsigned long long) addr); | 
 | } | 
 |  | 
 | /* flip_cycle means flip the cycle bit of all but the first and last TRB. | 
 |  * (The last TRB actually points to the ring enqueue pointer, which is not part | 
 |  * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring. | 
 |  */ | 
 | static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, | 
 | 		       struct xhci_td *td, bool flip_cycle) | 
 | { | 
 | 	struct xhci_segment *seg	= td->start_seg; | 
 | 	union xhci_trb *trb		= td->first_trb; | 
 |  | 
 | 	while (1) { | 
 | 		trb_to_noop(trb, TRB_TR_NOOP); | 
 |  | 
 | 		/* flip cycle if asked to */ | 
 | 		if (flip_cycle && trb != td->first_trb && trb != td->last_trb) | 
 | 			trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); | 
 |  | 
 | 		if (trb == td->last_trb) | 
 | 			break; | 
 |  | 
 | 		next_trb(xhci, ep_ring, &seg, &trb); | 
 | 	} | 
 | } | 
 |  | 
 | static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, | 
 | 		struct xhci_virt_ep *ep) | 
 | { | 
 | 	ep->ep_state &= ~EP_STOP_CMD_PENDING; | 
 | 	/* Can't del_timer_sync in interrupt */ | 
 | 	del_timer(&ep->stop_cmd_timer); | 
 | } | 
 |  | 
 | /* | 
 |  * Must be called with xhci->lock held in interrupt context, | 
 |  * releases and re-acquires xhci->lock | 
 |  */ | 
 | static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, | 
 | 				     struct xhci_td *cur_td, int status) | 
 | { | 
 | 	struct urb	*urb		= cur_td->urb; | 
 | 	struct urb_priv	*urb_priv	= urb->hcpriv; | 
 | 	struct usb_hcd	*hcd		= bus_to_hcd(urb->dev->bus); | 
 |  | 
 | 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | 
 | 		xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; | 
 | 		if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) { | 
 | 			if (xhci->quirks & XHCI_AMD_PLL_FIX) | 
 | 				usb_amd_quirk_pll_enable(); | 
 | 		} | 
 | 	} | 
 | 	xhci_urb_free_priv(urb_priv); | 
 | 	usb_hcd_unlink_urb_from_ep(hcd, urb); | 
 | 	spin_unlock(&xhci->lock); | 
 | 	trace_xhci_urb_giveback(urb); | 
 | 	usb_hcd_giveback_urb(hcd, urb, status); | 
 | 	spin_lock(&xhci->lock); | 
 | } | 
 |  | 
 | static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, | 
 | 		struct xhci_ring *ring, struct xhci_td *td) | 
 | { | 
 | 	struct device *dev = xhci_to_hcd(xhci)->self.controller; | 
 | 	struct xhci_segment *seg = td->bounce_seg; | 
 | 	struct urb *urb = td->urb; | 
 |  | 
 | 	if (!ring || !seg || !urb) | 
 | 		return; | 
 |  | 
 | 	if (usb_urb_dir_out(urb)) { | 
 | 		dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, | 
 | 				 DMA_TO_DEVICE); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* for in tranfers we need to copy the data from bounce to sg */ | 
 | 	sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf, | 
 | 			     seg->bounce_len, seg->bounce_offs); | 
 | 	dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, | 
 | 			 DMA_FROM_DEVICE); | 
 | 	seg->bounce_len = 0; | 
 | 	seg->bounce_offs = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * When we get a command completion for a Stop Endpoint Command, we need to | 
 |  * unlink any cancelled TDs from the ring.  There are two ways to do that: | 
 |  * | 
 |  *  1. If the HW was in the middle of processing the TD that needs to be | 
 |  *     cancelled, then we must move the ring's dequeue pointer past the last TRB | 
 |  *     in the TD with a Set Dequeue Pointer Command. | 
 |  *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain | 
 |  *     bit cleared) so that the HW will skip over them. | 
 |  */ | 
 | static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, | 
 | 		union xhci_trb *trb, struct xhci_event_cmd *event) | 
 | { | 
 | 	unsigned int ep_index; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct xhci_virt_ep *ep; | 
 | 	struct xhci_td *cur_td = NULL; | 
 | 	struct xhci_td *last_unlinked_td; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	struct xhci_virt_device *vdev; | 
 | 	u64 hw_deq; | 
 | 	struct xhci_dequeue_state deq_state; | 
 |  | 
 | 	if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { | 
 | 		if (!xhci->devs[slot_id]) | 
 | 			xhci_warn(xhci, "Stop endpoint command " | 
 | 				"completion for disabled slot %u\n", | 
 | 				slot_id); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	memset(&deq_state, 0, sizeof(deq_state)); | 
 | 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); | 
 |  | 
 | 	vdev = xhci->devs[slot_id]; | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); | 
 | 	trace_xhci_handle_cmd_stop_ep(ep_ctx); | 
 |  | 
 | 	ep = &xhci->devs[slot_id]->eps[ep_index]; | 
 | 	last_unlinked_td = list_last_entry(&ep->cancelled_td_list, | 
 | 			struct xhci_td, cancelled_td_list); | 
 |  | 
 | 	if (list_empty(&ep->cancelled_td_list)) { | 
 | 		xhci_stop_watchdog_timer_in_irq(xhci, ep); | 
 | 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Fix up the ep ring first, so HW stops executing cancelled TDs. | 
 | 	 * We have the xHCI lock, so nothing can modify this list until we drop | 
 | 	 * it.  We're also in the event handler, so we can't get re-interrupted | 
 | 	 * if another Stop Endpoint command completes | 
 | 	 */ | 
 | 	list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) { | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, | 
 | 				"Removing canceled TD starting at 0x%llx (dma).", | 
 | 				(unsigned long long)xhci_trb_virt_to_dma( | 
 | 					cur_td->start_seg, cur_td->first_trb)); | 
 | 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); | 
 | 		if (!ep_ring) { | 
 | 			/* This shouldn't happen unless a driver is mucking | 
 | 			 * with the stream ID after submission.  This will | 
 | 			 * leave the TD on the hardware ring, and the hardware | 
 | 			 * will try to execute it, and may access a buffer | 
 | 			 * that has already been freed.  In the best case, the | 
 | 			 * hardware will execute it, and the event handler will | 
 | 			 * ignore the completion event for that TD, since it was | 
 | 			 * removed from the td_list for that endpoint.  In | 
 | 			 * short, don't muck with the stream ID after | 
 | 			 * submission. | 
 | 			 */ | 
 | 			xhci_warn(xhci, "WARN Cancelled URB %p " | 
 | 					"has invalid stream ID %u.\n", | 
 | 					cur_td->urb, | 
 | 					cur_td->urb->stream_id); | 
 | 			goto remove_finished_td; | 
 | 		} | 
 | 		/* | 
 | 		 * If we stopped on the TD we need to cancel, then we have to | 
 | 		 * move the xHC endpoint ring dequeue pointer past this TD. | 
 | 		 */ | 
 | 		hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index, | 
 | 					 cur_td->urb->stream_id); | 
 | 		hw_deq &= ~0xf; | 
 |  | 
 | 		if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb, | 
 | 			      cur_td->last_trb, hw_deq, false)) { | 
 | 			xhci_find_new_dequeue_state(xhci, slot_id, ep_index, | 
 | 						    cur_td->urb->stream_id, | 
 | 						    cur_td, &deq_state); | 
 | 		} else { | 
 | 			td_to_noop(xhci, ep_ring, cur_td, false); | 
 | 		} | 
 |  | 
 | remove_finished_td: | 
 | 		/* | 
 | 		 * The event handler won't see a completion for this TD anymore, | 
 | 		 * so remove it from the endpoint ring's TD list.  Keep it in | 
 | 		 * the cancelled TD list for URB completion later. | 
 | 		 */ | 
 | 		list_del_init(&cur_td->td_list); | 
 | 	} | 
 |  | 
 | 	xhci_stop_watchdog_timer_in_irq(xhci, ep); | 
 |  | 
 | 	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ | 
 | 	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { | 
 | 		xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, | 
 | 					     &deq_state); | 
 | 		xhci_ring_cmd_db(xhci); | 
 | 	} else { | 
 | 		/* Otherwise ring the doorbell(s) to restart queued transfers */ | 
 | 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Drop the lock and complete the URBs in the cancelled TD list. | 
 | 	 * New TDs to be cancelled might be added to the end of the list before | 
 | 	 * we can complete all the URBs for the TDs we already unlinked. | 
 | 	 * So stop when we've completed the URB for the last TD we unlinked. | 
 | 	 */ | 
 | 	do { | 
 | 		cur_td = list_first_entry(&ep->cancelled_td_list, | 
 | 				struct xhci_td, cancelled_td_list); | 
 | 		list_del_init(&cur_td->cancelled_td_list); | 
 |  | 
 | 		/* Clean up the cancelled URB */ | 
 | 		/* Doesn't matter what we pass for status, since the core will | 
 | 		 * just overwrite it (because the URB has been unlinked). | 
 | 		 */ | 
 | 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); | 
 | 		xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td); | 
 | 		inc_td_cnt(cur_td->urb); | 
 | 		if (last_td_in_urb(cur_td)) | 
 | 			xhci_giveback_urb_in_irq(xhci, cur_td, 0); | 
 |  | 
 | 		/* Stop processing the cancelled list if the watchdog timer is | 
 | 		 * running. | 
 | 		 */ | 
 | 		if (xhci->xhc_state & XHCI_STATE_DYING) | 
 | 			return; | 
 | 	} while (cur_td != last_unlinked_td); | 
 |  | 
 | 	/* Return to the event handler with xhci->lock re-acquired */ | 
 | } | 
 |  | 
 | static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) | 
 | { | 
 | 	struct xhci_td *cur_td; | 
 | 	struct xhci_td *tmp; | 
 |  | 
 | 	list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { | 
 | 		list_del_init(&cur_td->td_list); | 
 |  | 
 | 		if (!list_empty(&cur_td->cancelled_td_list)) | 
 | 			list_del_init(&cur_td->cancelled_td_list); | 
 |  | 
 | 		xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); | 
 |  | 
 | 		inc_td_cnt(cur_td->urb); | 
 | 		if (last_td_in_urb(cur_td)) | 
 | 			xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); | 
 | 	} | 
 | } | 
 |  | 
 | static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, | 
 | 		int slot_id, int ep_index) | 
 | { | 
 | 	struct xhci_td *cur_td; | 
 | 	struct xhci_td *tmp; | 
 | 	struct xhci_virt_ep *ep; | 
 | 	struct xhci_ring *ring; | 
 |  | 
 | 	ep = &xhci->devs[slot_id]->eps[ep_index]; | 
 | 	if ((ep->ep_state & EP_HAS_STREAMS) || | 
 | 			(ep->ep_state & EP_GETTING_NO_STREAMS)) { | 
 | 		int stream_id; | 
 |  | 
 | 		for (stream_id = 1; stream_id < ep->stream_info->num_streams; | 
 | 				stream_id++) { | 
 | 			ring = ep->stream_info->stream_rings[stream_id]; | 
 | 			if (!ring) | 
 | 				continue; | 
 |  | 
 | 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, | 
 | 					"Killing URBs for slot ID %u, ep index %u, stream %u", | 
 | 					slot_id, ep_index, stream_id); | 
 | 			xhci_kill_ring_urbs(xhci, ring); | 
 | 		} | 
 | 	} else { | 
 | 		ring = ep->ring; | 
 | 		if (!ring) | 
 | 			return; | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, | 
 | 				"Killing URBs for slot ID %u, ep index %u", | 
 | 				slot_id, ep_index); | 
 | 		xhci_kill_ring_urbs(xhci, ring); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, | 
 | 			cancelled_td_list) { | 
 | 		list_del_init(&cur_td->cancelled_td_list); | 
 | 		inc_td_cnt(cur_td->urb); | 
 |  | 
 | 		if (last_td_in_urb(cur_td)) | 
 | 			xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * host controller died, register read returns 0xffffffff | 
 |  * Complete pending commands, mark them ABORTED. | 
 |  * URBs need to be given back as usb core might be waiting with device locks | 
 |  * held for the URBs to finish during device disconnect, blocking host remove. | 
 |  * | 
 |  * Call with xhci->lock held. | 
 |  * lock is relased and re-acquired while giving back urb. | 
 |  */ | 
 | void xhci_hc_died(struct xhci_hcd *xhci) | 
 | { | 
 | 	int i, j; | 
 |  | 
 | 	if (xhci->xhc_state & XHCI_STATE_DYING) | 
 | 		return; | 
 |  | 
 | 	xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); | 
 | 	xhci->xhc_state |= XHCI_STATE_DYING; | 
 |  | 
 | 	xhci_cleanup_command_queue(xhci); | 
 |  | 
 | 	/* return any pending urbs, remove may be waiting for them */ | 
 | 	for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { | 
 | 		if (!xhci->devs[i]) | 
 | 			continue; | 
 | 		for (j = 0; j < 31; j++) | 
 | 			xhci_kill_endpoint_urbs(xhci, i, j); | 
 | 	} | 
 |  | 
 | 	/* inform usb core hc died if PCI remove isn't already handling it */ | 
 | 	if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) | 
 | 		usb_hc_died(xhci_to_hcd(xhci)); | 
 | } | 
 |  | 
 | /* Watchdog timer function for when a stop endpoint command fails to complete. | 
 |  * In this case, we assume the host controller is broken or dying or dead.  The | 
 |  * host may still be completing some other events, so we have to be careful to | 
 |  * let the event ring handler and the URB dequeueing/enqueueing functions know | 
 |  * through xhci->state. | 
 |  * | 
 |  * The timer may also fire if the host takes a very long time to respond to the | 
 |  * command, and the stop endpoint command completion handler cannot delete the | 
 |  * timer before the timer function is called.  Another endpoint cancellation may | 
 |  * sneak in before the timer function can grab the lock, and that may queue | 
 |  * another stop endpoint command and add the timer back.  So we cannot use a | 
 |  * simple flag to say whether there is a pending stop endpoint command for a | 
 |  * particular endpoint. | 
 |  * | 
 |  * Instead we use a combination of that flag and checking if a new timer is | 
 |  * pending. | 
 |  */ | 
 | void xhci_stop_endpoint_command_watchdog(unsigned long arg) | 
 | { | 
 | 	struct xhci_hcd *xhci; | 
 | 	struct xhci_virt_ep *ep; | 
 | 	unsigned long flags; | 
 |  | 
 | 	ep = (struct xhci_virt_ep *) arg; | 
 | 	xhci = ep->xhci; | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 |  | 
 | 	/* bail out if cmd completed but raced with stop ep watchdog timer.*/ | 
 | 	if (!(ep->ep_state & EP_STOP_CMD_PENDING) || | 
 | 	    timer_pending(&ep->stop_cmd_timer)) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); | 
 | 	ep->ep_state &= ~EP_STOP_CMD_PENDING; | 
 |  | 
 | 	xhci_halt(xhci); | 
 |  | 
 | 	/* | 
 | 	 * handle a stop endpoint cmd timeout as if host died (-ENODEV). | 
 | 	 * In the future we could distinguish between -ENODEV and -ETIMEDOUT | 
 | 	 * and try to recover a -ETIMEDOUT with a host controller reset | 
 | 	 */ | 
 | 	xhci_hc_died(xhci); | 
 |  | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, | 
 | 			"xHCI host controller is dead."); | 
 | } | 
 |  | 
 | static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, | 
 | 		struct xhci_virt_device *dev, | 
 | 		struct xhci_ring *ep_ring, | 
 | 		unsigned int ep_index) | 
 | { | 
 | 	union xhci_trb *dequeue_temp; | 
 | 	int num_trbs_free_temp; | 
 | 	bool revert = false; | 
 |  | 
 | 	num_trbs_free_temp = ep_ring->num_trbs_free; | 
 | 	dequeue_temp = ep_ring->dequeue; | 
 |  | 
 | 	/* If we get two back-to-back stalls, and the first stalled transfer | 
 | 	 * ends just before a link TRB, the dequeue pointer will be left on | 
 | 	 * the link TRB by the code in the while loop.  So we have to update | 
 | 	 * the dequeue pointer one segment further, or we'll jump off | 
 | 	 * the segment into la-la-land. | 
 | 	 */ | 
 | 	if (trb_is_link(ep_ring->dequeue)) { | 
 | 		ep_ring->deq_seg = ep_ring->deq_seg->next; | 
 | 		ep_ring->dequeue = ep_ring->deq_seg->trbs; | 
 | 	} | 
 |  | 
 | 	while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { | 
 | 		/* We have more usable TRBs */ | 
 | 		ep_ring->num_trbs_free++; | 
 | 		ep_ring->dequeue++; | 
 | 		if (trb_is_link(ep_ring->dequeue)) { | 
 | 			if (ep_ring->dequeue == | 
 | 					dev->eps[ep_index].queued_deq_ptr) | 
 | 				break; | 
 | 			ep_ring->deq_seg = ep_ring->deq_seg->next; | 
 | 			ep_ring->dequeue = ep_ring->deq_seg->trbs; | 
 | 		} | 
 | 		if (ep_ring->dequeue == dequeue_temp) { | 
 | 			revert = true; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (revert) { | 
 | 		xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); | 
 | 		ep_ring->num_trbs_free = num_trbs_free_temp; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * When we get a completion for a Set Transfer Ring Dequeue Pointer command, | 
 |  * we need to clear the set deq pending flag in the endpoint ring state, so that | 
 |  * the TD queueing code can ring the doorbell again.  We also need to ring the | 
 |  * endpoint doorbell to restart the ring, but only if there aren't more | 
 |  * cancellations pending. | 
 |  */ | 
 | static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, | 
 | 		union xhci_trb *trb, u32 cmd_comp_code) | 
 | { | 
 | 	unsigned int ep_index; | 
 | 	unsigned int stream_id; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct xhci_virt_device *dev; | 
