| /* | 
 |  * blk-mq scheduling framework | 
 |  * | 
 |  * Copyright (C) 2016 Jens Axboe | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/blk-mq.h> | 
 |  | 
 | #include <trace/events/block.h> | 
 |  | 
 | #include "blk.h" | 
 | #include "blk-mq.h" | 
 | #include "blk-mq-debugfs.h" | 
 | #include "blk-mq-sched.h" | 
 | #include "blk-mq-tag.h" | 
 | #include "blk-wbt.h" | 
 |  | 
 | void blk_mq_sched_free_hctx_data(struct request_queue *q, | 
 | 				 void (*exit)(struct blk_mq_hw_ctx *)) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	int i; | 
 |  | 
 | 	queue_for_each_hw_ctx(q, hctx, i) { | 
 | 		if (exit && hctx->sched_data) | 
 | 			exit(hctx); | 
 | 		kfree(hctx->sched_data); | 
 | 		hctx->sched_data = NULL; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data); | 
 |  | 
 | void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio) | 
 | { | 
 | 	struct request_queue *q = rq->q; | 
 | 	struct io_context *ioc = rq_ioc(bio); | 
 | 	struct io_cq *icq; | 
 |  | 
 | 	spin_lock_irq(q->queue_lock); | 
 | 	icq = ioc_lookup_icq(ioc, q); | 
 | 	spin_unlock_irq(q->queue_lock); | 
 |  | 
 | 	if (!icq) { | 
 | 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC); | 
 | 		if (!icq) | 
 | 			return; | 
 | 	} | 
 | 	get_io_context(icq->ioc); | 
 | 	rq->elv.icq = icq; | 
 | } | 
 |  | 
 | /* | 
 |  * Mark a hardware queue as needing a restart. For shared queues, maintain | 
 |  * a count of how many hardware queues are marked for restart. | 
 |  */ | 
 | static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) | 
 | { | 
 | 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) | 
 | 		return; | 
 |  | 
 | 	if (hctx->flags & BLK_MQ_F_TAG_SHARED) { | 
 | 		struct request_queue *q = hctx->queue; | 
 |  | 
 | 		if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) | 
 | 			atomic_inc(&q->shared_hctx_restart); | 
 | 	} else | 
 | 		set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); | 
 | } | 
 |  | 
 | static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx) | 
 | { | 
 | 	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) | 
 | 		return false; | 
 |  | 
 | 	if (hctx->flags & BLK_MQ_F_TAG_SHARED) { | 
 | 		struct request_queue *q = hctx->queue; | 
 |  | 
 | 		if (test_and_clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) | 
 | 			atomic_dec(&q->shared_hctx_restart); | 
 | 	} else | 
 | 		clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); | 
 |  | 
 | 	if (blk_mq_hctx_has_pending(hctx)) { | 
 | 		blk_mq_run_hw_queue(hctx, true); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) | 
 | { | 
 | 	struct request_queue *q = hctx->queue; | 
 | 	struct elevator_queue *e = q->elevator; | 
 | 	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request; | 
 | 	bool do_sched_dispatch = true; | 
 | 	LIST_HEAD(rq_list); | 
 |  | 
 | 	/* RCU or SRCU read lock is needed before checking quiesced flag */ | 
 | 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) | 
 | 		return; | 
 |  | 
 | 	hctx->run++; | 
 |  | 
 | 	/* | 
 | 	 * If we have previous entries on our dispatch list, grab them first for | 
 | 	 * more fair dispatch. | 
 | 	 */ | 
 | 	if (!list_empty_careful(&hctx->dispatch)) { | 
 | 		spin_lock(&hctx->lock); | 
 | 		if (!list_empty(&hctx->dispatch)) | 
 | 			list_splice_init(&hctx->dispatch, &rq_list); | 
 | 		spin_unlock(&hctx->lock); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Only ask the scheduler for requests, if we didn't have residual | 
 | 	 * requests from the dispatch list. This is to avoid the case where | 
