|  | /* | 
|  | *  Kernel Probes (KProbes) | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|  | * | 
|  | * Copyright (C) IBM Corporation, 2002, 2004 | 
|  | * | 
|  | * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel | 
|  | *		Probes initial implementation ( includes contributions from | 
|  | *		Rusty Russell). | 
|  | * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes | 
|  | *		interface to access function arguments. | 
|  | * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port | 
|  | *		for PPC64 | 
|  | */ | 
|  |  | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/preempt.h> | 
|  | #include <linux/extable.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <linux/slab.h> | 
|  | #include <asm/code-patching.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/sstep.h> | 
|  | #include <asm/sections.h> | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; | 
|  | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); | 
|  |  | 
|  | struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; | 
|  |  | 
|  | int is_current_kprobe_addr(unsigned long addr) | 
|  | { | 
|  | struct kprobe *p = kprobe_running(); | 
|  | return (p && (unsigned long)p->addr == addr) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | bool arch_within_kprobe_blacklist(unsigned long addr) | 
|  | { | 
|  | return  (addr >= (unsigned long)__kprobes_text_start && | 
|  | addr < (unsigned long)__kprobes_text_end) || | 
|  | (addr >= (unsigned long)_stext && | 
|  | addr < (unsigned long)__head_end); | 
|  | } | 
|  |  | 
|  | kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset) | 
|  | { | 
|  | kprobe_opcode_t *addr; | 
|  |  | 
|  | #ifdef PPC64_ELF_ABI_v2 | 
|  | /* PPC64 ABIv2 needs local entry point */ | 
|  | addr = (kprobe_opcode_t *)kallsyms_lookup_name(name); | 
|  | if (addr && !offset) { | 
|  | #ifdef CONFIG_KPROBES_ON_FTRACE | 
|  | unsigned long faddr; | 
|  | /* | 
|  | * Per livepatch.h, ftrace location is always within the first | 
|  | * 16 bytes of a function on powerpc with -mprofile-kernel. | 
|  | */ | 
|  | faddr = ftrace_location_range((unsigned long)addr, | 
|  | (unsigned long)addr + 16); | 
|  | if (faddr) | 
|  | addr = (kprobe_opcode_t *)faddr; | 
|  | else | 
|  | #endif | 
|  | addr = (kprobe_opcode_t *)ppc_function_entry(addr); | 
|  | } | 
|  | #elif defined(PPC64_ELF_ABI_v1) | 
|  | /* | 
|  | * 64bit powerpc ABIv1 uses function descriptors: | 
|  | * - Check for the dot variant of the symbol first. | 
|  | * - If that fails, try looking up the symbol provided. | 
|  | * | 
|  | * This ensures we always get to the actual symbol and not | 
|  | * the descriptor. | 
|  | * | 
|  | * Also handle <module:symbol> format. | 
|  | */ | 
|  | char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN]; | 
|  | const char *modsym; | 
|  | bool dot_appended = false; | 
|  | if ((modsym = strchr(name, ':')) != NULL) { | 
|  | modsym++; | 
|  | if (*modsym != '\0' && *modsym != '.') { | 
|  | /* Convert to <module:.symbol> */ | 
|  | strncpy(dot_name, name, modsym - name); | 
|  | dot_name[modsym - name] = '.'; | 
|  | dot_name[modsym - name + 1] = '\0'; | 
|  | strncat(dot_name, modsym, | 
|  | sizeof(dot_name) - (modsym - name) - 2); | 
|  | dot_appended = true; | 
|  | } else { | 
|  | dot_name[0] = '\0'; | 
|  | strncat(dot_name, name, sizeof(dot_name) - 1); | 
|  | } | 
|  | } else if (name[0] != '.') { | 
|  | dot_name[0] = '.'; | 
|  | dot_name[1] = '\0'; | 
|  | strncat(dot_name, name, KSYM_NAME_LEN - 2); | 
|  | dot_appended = true; | 
|  | } else { | 
|  | dot_name[0] = '\0'; | 
|  | strncat(dot_name, name, KSYM_NAME_LEN - 1); | 
|  | } | 
|  | addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name); | 
|  | if (!addr && dot_appended) { | 
|  | /* Let's try the original non-dot symbol lookup	*/ | 
|  | addr = (kprobe_opcode_t *)kallsyms_lookup_name(name); | 
|  | } | 
|  | #else | 
|  | addr = (kprobe_opcode_t *)kallsyms_lookup_name(name); | 