 | 	struct xhci_virt_ep *ep; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 |  | 
 | 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); | 
 | 	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); | 
 | 	dev = xhci->devs[slot_id]; | 
 | 	ep = &dev->eps[ep_index]; | 
 |  | 
 | 	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); | 
 | 	if (!ep_ring) { | 
 | 		xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", | 
 | 				stream_id); | 
 | 		/* XXX: Harmless??? */ | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); | 
 | 	trace_xhci_handle_cmd_set_deq(slot_ctx); | 
 | 	trace_xhci_handle_cmd_set_deq_ep(ep_ctx); | 
 |  | 
 | 	if (cmd_comp_code != COMP_SUCCESS) { | 
 | 		unsigned int ep_state; | 
 | 		unsigned int slot_state; | 
 |  | 
 | 		switch (cmd_comp_code) { | 
 | 		case COMP_TRB_ERROR: | 
 | 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); | 
 | 			break; | 
 | 		case COMP_CONTEXT_STATE_ERROR: | 
 | 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); | 
 | 			ep_state = GET_EP_CTX_STATE(ep_ctx); | 
 | 			slot_state = le32_to_cpu(slot_ctx->dev_state); | 
 | 			slot_state = GET_SLOT_STATE(slot_state); | 
 | 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, | 
 | 					"Slot state = %u, EP state = %u", | 
 | 					slot_state, ep_state); | 
 | 			break; | 
 | 		case COMP_SLOT_NOT_ENABLED_ERROR: | 
 | 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", | 
 | 					slot_id); | 
 | 			break; | 
 | 		default: | 
 | 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", | 
 | 					cmd_comp_code); | 
 | 			break; | 
 | 		} | 
 | 		/* OK what do we do now?  The endpoint state is hosed, and we | 
 | 		 * should never get to this point if the synchronization between | 
 | 		 * queueing, and endpoint state are correct.  This might happen | 
 | 		 * if the device gets disconnected after we've finished | 
 | 		 * cancelling URBs, which might not be an error... | 
 | 		 */ | 
 | 	} else { | 
 | 		u64 deq; | 
 | 		/* 4.6.10 deq ptr is written to the stream ctx for streams */ | 
 | 		if (ep->ep_state & EP_HAS_STREAMS) { | 
 | 			struct xhci_stream_ctx *ctx = | 
 | 				&ep->stream_info->stream_ctx_array[stream_id]; | 
 | 			deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; | 
 | 		} else { | 
 | 			deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; | 
 | 		} | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, | 
 | 			"Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); | 
 | 		if (xhci_trb_virt_to_dma(ep->queued_deq_seg, | 
 | 					 ep->queued_deq_ptr) == deq) { | 
 | 			/* Update the ring's dequeue segment and dequeue pointer | 
 | 			 * to reflect the new position. | 
 | 			 */ | 
 | 			update_ring_for_set_deq_completion(xhci, dev, | 
 | 				ep_ring, ep_index); | 
 | 		} else { | 
 | 			xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); | 
 | 			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", | 
 | 				  ep->queued_deq_seg, ep->queued_deq_ptr); | 
 | 		} | 
 | 	} | 
 |  | 
 | cleanup: | 
 | 	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; | 
 | 	dev->eps[ep_index].queued_deq_seg = NULL; | 
 | 	dev->eps[ep_index].queued_deq_ptr = NULL; | 
 | 	/* Restart any rings with pending URBs */ | 
 | 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index); | 
 | } | 
 |  | 
 | static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, | 
 | 		union xhci_trb *trb, u32 cmd_comp_code) | 
 | { | 
 | 	struct xhci_virt_device *vdev; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	unsigned int ep_index; | 
 |  | 
 | 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); | 
 | 	vdev = xhci->devs[slot_id]; | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); | 
 | 	trace_xhci_handle_cmd_reset_ep(ep_ctx); | 
 |  | 
 | 	/* This command will only fail if the endpoint wasn't halted, | 
 | 	 * but we don't care. | 
 | 	 */ | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, | 
 | 		"Ignoring reset ep completion code of %u", cmd_comp_code); | 
 |  | 
 | 	/* HW with the reset endpoint quirk needs to have a configure endpoint | 
 | 	 * command complete before the endpoint can be used.  Queue that here | 
 | 	 * because the HW can't handle two commands being queued in a row. | 
 | 	 */ | 
 | 	if (xhci->quirks & XHCI_RESET_EP_QUIRK) { | 
 | 		struct xhci_command *command; | 
 |  | 
 | 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); | 
 | 		if (!command) | 
 | 			return; | 
 |  | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 				"Queueing configure endpoint command"); | 
 | 		xhci_queue_configure_endpoint(xhci, command, | 
 | 				xhci->devs[slot_id]->in_ctx->dma, slot_id, | 
 | 				false); | 
 | 		xhci_ring_cmd_db(xhci); | 
 | 	} else { | 
 | 		/* Clear our internal halted state */ | 
 | 		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; | 
 | 	} | 
 | } | 
 |  | 
 | static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, | 
 | 		struct xhci_command *command, u32 cmd_comp_code) | 
 | { | 
 | 	if (cmd_comp_code == COMP_SUCCESS) | 
 | 		command->slot_id = slot_id; | 
 | 	else | 
 | 		command->slot_id = 0; | 
 | } | 
 |  | 
 | static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) | 
 | { | 
 | 	struct xhci_virt_device *virt_dev; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 |  | 
 | 	virt_dev = xhci->devs[slot_id]; | 
 | 	if (!virt_dev) | 
 | 		return; | 
 |  | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); | 
 | 	trace_xhci_handle_cmd_disable_slot(slot_ctx); | 
 |  | 
 | 	if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) | 
 | 		/* Delete default control endpoint resources */ | 
 | 		xhci_free_device_endpoint_resources(xhci, virt_dev, true); | 
 | 	xhci_free_virt_device(xhci, slot_id); | 
 | } | 
 |  | 
 | static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, | 
 | 		struct xhci_event_cmd *event, u32 cmd_comp_code) | 
 | { | 
 | 	struct xhci_virt_device *virt_dev; | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	unsigned int ep_index; | 
 | 	unsigned int ep_state; | 
 | 	u32 add_flags, drop_flags; | 
 |  | 
 | 	/* | 
 | 	 * Configure endpoint commands can come from the USB core | 
 | 	 * configuration or alt setting changes, or because the HW | 
 | 	 * needed an extra configure endpoint command after a reset | 
 | 	 * endpoint command or streams were being configured. | 
 | 	 * If the command was for a halted endpoint, the xHCI driver | 
 | 	 * is not waiting on the configure endpoint command. | 
 | 	 */ | 
 | 	virt_dev = xhci->devs[slot_id]; | 
 | 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); | 
 | 	if (!ctrl_ctx) { | 
 | 		xhci_warn(xhci, "Could not get input context, bad type.\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	add_flags = le32_to_cpu(ctrl_ctx->add_flags); | 
 | 	drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); | 
 | 	/* Input ctx add_flags are the endpoint index plus one */ | 
 | 	ep_index = xhci_last_valid_endpoint(add_flags) - 1; | 
 |  | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); | 
 | 	trace_xhci_handle_cmd_config_ep(ep_ctx); | 
 |  | 
 | 	/* A usb_set_interface() call directly after clearing a halted | 
 | 	 * condition may race on this quirky hardware.  Not worth | 
 | 	 * worrying about, since this is prototype hardware.  Not sure | 
 | 	 * if this will work for streams, but streams support was | 
 | 	 * untested on this prototype. | 
 | 	 */ | 
 | 	if (xhci->quirks & XHCI_RESET_EP_QUIRK && | 
 | 			ep_index != (unsigned int) -1 && | 
 | 			add_flags - SLOT_FLAG == drop_flags) { | 
 | 		ep_state = virt_dev->eps[ep_index].ep_state; | 
 | 		if (!(ep_state & EP_HALTED)) | 
 | 			return; | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 				"Completed config ep cmd - " | 
 | 				"last ep index = %d, state = %d", | 
 | 				ep_index, ep_state); | 
 | 		/* Clear internal halted state and restart ring(s) */ | 
 | 		virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; | 
 | 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index); | 
 | 		return; | 
 | 	} | 
 | 	return; | 
 | } | 
 |  | 
 | static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) | 
 | { | 
 | 	struct xhci_virt_device *vdev; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 |  | 
 | 	vdev = xhci->devs[slot_id]; | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); | 
 | 	trace_xhci_handle_cmd_addr_dev(slot_ctx); | 
 | } | 
 |  | 
 | static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, | 
 | 		struct xhci_event_cmd *event) | 
 | { | 
 | 	struct xhci_virt_device *vdev; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 |  | 
 | 	vdev = xhci->devs[slot_id]; | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); | 
 | 	trace_xhci_handle_cmd_reset_dev(slot_ctx); | 
 |  | 
 | 	xhci_dbg(xhci, "Completed reset device command.\n"); | 
 | 	if (!xhci->devs[slot_id]) | 
 | 		xhci_warn(xhci, "Reset device command completion " | 
 | 				"for disabled slot %u\n", slot_id); | 
 | } | 
 |  | 
 | static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, | 
 | 		struct xhci_event_cmd *event) | 
 | { | 
 | 	if (!(xhci->quirks & XHCI_NEC_HOST)) { | 
 | 		xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); | 
 | 		return; | 
 | 	} | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 			"NEC firmware version %2x.%02x", | 
 | 			NEC_FW_MAJOR(le32_to_cpu(event->status)), | 
 | 			NEC_FW_MINOR(le32_to_cpu(event->status))); | 
 | } | 
 |  | 
 | static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) | 
 | { | 
 | 	list_del(&cmd->cmd_list); | 
 |  | 
 | 	if (cmd->completion) { | 
 | 		cmd->status = status; | 
 | 		complete(cmd->completion); | 
 | 	} else { | 
 | 		kfree(cmd); | 
 | 	} | 
 | } | 
 |  | 
 | void xhci_cleanup_command_queue(struct xhci_hcd *xhci) | 
 | { | 
 | 	struct xhci_command *cur_cmd, *tmp_cmd; | 
 | 	xhci->current_cmd = NULL; | 
 | 	list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) | 
 | 		xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); | 
 | } | 
 |  | 
 | void xhci_handle_command_timeout(struct work_struct *work) | 
 | { | 
 | 	struct xhci_hcd *xhci; | 
 | 	unsigned long flags; | 
 | 	u64 hw_ring_state; | 
 |  | 
 | 	xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * If timeout work is pending, or current_cmd is NULL, it means we | 
 | 	 * raced with command completion. Command is handled so just return. | 
 | 	 */ | 
 | 	if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		return; | 
 | 	} | 
 | 	/* mark this command to be cancelled */ | 
 | 	xhci->current_cmd->status = COMP_COMMAND_ABORTED; | 
 |  | 
 | 	/* Make sure command ring is running before aborting it */ | 
 | 	hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); | 
 | 	if (hw_ring_state == ~(u64)0) { | 
 | 		xhci_hc_died(xhci); | 
 | 		goto time_out_completed; | 
 | 	} | 
 |  | 
 | 	if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && | 
 | 	    (hw_ring_state & CMD_RING_RUNNING))  { | 
 | 		/* Prevent new doorbell, and start command abort */ | 
 | 		xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; | 
 | 		xhci_dbg(xhci, "Command timeout\n"); | 
 | 		xhci_abort_cmd_ring(xhci, flags); | 
 | 		goto time_out_completed; | 
 | 	} | 
 |  | 
 | 	/* host removed. Bail out */ | 
 | 	if (xhci->xhc_state & XHCI_STATE_REMOVING) { | 
 | 		xhci_dbg(xhci, "host removed, ring start fail?\n"); | 
 | 		xhci_cleanup_command_queue(xhci); | 
 |  | 
 | 		goto time_out_completed; | 
 | 	} | 
 |  | 
 | 	/* command timeout on stopped ring, ring can't be aborted */ | 
 | 	xhci_dbg(xhci, "Command timeout on stopped ring\n"); | 
 | 	xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); | 
 |  | 
 | time_out_completed: | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 	return; | 
 | } | 
 |  | 
 | static void handle_cmd_completion(struct xhci_hcd *xhci, | 
 | 		struct xhci_event_cmd *event) | 
 | { | 
 | 	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); | 
 | 	u64 cmd_dma; | 
 | 	dma_addr_t cmd_dequeue_dma; | 
 | 	u32 cmd_comp_code; | 
 | 	union xhci_trb *cmd_trb; | 
 | 	struct xhci_command *cmd; | 
 | 	u32 cmd_type; | 
 |  | 
 | 	cmd_dma = le64_to_cpu(event->cmd_trb); | 
 | 	cmd_trb = xhci->cmd_ring->dequeue; | 
 |  | 
 | 	trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); | 
 |  | 
 | 	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, | 
 | 			cmd_trb); | 
 | 	/* | 
 | 	 * Check whether the completion event is for our internal kept | 
 | 	 * command. | 
 | 	 */ | 
 | 	if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { | 
 | 		xhci_warn(xhci, | 
 | 			  "ERROR mismatched command completion event\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); | 
 |  | 
 | 	cancel_delayed_work(&xhci->cmd_timer); | 
 |  | 
 | 	cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); | 
 |  | 
 | 	/* If CMD ring stopped we own the trbs between enqueue and dequeue */ | 
 | 	if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { | 
 | 		complete_all(&xhci->cmd_ring_stop_completion); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (cmd->command_trb != xhci->cmd_ring->dequeue) { | 
 | 		xhci_err(xhci, | 
 | 			 "Command completion event does not match command\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Host aborted the command ring, check if the current command was | 
 | 	 * supposed to be aborted, otherwise continue normally. | 
 | 	 * The command ring is stopped now, but the xHC will issue a Command | 
 | 	 * Ring Stopped event which will cause us to restart it. | 
 | 	 */ | 
 | 	if (cmd_comp_code == COMP_COMMAND_ABORTED) { | 
 | 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; | 
 | 		if (cmd->status == COMP_COMMAND_ABORTED) { | 
 | 			if (xhci->current_cmd == cmd) | 
 | 				xhci->current_cmd = NULL; | 
 | 			goto event_handled; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); | 
 | 	switch (cmd_type) { | 
 | 	case TRB_ENABLE_SLOT: | 
 | 		xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); | 
 | 		break; | 
 | 	case TRB_DISABLE_SLOT: | 
 | 		xhci_handle_cmd_disable_slot(xhci, slot_id); | 
 | 		break; | 
 | 	case TRB_CONFIG_EP: | 
 | 		if (!cmd->completion) | 
 | 			xhci_handle_cmd_config_ep(xhci, slot_id, event, | 
 | 						  cmd_comp_code); | 
 | 		break; | 
 | 	case TRB_EVAL_CONTEXT: | 
 | 		break; | 
 | 	case TRB_ADDR_DEV: | 
 | 		xhci_handle_cmd_addr_dev(xhci, slot_id); | 
 | 		break; | 
 | 	case TRB_STOP_RING: | 
 | 		WARN_ON(slot_id != TRB_TO_SLOT_ID( | 
 | 				le32_to_cpu(cmd_trb->generic.field[3]))); | 
 | 		xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); | 
 | 		break; | 
 | 	case TRB_SET_DEQ: | 
 | 		WARN_ON(slot_id != TRB_TO_SLOT_ID( | 
 | 				le32_to_cpu(cmd_trb->generic.field[3]))); | 
 | 		xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); | 
 | 		break; | 
 | 	case TRB_CMD_NOOP: | 
 | 		/* Is this an aborted command turned to NO-OP? */ | 
 | 		if (cmd->status == COMP_COMMAND_RING_STOPPED) | 
 | 			cmd_comp_code = COMP_COMMAND_RING_STOPPED; | 
 | 		break; | 
 | 	case TRB_RESET_EP: | 
 | 		WARN_ON(slot_id != TRB_TO_SLOT_ID( | 
 | 				le32_to_cpu(cmd_trb->generic.field[3]))); | 
 | 		xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); | 
 | 		break; | 
 | 	case TRB_RESET_DEV: | 
 | 		/* SLOT_ID field in reset device cmd completion event TRB is 0. | 
 | 		 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) | 
 | 		 */ | 
 | 		slot_id = TRB_TO_SLOT_ID( | 
 | 				le32_to_cpu(cmd_trb->generic.field[3])); | 
 | 		xhci_handle_cmd_reset_dev(xhci, slot_id, event); | 
 | 		break; | 
 | 	case TRB_NEC_GET_FW: | 
 | 		xhci_handle_cmd_nec_get_fw(xhci, event); | 
 | 		break; | 
 | 	default: | 
 | 		/* Skip over unknown commands on the event ring */ | 
 | 		xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* restart timer if this wasn't the last command */ | 
 | 	if (!list_is_singular(&xhci->cmd_list)) { | 
 | 		xhci->current_cmd = list_first_entry(&cmd->cmd_list, | 
 | 						struct xhci_command, cmd_list); | 
 | 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); | 
 | 	} else if (xhci->current_cmd == cmd) { | 
 | 		xhci->current_cmd = NULL; | 
 | 	} | 
 |  | 
 | event_handled: | 
 | 	xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); | 
 |  | 
 | 	inc_deq(xhci, xhci->cmd_ring); | 
 | } | 
 |  | 
 | static void handle_vendor_event(struct xhci_hcd *xhci, | 
 | 		union xhci_trb *event) | 
 | { | 