 | 	 * we only ever dispatch a fraction of the requests available because | 
 | 	 * of low device queue depth. Once we pull requests out of the IO | 
 | 	 * scheduler, we can no longer merge or sort them. So it's best to | 
 | 	 * leave them there for as long as we can. Mark the hw queue as | 
 | 	 * needing a restart in that case. | 
 | 	 */ | 
 | 	if (!list_empty(&rq_list)) { | 
 | 		blk_mq_sched_mark_restart_hctx(hctx); | 
 | 		do_sched_dispatch = blk_mq_dispatch_rq_list(q, &rq_list); | 
 | 	} else if (!has_sched_dispatch) { | 
 | 		blk_mq_flush_busy_ctxs(hctx, &rq_list); | 
 | 		blk_mq_dispatch_rq_list(q, &rq_list); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We want to dispatch from the scheduler if there was nothing | 
 | 	 * on the dispatch list or we were able to dispatch from the | 
 | 	 * dispatch list. | 
 | 	 */ | 
 | 	if (do_sched_dispatch && has_sched_dispatch) { | 
 | 		do { | 
 | 			struct request *rq; | 
 |  | 
 | 			rq = e->type->ops.mq.dispatch_request(hctx); | 
 | 			if (!rq) | 
 | 				break; | 
 | 			list_add(&rq->queuelist, &rq_list); | 
 | 		} while (blk_mq_dispatch_rq_list(q, &rq_list)); | 
 | 	} | 
 | } | 
 |  | 
 | bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, | 
 | 			    struct request **merged_request) | 
 | { | 
 | 	struct request *rq; | 
 |  | 
 | 	switch (elv_merge(q, &rq, bio)) { | 
 | 	case ELEVATOR_BACK_MERGE: | 
 | 		if (!blk_mq_sched_allow_merge(q, rq, bio)) | 
 | 			return false; | 
 | 		if (!bio_attempt_back_merge(q, rq, bio)) | 
 | 			return false; | 
 | 		*merged_request = attempt_back_merge(q, rq); | 
 | 		if (!*merged_request) | 
 | 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); | 
 | 		return true; | 
 | 	case ELEVATOR_FRONT_MERGE: | 
 | 		if (!blk_mq_sched_allow_merge(q, rq, bio)) | 
 | 			return false; | 
 | 		if (!bio_attempt_front_merge(q, rq, bio)) | 
 | 			return false; | 
 | 		*merged_request = attempt_front_merge(q, rq); | 
 | 		if (!*merged_request) | 
 | 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); | 
 | 		return true; | 
 | 	default: | 
 | 		return false; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); | 
 |  | 
 | /* | 
 |  * Reverse check our software queue for entries that we could potentially | 
 |  * merge with. Currently includes a hand-wavy stop count of 8, to not spend | 
 |  * too much time checking for merges. | 
 |  */ | 
 | static bool blk_mq_attempt_merge(struct request_queue *q, | 
 | 				 struct blk_mq_ctx *ctx, struct bio *bio) | 
 | { | 
 | 	struct request *rq; | 
 | 	int checked = 8; | 
 |  | 
 | 	lockdep_assert_held(&ctx->lock); | 
 |  | 
 | 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { | 
 | 		bool merged = false; | 
 |  | 
 | 		if (!checked--) | 
 | 			break; | 
 |  | 
 | 		if (!blk_rq_merge_ok(rq, bio)) | 
 | 			continue; | 
 |  | 
 | 		switch (blk_try_merge(rq, bio)) { | 
 | 		case ELEVATOR_BACK_MERGE: | 
 | 			if (blk_mq_sched_allow_merge(q, rq, bio)) | 
 | 				merged = bio_attempt_back_merge(q, rq, bio); | 
 | 			break; | 
 | 		case ELEVATOR_FRONT_MERGE: | 
 | 			if (blk_mq_sched_allow_merge(q, rq, bio)) | 
 | 				merged = bio_attempt_front_merge(q, rq, bio); | 
 | 			break; | 
 | 		case ELEVATOR_DISCARD_MERGE: | 
 | 			merged = bio_attempt_discard_merge(q, rq, bio); | 
 | 			break; | 
 | 		default: | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (merged) | 
 | 			ctx->rq_merged++; | 
 | 		return merged; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio) | 
 | { | 
 | 	struct elevator_queue *e = q->elevator; | 
 | 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); | 