 | 	u32 trb_type; | 
 |  | 
 | 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); | 
 | 	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); | 
 | 	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) | 
 | 		handle_cmd_completion(xhci, &event->event_cmd); | 
 | } | 
 |  | 
 | /* @port_id: the one-based port ID from the hardware (indexed from array of all | 
 |  * port registers -- USB 3.0 and USB 2.0). | 
 |  * | 
 |  * Returns a zero-based port number, which is suitable for indexing into each of | 
 |  * the split roothubs' port arrays and bus state arrays. | 
 |  * Add one to it in order to call xhci_find_slot_id_by_port. | 
 |  */ | 
 | static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, | 
 | 		struct xhci_hcd *xhci, u32 port_id) | 
 | { | 
 | 	unsigned int i; | 
 | 	unsigned int num_similar_speed_ports = 0; | 
 |  | 
 | 	/* port_id from the hardware is 1-based, but port_array[], usb3_ports[], | 
 | 	 * and usb2_ports are 0-based indexes.  Count the number of similar | 
 | 	 * speed ports, up to 1 port before this port. | 
 | 	 */ | 
 | 	for (i = 0; i < (port_id - 1); i++) { | 
 | 		u8 port_speed = xhci->port_array[i]; | 
 |  | 
 | 		/* | 
 | 		 * Skip ports that don't have known speeds, or have duplicate | 
 | 		 * Extended Capabilities port speed entries. | 
 | 		 */ | 
 | 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and | 
 | 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed | 
 | 		 * matches the device speed, it's a similar speed port. | 
 | 		 */ | 
 | 		if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3)) | 
 | 			num_similar_speed_ports++; | 
 | 	} | 
 | 	return num_similar_speed_ports; | 
 | } | 
 |  | 
 | static void handle_device_notification(struct xhci_hcd *xhci, | 
 | 		union xhci_trb *event) | 
 | { | 
 | 	u32 slot_id; | 
 | 	struct usb_device *udev; | 
 |  | 
 | 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); | 
 | 	if (!xhci->devs[slot_id]) { | 
 | 		xhci_warn(xhci, "Device Notification event for " | 
 | 				"unused slot %u\n", slot_id); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", | 
 | 			slot_id); | 
 | 	udev = xhci->devs[slot_id]->udev; | 
 | 	if (udev && udev->parent) | 
 | 		usb_wakeup_notification(udev->parent, udev->portnum); | 
 | } | 
 |  | 
 | /* | 
 |  * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI | 
 |  * Controller. | 
 |  * As per ThunderX2errata-129 USB 2 device may come up as USB 1 | 
 |  * If a connection to a USB 1 device is followed by another connection | 
 |  * to a USB 2 device. | 
 |  * | 
 |  * Reset the PHY after the USB device is disconnected if device speed | 
 |  * is less than HCD_USB3. | 
 |  * Retry the reset sequence max of 4 times checking the PLL lock status. | 
 |  * | 
 |  */ | 
 | static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) | 
 | { | 
 | 	struct usb_hcd *hcd = xhci_to_hcd(xhci); | 
 | 	u32 pll_lock_check; | 
 | 	u32 retry_count = 4; | 
 |  | 
 | 	do { | 
 | 		/* Assert PHY reset */ | 
 | 		writel(0x6F, hcd->regs + 0x1048); | 
 | 		udelay(10); | 
 | 		/* De-assert the PHY reset */ | 
 | 		writel(0x7F, hcd->regs + 0x1048); | 
 | 		udelay(200); | 
 | 		pll_lock_check = readl(hcd->regs + 0x1070); | 
 | 	} while (!(pll_lock_check & 0x1) && --retry_count); | 
 | } | 
 |  | 
 | static void handle_port_status(struct xhci_hcd *xhci, | 
 | 		union xhci_trb *event) | 
 | { | 
 | 	struct usb_hcd *hcd; | 
 | 	u32 port_id; | 
 | 	u32 portsc, cmd_reg; | 
 | 	int max_ports; | 
 | 	int slot_id; | 
 | 	unsigned int faked_port_index; | 
 | 	u8 major_revision; | 
 | 	struct xhci_bus_state *bus_state; | 
 | 	__le32 __iomem **port_array; | 
 | 	bool bogus_port_status = false; | 
 |  | 
 | 	/* Port status change events always have a successful completion code */ | 
 | 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) | 
 | 		xhci_warn(xhci, | 
 | 			  "WARN: xHC returned failed port status event\n"); | 
 |  | 
 | 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); | 
 | 	xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); | 
 |  | 
 | 	max_ports = HCS_MAX_PORTS(xhci->hcs_params1); | 
 | 	if ((port_id <= 0) || (port_id > max_ports)) { | 
 | 		xhci_warn(xhci, "Invalid port id %d\n", port_id); | 
 | 		inc_deq(xhci, xhci->event_ring); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Figure out which usb_hcd this port is attached to: | 
 | 	 * is it a USB 3.0 port or a USB 2.0/1.1 port? | 
 | 	 */ | 
 | 	major_revision = xhci->port_array[port_id - 1]; | 
 |  | 
 | 	/* Find the right roothub. */ | 
 | 	hcd = xhci_to_hcd(xhci); | 
 | 	if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3)) | 
 | 		hcd = xhci->shared_hcd; | 
 |  | 
 | 	if (!hcd) { | 
 | 		bogus_port_status = true; | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	if (major_revision == 0) { | 
 | 		xhci_warn(xhci, "Event for port %u not in " | 
 | 				"Extended Capabilities, ignoring.\n", | 
 | 				port_id); | 
 | 		bogus_port_status = true; | 
 | 		goto cleanup; | 
 | 	} | 
 | 	if (major_revision == DUPLICATE_ENTRY) { | 
 | 		xhci_warn(xhci, "Event for port %u duplicated in" | 
 | 				"Extended Capabilities, ignoring.\n", | 
 | 				port_id); | 
 | 		bogus_port_status = true; | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Hardware port IDs reported by a Port Status Change Event include USB | 
 | 	 * 3.0 and USB 2.0 ports.  We want to check if the port has reported a | 
 | 	 * resume event, but we first need to translate the hardware port ID | 
 | 	 * into the index into the ports on the correct split roothub, and the | 
 | 	 * correct bus_state structure. | 
 | 	 */ | 
 | 	bus_state = &xhci->bus_state[hcd_index(hcd)]; | 
 | 	if (hcd->speed >= HCD_USB3) | 
 | 		port_array = xhci->usb3_ports; | 
 | 	else | 
 | 		port_array = xhci->usb2_ports; | 
 | 	/* Find the faked port hub number */ | 
 | 	faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, | 
 | 			port_id); | 
 | 	portsc = readl(port_array[faked_port_index]); | 
 |  | 
 | 	trace_xhci_handle_port_status(faked_port_index, portsc); | 
 |  | 
 | 	if (hcd->state == HC_STATE_SUSPENDED) { | 
 | 		xhci_dbg(xhci, "resume root hub\n"); | 
 | 		usb_hcd_resume_root_hub(hcd); | 
 | 	} | 
 |  | 
 | 	if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) | 
 | 		bus_state->port_remote_wakeup &= ~(1 << faked_port_index); | 
 |  | 
 | 	if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { | 
 | 		xhci_dbg(xhci, "port resume event for port %d\n", port_id); | 
 |  | 
 | 		cmd_reg = readl(&xhci->op_regs->command); | 
 | 		if (!(cmd_reg & CMD_RUN)) { | 
 | 			xhci_warn(xhci, "xHC is not running.\n"); | 
 | 			goto cleanup; | 
 | 		} | 
 |  | 
 | 		if (DEV_SUPERSPEED_ANY(portsc)) { | 
 | 			xhci_dbg(xhci, "remote wake SS port %d\n", port_id); | 
 | 			/* Set a flag to say the port signaled remote wakeup, | 
 | 			 * so we can tell the difference between the end of | 
 | 			 * device and host initiated resume. | 
 | 			 */ | 
 | 			bus_state->port_remote_wakeup |= 1 << faked_port_index; | 
 | 			xhci_test_and_clear_bit(xhci, port_array, | 
 | 					faked_port_index, PORT_PLC); | 
 | 			xhci_set_link_state(xhci, port_array, faked_port_index, | 
 | 						XDEV_U0); | 
 | 			/* Need to wait until the next link state change | 
 | 			 * indicates the device is actually in U0. | 
 | 			 */ | 
 | 			bogus_port_status = true; | 
 | 			goto cleanup; | 
 | 		} else if (!test_bit(faked_port_index, | 
 | 				     &bus_state->resuming_ports)) { | 
 | 			xhci_dbg(xhci, "resume HS port %d\n", port_id); | 
 | 			bus_state->resume_done[faked_port_index] = jiffies + | 
 | 				msecs_to_jiffies(USB_RESUME_TIMEOUT); | 
 | 			set_bit(faked_port_index, &bus_state->resuming_ports); | 
 | 			mod_timer(&hcd->rh_timer, | 
 | 				  bus_state->resume_done[faked_port_index]); | 
 | 			/* Do the rest in GetPortStatus */ | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_U0 && | 
 | 			DEV_SUPERSPEED_ANY(portsc)) { | 
 | 		xhci_dbg(xhci, "resume SS port %d finished\n", port_id); | 
 | 		/* We've just brought the device into U0 through either the | 
 | 		 * Resume state after a device remote wakeup, or through the | 
 | 		 * U3Exit state after a host-initiated resume.  If it's a device | 
 | 		 * initiated remote wake, don't pass up the link state change, | 
 | 		 * so the roothub behavior is consistent with external | 
 | 		 * USB 3.0 hub behavior. | 
 | 		 */ | 
 | 		slot_id = xhci_find_slot_id_by_port(hcd, xhci, | 
 | 				faked_port_index + 1); | 
 | 		if (slot_id && xhci->devs[slot_id]) | 
 | 			xhci_ring_device(xhci, slot_id); | 
 | 		if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { | 
 | 			bus_state->port_remote_wakeup &= | 
 | 				~(1 << faked_port_index); | 
 | 			xhci_test_and_clear_bit(xhci, port_array, | 
 | 					faked_port_index, PORT_PLC); | 
 | 			usb_wakeup_notification(hcd->self.root_hub, | 
 | 					faked_port_index + 1); | 
 | 			bogus_port_status = true; | 
 | 			goto cleanup; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or | 
 | 	 * RExit to a disconnect state).  If so, let the the driver know it's | 
 | 	 * out of the RExit state. | 
 | 	 */ | 
 | 	if (!DEV_SUPERSPEED_ANY(portsc) && hcd->speed < HCD_USB3 && | 
 | 			test_and_clear_bit(faked_port_index, | 
 | 				&bus_state->rexit_ports)) { | 
 | 		complete(&bus_state->rexit_done[faked_port_index]); | 
 | 		bogus_port_status = true; | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	if (hcd->speed < HCD_USB3) { | 
 | 		xhci_test_and_clear_bit(xhci, port_array, faked_port_index, | 
 | 					PORT_PLC); | 
 | 		if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && | 
 | 		    (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) | 
 | 			xhci_cavium_reset_phy_quirk(xhci); | 
 | 	} | 
 |  | 
 | cleanup: | 
 | 	/* Update event ring dequeue pointer before dropping the lock */ | 
 | 	inc_deq(xhci, xhci->event_ring); | 
 |  | 
 | 	/* Don't make the USB core poll the roothub if we got a bad port status | 
 | 	 * change event.  Besides, at that point we can't tell which roothub | 
 | 	 * (USB 2.0 or USB 3.0) to kick. | 
 | 	 */ | 
 | 	if (bogus_port_status) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * xHCI port-status-change events occur when the "or" of all the | 
 | 	 * status-change bits in the portsc register changes from 0 to 1. | 
 | 	 * New status changes won't cause an event if any other change | 
 | 	 * bits are still set.  When an event occurs, switch over to | 
 | 	 * polling to avoid losing status changes. | 
 | 	 */ | 
 | 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__); | 
 | 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags); | 
 | 	spin_unlock(&xhci->lock); | 
 | 	/* Pass this up to the core */ | 
 | 	usb_hcd_poll_rh_status(hcd); | 
 | 	spin_lock(&xhci->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * This TD is defined by the TRBs starting at start_trb in start_seg and ending | 
 |  * at end_trb, which may be in another segment.  If the suspect DMA address is a | 
 |  * TRB in this TD, this function returns that TRB's segment.  Otherwise it | 
 |  * returns 0. | 
 |  */ | 
 | struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, | 
 | 		struct xhci_segment *start_seg, | 
 | 		union xhci_trb	*start_trb, | 
 | 		union xhci_trb	*end_trb, | 
 | 		dma_addr_t	suspect_dma, | 
 | 		bool		debug) | 
 | { | 
 | 	dma_addr_t start_dma; | 
 | 	dma_addr_t end_seg_dma; | 
 | 	dma_addr_t end_trb_dma; | 
 | 	struct xhci_segment *cur_seg; | 
 |  | 
 | 	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); | 
 | 	cur_seg = start_seg; | 
 |  | 
 | 	do { | 
 | 		if (start_dma == 0) | 
 | 			return NULL; | 
 | 		/* We may get an event for a Link TRB in the middle of a TD */ | 
 | 		end_seg_dma = xhci_trb_virt_to_dma(cur_seg, | 
 | 				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]); | 
 | 		/* If the end TRB isn't in this segment, this is set to 0 */ | 
 | 		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); | 
 |  | 
 | 		if (debug) | 
 | 			xhci_warn(xhci, | 
 | 				"Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", | 
 | 				(unsigned long long)suspect_dma, | 
 | 				(unsigned long long)start_dma, | 
 | 				(unsigned long long)end_trb_dma, | 
 | 				(unsigned long long)cur_seg->dma, | 
 | 				(unsigned long long)end_seg_dma); | 
 |  | 
 | 		if (end_trb_dma > 0) { | 
 | 			/* The end TRB is in this segment, so suspect should be here */ | 
 | 			if (start_dma <= end_trb_dma) { | 
 | 				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) | 
 | 					return cur_seg; | 
 | 			} else { | 
 | 				/* Case for one segment with | 
 | 				 * a TD wrapped around to the top | 
 | 				 */ | 
 | 				if ((suspect_dma >= start_dma && | 
 | 							suspect_dma <= end_seg_dma) || | 
 | 						(suspect_dma >= cur_seg->dma && | 
 | 						 suspect_dma <= end_trb_dma)) | 
 | 					return cur_seg; | 
 | 			} | 
 | 			return NULL; | 
 | 		} else { | 
 | 			/* Might still be somewhere in this segment */ | 
 | 			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) | 
 | 				return cur_seg; | 
 | 		} | 
 | 		cur_seg = cur_seg->next; | 
 | 		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); | 
 | 	} while (cur_seg != start_seg); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, | 
 | 		unsigned int slot_id, unsigned int ep_index, | 
 | 		unsigned int stream_id, | 
 | 		struct xhci_td *td, union xhci_trb *ep_trb, | 
 | 		enum xhci_ep_reset_type reset_type) | 
 | { | 
 | 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; | 
 | 	struct xhci_command *command; | 
 | 	command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); | 
 | 	if (!command) | 
 | 		return; | 
 |  | 
 | 	ep->ep_state |= EP_HALTED; | 
 |  | 
 | 	xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); | 
 |  | 
 | 	if (reset_type == EP_HARD_RESET) | 
 | 		xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td); | 
 |  | 
 | 	xhci_ring_cmd_db(xhci); | 
 | } | 
 |  | 
 | /* Check if an error has halted the endpoint ring.  The class driver will | 
 |  * cleanup the halt for a non-default control endpoint if we indicate a stall. | 
 |  * However, a babble and other errors also halt the endpoint ring, and the class | 
 |  * driver won't clear the halt in that case, so we need to issue a Set Transfer | 
 |  * Ring Dequeue Pointer command manually. | 
 |  */ | 
 | static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, | 
 | 		struct xhci_ep_ctx *ep_ctx, | 
 | 		unsigned int trb_comp_code) | 
 | { | 
 | 	/* TRB completion codes that may require a manual halt cleanup */ | 
 | 	if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || | 
 | 			trb_comp_code == COMP_BABBLE_DETECTED_ERROR || | 
 | 			trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) | 
 | 		/* The 0.95 spec says a babbling control endpoint | 
 | 		 * is not halted. The 0.96 spec says it is.  Some HW | 
 | 		 * claims to be 0.95 compliant, but it halts the control | 
 | 		 * endpoint anyway.  Check if a babble halted the | 
 | 		 * endpoint. | 
 | 		 */ | 
 | 		if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) | 
 | 			return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) | 
 | { | 
 | 	if (trb_comp_code >= 224 && trb_comp_code <= 255) { | 
 | 		/* Vendor defined "informational" completion code, | 
 | 		 * treat as not-an-error. | 
 | 		 */ | 
 | 		xhci_dbg(xhci, "Vendor defined info completion code %u\n", | 
 | 				trb_comp_code); | 
 | 		xhci_dbg(xhci, "Treating code as success.\n"); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, | 
 | 		struct xhci_ring *ep_ring, int *status) | 
 | { | 
 | 	struct urb_priv	*urb_priv; | 
 | 	struct urb *urb = NULL; | 
 |  | 
 | 	/* Clean up the endpoint's TD list */ | 
 | 	urb = td->urb; | 
 | 	urb_priv = urb->hcpriv; | 
 |  | 
 | 	/* if a bounce buffer was used to align this td then unmap it */ | 
 | 	xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); | 
 |  | 
 | 	/* Do one last check of the actual transfer length. | 
 | 	 * If the host controller said we transferred more data than the buffer | 
 | 	 * length, urb->actual_length will be a very big number (since it's | 
 | 	 * unsigned).  Play it safe and say we didn't transfer anything. | 
 | 	 */ | 
 | 	if (urb->actual_length > urb->transfer_buffer_length) { | 
 | 		xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", | 
 | 			  urb->transfer_buffer_length, urb->actual_length); | 
 | 		urb->actual_length = 0; | 
 | 		*status = 0; | 
 | 	} | 
 | 	list_del_init(&td->td_list); | 
 | 	/* Was this TD slated to be cancelled but completed anyway? */ | 
 | 	if (!list_empty(&td->cancelled_td_list)) | 
 | 		list_del_init(&td->cancelled_td_list); | 
 |  | 
 | 	inc_td_cnt(urb); | 
 | 	/* Giveback the urb when all the tds are completed */ | 
 | 	if (last_td_in_urb(td)) { | 
 | 		if ((urb->actual_length != urb->transfer_buffer_length && | 
 | 		     (urb->transfer_flags & URB_SHORT_NOT_OK)) || | 
 | 		    (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) | 
 | 			xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", | 
 | 				 urb, urb->actual_length, | 
 | 				 urb->transfer_buffer_length, *status); | 
 |  | 
 | 		/* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ | 
 | 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) | 
 | 			*status = 0; | 
 | 		xhci_giveback_urb_in_irq(xhci, td, *status); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, | 
 | 	union xhci_trb *ep_trb, struct xhci_transfer_event *event, | 
 | 	struct xhci_virt_ep *ep, int *status) | 
 | { | 
 | 	struct xhci_virt_device *xdev; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	unsigned int slot_id; | 
 | 	u32 trb_comp_code; | 
 | 	int ep_index; | 
 |  | 
 | 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); | 
 | 	xdev = xhci->devs[slot_id]; | 
 | 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; | 
 | 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); | 
 | 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); | 
 |  | 
 | 	if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID || | 
 | 			trb_comp_code == COMP_STOPPED || | 
 | 			trb_comp_code == COMP_STOPPED_SHORT_PACKET) { | 
 | 		/* The Endpoint Stop Command completion will take care of any | 
 | 		 * stopped TDs.  A stopped TD may be restarted, so don't update | 
 | 		 * the ring dequeue pointer or take this TD off any lists yet. | 
 | 		 */ | 
 | 		return 0; | 
 | 	} | 
 | 	if (trb_comp_code == COMP_STALL_ERROR || | 
 | 		xhci_requires_manual_halt_cleanup(xhci, ep_ctx, | 
 | 						trb_comp_code)) { | 
 | 		/* Issue a reset endpoint command to clear the host side | 
 | 		 * halt, followed by a set dequeue command to move the | 
 | 		 * dequeue pointer past the TD. | 
 | 		 * The class driver clears the device side halt later. | 
 | 		 */ | 
 | 		xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, | 
 | 					ep_ring->stream_id, td, ep_trb, | 
 | 					EP_HARD_RESET); | 
 | 	} else { | 
 | 		/* Update ring dequeue pointer */ | 
 | 		while (ep_ring->dequeue != td->last_trb) | 
 | 			inc_deq(xhci, ep_ring); | 
 | 		inc_deq(xhci, ep_ring); | 
 | 	} | 
 |  | 
 | 	return xhci_td_cleanup(xhci, td, ep_ring, status); | 
 | } | 
 |  | 
 | /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ | 
 | static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, | 
 | 			   union xhci_trb *stop_trb) | 
 | { | 
 | 	u32 sum; | 
 | 	union xhci_trb *trb = ring->dequeue; | 
 | 	struct xhci_segment *seg = ring->deq_seg; | 
 |  | 
 | 	for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { | 
 | 		if (!trb_is_noop(trb) && !trb_is_link(trb)) | 
 | 			sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); | 
 | 	} | 
 | 	return sum; | 
 | } | 
 |  | 
 | /* | 
 |  * Process control tds, update urb status and actual_length. | 
 |  */ | 
 | static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, | 
 | 	union xhci_trb *ep_trb, struct xhci_transfer_event *event, | 
 | 	struct xhci_virt_ep *ep, int *status) | 
 | { | 
 | 	struct xhci_virt_device *xdev; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	unsigned int slot_id; | 
 | 	int ep_index; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	u32 trb_comp_code; | 
 | 	u32 remaining, requested; | 
 | 	u32 trb_type; | 
 |  | 
 | 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); | 
 | 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); | 
 | 	xdev = xhci->devs[slot_id]; | 
 | 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; | 
 | 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); | 
 | 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); | 
 | 	requested = td->urb->transfer_buffer_length; | 
 | 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); | 
 |  | 
 | 	switch (trb_comp_code) { | 
 | 	case COMP_SUCCESS: | 
 | 		if (trb_type != TRB_STATUS) | 
 | 			xhci_dbg(xhci, "Success on ctrl %s TRB without IOC set?\n", | 
 | 				  (trb_type == TRB_DATA) ? "data" : "setup"); | 
 | 		*status = 0; | 
 | 		break; | 
 | 	case COMP_SHORT_PACKET: | 
 | 		*status = 0; | 
 | 		break; | 
 | 	case COMP_STOPPED_SHORT_PACKET: | 
 | 		if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) | 
 | 			td->urb->actual_length = remaining; | 
 | 		else | 
 | 			xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); | 
 | 		goto finish_td; | 
 | 	case COMP_STOPPED: | 
 | 		switch (trb_type) { | 
 | 		case TRB_SETUP: | 
 | 			td->urb->actual_length = 0; | 
 | 			goto finish_td; | 
 | 		case TRB_DATA: | 
 | 		case TRB_NORMAL: | 
 | 			td->urb->actual_length = requested - remaining; | 
 | 			goto finish_td; | 
 | 		case TRB_STATUS: | 
 | 			td->urb->actual_length = requested; | 
 | 			goto finish_td; | 
 | 		default: | 
 | 			xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", | 
 | 				  trb_type); | 
 | 			goto finish_td; | 
 | 		} | 
 | 	case COMP_STOPPED_LENGTH_INVALID: | 
 | 		goto finish_td; | 
 | 	default: | 
 | 		if (!xhci_requires_manual_halt_cleanup(xhci, | 
 | 						       ep_ctx, trb_comp_code)) | 
 | 			break; | 
 | 		xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", | 
 | 			 trb_comp_code, ep_index); | 
 | 		/* else fall through */ | 
 | 	case COMP_STALL_ERROR: | 
 | 		/* Did we transfer part of the data (middle) phase? */ | 
 | 		if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) | 
 | 			td->urb->actual_length = requested - remaining; | 
 | 		else if (!td->urb_length_set) | 
 | 			td->urb->actual_length = 0; | 
 | 		goto finish_td; | 
 | 	} | 
 |  | 
 | 	/* stopped at setup stage, no data transferred */ | 
 | 	if (trb_type == TRB_SETUP) | 
 | 		goto finish_td; | 
 |  | 
 | 	/* | 
 | 	 * if on data stage then update the actual_length of the URB and flag it | 
 | 	 * as set, so it won't be overwritten in the event for the last TRB. | 
 | 	 */ | 
 | 	if (trb_type == TRB_DATA || | 
 | 		trb_type == TRB_NORMAL) { | 
 | 		td->urb_length_set = true; | 
 | 		td->urb->actual_length = requested - remaining; | 
 | 		xhci_dbg(xhci, "Waiting for status stage event\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* at status stage */ | 
 | 	if (!td->urb_length_set) | 
 | 		td->urb->actual_length = requested; | 
 |  | 
 | finish_td: | 
 | 	return finish_td(xhci, td, ep_trb, event, ep, status); | 
 | } | 
 |  | 
 | /* | 
 |  * Process isochronous tds, update urb packet status and actual_length. | 
 |  */ | 
 | static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, | 
 | 	union xhci_trb *ep_trb, struct xhci_transfer_event *event, | 
 | 	struct xhci_virt_ep *ep, int *status) | 
 | { | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct urb_priv *urb_priv; | 
 | 	int idx; | 
 | 	struct usb_iso_packet_descriptor *frame; | 
 | 	u32 trb_comp_code; | 
 | 	bool sum_trbs_for_length = false; | 
 | 	u32 remaining, requested, ep_trb_len; | 
 | 	int short_framestatus; | 
 |  | 
 | 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); | 
 | 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); | 
 | 	urb_priv = td->urb->hcpriv; | 
 | 	idx = urb_priv->num_tds_done; | 
 | 	frame = &td->urb->iso_frame_desc[idx]; | 
 | 	requested = frame->length; | 
 | 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); | 
 | 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); | 
 | 	short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? | 
 | 		-EREMOTEIO : 0; | 
 |  | 
 | 	/* handle completion code */ | 
 | 	switch (trb_comp_code) { | 
 | 	case COMP_SUCCESS: | 
 | 		if (remaining) { | 
 | 			frame->status = short_framestatus; | 
 | 			if (xhci->quirks & XHCI_TRUST_TX_LENGTH) | 
 | 				sum_trbs_for_length = true; | 
 | 			break; | 
 | 		} | 
 | 		frame->status = 0; | 
 | 		break; | 
 | 	case COMP_SHORT_PACKET: | 
 | 		frame->status = short_framestatus; | 
 | 		sum_trbs_for_length = true; | 
 | 		break; | 
 | 	case COMP_BANDWIDTH_OVERRUN_ERROR: | 
 | 		frame->status = -ECOMM; | 
 | 		break; | 
 | 	case COMP_ISOCH_BUFFER_OVERRUN: | 
 | 	case COMP_BABBLE_DETECTED_ERROR: | 
 | 		frame->status = -EOVERFLOW; | 
 | 		break; | 
 | 	case COMP_INCOMPATIBLE_DEVICE_ERROR: | 
 | 	case COMP_STALL_ERROR: | 
 | 		frame->status = -EPROTO; | 
 | 		break; | 
 | 	case COMP_USB_TRANSACTION_ERROR: | 
 | 		frame->status = -EPROTO; | 
 | 		if (ep_trb != td->last_trb) | 
 | 			return 0; | 
 | 		break; | 
 | 	case COMP_STOPPED: | 
 | 		sum_trbs_for_length = true; | 
 | 		break; | 
 | 	case COMP_STOPPED_SHORT_PACKET: | 
 | 		/* field normally containing residue now contains tranferred */ | 
 | 		frame->status = short_framestatus; | 
 | 		requested = remaining; | 
 | 		break; | 
 | 	case COMP_STOPPED_LENGTH_INVALID: | 
 | 		requested = 0; | 
 | 		remaining = 0; | 
 | 		break; | 
 | 	default: | 
 | 		sum_trbs_for_length = true; | 
 | 		frame->status = -1; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (sum_trbs_for_length) | 
 | 		frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) + | 
 | 			ep_trb_len - remaining; | 
 | 	else | 
 | 		frame->actual_length = requested; | 
 |  | 
 | 	td->urb->actual_length += frame->actual_length; | 
 |  | 
 | 	return finish_td(xhci, td, ep_trb, event, ep, status); | 
 | } | 
 |  | 
 | static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, | 
 | 			struct xhci_transfer_event *event, | 
 | 			struct xhci_virt_ep *ep, int *status) | 
 | { | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct urb_priv *urb_priv; | 
 | 	struct usb_iso_packet_descriptor *frame; | 
 | 	int idx; | 
 |  | 
 | 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); | 
 | 	urb_priv = td->urb->hcpriv; | 
 | 	idx = urb_priv->num_tds_done; | 
 | 	frame = &td->urb->iso_frame_desc[idx]; | 
 |  | 
 | 	/* The transfer is partly done. */ | 
 | 	frame->status = -EXDEV; | 
 |  | 
 | 	/* calc actual length */ | 
 | 	frame->actual_length = 0; | 
 |  | 
 | 	/* Update ring dequeue pointer */ | 
 | 	while (ep_ring->dequeue != td->last_trb) | 
 | 		inc_deq(xhci, ep_ring); | 
 | 	inc_deq(xhci, ep_ring); | 
 |  | 
 | 	return xhci_td_cleanup(xhci, td, ep_ring, status); | 
 | } | 
 |  | 
 | /* | 
 |  * Process bulk and interrupt tds, update urb status and actual_length. | 
 |  */ | 
 | static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, | 
 | 	union xhci_trb *ep_trb, struct xhci_transfer_event *event, | 
 | 	struct xhci_virt_ep *ep, int *status) | 
 | { | 
 | 	struct xhci_ring *ep_ring; | 
 | 	u32 trb_comp_code; | 
 | 	u32 remaining, requested, ep_trb_len; | 
 |  | 
 | 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); | 
 | 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); | 
 | 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); | 
 | 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); | 
 | 	requested = td->urb->transfer_buffer_length; | 
 |  | 
 | 	switch (trb_comp_code) { | 
 | 	case COMP_SUCCESS: | 
 | 		/* handle success with untransferred data as short packet */ | 
 | 		if (ep_trb != td->last_trb || remaining) { | 
 | 			xhci_warn(xhci, "WARN Successful completion on short TX\n"); | 
 | 			xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", | 
 | 				 td->urb->ep->desc.bEndpointAddress, | 
 | 				 requested, remaining); | 
 | 		} | 
 | 		*status = 0; | 
 | 		break; | 
 | 	case COMP_SHORT_PACKET: | 
 | 		xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", | 
 | 			 td->urb->ep->desc.bEndpointAddress, | 
 | 			 requested, remaining); | 
 | 		*status = 0; | 
 | 		break; | 
 | 	case COMP_STOPPED_SHORT_PACKET: | 
 | 		td->urb->actual_length = remaining; | 
 | 		goto finish_td; | 
 | 	case COMP_STOPPED_LENGTH_INVALID: | 
 | 		/* stopped on ep trb with invalid length, exclude it */ | 
 | 		ep_trb_len	= 0; | 
 | 		remaining	= 0; | 
 | 		break; | 
 | 	default: | 
 | 		/* do nothing */ | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (ep_trb == td->last_trb) | 
 | 		td->urb->actual_length = requested - remaining; | 
 | 	else | 
 | 		td->urb->actual_length = | 
 | 			sum_trb_lengths(xhci, ep_ring, ep_trb) + | 
 | 			ep_trb_len - remaining; | 
 | finish_td: | 
 | 	if (remaining > requested) { | 
 | 		xhci_warn(xhci, "bad transfer trb length %d in event trb\n", | 
 | 			  remaining); | 
 | 		td->urb->actual_length = 0; | 
 | 	} | 
 | 	return finish_td(xhci, td, ep_trb, event, ep, status); | 
 | } | 
 |  | 
 | /* | 
 |  * If this function returns an error condition, it means it got a Transfer | 
 |  * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. | 
 |  * At this point, the host controller is probably hosed and should be reset. | 
 |  */ | 
 | static int handle_tx_event(struct xhci_hcd *xhci, | 
 | 		struct xhci_transfer_event *event) | 
 | { | 
 | 	struct xhci_virt_device *xdev; | 
 | 	struct xhci_virt_ep *ep; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	unsigned int slot_id; | 
 | 	int ep_index; | 
 | 	struct xhci_td *td = NULL; | 
 | 	dma_addr_t ep_trb_dma; | 
 | 	struct xhci_segment *ep_seg; | 
 | 	union xhci_trb *ep_trb; | 
 | 	int status = -EINPROGRESS; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	struct list_head *tmp; | 
 | 	u32 trb_comp_code; | 
 | 	int td_num = 0; | 
 | 	bool handling_skipped_tds = false; | 
 |  | 
 | 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); | 
 | 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; | 
 | 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); | 
 | 	ep_trb_dma = le64_to_cpu(event->buffer); | 
 |  | 
 | 	xdev = xhci->devs[slot_id]; | 
 | 	if (!xdev) { | 
 | 		xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n", | 
 | 			 slot_id); | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	ep = &xdev->eps[ep_index]; | 
 | 	ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); | 
 |  | 
 | 	if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { | 
 | 		xhci_err(xhci, | 
 | 			 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", | 
 | 			  slot_id, ep_index); | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	/* Some transfer events don't always point to a trb, see xhci 4.17.4 */ | 
 | 	if (!ep_ring) { | 
 | 		switch (trb_comp_code) { | 
 | 		case COMP_STALL_ERROR: | 
 | 		case COMP_USB_TRANSACTION_ERROR: | 
 | 		case COMP_INVALID_STREAM_TYPE_ERROR: | 
 | 		case COMP_INVALID_STREAM_ID_ERROR: | 
 | 			xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0, | 
 | 						     NULL, NULL, EP_SOFT_RESET); | 
 | 			goto cleanup; | 
 | 		case COMP_RING_UNDERRUN: | 
 | 		case COMP_RING_OVERRUN: | 
 | 		case COMP_STOPPED_LENGTH_INVALID: | 
 | 			goto cleanup; | 
 | 		default: | 
 | 			xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", | 
 | 				 slot_id, ep_index); | 
 | 			goto err_out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Count current td numbers if ep->skip is set */ | 
 | 	if (ep->skip) { | 
 | 		list_for_each(tmp, &ep_ring->td_list) | 
 | 			td_num++; | 
 | 	} | 
 |  | 
 | 	/* Look for common error cases */ | 
 | 	switch (trb_comp_code) { | 
 | 	/* Skip codes that require special handling depending on | 
 | 	 * transfer type | 
 | 	 */ | 
 | 	case COMP_SUCCESS: | 
 | 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) | 
 | 			break; | 
 | 		if (xhci->quirks & XHCI_TRUST_TX_LENGTH) | 
 | 			trb_comp_code = COMP_SHORT_PACKET; | 
 | 		else | 
 | 			xhci_warn_ratelimited(xhci, | 
 | 					      "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", | 
 | 					      slot_id, ep_index); | 
 | 	case COMP_SHORT_PACKET: | 
 | 		break; | 
 | 	/* Completion codes for endpoint stopped state */ | 
 | 	case COMP_STOPPED: | 
 | 		xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", | 
 | 			 slot_id, ep_index); | 
 | 		break; | 
 | 	case COMP_STOPPED_LENGTH_INVALID: | 
 | 		xhci_dbg(xhci, | 
 | 			 "Stopped on No-op or Link TRB for slot %u ep %u\n", | 
 | 			 slot_id, ep_index); | 
 | 		break; | 
 | 	case COMP_STOPPED_SHORT_PACKET: | 
 | 		xhci_dbg(xhci, | 
 | 			 "Stopped with short packet transfer detected for slot %u ep %u\n", | 