 | 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); | 
 | 	bool ret = false; | 
 |  | 
 | 	if (e && e->type->ops.mq.bio_merge) { | 
 | 		blk_mq_put_ctx(ctx); | 
 | 		return e->type->ops.mq.bio_merge(hctx, bio); | 
 | 	} | 
 |  | 
 | 	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) && | 
 | 			!list_empty_careful(&ctx->rq_list)) { | 
 | 		/* default per sw-queue merge */ | 
 | 		spin_lock(&ctx->lock); | 
 | 		ret = blk_mq_attempt_merge(q, ctx, bio); | 
 | 		spin_unlock(&ctx->lock); | 
 | 	} | 
 |  | 
 | 	blk_mq_put_ctx(ctx); | 
 | 	return ret; | 
 | } | 
 |  | 
 | bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq) | 
 | { | 
 | 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq); | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); | 
 |  | 
 | void blk_mq_sched_request_inserted(struct request *rq) | 
 | { | 
 | 	trace_block_rq_insert(rq->q, rq); | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted); | 
 |  | 
 | static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, | 
 | 				       struct request *rq) | 
 | { | 
 | 	if (rq->tag == -1) { | 
 | 		rq->rq_flags |= RQF_SORTED; | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we already have a real request tag, send directly to | 
 | 	 * the dispatch list. | 
 | 	 */ | 
 | 	spin_lock(&hctx->lock); | 
 | 	list_add(&rq->queuelist, &hctx->dispatch); | 
 | 	spin_unlock(&hctx->lock); | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list | 
 |  * @pos:    loop cursor. | 
 |  * @skip:   the list element that will not be examined. Iteration starts at | 
 |  *          @skip->next. | 
 |  * @head:   head of the list to examine. This list must have at least one | 
 |  *          element, namely @skip. | 
 |  * @member: name of the list_head structure within typeof(*pos). | 
 |  */ | 
 | #define list_for_each_entry_rcu_rr(pos, skip, head, member)		\ | 
 | 	for ((pos) = (skip);						\ | 
 | 	     (pos = (pos)->member.next != (head) ? list_entry_rcu(	\ | 
 | 			(pos)->member.next, typeof(*pos), member) :	\ | 
 | 	      list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \ | 
 | 	     (pos) != (skip); ) | 
 |  | 
 | /* | 
 |  * Called after a driver tag has been freed to check whether a hctx needs to | 
 |  * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware | 
 |  * queues in a round-robin fashion if the tag set of @hctx is shared with other | 
 |  * hardware queues. | 
 |  */ | 
 | void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx) | 
 | { | 
 | 	struct blk_mq_tags *const tags = hctx->tags; | 
 | 	struct blk_mq_tag_set *const set = hctx->queue->tag_set; | 
 | 	struct request_queue *const queue = hctx->queue, *q; | 
 | 	struct blk_mq_hw_ctx *hctx2; | 
 | 	unsigned int i, j; | 
 |  | 
 | 	if (set->flags & BLK_MQ_F_TAG_SHARED) { | 
 | 		/* | 
 | 		 * If this is 0, then we know that no hardware queues | 
 | 		 * have RESTART marked. We're done. | 
 | 		 */ | 
 | 		if (!atomic_read(&queue->shared_hctx_restart)) | 
 | 			return; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		list_for_each_entry_rcu_rr(q, queue, &set->tag_list, | 
 | 					   tag_set_list) { | 
 | 			queue_for_each_hw_ctx(q, hctx2, i) | 
 | 				if (hctx2->tags == tags && | 
 | 				    blk_mq_sched_restart_hctx(hctx2)) | 
 | 					goto done; | 
 | 		} | 
 | 		j = hctx->queue_num + 1; | 
 | 		for (i = 0; i < queue->nr_hw_queues; i++, j++) { | 
 | 			if (j == queue->nr_hw_queues) | 
 | 				j = 0; | 
 | 			hctx2 = queue->queue_hw_ctx[j]; | 
 | 			if (hctx2->tags == tags && | 