 | 			 slot_id, ep_index); | 
 | 		break; | 
 | 	/* Completion codes for endpoint halted state */ | 
 | 	case COMP_STALL_ERROR: | 
 | 		xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, | 
 | 			 ep_index); | 
 | 		ep->ep_state |= EP_HALTED; | 
 | 		status = -EPIPE; | 
 | 		break; | 
 | 	case COMP_SPLIT_TRANSACTION_ERROR: | 
 | 	case COMP_USB_TRANSACTION_ERROR: | 
 | 		xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", | 
 | 			 slot_id, ep_index); | 
 | 		status = -EPROTO; | 
 | 		break; | 
 | 	case COMP_BABBLE_DETECTED_ERROR: | 
 | 		xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", | 
 | 			 slot_id, ep_index); | 
 | 		status = -EOVERFLOW; | 
 | 		break; | 
 | 	/* Completion codes for endpoint error state */ | 
 | 	case COMP_TRB_ERROR: | 
 | 		xhci_warn(xhci, | 
 | 			  "WARN: TRB error for slot %u ep %u on endpoint\n", | 
 | 			  slot_id, ep_index); | 
 | 		status = -EILSEQ; | 
 | 		break; | 
 | 	/* completion codes not indicating endpoint state change */ | 
 | 	case COMP_DATA_BUFFER_ERROR: | 
 | 		xhci_warn(xhci, | 
 | 			  "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", | 
 | 			  slot_id, ep_index); | 
 | 		status = -ENOSR; | 
 | 		break; | 
 | 	case COMP_BANDWIDTH_OVERRUN_ERROR: | 
 | 		xhci_warn(xhci, | 
 | 			  "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", | 
 | 			  slot_id, ep_index); | 
 | 		break; | 
 | 	case COMP_ISOCH_BUFFER_OVERRUN: | 
 | 		xhci_warn(xhci, | 
 | 			  "WARN: buffer overrun event for slot %u ep %u on endpoint", | 
 | 			  slot_id, ep_index); | 
 | 		break; | 
 | 	case COMP_RING_UNDERRUN: | 
 | 		/* | 
 | 		 * When the Isoch ring is empty, the xHC will generate | 
 | 		 * a Ring Overrun Event for IN Isoch endpoint or Ring | 
 | 		 * Underrun Event for OUT Isoch endpoint. | 
 | 		 */ | 
 | 		xhci_dbg(xhci, "underrun event on endpoint\n"); | 
 | 		if (!list_empty(&ep_ring->td_list)) | 
 | 			xhci_dbg(xhci, "Underrun Event for slot %d ep %d " | 
 | 					"still with TDs queued?\n", | 
 | 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), | 
 | 				 ep_index); | 
 | 		goto cleanup; | 
 | 	case COMP_RING_OVERRUN: | 
 | 		xhci_dbg(xhci, "overrun event on endpoint\n"); | 
 | 		if (!list_empty(&ep_ring->td_list)) | 
 | 			xhci_dbg(xhci, "Overrun Event for slot %d ep %d " | 
 | 					"still with TDs queued?\n", | 
 | 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), | 
 | 				 ep_index); | 
 | 		goto cleanup; | 
 | 	case COMP_MISSED_SERVICE_ERROR: | 
 | 		/* | 
 | 		 * When encounter missed service error, one or more isoc tds | 
 | 		 * may be missed by xHC. | 
 | 		 * Set skip flag of the ep_ring; Complete the missed tds as | 
 | 		 * short transfer when process the ep_ring next time. | 
 | 		 */ | 
 | 		ep->skip = true; | 
 | 		xhci_dbg(xhci, | 
 | 			 "Miss service interval error for slot %u ep %u, set skip flag\n", | 
 | 			 slot_id, ep_index); | 
 | 		goto cleanup; | 
 | 	case COMP_NO_PING_RESPONSE_ERROR: | 
 | 		ep->skip = true; | 
 | 		xhci_dbg(xhci, | 
 | 			 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", | 
 | 			 slot_id, ep_index); | 
 | 		goto cleanup; | 
 |  | 
 | 	case COMP_INCOMPATIBLE_DEVICE_ERROR: | 
 | 		/* needs disable slot command to recover */ | 
 | 		xhci_warn(xhci, | 
 | 			  "WARN: detect an incompatible device for slot %u ep %u", | 
 | 			  slot_id, ep_index); | 
 | 		status = -EPROTO; | 
 | 		break; | 
 | 	default: | 
 | 		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { | 
 | 			status = 0; | 
 | 			break; | 
 | 		} | 
 | 		xhci_warn(xhci, | 
 | 			  "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", | 
 | 			  trb_comp_code, slot_id, ep_index); | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	do { | 
 | 		/* This TRB should be in the TD at the head of this ring's | 
 | 		 * TD list. | 
 | 		 */ | 
 | 		if (list_empty(&ep_ring->td_list)) { | 
 | 			/* | 
 | 			 * Don't print wanings if it's due to a stopped endpoint | 
 | 			 * generating an extra completion event if the device | 
 | 			 * was suspended. Or, a event for the last TRB of a | 
 | 			 * short TD we already got a short event for. | 
 | 			 * The short TD is already removed from the TD list. | 
 | 			 */ | 
 |  | 
 | 			if (!(trb_comp_code == COMP_STOPPED || | 
 | 			      trb_comp_code == COMP_STOPPED_LENGTH_INVALID || | 
 | 			      ep_ring->last_td_was_short)) { | 
 | 				xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", | 
 | 						TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), | 
 | 						ep_index); | 
 | 			} | 
 | 			if (ep->skip) { | 
 | 				ep->skip = false; | 
 | 				xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", | 
 | 					 slot_id, ep_index); | 
 | 			} | 
 | 			goto cleanup; | 
 | 		} | 
 |  | 
 | 		/* We've skipped all the TDs on the ep ring when ep->skip set */ | 
 | 		if (ep->skip && td_num == 0) { | 
 | 			ep->skip = false; | 
 | 			xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", | 
 | 				 slot_id, ep_index); | 
 | 			goto cleanup; | 
 | 		} | 
 |  | 
 | 		td = list_first_entry(&ep_ring->td_list, struct xhci_td, | 
 | 				      td_list); | 
 | 		if (ep->skip) | 
 | 			td_num--; | 
 |  | 
 | 		/* Is this a TRB in the currently executing TD? */ | 
 | 		ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, | 
 | 				td->last_trb, ep_trb_dma, false); | 
 |  | 
 | 		/* | 
 | 		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE | 
 | 		 * is not in the current TD pointed by ep_ring->dequeue because | 
 | 		 * that the hardware dequeue pointer still at the previous TRB | 
 | 		 * of the current TD. The previous TRB maybe a Link TD or the | 
 | 		 * last TRB of the previous TD. The command completion handle | 
 | 		 * will take care the rest. | 
 | 		 */ | 
 | 		if (!ep_seg && (trb_comp_code == COMP_STOPPED || | 
 | 			   trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { | 
 | 			goto cleanup; | 
 | 		} | 
 |  | 
 | 		if (!ep_seg) { | 
 | 			if (!ep->skip || | 
 | 			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { | 
 | 				/* Some host controllers give a spurious | 
 | 				 * successful event after a short transfer. | 
 | 				 * Ignore it. | 
 | 				 */ | 
 | 				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && | 
 | 						ep_ring->last_td_was_short) { | 
 | 					ep_ring->last_td_was_short = false; | 
 | 					goto cleanup; | 
 | 				} | 
 | 				/* HC is busted, give up! */ | 
 | 				xhci_err(xhci, | 
 | 					"ERROR Transfer event TRB DMA ptr not " | 
 | 					"part of current TD ep_index %d " | 
 | 					"comp_code %u\n", ep_index, | 
 | 					trb_comp_code); | 
 | 				trb_in_td(xhci, ep_ring->deq_seg, | 
 | 					  ep_ring->dequeue, td->last_trb, | 
 | 					  ep_trb_dma, true); | 
 | 				return -ESHUTDOWN; | 
 | 			} | 
 |  | 
 | 			skip_isoc_td(xhci, td, event, ep, &status); | 
 | 			goto cleanup; | 
 | 		} | 
 | 		if (trb_comp_code == COMP_SHORT_PACKET) | 
 | 			ep_ring->last_td_was_short = true; | 
 | 		else | 
 | 			ep_ring->last_td_was_short = false; | 
 |  | 
 | 		if (ep->skip) { | 
 | 			xhci_dbg(xhci, | 
 | 				 "Found td. Clear skip flag for slot %u ep %u.\n", | 
 | 				 slot_id, ep_index); | 
 | 			ep->skip = false; | 
 | 		} | 
 |  | 
 | 		ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / | 
 | 						sizeof(*ep_trb)]; | 
 |  | 
 | 		trace_xhci_handle_transfer(ep_ring, | 
 | 				(struct xhci_generic_trb *) ep_trb); | 
 |  | 
 | 		/* | 
 | 		 * No-op TRB could trigger interrupts in a case where | 
 | 		 * a URB was killed and a STALL_ERROR happens right | 
 | 		 * after the endpoint ring stopped. Reset the halted | 
 | 		 * endpoint. Otherwise, the endpoint remains stalled | 
 | 		 * indefinitely. | 
 | 		 */ | 
 | 		if (trb_is_noop(ep_trb)) { | 
 | 			if (trb_comp_code == COMP_STALL_ERROR || | 
 | 			    xhci_requires_manual_halt_cleanup(xhci, ep_ctx, | 
 | 							      trb_comp_code)) | 
 | 				xhci_cleanup_halted_endpoint(xhci, slot_id, | 
 | 							     ep_index, | 
 | 							     ep_ring->stream_id, | 
 | 							     td, ep_trb, | 
 | 							     EP_HARD_RESET); | 
 | 			goto cleanup; | 
 | 		} | 
 |  | 
 | 		/* update the urb's actual_length and give back to the core */ | 
 | 		if (usb_endpoint_xfer_control(&td->urb->ep->desc)) | 
 | 			process_ctrl_td(xhci, td, ep_trb, event, ep, &status); | 
 | 		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) | 
 | 			process_isoc_td(xhci, td, ep_trb, event, ep, &status); | 
 | 		else | 
 | 			process_bulk_intr_td(xhci, td, ep_trb, event, ep, | 
 | 					     &status); | 
 | cleanup: | 
 | 		handling_skipped_tds = ep->skip && | 
 | 			trb_comp_code != COMP_MISSED_SERVICE_ERROR && | 
 | 			trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; | 
 |  | 
 | 		/* | 
 | 		 * Do not update event ring dequeue pointer if we're in a loop | 
 | 		 * processing missed tds. | 
 | 		 */ | 
 | 		if (!handling_skipped_tds) | 
 | 			inc_deq(xhci, xhci->event_ring); | 
 |  | 
 | 	/* | 
 | 	 * If ep->skip is set, it means there are missed tds on the | 
 | 	 * endpoint ring need to take care of. | 
 | 	 * Process them as short transfer until reach the td pointed by | 
 | 	 * the event. | 
 | 	 */ | 
 | 	} while (handling_skipped_tds); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_out: | 
 | 	xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", | 
 | 		 (unsigned long long) xhci_trb_virt_to_dma( | 
 | 			 xhci->event_ring->deq_seg, | 
 | 			 xhci->event_ring->dequeue), | 
 | 		 lower_32_bits(le64_to_cpu(event->buffer)), | 
 | 		 upper_32_bits(le64_to_cpu(event->buffer)), | 
 | 		 le32_to_cpu(event->transfer_len), | 
 | 		 le32_to_cpu(event->flags)); | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | /* | 
 |  * This function handles all OS-owned events on the event ring.  It may drop | 
 |  * xhci->lock between event processing (e.g. to pass up port status changes). | 
 |  * Returns >0 for "possibly more events to process" (caller should call again), | 
 |  * otherwise 0 if done.  In future, <0 returns should indicate error code. | 
 |  */ | 
 | static int xhci_handle_event(struct xhci_hcd *xhci) | 
 | { | 
 | 	union xhci_trb *event; | 
 | 	int update_ptrs = 1; | 
 | 	int ret; | 
 |  | 
 | 	/* Event ring hasn't been allocated yet. */ | 
 | 	if (!xhci->event_ring || !xhci->event_ring->dequeue) { | 
 | 		xhci_err(xhci, "ERROR event ring not ready\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	event = xhci->event_ring->dequeue; | 
 | 	/* Does the HC or OS own the TRB? */ | 
 | 	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != | 
 | 	    xhci->event_ring->cycle_state) | 
 | 		return 0; | 
 |  | 
 | 	trace_xhci_handle_event(xhci->event_ring, &event->generic); | 
 |  | 
 | 	/* | 
 | 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any | 
 | 	 * speculative reads of the event's flags/data below. | 
 | 	 */ | 
 | 	rmb(); | 
 | 	/* FIXME: Handle more event types. */ | 
 | 	switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) { | 
 | 	case TRB_TYPE(TRB_COMPLETION): | 
 | 		handle_cmd_completion(xhci, &event->event_cmd); | 
 | 		break; | 
 | 	case TRB_TYPE(TRB_PORT_STATUS): | 
 | 		handle_port_status(xhci, event); | 
 | 		update_ptrs = 0; | 
 | 		break; | 
 | 	case TRB_TYPE(TRB_TRANSFER): | 
 | 		ret = handle_tx_event(xhci, &event->trans_event); | 
 | 		if (ret >= 0) | 
 | 			update_ptrs = 0; | 
 | 		break; | 
 | 	case TRB_TYPE(TRB_DEV_NOTE): | 
 | 		handle_device_notification(xhci, event); | 
 | 		break; | 
 | 	default: | 
 | 		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= | 
 | 		    TRB_TYPE(48)) | 
 | 			handle_vendor_event(xhci, event); | 
 | 		else | 
 | 			xhci_warn(xhci, "ERROR unknown event type %d\n", | 
 | 				  TRB_FIELD_TO_TYPE( | 
 | 				  le32_to_cpu(event->event_cmd.flags))); | 
 | 	} | 
 | 	/* Any of the above functions may drop and re-acquire the lock, so check | 
 | 	 * to make sure a watchdog timer didn't mark the host as non-responsive. | 
 | 	 */ | 
 | 	if (xhci->xhc_state & XHCI_STATE_DYING) { | 
 | 		xhci_dbg(xhci, "xHCI host dying, returning from " | 
 | 				"event handler.\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (update_ptrs) | 
 | 		/* Update SW event ring dequeue pointer */ | 
 | 		inc_deq(xhci, xhci->event_ring); | 
 |  | 
 | 	/* Are there more items on the event ring?  Caller will call us again to | 
 | 	 * check. | 
 | 	 */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * xHCI spec says we can get an interrupt, and if the HC has an error condition, | 
 |  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of | 
 |  * indicators of an event TRB error, but we check the status *first* to be safe. | 
 |  */ | 
 | irqreturn_t xhci_irq(struct usb_hcd *hcd) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	union xhci_trb *event_ring_deq; | 
 | 	irqreturn_t ret = IRQ_NONE; | 
 | 	unsigned long flags; | 
 | 	dma_addr_t deq; | 
 | 	u64 temp_64; | 
 | 	u32 status; | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	/* Check if the xHC generated the interrupt, or the irq is shared */ | 
 | 	status = readl(&xhci->op_regs->status); | 
 | 	if (status == ~(u32)0) { | 
 | 		xhci_hc_died(xhci); | 
 | 		ret = IRQ_HANDLED; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!(status & STS_EINT)) | 
 | 		goto out; | 
 |  | 
 | 	if (status & STS_FATAL) { | 
 | 		xhci_warn(xhci, "WARNING: Host System Error\n"); | 
 | 		xhci_halt(xhci); | 
 | 		ret = IRQ_HANDLED; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Clear the op reg interrupt status first, | 
 | 	 * so we can receive interrupts from other MSI-X interrupters. | 
 | 	 * Write 1 to clear the interrupt status. | 
 | 	 */ | 
 | 	status |= STS_EINT; | 
 | 	writel(status, &xhci->op_regs->status); | 
 |  | 
 | 	if (!hcd->msi_enabled) { | 
 | 		u32 irq_pending; | 
 | 		irq_pending = readl(&xhci->ir_set->irq_pending); | 
 | 		irq_pending |= IMAN_IP; | 
 | 		writel(irq_pending, &xhci->ir_set->irq_pending); | 
 | 	} | 
 |  | 
 | 	if (xhci->xhc_state & XHCI_STATE_DYING || | 
 | 	    xhci->xhc_state & XHCI_STATE_HALTED) { | 
 | 		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " | 
 | 				"Shouldn't IRQs be disabled?\n"); | 
 | 		/* Clear the event handler busy flag (RW1C); | 
 | 		 * the event ring should be empty. | 
 | 		 */ | 
 | 		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); | 
 | 		xhci_write_64(xhci, temp_64 | ERST_EHB, | 
 | 				&xhci->ir_set->erst_dequeue); | 
 | 		ret = IRQ_HANDLED; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	event_ring_deq = xhci->event_ring->dequeue; | 
 | 	/* FIXME this should be a delayed service routine | 
 | 	 * that clears the EHB. | 
 | 	 */ | 
 | 	while (xhci_handle_event(xhci) > 0) {} | 
 |  | 
 | 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); | 
 | 	/* If necessary, update the HW's version of the event ring deq ptr. */ | 
 | 	if (event_ring_deq != xhci->event_ring->dequeue) { | 
 | 		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, | 
 | 				xhci->event_ring->dequeue); | 
 | 		if (deq == 0) | 
 | 			xhci_warn(xhci, "WARN something wrong with SW event " | 
 | 					"ring dequeue ptr.\n"); | 
 | 		/* Update HC event ring dequeue pointer */ | 
 | 		temp_64 &= ERST_PTR_MASK; | 
 | 		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); | 
 | 	} | 
 |  | 
 | 	/* Clear the event handler busy flag (RW1C); event ring is empty. */ | 
 | 	temp_64 |= ERST_EHB; | 
 | 	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); | 
 | 	ret = IRQ_HANDLED; | 
 |  | 
 | out: | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | irqreturn_t xhci_msi_irq(int irq, void *hcd) | 
 | { | 
 | 	return xhci_irq(hcd); | 
 | } | 
 |  | 
 | /****		Endpoint Ring Operations	****/ | 
 |  | 
 | /* | 
 |  * Generic function for queueing a TRB on a ring. | 
 |  * The caller must have checked to make sure there's room on the ring. | 
 |  * | 
 |  * @more_trbs_coming:	Will you enqueue more TRBs before calling | 
 |  *			prepare_transfer()? | 
 |  */ | 
 | static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, | 
 | 		bool more_trbs_coming, | 
 | 		u32 field1, u32 field2, u32 field3, u32 field4) | 
 | { | 
 | 	struct xhci_generic_trb *trb; | 
 |  | 
 | 	trb = &ring->enqueue->generic; | 
 | 	trb->field[0] = cpu_to_le32(field1); | 
 | 	trb->field[1] = cpu_to_le32(field2); | 
 | 	trb->field[2] = cpu_to_le32(field3); | 
 | 	trb->field[3] = cpu_to_le32(field4); | 
 |  | 
 | 	trace_xhci_queue_trb(ring, trb); | 
 |  | 
 | 	inc_enq(xhci, ring, more_trbs_coming); | 
 | } | 
 |  | 
 | /* | 
 |  * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. | 
 |  * FIXME allocate segments if the ring is full. | 
 |  */ | 
 | static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, | 
 | 		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) | 
 | { | 
 | 	unsigned int num_trbs_needed; | 
 |  | 
 | 	/* Make sure the endpoint has been added to xHC schedule */ | 
 | 	switch (ep_state) { | 
 | 	case EP_STATE_DISABLED: | 
 | 		/* | 
 | 		 * USB core changed config/interfaces without notifying us, | 
 | 		 * or hardware is reporting the wrong state. | 
 | 		 */ | 
 | 		xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); | 
 | 		return -ENOENT; | 
 | 	case EP_STATE_ERROR: | 
 | 		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); | 
 | 		/* FIXME event handling code for error needs to clear it */ | 
 | 		/* XXX not sure if this should be -ENOENT or not */ | 
 | 		return -EINVAL; | 
 | 	case EP_STATE_HALTED: | 
 | 		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); | 
 | 	case EP_STATE_STOPPED: | 
 | 	case EP_STATE_RUNNING: | 
 | 		break; | 
 | 	default: | 
 | 		xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); | 
 | 		/* | 
 | 		 * FIXME issue Configure Endpoint command to try to get the HC | 
 | 		 * back into a known state. | 
 | 		 */ | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		if (room_on_ring(xhci, ep_ring, num_trbs)) | 
 | 			break; | 
 |  | 
 | 		if (ep_ring == xhci->cmd_ring) { | 
 | 			xhci_err(xhci, "Do not support expand command ring\n"); | 
 | 			return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, | 
 | 				"ERROR no room on ep ring, try ring expansion"); | 
 | 		num_trbs_needed = num_trbs - ep_ring->num_trbs_free; | 
 | 		if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, | 
 | 					mem_flags)) { | 
 | 			xhci_err(xhci, "Ring expansion failed\n"); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	while (trb_is_link(ep_ring->enqueue)) { | 
 | 		/* If we're not dealing with 0.95 hardware or isoc rings | 
 | 		 * on AMD 0.96 host, clear the chain bit. | 
 | 		 */ | 
 | 		if (!xhci_link_trb_quirk(xhci) && | 
 | 		    !(ep_ring->type == TYPE_ISOC && | 
 | 		      (xhci->quirks & XHCI_AMD_0x96_HOST))) | 
 | 			ep_ring->enqueue->link.control &= | 
 | 				cpu_to_le32(~TRB_CHAIN); | 
 | 		else | 
 | 			ep_ring->enqueue->link.control |= | 
 | 				cpu_to_le32(TRB_CHAIN); | 
 |  | 
 | 		wmb(); | 
 | 		ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); | 
 |  | 
 | 		/* Toggle the cycle bit after the last ring segment. */ | 
 | 		if (link_trb_toggles_cycle(ep_ring->enqueue)) | 
 | 			ep_ring->cycle_state ^= 1; | 
 |  | 
 | 		ep_ring->enq_seg = ep_ring->enq_seg->next; | 
 | 		ep_ring->enqueue = ep_ring->enq_seg->trbs; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int prepare_transfer(struct xhci_hcd *xhci, | 
 | 		struct xhci_virt_device *xdev, | 
 | 		unsigned int ep_index, | 
 | 		unsigned int stream_id, | 
 | 		unsigned int num_trbs, | 
 | 		struct urb *urb, | 
 | 		unsigned int td_index, | 
 | 		gfp_t mem_flags) | 
 | { | 
 | 	int ret; | 
 | 	struct urb_priv *urb_priv; | 
 | 	struct xhci_td	*td; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); | 
 |  | 
 | 	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); | 
 | 	if (!ep_ring) { | 
 | 		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", | 
 | 				stream_id); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), | 
 | 			   num_trbs, mem_flags); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	urb_priv = urb->hcpriv; | 
 | 	td = &urb_priv->td[td_index]; | 
 |  | 
 | 	INIT_LIST_HEAD(&td->td_list); | 
 | 	INIT_LIST_HEAD(&td->cancelled_td_list); | 
 |  | 
 | 	if (td_index == 0) { | 
 | 		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); | 
 | 		if (unlikely(ret)) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	td->urb = urb; | 
 | 	/* Add this TD to the tail of the endpoint ring's TD list */ | 
 | 	list_add_tail(&td->td_list, &ep_ring->td_list); | 
 | 	td->start_seg = ep_ring->enq_seg; | 
 | 	td->first_trb = ep_ring->enqueue; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned int count_trbs(u64 addr, u64 len) | 
 | { | 
 | 	unsigned int num_trbs; | 
 |  | 
 | 	num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), | 
 | 			TRB_MAX_BUFF_SIZE); | 
 | 	if (num_trbs == 0) | 
 | 		num_trbs++; | 
 |  | 
 | 	return num_trbs; | 
 | } | 
 |  | 
 | static inline unsigned int count_trbs_needed(struct urb *urb) | 
 | { | 
 | 	return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); | 
 | } | 
 |  | 
 | static unsigned int count_sg_trbs_needed(struct urb *urb) | 
 | { | 
 | 	struct scatterlist *sg; | 
 | 	unsigned int i, len, full_len, num_trbs = 0; | 
 |  | 
 | 	full_len = urb->transfer_buffer_length; | 
 |  | 
 | 	for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { | 
 | 		len = sg_dma_len(sg); | 
 | 		num_trbs += count_trbs(sg_dma_address(sg), len); | 
 | 		len = min_t(unsigned int, len, full_len); | 
 | 		full_len -= len; | 
 | 		if (full_len == 0) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return num_trbs; | 
 | } | 
 |  | 
 | static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) | 
 | { | 
 | 	u64 addr, len; | 
 |  | 
 | 	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); | 
 | 	len = urb->iso_frame_desc[i].length; | 
 |  | 
 | 	return count_trbs(addr, len); | 
 | } | 
 |  | 
 | static void check_trb_math(struct urb *urb, int running_total) | 
 | { | 
 | 	if (unlikely(running_total != urb->transfer_buffer_length)) | 
 | 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " | 
 | 				"queued %#x (%d), asked for %#x (%d)\n", | 
 | 				__func__, | 
 | 				urb->ep->desc.bEndpointAddress, | 
 | 				running_total, running_total, | 
 | 				urb->transfer_buffer_length, | 
 | 				urb->transfer_buffer_length); | 
 | } | 
 |  | 
 | static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, | 
 | 		unsigned int ep_index, unsigned int stream_id, int start_cycle, | 
 | 		struct xhci_generic_trb *start_trb) | 
 | { | 
 | 	/* | 
 | 	 * Pass all the TRBs to the hardware at once and make sure this write | 
 | 	 * isn't reordered. | 
 | 	 */ | 
 | 	wmb(); | 
 | 	if (start_cycle) | 
 | 		start_trb->field[3] |= cpu_to_le32(start_cycle); | 
 | 	else | 
 | 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); | 
 | 	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); | 
 | } | 
 |  | 
 | static void check_interval(struct xhci_hcd *xhci, struct urb *urb, | 
 | 						struct xhci_ep_ctx *ep_ctx) | 
 | { | 
 | 	int xhci_interval; | 
 | 	int ep_interval; | 
 |  | 
 | 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); | 
 | 	ep_interval = urb->interval; | 
 |  | 
 | 	/* Convert to microframes */ | 
 | 	if (urb->dev->speed == USB_SPEED_LOW || | 
 | 			urb->dev->speed == USB_SPEED_FULL) | 
 | 		ep_interval *= 8; | 
 |  | 
 | 	/* FIXME change this to a warning and a suggestion to use the new API | 
 | 	 * to set the polling interval (once the API is added). | 
 | 	 */ | 
 | 	if (xhci_interval != ep_interval) { | 
 | 		dev_dbg_ratelimited(&urb->dev->dev, | 
 | 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", | 
 | 				ep_interval, ep_interval == 1 ? "" : "s", | 
 | 				xhci_interval, xhci_interval == 1 ? "" : "s"); | 
 | 		urb->interval = xhci_interval; | 
 | 		/* Convert back to frames for LS/FS devices */ | 
 | 		if (urb->dev->speed == USB_SPEED_LOW || | 
 | 				urb->dev->speed == USB_SPEED_FULL) | 
 | 			urb->interval /= 8; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt | 
 |  * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD | 
 |  * (comprised of sg list entries) can take several service intervals to | 
 |  * transmit. | 
 |  */ | 
 | int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | 
 | 		struct urb *urb, int slot_id, unsigned int ep_index) | 
 | { | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 |  | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); | 
 | 	check_interval(xhci, urb, ep_ctx); | 
 |  | 
 | 	return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); | 
 | } | 
 |  | 
 | /* | 
 |  * For xHCI 1.0 host controllers, TD size is the number of max packet sized | 
 |  * packets remaining in the TD (*not* including this TRB). | 
 |  * | 
 |  * Total TD packet count = total_packet_count = | 
 |  *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) | 
 |  * | 
 |  * Packets transferred up to and including this TRB = packets_transferred = | 
 |  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize) | 
 |  * | 
 |  * TD size = total_packet_count - packets_transferred | 
 |  * | 
 |  * For xHCI 0.96 and older, TD size field should be the remaining bytes | 
 |  * including this TRB, right shifted by 10 | 
 |  * | 
 |  * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. | 
 |  * This is taken care of in the TRB_TD_SIZE() macro | 
 |  * | 
 |  * The last TRB in a TD must have the TD size set to zero. | 
 |  */ | 
 | static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, | 
 | 			      int trb_buff_len, unsigned int td_total_len, | 
 | 			      struct urb *urb, bool more_trbs_coming) | 
 | { | 
 | 	u32 maxp, total_packet_count; | 
 |  | 
 | 	/* MTK xHCI 0.96 contains some features from 1.0 */ | 
 | 	if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) | 
 | 		return ((td_total_len - transferred) >> 10); | 
 |  | 
 | 	/* One TRB with a zero-length data packet. */ | 
 | 	if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || | 
 | 	    trb_buff_len == td_total_len) | 
 | 		return 0; | 
 |  | 
 | 	/* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ | 
 | 	if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) | 
 | 		trb_buff_len = 0; | 
 |  | 
 | 	maxp = usb_endpoint_maxp(&urb->ep->desc); | 
 | 	total_packet_count = DIV_ROUND_UP(td_total_len, maxp); | 
 |  | 
 | 	/* Queueing functions don't count the current TRB into transferred */ | 
 | 	return (total_packet_count - ((transferred + trb_buff_len) / maxp)); | 
 | } | 
 |  | 
 |  | 
 | static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, | 
 | 			 u32 *trb_buff_len, struct xhci_segment *seg) | 
 | { | 
 | 	struct device *dev = xhci_to_hcd(xhci)->self.controller; | 
 | 	unsigned int unalign; | 
 | 	unsigned int max_pkt; | 
 | 	u32 new_buff_len; | 
 |  | 
 | 	max_pkt = usb_endpoint_maxp(&urb->ep->desc); | 
 | 	unalign = (enqd_len + *trb_buff_len) % max_pkt; | 
 |  | 
 | 	/* we got lucky, last normal TRB data on segment is packet aligned */ | 
 | 	if (unalign == 0) | 
 | 		return 0; | 
 |  | 
 | 	xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", | 
 | 		 unalign, *trb_buff_len); | 
 |  | 
 | 	/* is the last nornal TRB alignable by splitting it */ | 
 | 	if (*trb_buff_len > unalign) { | 
 | 		*trb_buff_len -= unalign; | 
 | 		xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We want enqd_len + trb_buff_len to sum up to a number aligned to | 
 | 	 * number which is divisible by the endpoint's wMaxPacketSize. IOW: | 
 | 	 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. | 
 | 	 */ | 
 | 	new_buff_len = max_pkt - (enqd_len % max_pkt); | 
 |  | 
 | 	if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) | 
 | 		new_buff_len = (urb->transfer_buffer_length - enqd_len); | 
 |  | 
 | 	/* create a max max_pkt sized bounce buffer pointed to by last trb */ | 
 | 	if (usb_urb_dir_out(urb)) { | 
 | 		sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs, | 
 | 				   seg->bounce_buf, new_buff_len, enqd_len); | 
 | 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, | 
 | 						 max_pkt, DMA_TO_DEVICE); | 
 | 	} else { | 
 | 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, | 
 | 						 max_pkt, DMA_FROM_DEVICE); | 
 | 	} | 
 |  | 
 | 	if (dma_mapping_error(dev, seg->bounce_dma)) { | 
 | 		/* try without aligning. Some host controllers survive */ | 
 | 		xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); | 
 | 		return 0; | 
 | 	} | 
 | 	*trb_buff_len = new_buff_len; | 
 | 	seg->bounce_len = new_buff_len; | 
 | 	seg->bounce_offs = enqd_len; | 
 |  | 
 | 	xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* This is very similar to what ehci-q.c qtd_fill() does */ | 
 | int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | 
 | 		struct urb *urb, int slot_id, unsigned int ep_index) | 
 | { | 
 | 	struct xhci_ring *ring; | 
 | 	struct urb_priv *urb_priv; | 
 | 	struct xhci_td *td; | 
 | 	struct xhci_generic_trb *start_trb; | 
 | 	struct scatterlist *sg = NULL; | 
 | 	bool more_trbs_coming = true; | 
 | 	bool need_zero_pkt = false; | 
 | 	bool first_trb = true; | 
 | 	unsigned int num_trbs; | 
 | 	unsigned int start_cycle, num_sgs = 0; | 
 | 	unsigned int enqd_len, block_len, trb_buff_len, full_len; | 
 | 	int sent_len, ret; | 
 | 	u32 field, length_field, remainder; | 
 | 	u64 addr, send_addr; | 
 |  | 
 | 	ring = xhci_urb_to_transfer_ring(xhci, urb); | 
 | 	if (!ring) | 
 | 		return -EINVAL; | 
 |  | 
 | 	full_len = urb->transfer_buffer_length; | 
 | 	/* If we have scatter/gather list, we use it. */ | 
 | 	if (urb->num_sgs) { | 
 | 		num_sgs = urb->num_mapped_sgs; | 
 | 		sg = urb->sg; | 
 | 		addr = (u64) sg_dma_address(sg); | 
 | 		block_len = sg_dma_len(sg); | 
 | 		num_trbs = count_sg_trbs_needed(urb); | 
 | 	} else { | 
 | 		num_trbs = count_trbs_needed(urb); | 
 | 		addr = (u64) urb->transfer_dma; | 
 | 		block_len = full_len; | 
 | 	} | 
 | 	ret = prepare_transfer(xhci, xhci->devs[slot_id], | 
 | 			ep_index, urb->stream_id, | 
 | 			num_trbs, urb, 0, mem_flags); | 
 | 	if (unlikely(ret < 0)) | 
 | 		return ret; | 
 |  | 
 | 	urb_priv = urb->hcpriv; | 
 |  | 
 | 	/* Deal with URB_ZERO_PACKET - need one more td/trb */ | 
 | 	if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) | 
 | 		need_zero_pkt = true; | 
 |  | 
 | 	td = &urb_priv->td[0]; | 
 |  | 
 | 	/* | 
 | 	 * Don't give the first TRB to the hardware (by toggling the cycle bit) | 
 | 	 * until we've finished creating all the other TRBs.  The ring's cycle | 
 | 	 * state may change as we enqueue the other TRBs, so save it too. | 
 | 	 */ | 
 | 	start_trb = &ring->enqueue->generic; | 
 | 	start_cycle = ring->cycle_state; | 
 | 	send_addr = addr; | 
 |  | 
 | 	/* Queue the TRBs, even if they are zero-length */ | 
 | 	for (enqd_len = 0; first_trb || enqd_len < full_len; | 
 | 			enqd_len += trb_buff_len) { | 
 | 		field = TRB_TYPE(TRB_NORMAL); | 
 |  | 
 | 		/* TRB buffer should not cross 64KB boundaries */ | 
 | 		trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); | 
 | 		trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); | 
 |  | 
 | 		if (enqd_len + trb_buff_len > full_len) | 
 | 			trb_buff_len = full_len - enqd_len; | 
 |  | 
 | 		/* Don't change the cycle bit of the first TRB until later */ | 
 | 		if (first_trb) { | 
 | 			first_trb = false; | 
 | 			if (start_cycle == 0) | 
 | 				field |= TRB_CYCLE; | 
 | 		} else | 
 | 			field |= ring->cycle_state; | 
 |  | 
 | 		/* Chain all the TRBs together; clear the chain bit in the last | 
 | 		 * TRB to indicate it's the last TRB in the chain. | 
 | 		 */ | 
 | 		if (enqd_len + trb_buff_len < full_len) { | 
 | 			field |= TRB_CHAIN; | 
 | 			if (trb_is_link(ring->enqueue + 1)) { | 
 | 				if (xhci_align_td(xhci, urb, enqd_len, | 
 | 						  &trb_buff_len, | 
 | 						  ring->enq_seg)) { | 
 | 					send_addr = ring->enq_seg->bounce_dma; | 
 | 					/* assuming TD won't span 2 segs */ | 
 | 					td->bounce_seg = ring->enq_seg; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		if (enqd_len + trb_buff_len >= full_len) { | 
 | 			field &= ~TRB_CHAIN; | 
 | 			field |= TRB_IOC; | 
 | 			more_trbs_coming = false; | 
 | 			td->last_trb = ring->enqueue; | 
 | 		} | 
 |  | 
 | 		/* Only set interrupt on short packet for IN endpoints */ | 
 | 		if (usb_urb_dir_in(urb)) | 
 | 			field |= TRB_ISP; | 
 |  | 
 | 		/* Set the TRB length, TD size, and interrupter fields. */ | 
 | 		remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, | 
 | 					      full_len, urb, more_trbs_coming); | 
 |  | 
 | 		length_field = TRB_LEN(trb_buff_len) | | 
 | 			TRB_TD_SIZE(remainder) | | 
 | 			TRB_INTR_TARGET(0); | 
 |  | 
 | 		queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, | 
 | 				lower_32_bits(send_addr), | 
 | 				upper_32_bits(send_addr), | 
 | 				length_field, | 