 | 			    blk_mq_sched_restart_hctx(hctx2)) | 
 | 				break; | 
 | 		} | 
 | done: | 
 | 		rcu_read_unlock(); | 
 | 	} else { | 
 | 		blk_mq_sched_restart_hctx(hctx); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Add flush/fua to the queue. If we fail getting a driver tag, then | 
 |  * punt to the requeue list. Requeue will re-invoke us from a context | 
 |  * that's safe to block from. | 
 |  */ | 
 | static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx, | 
 | 				      struct request *rq, bool can_block) | 
 | { | 
 | 	if (blk_mq_get_driver_tag(rq, &hctx, can_block)) { | 
 | 		blk_insert_flush(rq); | 
 | 		blk_mq_run_hw_queue(hctx, true); | 
 | 	} else | 
 | 		blk_mq_add_to_requeue_list(rq, false, true); | 
 | } | 
 |  | 
 | void blk_mq_sched_insert_request(struct request *rq, bool at_head, | 
 | 				 bool run_queue, bool async, bool can_block) | 
 | { | 
 | 	struct request_queue *q = rq->q; | 
 | 	struct elevator_queue *e = q->elevator; | 
 | 	struct blk_mq_ctx *ctx = rq->mq_ctx; | 
 | 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); | 
 |  | 
 | 	if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) { | 
 | 		blk_mq_sched_insert_flush(hctx, rq, can_block); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (e && blk_mq_sched_bypass_insert(hctx, rq)) | 
 | 		goto run; | 
 |  | 
 | 	if (e && e->type->ops.mq.insert_requests) { | 
 | 		LIST_HEAD(list); | 
 |  | 
 | 		list_add(&rq->queuelist, &list); | 
 | 		e->type->ops.mq.insert_requests(hctx, &list, at_head); | 
 | 	} else { | 
 | 		spin_lock(&ctx->lock); | 
 | 		__blk_mq_insert_request(hctx, rq, at_head); | 
 | 		spin_unlock(&ctx->lock); | 
 | 	} | 
 |  | 
 | run: | 
 | 	if (run_queue) | 
 | 		blk_mq_run_hw_queue(hctx, async); | 
 | } | 
 |  | 
 | void blk_mq_sched_insert_requests(struct request_queue *q, | 
 | 				  struct blk_mq_ctx *ctx, | 
 | 				  struct list_head *list, bool run_queue_async) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); | 
 | 	struct elevator_queue *e = hctx->queue->elevator; | 
 |  | 
 | 	if (e) { | 
 | 		struct request *rq, *next; | 
 |  | 
 | 		/* | 
 | 		 * We bypass requests that already have a driver tag assigned, | 
 | 		 * which should only be flushes. Flushes are only ever inserted | 
 | 		 * as single requests, so we shouldn't ever hit the | 
 | 		 * WARN_ON_ONCE() below (but let's handle it just in case). | 
 | 		 */ | 
 | 		list_for_each_entry_safe(rq, next, list, queuelist) { | 
 | 			if (WARN_ON_ONCE(rq->tag != -1)) { | 
 | 				list_del_init(&rq->queuelist); | 
 | 				blk_mq_sched_bypass_insert(hctx, rq); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (e && e->type->ops.mq.insert_requests) | 
 | 		e->type->ops.mq.insert_requests(hctx, list, false); | 
 | 	else | 
 | 		blk_mq_insert_requests(hctx, ctx, list); | 
 |  | 
 | 	blk_mq_run_hw_queue(hctx, run_queue_async); | 
 | } | 
 |  | 
 | static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set, | 
 | 				   struct blk_mq_hw_ctx *hctx, | 
 | 				   unsigned int hctx_idx) | 
 | { | 
 | 	if (hctx->sched_tags) { | 
 | 		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx); | 
 | 		blk_mq_free_rq_map(hctx->sched_tags); | 
 | 		hctx->sched_tags = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static int blk_mq_sched_alloc_tags(struct request_queue *q, | 
 | 				   struct blk_mq_hw_ctx *hctx, | 
 | 				   unsigned int hctx_idx) | 
 | { | 
 | 	struct blk_mq_tag_set *set = q->tag_set; | 
 | 	int ret; | 
 |  | 
 | 	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests, | 
 | 					       set->reserved_tags); | 