 | 				field); | 
 |  | 
 | 		addr += trb_buff_len; | 
 | 		sent_len = trb_buff_len; | 
 |  | 
 | 		while (sg && sent_len >= block_len) { | 
 | 			/* New sg entry */ | 
 | 			--num_sgs; | 
 | 			sent_len -= block_len; | 
 | 			if (num_sgs != 0) { | 
 | 				sg = sg_next(sg); | 
 | 				block_len = sg_dma_len(sg); | 
 | 				addr = (u64) sg_dma_address(sg); | 
 | 				addr += sent_len; | 
 | 			} | 
 | 		} | 
 | 		block_len -= sent_len; | 
 | 		send_addr = addr; | 
 | 	} | 
 |  | 
 | 	if (need_zero_pkt) { | 
 | 		ret = prepare_transfer(xhci, xhci->devs[slot_id], | 
 | 				       ep_index, urb->stream_id, | 
 | 				       1, urb, 1, mem_flags); | 
 | 		urb_priv->td[1].last_trb = ring->enqueue; | 
 | 		field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; | 
 | 		queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); | 
 | 	} | 
 |  | 
 | 	check_trb_math(urb, enqd_len); | 
 | 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, | 
 | 			start_cycle, start_trb); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Caller must have locked xhci->lock */ | 
 | int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | 
 | 		struct urb *urb, int slot_id, unsigned int ep_index) | 
 | { | 
 | 	struct xhci_ring *ep_ring; | 
 | 	int num_trbs; | 
 | 	int ret; | 
 | 	struct usb_ctrlrequest *setup; | 
 | 	struct xhci_generic_trb *start_trb; | 
 | 	int start_cycle; | 
 | 	u32 field; | 
 | 	struct urb_priv *urb_priv; | 
 | 	struct xhci_td *td; | 
 |  | 
 | 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb); | 
 | 	if (!ep_ring) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Need to copy setup packet into setup TRB, so we can't use the setup | 
 | 	 * DMA address. | 
 | 	 */ | 
 | 	if (!urb->setup_packet) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* 1 TRB for setup, 1 for status */ | 
 | 	num_trbs = 2; | 
 | 	/* | 
 | 	 * Don't need to check if we need additional event data and normal TRBs, | 
 | 	 * since data in control transfers will never get bigger than 16MB | 
 | 	 * XXX: can we get a buffer that crosses 64KB boundaries? | 
 | 	 */ | 
 | 	if (urb->transfer_buffer_length > 0) | 
 | 		num_trbs++; | 
 | 	ret = prepare_transfer(xhci, xhci->devs[slot_id], | 
 | 			ep_index, urb->stream_id, | 
 | 			num_trbs, urb, 0, mem_flags); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	urb_priv = urb->hcpriv; | 
 | 	td = &urb_priv->td[0]; | 
 |  | 
 | 	/* | 
 | 	 * Don't give the first TRB to the hardware (by toggling the cycle bit) | 
 | 	 * until we've finished creating all the other TRBs.  The ring's cycle | 
 | 	 * state may change as we enqueue the other TRBs, so save it too. | 
 | 	 */ | 
 | 	start_trb = &ep_ring->enqueue->generic; | 
 | 	start_cycle = ep_ring->cycle_state; | 
 |  | 
 | 	/* Queue setup TRB - see section 6.4.1.2.1 */ | 
 | 	/* FIXME better way to translate setup_packet into two u32 fields? */ | 
 | 	setup = (struct usb_ctrlrequest *) urb->setup_packet; | 
 | 	field = 0; | 
 | 	field |= TRB_IDT | TRB_TYPE(TRB_SETUP); | 
 | 	if (start_cycle == 0) | 
 | 		field |= 0x1; | 
 |  | 
 | 	/* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ | 
 | 	if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { | 
 | 		if (urb->transfer_buffer_length > 0) { | 
 | 			if (setup->bRequestType & USB_DIR_IN) | 
 | 				field |= TRB_TX_TYPE(TRB_DATA_IN); | 
 | 			else | 
 | 				field |= TRB_TX_TYPE(TRB_DATA_OUT); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	queue_trb(xhci, ep_ring, true, | 
 | 		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, | 
 | 		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, | 
 | 		  TRB_LEN(8) | TRB_INTR_TARGET(0), | 
 | 		  /* Immediate data in pointer */ | 
 | 		  field); | 
 |  | 
 | 	/* If there's data, queue data TRBs */ | 
 | 	/* Only set interrupt on short packet for IN endpoints */ | 
 | 	if (usb_urb_dir_in(urb)) | 
 | 		field = TRB_ISP | TRB_TYPE(TRB_DATA); | 
 | 	else | 
 | 		field = TRB_TYPE(TRB_DATA); | 
 |  | 
 | 	if (urb->transfer_buffer_length > 0) { | 
 | 		u32 length_field, remainder; | 
 |  | 
 | 		remainder = xhci_td_remainder(xhci, 0, | 
 | 				urb->transfer_buffer_length, | 
 | 				urb->transfer_buffer_length, | 
 | 				urb, 1); | 
 | 		length_field = TRB_LEN(urb->transfer_buffer_length) | | 
 | 				TRB_TD_SIZE(remainder) | | 
 | 				TRB_INTR_TARGET(0); | 
 | 		if (setup->bRequestType & USB_DIR_IN) | 
 | 			field |= TRB_DIR_IN; | 
 | 		queue_trb(xhci, ep_ring, true, | 
 | 				lower_32_bits(urb->transfer_dma), | 
 | 				upper_32_bits(urb->transfer_dma), | 
 | 				length_field, | 
 | 				field | ep_ring->cycle_state); | 
 | 	} | 
 |  | 
 | 	/* Save the DMA address of the last TRB in the TD */ | 
 | 	td->last_trb = ep_ring->enqueue; | 
 |  | 
 | 	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ | 
 | 	/* If the device sent data, the status stage is an OUT transfer */ | 
 | 	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) | 
 | 		field = 0; | 
 | 	else | 
 | 		field = TRB_DIR_IN; | 
 | 	queue_trb(xhci, ep_ring, false, | 
 | 			0, | 
 | 			0, | 
 | 			TRB_INTR_TARGET(0), | 
 | 			/* Event on completion */ | 
 | 			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); | 
 |  | 
 | 	giveback_first_trb(xhci, slot_id, ep_index, 0, | 
 | 			start_cycle, start_trb); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_USB_HCD_TEST_MODE | 
 | /* | 
 |  * This function prepare TRBs and submits them for the | 
 |  * SINGLE_STEP_SET_FEATURE Test. | 
 |  * This is done in two parts: first SETUP req for GetDesc is sent then | 
 |  * 15 seconds later, the IN stage for GetDesc starts to req data from dev | 
 |  * | 
 |  * is_setup : argument decides which of the two stage needs to be | 
 |  * performed; TRUE - SETUP and FALSE - IN+STATUS | 
 |  * Returns 0 if success | 
 |  */ | 
 | int xhci_submit_single_step_set_feature(struct usb_hcd *hcd, | 
 | 	struct urb *urb, int is_setup) | 
 | { | 
 | 	int slot_id; | 
 | 	unsigned int ep_index; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	int ret; | 
 | 	struct usb_ctrlrequest *setup; | 
 | 	struct xhci_generic_trb *start_trb; | 
 | 	int start_cycle; | 
 | 	u32 field, length_field, remainder; | 
 | 	struct urb_priv *urb_priv; | 
 | 	struct xhci_td *td; | 
 | 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd); | 
 |  | 
 | 	/* urb_priv will be free after transcation has completed */ | 
 | 	urb_priv = kzalloc(sizeof(struct urb_priv) + | 
 | 			sizeof(struct xhci_td), GFP_KERNEL); | 
 | 	if (!urb_priv) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	td = &urb_priv->td[0]; | 
 | 	urb_priv->num_tds = 1; | 
 | 	urb_priv->num_tds_done = 0; | 
 | 	urb->hcpriv = urb_priv; | 
 |  | 
 | 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb); | 
 | 	if (!ep_ring) { | 
 | 		ret = -EINVAL; | 
 | 		goto free_priv; | 
 | 	} | 
 |  | 
 | 	slot_id = urb->dev->slot_id; | 
 | 	ep_index = xhci_get_endpoint_index(&urb->ep->desc); | 
 |  | 
 | 	setup = (struct usb_ctrlrequest *) urb->setup_packet; | 
 | 	if (is_setup) { | 
 | 		ret = prepare_transfer(xhci, xhci->devs[slot_id], | 
 | 				ep_index, urb->stream_id, | 
 | 				1, urb, 0, GFP_KERNEL); | 
 | 		if (ret < 0) | 
 | 			goto free_priv; | 
 |  | 
 | 		start_trb = &ep_ring->enqueue->generic; | 
 | 		start_cycle = ep_ring->cycle_state; | 
 | 		/* Save the DMA address of the last TRB in the TD */ | 
 | 		td->last_trb = ep_ring->enqueue; | 
 | 		field = TRB_IOC | TRB_IDT | TRB_TYPE(TRB_SETUP) | start_cycle; | 
 | 		/* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ | 
 | 		if ((xhci->hci_version >= 0x100) || | 
 | 				(xhci->quirks & XHCI_MTK_HOST)) | 
 | 			field |= TRB_TX_TYPE(TRB_DATA_IN); | 
 |  | 
 | 		queue_trb(xhci, ep_ring, false, | 
 | 			  setup->bRequestType | setup->bRequest << 8 | | 
 | 			  le16_to_cpu(setup->wValue) << 16, | 
 | 			  le16_to_cpu(setup->wIndex) | | 
 | 			  le16_to_cpu(setup->wLength) << 16, | 
 | 			  TRB_LEN(8) | TRB_INTR_TARGET(0), | 
 | 			  /* Immediate data in pointer */ | 
 | 			  field); | 
 | 		giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, | 
 | 				start_cycle, start_trb); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ret = prepare_transfer(xhci, xhci->devs[slot_id], | 
 | 			ep_index, urb->stream_id, | 
 | 			2, urb, 0, GFP_KERNEL); | 
 | 	if (ret < 0) | 
 | 		goto free_priv; | 
 |  | 
 | 	start_trb = &ep_ring->enqueue->generic; | 
 | 	start_cycle = ep_ring->cycle_state; | 
 | 	field = TRB_ISP | TRB_TYPE(TRB_DATA); | 
 |  | 
 | 	remainder = xhci_td_remainder(xhci, 0, | 
 | 				   urb->transfer_buffer_length, | 
 | 				   urb->transfer_buffer_length, | 
 | 				   urb, 1); | 
 |  | 
 | 	length_field = TRB_LEN(urb->transfer_buffer_length) | | 
 | 		TRB_TD_SIZE(remainder) | | 
 | 		TRB_INTR_TARGET(0); | 
 |  | 
 | 	if (urb->transfer_buffer_length > 0) { | 
 | 		field |= TRB_DIR_IN; | 
 | 		queue_trb(xhci, ep_ring, true, | 
 | 				lower_32_bits(urb->transfer_dma), | 
 | 				upper_32_bits(urb->transfer_dma), | 
 | 				length_field, | 
 | 				field | ep_ring->cycle_state); | 
 | 	} | 
 |  | 
 | 	td->last_trb = ep_ring->enqueue; | 
 | 	field = TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state; | 
 | 	queue_trb(xhci, ep_ring, false, | 
 | 			0, | 
 | 			0, | 
 | 			TRB_INTR_TARGET(0), | 
 | 			field); | 
 |  | 
 | 	giveback_first_trb(xhci, slot_id, ep_index, 0, | 
 | 			start_cycle, start_trb); | 
 |  | 
 | 	return 0; | 
 | free_priv: | 
 | 	xhci_urb_free_priv(urb_priv); | 
 | 	return ret; | 
 | } | 
 | #endif /* CONFIG_USB_HCD_TEST_MODE */ | 
 |  | 
 | /* | 
 |  * The transfer burst count field of the isochronous TRB defines the number of | 
 |  * bursts that are required to move all packets in this TD.  Only SuperSpeed | 
 |  * devices can burst up to bMaxBurst number of packets per service interval. | 
 |  * This field is zero based, meaning a value of zero in the field means one | 
 |  * burst.  Basically, for everything but SuperSpeed devices, this field will be | 
 |  * zero.  Only xHCI 1.0 host controllers support this field. | 
 |  */ | 
 | static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, | 
 | 		struct urb *urb, unsigned int total_packet_count) | 
 | { | 
 | 	unsigned int max_burst; | 
 |  | 
 | 	if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) | 
 | 		return 0; | 
 |  | 
 | 	max_burst = urb->ep->ss_ep_comp.bMaxBurst; | 
 | 	return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns the number of packets in the last "burst" of packets.  This field is | 
 |  * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so | 
 |  * the last burst packet count is equal to the total number of packets in the | 
 |  * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst | 
 |  * must contain (bMaxBurst + 1) number of packets, but the last burst can | 
 |  * contain 1 to (bMaxBurst + 1) packets. | 
 |  */ | 
 | static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, | 
 | 		struct urb *urb, unsigned int total_packet_count) | 
 | { | 
 | 	unsigned int max_burst; | 
 | 	unsigned int residue; | 
 |  | 
 | 	if (xhci->hci_version < 0x100) | 
 | 		return 0; | 
 |  | 
 | 	if (urb->dev->speed >= USB_SPEED_SUPER) { | 
 | 		/* bMaxBurst is zero based: 0 means 1 packet per burst */ | 
 | 		max_burst = urb->ep->ss_ep_comp.bMaxBurst; | 
 | 		residue = total_packet_count % (max_burst + 1); | 
 | 		/* If residue is zero, the last burst contains (max_burst + 1) | 
 | 		 * number of packets, but the TLBPC field is zero-based. | 
 | 		 */ | 
 | 		if (residue == 0) | 
 | 			return max_burst; | 
 | 		return residue - 1; | 
 | 	} | 
 | 	if (total_packet_count == 0) | 
 | 		return 0; | 
 | 	return total_packet_count - 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculates Frame ID field of the isochronous TRB identifies the | 
 |  * target frame that the Interval associated with this Isochronous | 
 |  * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. | 
 |  * | 
 |  * Returns actual frame id on success, negative value on error. | 
 |  */ | 
 | static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, | 
 | 		struct urb *urb, int index) | 
 | { | 
 | 	int start_frame, ist, ret = 0; | 
 | 	int start_frame_id, end_frame_id, current_frame_id; | 
 |  | 
 | 	if (urb->dev->speed == USB_SPEED_LOW || | 
 | 			urb->dev->speed == USB_SPEED_FULL) | 
 | 		start_frame = urb->start_frame + index * urb->interval; | 
 | 	else | 
 | 		start_frame = (urb->start_frame + index * urb->interval) >> 3; | 
 |  | 
 | 	/* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): | 
 | 	 * | 
 | 	 * If bit [3] of IST is cleared to '0', software can add a TRB no | 
 | 	 * later than IST[2:0] Microframes before that TRB is scheduled to | 
 | 	 * be executed. | 
 | 	 * If bit [3] of IST is set to '1', software can add a TRB no later | 
 | 	 * than IST[2:0] Frames before that TRB is scheduled to be executed. | 
 | 	 */ | 
 | 	ist = HCS_IST(xhci->hcs_params2) & 0x7; | 
 | 	if (HCS_IST(xhci->hcs_params2) & (1 << 3)) | 
 | 		ist <<= 3; | 
 |  | 
 | 	/* Software shall not schedule an Isoch TD with a Frame ID value that | 
 | 	 * is less than the Start Frame ID or greater than the End Frame ID, | 
 | 	 * where: | 
 | 	 * | 
 | 	 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 | 
 | 	 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 | 
 | 	 * | 
 | 	 * Both the End Frame ID and Start Frame ID values are calculated | 
 | 	 * in microframes. When software determines the valid Frame ID value; | 
 | 	 * The End Frame ID value should be rounded down to the nearest Frame | 
 | 	 * boundary, and the Start Frame ID value should be rounded up to the | 
 | 	 * nearest Frame boundary. | 
 | 	 */ | 
 | 	current_frame_id = readl(&xhci->run_regs->microframe_index); | 
 | 	start_frame_id = roundup(current_frame_id + ist + 1, 8); | 
 | 	end_frame_id = rounddown(current_frame_id + 895 * 8, 8); | 
 |  | 
 | 	start_frame &= 0x7ff; | 
 | 	start_frame_id = (start_frame_id >> 3) & 0x7ff; | 
 | 	end_frame_id = (end_frame_id >> 3) & 0x7ff; | 
 |  | 
 | 	xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", | 
 | 		 __func__, index, readl(&xhci->run_regs->microframe_index), | 
 | 		 start_frame_id, end_frame_id, start_frame); | 
 |  | 
 | 	if (start_frame_id < end_frame_id) { | 
 | 		if (start_frame > end_frame_id || | 
 | 				start_frame < start_frame_id) | 
 | 			ret = -EINVAL; | 
 | 	} else if (start_frame_id > end_frame_id) { | 
 | 		if ((start_frame > end_frame_id && | 
 | 				start_frame < start_frame_id)) | 
 | 			ret = -EINVAL; | 
 | 	} else { | 
 | 			ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (index == 0) { | 
 | 		if (ret == -EINVAL || start_frame == start_frame_id) { | 
 | 			start_frame = start_frame_id + 1; | 
 | 			if (urb->dev->speed == USB_SPEED_LOW || | 
 | 					urb->dev->speed == USB_SPEED_FULL) | 
 | 				urb->start_frame = start_frame; | 
 | 			else | 
 | 				urb->start_frame = start_frame << 3; | 
 | 			ret = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ret) { | 
 | 		xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", | 
 | 				start_frame, current_frame_id, index, | 
 | 				start_frame_id, end_frame_id); | 
 | 		xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	return start_frame; | 
 | } | 
 |  | 
 | /* This is for isoc transfer */ | 
 | static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | 
 | 		struct urb *urb, int slot_id, unsigned int ep_index) | 
 | { | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct urb_priv *urb_priv; | 
 | 	struct xhci_td *td; | 
 | 	int num_tds, trbs_per_td; | 
 | 	struct xhci_generic_trb *start_trb; | 
 | 	bool first_trb; | 
 | 	int start_cycle; | 
 | 	u32 field, length_field; | 
 | 	int running_total, trb_buff_len, td_len, td_remain_len, ret; | 
 | 	u64 start_addr, addr; | 
 | 	int i, j; | 
 | 	bool more_trbs_coming; | 
 | 	struct xhci_virt_ep *xep; | 
 | 	int frame_id; | 
 |  | 
 | 	xep = &xhci->devs[slot_id]->eps[ep_index]; | 
 | 	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; | 
 |  | 
 | 	num_tds = urb->number_of_packets; | 
 | 	if (num_tds < 1) { | 
 | 		xhci_dbg(xhci, "Isoc URB with zero packets?\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	start_addr = (u64) urb->transfer_dma; | 
 | 	start_trb = &ep_ring->enqueue->generic; | 
 | 	start_cycle = ep_ring->cycle_state; | 
 |  | 
 | 	urb_priv = urb->hcpriv; | 
 | 	/* Queue the TRBs for each TD, even if they are zero-length */ | 
 | 	for (i = 0; i < num_tds; i++) { | 
 | 		unsigned int total_pkt_count, max_pkt; | 
 | 		unsigned int burst_count, last_burst_pkt_count; | 
 | 		u32 sia_frame_id; | 
 |  | 
 | 		first_trb = true; | 
 | 		running_total = 0; | 
 | 		addr = start_addr + urb->iso_frame_desc[i].offset; | 
 | 		td_len = urb->iso_frame_desc[i].length; | 
 | 		td_remain_len = td_len; | 
 | 		max_pkt = usb_endpoint_maxp(&urb->ep->desc); | 
 | 		total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); | 
 |  | 
 | 		/* A zero-length transfer still involves at least one packet. */ | 
 | 		if (total_pkt_count == 0) | 
 | 			total_pkt_count++; | 
 | 		burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); | 
 | 		last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, | 
 | 							urb, total_pkt_count); | 
 |  | 
 | 		trbs_per_td = count_isoc_trbs_needed(urb, i); | 
 |  | 
 | 		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, | 
 | 				urb->stream_id, trbs_per_td, urb, i, mem_flags); | 
 | 		if (ret < 0) { | 
 | 			if (i == 0) | 
 | 				return ret; | 
 | 			goto cleanup; | 
 | 		} | 
 | 		td = &urb_priv->td[i]; | 
 |  | 
 | 		/* use SIA as default, if frame id is used overwrite it */ | 
 | 		sia_frame_id = TRB_SIA; | 
 | 		if (!(urb->transfer_flags & URB_ISO_ASAP) && | 
 | 		    HCC_CFC(xhci->hcc_params)) { | 
 | 			frame_id = xhci_get_isoc_frame_id(xhci, urb, i); | 
 | 			if (frame_id >= 0) | 
 | 				sia_frame_id = TRB_FRAME_ID(frame_id); | 
 | 		} | 
 | 		/* | 
 | 		 * Set isoc specific data for the first TRB in a TD. | 
 | 		 * Prevent HW from getting the TRBs by keeping the cycle state | 
 | 		 * inverted in the first TDs isoc TRB. | 
 | 		 */ | 
 | 		field = TRB_TYPE(TRB_ISOC) | | 
 | 			TRB_TLBPC(last_burst_pkt_count) | | 
 | 			sia_frame_id | | 
 | 			(i ? ep_ring->cycle_state : !start_cycle); | 
 |  | 
 | 		/* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ | 
 | 		if (!xep->use_extended_tbc) | 
 | 			field |= TRB_TBC(burst_count); | 
 |  | 
 | 		/* fill the rest of the TRB fields, and remaining normal TRBs */ | 
 | 		for (j = 0; j < trbs_per_td; j++) { | 
 | 			u32 remainder = 0; | 
 |  | 
 | 			/* only first TRB is isoc, overwrite otherwise */ | 
 | 			if (!first_trb) | 
 | 				field = TRB_TYPE(TRB_NORMAL) | | 
 | 					ep_ring->cycle_state; | 
 |  | 
 | 			/* Only set interrupt on short packet for IN EPs */ | 
 | 			if (usb_urb_dir_in(urb)) | 
 | 				field |= TRB_ISP; | 
 |  | 
 | 			/* Set the chain bit for all except the last TRB  */ | 
 | 			if (j < trbs_per_td - 1) { | 
 | 				more_trbs_coming = true; | 
 | 				field |= TRB_CHAIN; | 
 | 			} else { | 
 | 				more_trbs_coming = false; | 
 | 				td->last_trb = ep_ring->enqueue; | 
 | 				field |= TRB_IOC; | 
 | 				/* set BEI, except for the last TD */ | 
 | 				if (xhci->hci_version >= 0x100 && | 
 | 				    !(xhci->quirks & XHCI_AVOID_BEI) && | 
 | 				    i < num_tds - 1) | 
 | 					field |= TRB_BEI; | 
 | 			} | 
 | 			/* Calculate TRB length */ | 
 | 			trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); | 
 | 			if (trb_buff_len > td_remain_len) | 
 | 				trb_buff_len = td_remain_len; | 
 |  | 
 | 			/* Set the TRB length, TD size, & interrupter fields. */ | 
 | 			remainder = xhci_td_remainder(xhci, running_total, | 
 | 						   trb_buff_len, td_len, | 
 | 						   urb, more_trbs_coming); | 
 |  | 
 | 			length_field = TRB_LEN(trb_buff_len) | | 
 | 				TRB_INTR_TARGET(0); | 
 |  | 
 | 			/* xhci 1.1 with ETE uses TD Size field for TBC */ | 
 | 			if (first_trb && xep->use_extended_tbc) | 
 | 				length_field |= TRB_TD_SIZE_TBC(burst_count); | 
 | 			else | 
 | 				length_field |= TRB_TD_SIZE(remainder); | 
 | 			first_trb = false; | 
 |  | 
 | 			queue_trb(xhci, ep_ring, more_trbs_coming, | 
 | 				lower_32_bits(addr), | 
 | 				upper_32_bits(addr), | 
 | 				length_field, | 
 | 				field); | 
 | 			running_total += trb_buff_len; | 
 |  | 
 | 			addr += trb_buff_len; | 
 | 			td_remain_len -= trb_buff_len; | 
 | 		} | 
 |  | 
 | 		/* Check TD length */ | 
 | 		if (running_total != td_len) { | 
 | 			xhci_err(xhci, "ISOC TD length unmatch\n"); | 
 | 			ret = -EINVAL; | 
 | 			goto cleanup; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* store the next frame id */ | 
 | 	if (HCC_CFC(xhci->hcc_params)) | 
 | 		xep->next_frame_id = urb->start_frame + num_tds * urb->interval; | 
 |  | 
 | 	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { | 
 | 		if (xhci->quirks & XHCI_AMD_PLL_FIX) | 
 | 			usb_amd_quirk_pll_disable(); | 
 | 	} | 
 | 	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; | 
 |  | 
 | 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, | 
 | 			start_cycle, start_trb); | 
 | 	return 0; | 
 | cleanup: | 
 | 	/* Clean up a partially enqueued isoc transfer. */ | 
 |  | 
 | 	for (i--; i >= 0; i--) | 
 | 		list_del_init(&urb_priv->td[i].td_list); | 
 |  | 
 | 	/* Use the first TD as a temporary variable to turn the TDs we've queued | 
 | 	 * into No-ops with a software-owned cycle bit. That way the hardware | 
 | 	 * won't accidentally start executing bogus TDs when we partially | 
 | 	 * overwrite them.  td->first_trb and td->start_seg are already set. | 
 | 	 */ | 
 | 	urb_priv->td[0].last_trb = ep_ring->enqueue; | 
 | 	/* Every TRB except the first & last will have its cycle bit flipped. */ | 
 | 	td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); | 
 |  | 
 | 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */ | 
 | 	ep_ring->enqueue = urb_priv->td[0].first_trb; | 
 | 	ep_ring->enq_seg = urb_priv->td[0].start_seg; | 
 | 	ep_ring->cycle_state = start_cycle; | 
 | 	ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; | 
 | 	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Check transfer ring to guarantee there is enough room for the urb. | 
 |  * Update ISO URB start_frame and interval. | 
 |  * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to | 
 |  * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or | 
 |  * Contiguous Frame ID is not supported by HC. | 
 |  */ | 
 | int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, | 
 | 		struct urb *urb, int slot_id, unsigned int ep_index) | 
 | { | 
 | 	struct xhci_virt_device *xdev; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	int start_frame; | 
 | 	int num_tds, num_trbs, i; | 
 | 	int ret; | 
 | 	struct xhci_virt_ep *xep; | 
 | 	int ist; | 
 |  | 
 | 	xdev = xhci->devs[slot_id]; | 
 | 	xep = &xhci->devs[slot_id]->eps[ep_index]; | 
 | 	ep_ring = xdev->eps[ep_index].ring; | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); | 
 |  | 
 | 	num_trbs = 0; | 
 | 	num_tds = urb->number_of_packets; | 
 | 	for (i = 0; i < num_tds; i++) | 
 | 		num_trbs += count_isoc_trbs_needed(urb, i); | 
 |  | 
 | 	/* Check the ring to guarantee there is enough room for the whole urb. | 
 | 	 * Do not insert any td of the urb to the ring if the check failed. | 
 | 	 */ | 
 | 	ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), | 
 | 			   num_trbs, mem_flags); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * Check interval value. This should be done before we start to | 
 | 	 * calculate the start frame value. | 
 | 	 */ | 
 | 	check_interval(xhci, urb, ep_ctx); | 
 |  | 
 | 	/* Calculate the start frame and put it in urb->start_frame. */ | 
 | 	if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { | 
 | 		if (GET_EP_CTX_STATE(ep_ctx) ==	EP_STATE_RUNNING) { | 
 | 			urb->start_frame = xep->next_frame_id; | 
 | 			goto skip_start_over; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	start_frame = readl(&xhci->run_regs->microframe_index); | 
 | 	start_frame &= 0x3fff; | 
 | 	/* | 
 | 	 * Round up to the next frame and consider the time before trb really | 
 | 	 * gets scheduled by hardare. | 
 | 	 */ | 
 | 	ist = HCS_IST(xhci->hcs_params2) & 0x7; | 
 | 	if (HCS_IST(xhci->hcs_params2) & (1 << 3)) | 
 | 		ist <<= 3; | 
 | 	start_frame += ist + XHCI_CFC_DELAY; | 
 | 	start_frame = roundup(start_frame, 8); | 
 |  | 
 | 	/* | 
 | 	 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT | 
 | 	 * is greate than 8 microframes. | 
 | 	 */ | 
 | 	if (urb->dev->speed == USB_SPEED_LOW || | 
 | 			urb->dev->speed == USB_SPEED_FULL) { | 
 | 		start_frame = roundup(start_frame, urb->interval << 3); | 
 | 		urb->start_frame = start_frame >> 3; | 
 | 	} else { | 
 | 		start_frame = roundup(start_frame, urb->interval); | 
 | 		urb->start_frame = start_frame; | 
 | 	} | 
 |  | 
 | skip_start_over: | 
 | 	ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; | 
 |  | 
 | 	return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); | 
 | } | 
 |  | 
 | /****		Command Ring Operations		****/ | 
 |  | 
 | /* Generic function for queueing a command TRB on the command ring. | 
 |  * Check to make sure there's room on the command ring for one command TRB. | 
 |  * Also check that there's room reserved for commands that must not fail. | 
 |  * If this is a command that must not fail, meaning command_must_succeed = TRUE, | 
 |  * then only check for the number of reserved spots. | 
 |  * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB | 
 |  * because the command event handler may want to resubmit a failed command. | 
 |  */ | 
 | static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, | 
 | 			 u32 field1, u32 field2, | 
 | 			 u32 field3, u32 field4, bool command_must_succeed) | 
 | { | 
 | 	int reserved_trbs = xhci->cmd_ring_reserved_trbs; | 
 | 	int ret; | 
 |  | 
 | 	if ((xhci->xhc_state & XHCI_STATE_DYING) || | 
 | 		(xhci->xhc_state & XHCI_STATE_HALTED)) { | 
 | 		xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); | 
 | 		return -ESHUTDOWN; | 
 | 	} | 
 |  | 
 | 	if (!command_must_succeed) | 
 | 		reserved_trbs++; | 
 |  | 
 | 	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, | 
 | 			reserved_trbs, GFP_ATOMIC); | 
 | 	if (ret < 0) { | 
 | 		xhci_err(xhci, "ERR: No room for command on command ring\n"); | 
 | 		if (command_must_succeed) | 
 | 			xhci_err(xhci, "ERR: Reserved TRB counting for " | 
 | 					"unfailable commands failed.\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	cmd->command_trb = xhci->cmd_ring->enqueue; | 
 |  | 
 | 	/* if there are no other commands queued we start the timeout timer */ | 
 | 	if (list_empty(&xhci->cmd_list)) { | 
 | 		xhci->current_cmd = cmd; | 
 | 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); | 
 | 	} | 
 |  | 
 | 	list_add_tail(&cmd->cmd_list, &xhci->cmd_list); | 
 |  | 
 | 	queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, | 
 | 			field4 | xhci->cmd_ring->cycle_state); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Queue a slot enable or disable request on the command ring */ | 
 | int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, | 
 | 		u32 trb_type, u32 slot_id) | 
 | { | 
 | 	return queue_command(xhci, cmd, 0, 0, 0, | 
 | 			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); | 
 | } | 
 |  | 
 | /* Queue an address device command TRB */ | 
 | int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, | 
 | 		dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) | 
 | { | 
 | 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), | 
 | 			upper_32_bits(in_ctx_ptr), 0, | 
 | 			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) | 
 | 			| (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); | 
 | } | 
 |  | 
 | int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, | 
 | 		u32 field1, u32 field2, u32 field3, u32 field4) | 
 | { | 
 | 	return queue_command(xhci, cmd, field1, field2, field3, field4, false); | 
 | } | 
 |  | 
 | /* Queue a reset device command TRB */ | 
 | int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, | 
 | 		u32 slot_id) | 
 | { | 
 | 	return queue_command(xhci, cmd, 0, 0, 0, | 
 | 			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), | 
 | 			false); | 
 | } | 
 |  | 
 | /* Queue a configure endpoint command TRB */ | 
 | int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, | 
 | 		struct xhci_command *cmd, dma_addr_t in_ctx_ptr, | 
 | 		u32 slot_id, bool command_must_succeed) | 
 | { | 
 | 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), | 
 | 			upper_32_bits(in_ctx_ptr), 0, | 
 | 			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), | 
 | 			command_must_succeed); | 
 | } | 
 |  | 
 | /* Queue an evaluate context command TRB */ | 
 | int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, | 
 | 		dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) | 
 | { | 
 | 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), | 
 | 			upper_32_bits(in_ctx_ptr), 0, | 
 | 			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), | 
 | 			command_must_succeed); | 
 | } | 
 |  | 
 | /* | 
 |  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop | 
 |  * activity on an endpoint that is about to be suspended. | 
 |  */ | 
 | int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, | 
 | 			     int slot_id, unsigned int ep_index, int suspend) | 
 | { | 
 | 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); | 
 | 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); | 
 | 	u32 type = TRB_TYPE(TRB_STOP_RING); | 
 | 	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); | 
 |  | 
 | 	return queue_command(xhci, cmd, 0, 0, 0, | 
 | 			trb_slot_id | trb_ep_index | type | trb_suspend, false); | 
 | } | 
 |  | 
 | /* Set Transfer Ring Dequeue Pointer command */ | 
 | void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, | 
 | 		unsigned int slot_id, unsigned int ep_index, | 
 | 		struct xhci_dequeue_state *deq_state) | 
 | { | 
 | 	dma_addr_t addr; | 
 | 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); | 
 | 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); | 
 | 	u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id); | 
 | 	u32 trb_sct = 0; | 
 | 	u32 type = TRB_TYPE(TRB_SET_DEQ); | 
 | 	struct xhci_virt_ep *ep; | 
 | 	struct xhci_command *cmd; | 
 | 	int ret; | 
 |  | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, | 
 | 		"Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", | 
 | 		deq_state->new_deq_seg, | 
 | 		(unsigned long long)deq_state->new_deq_seg->dma, | 
 | 		deq_state->new_deq_ptr, | 
 | 		(unsigned long long)xhci_trb_virt_to_dma( | 
 | 			deq_state->new_deq_seg, deq_state->new_deq_ptr), | 
 | 		deq_state->new_cycle_state); | 
 |  | 
 | 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, | 
 | 				    deq_state->new_deq_ptr); | 
 | 	if (addr == 0) { | 
 | 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); | 
 | 		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", | 
 | 			  deq_state->new_deq_seg, deq_state->new_deq_ptr); | 
 | 		return; | 
 | 	} | 
 | 	ep = &xhci->devs[slot_id]->eps[ep_index]; | 
 | 	if ((ep->ep_state & SET_DEQ_PENDING)) { | 
 | 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); | 
 | 		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* This function gets called from contexts where it cannot sleep */ | 
 | 	cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); | 
 | 	if (!cmd) | 
 | 		return; | 
 |  | 
 | 	ep->queued_deq_seg = deq_state->new_deq_seg; | 
 | 	ep->queued_deq_ptr = deq_state->new_deq_ptr; | 
 | 	if (deq_state->stream_id) | 
 | 		trb_sct = SCT_FOR_TRB(SCT_PRI_TR); | 
 | 	ret = queue_command(xhci, cmd, | 
 | 		lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, | 
 | 		upper_32_bits(addr), trb_stream_id, | 
 | 		trb_slot_id | trb_ep_index | type, false); | 
 | 	if (ret < 0) { | 
 | 		xhci_free_command(xhci, cmd); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Stop the TD queueing code from ringing the doorbell until | 
 | 	 * this command completes.  The HC won't set the dequeue pointer | 
 | 	 * if the ring is running, and ringing the doorbell starts the | 
 | 	 * ring running. | 
 | 	 */ | 
 | 	ep->ep_state |= SET_DEQ_PENDING; | 
 | } | 
 |  | 
 | int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, | 
 | 			int slot_id, unsigned int ep_index, | 
 | 			enum xhci_ep_reset_type reset_type) | 
 | { | 
 | 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); | 
 | 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); | 
 | 	u32 type = TRB_TYPE(TRB_RESET_EP); | 
 |  | 
 | 	if (reset_type == EP_SOFT_RESET) | 
 | 		type |= TRB_TSP; | 
 |  | 
 | 	return queue_command(xhci, cmd, 0, 0, 0, | 
 | 			trb_slot_id | trb_ep_index | type, false); | 
 | } |