 | 	if (!hctx->sched_tags) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests); | 
 | 	if (ret) | 
 | 		blk_mq_sched_free_tags(set, hctx, hctx_idx); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void blk_mq_sched_tags_teardown(struct request_queue *q) | 
 | { | 
 | 	struct blk_mq_tag_set *set = q->tag_set; | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	int i; | 
 |  | 
 | 	queue_for_each_hw_ctx(q, hctx, i) | 
 | 		blk_mq_sched_free_tags(set, hctx, i); | 
 | } | 
 |  | 
 | int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx, | 
 | 			   unsigned int hctx_idx) | 
 | { | 
 | 	struct elevator_queue *e = q->elevator; | 
 | 	int ret; | 
 |  | 
 | 	if (!e) | 
 | 		return 0; | 
 |  | 
 | 	ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (e->type->ops.mq.init_hctx) { | 
 | 		ret = e->type->ops.mq.init_hctx(hctx, hctx_idx); | 
 | 		if (ret) { | 
 | 			blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	blk_mq_debugfs_register_sched_hctx(q, hctx); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx, | 
 | 			    unsigned int hctx_idx) | 
 | { | 
 | 	struct elevator_queue *e = q->elevator; | 
 |  | 
 | 	if (!e) | 
 | 		return; | 
 |  | 
 | 	blk_mq_debugfs_unregister_sched_hctx(hctx); | 
 |  | 
 | 	if (e->type->ops.mq.exit_hctx && hctx->sched_data) { | 
 | 		e->type->ops.mq.exit_hctx(hctx, hctx_idx); | 
 | 		hctx->sched_data = NULL; | 
 | 	} | 
 |  | 
 | 	blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx); | 
 | } | 
 |  | 
 | int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	struct elevator_queue *eq; | 
 | 	unsigned int i; | 
 | 	int ret; | 
 |  | 
 | 	if (!e) { | 
 | 		q->elevator = NULL; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Default to double of smaller one between hw queue_depth and 128, | 
 | 	 * since we don't split into sync/async like the old code did. | 
 | 	 * Additionally, this is a per-hw queue depth. | 
 | 	 */ | 
 | 	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth, | 
 | 				   BLKDEV_MAX_RQ); | 
 |  | 
 | 	queue_for_each_hw_ctx(q, hctx, i) { | 
 | 		ret = blk_mq_sched_alloc_tags(q, hctx, i); | 
 | 		if (ret) | 
 | 			goto err; | 
 | 	} | 
 |  | 
 | 	ret = e->ops.mq.init_sched(q, e); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	blk_mq_debugfs_register_sched(q); | 
 |  | 
 | 	queue_for_each_hw_ctx(q, hctx, i) { | 
 | 		if (e->ops.mq.init_hctx) { | 
 | 			ret = e->ops.mq.init_hctx(hctx, i); | 
 | 			if (ret) { | 
 | 				eq = q->elevator; | 
 | 				blk_mq_exit_sched(q, eq); | 
 | 				kobject_put(&eq->kobj); | 
 | 				return ret; | 
 | 			} | 
 | 		} | 
 | 		blk_mq_debugfs_register_sched_hctx(q, hctx); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | err: | 
 | 	blk_mq_sched_tags_teardown(q); | 
 | 	q->elevator = NULL; | 
 | 	return ret; | 
 | } | 
 |  | 
 | void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	unsigned int i; | 
 |  | 
 | 	queue_for_each_hw_ctx(q, hctx, i) { | 
 | 		blk_mq_debugfs_unregister_sched_hctx(hctx); | 
 | 		if (e->type->ops.mq.exit_hctx && hctx->sched_data) { | 
 | 			e->type->ops.mq.exit_hctx(hctx, i); | 
 | 			hctx->sched_data = NULL; | 
 | 		} | 
 | 	} | 
 | 	blk_mq_debugfs_unregister_sched(q); | 
 | 	if (e->type->ops.mq.exit_sched) | 
 | 		e->type->ops.mq.exit_sched(e); | 
 | 	blk_mq_sched_tags_teardown(q); | 
 | 	q->elevator = NULL; | 
 | } | 
 |  | 
 | int blk_mq_sched_init(struct request_queue *q) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&q->sysfs_lock); | 
 | 	ret = elevator_init(q, NULL); | 
 | 	mutex_unlock(&q->sysfs_lock); | 
 |  | 
 | 	return ret; | 
 | } |