|  | #endif | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | int arch_prepare_kprobe(struct kprobe *p) | 
|  | { | 
|  | int ret = 0; | 
|  | kprobe_opcode_t insn = *p->addr; | 
|  |  | 
|  | if ((unsigned long)p->addr & 0x03) { | 
|  | printk("Attempt to register kprobe at an unaligned address\n"); | 
|  | ret = -EINVAL; | 
|  | } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) { | 
|  | printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n"); | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | /* insn must be on a special executable page on ppc64.  This is | 
|  | * not explicitly required on ppc32 (right now), but it doesn't hurt */ | 
|  | if (!ret) { | 
|  | p->ainsn.insn = get_insn_slot(); | 
|  | if (!p->ainsn.insn) | 
|  | ret = -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (!ret) { | 
|  | memcpy(p->ainsn.insn, p->addr, | 
|  | MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); | 
|  | p->opcode = *p->addr; | 
|  | flush_icache_range((unsigned long)p->ainsn.insn, | 
|  | (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t)); | 
|  | } | 
|  |  | 
|  | p->ainsn.boostable = 0; | 
|  | return ret; | 
|  | } | 
|  | NOKPROBE_SYMBOL(arch_prepare_kprobe); | 
|  |  | 
|  | void arch_arm_kprobe(struct kprobe *p) | 
|  | { | 
|  | patch_instruction(p->addr, BREAKPOINT_INSTRUCTION); | 
|  | } | 
|  | NOKPROBE_SYMBOL(arch_arm_kprobe); | 
|  |  | 
|  | void arch_disarm_kprobe(struct kprobe *p) | 
|  | { | 
|  | patch_instruction(p->addr, p->opcode); | 
|  | } | 
|  | NOKPROBE_SYMBOL(arch_disarm_kprobe); | 
|  |  | 
|  | void arch_remove_kprobe(struct kprobe *p) | 
|  | { | 
|  | if (p->ainsn.insn) { | 
|  | free_insn_slot(p->ainsn.insn, 0); | 
|  | p->ainsn.insn = NULL; | 
|  | } | 
|  | } | 
|  | NOKPROBE_SYMBOL(arch_remove_kprobe); | 
|  |  | 
|  | static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | enable_single_step(regs); | 
|  |  | 
|  | /* | 
|  | * On powerpc we should single step on the original | 
|  | * instruction even if the probed insn is a trap | 
|  | * variant as values in regs could play a part in | 
|  | * if the trap is taken or not | 
|  | */ | 
|  | regs->nip = (unsigned long)p->ainsn.insn; | 
|  | } | 
|  |  | 
|  | static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | kcb->prev_kprobe.kp = kprobe_running(); | 
|  | kcb->prev_kprobe.status = kcb->kprobe_status; | 
|  | kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr; | 
|  | } | 
|  |  | 
|  | static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); | 
|  | kcb->kprobe_status = kcb->prev_kprobe.status; | 
|  | kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr; | 
|  | } | 
|  |  | 
|  | static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs, | 
|  | struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | __this_cpu_write(current_kprobe, p); | 
|  | kcb->kprobe_saved_msr = regs->msr; | 
|  | } | 
|  |  | 
|  | bool arch_kprobe_on_func_entry(unsigned long offset) | 
|  | { | 
|  | #ifdef PPC64_ELF_ABI_v2 | 
|  | #ifdef CONFIG_KPROBES_ON_FTRACE | 
|  | return offset <= 16; | 
|  | #else | 
|  | return offset <= 8; | 
|  | #endif | 
|  | #else | 
|  | return !offset; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) | 
|  | { | 
|  | ri->ret_addr = (kprobe_opcode_t *)regs->link; | 
|  |  | 
|  | /* Replace the return addr with trampoline addr */ | 
|  | regs->link = (unsigned long)kretprobe_trampoline; | 
|  | } | 
|  | NOKPROBE_SYMBOL(arch_prepare_kretprobe); | 
|  |  | 
|  | int try_to_emulate(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | int ret; | 
|  | unsigned int insn = *p->ainsn.insn; | 
|  |  | 
|  | /* regs->nip is also adjusted if emulate_step returns 1 */ | 
|  | ret = emulate_step(regs, insn); | 
|  | if (ret > 0) { | 
|  | /* | 
|  | * Once this instruction has been boosted | 
|  | * successfully, set the boostable flag | 
|  | */ | 
|  | if (unlikely(p->ainsn.boostable == 0)) | 
|  | p->ainsn.boostable = 1; | 
|  | } else if (ret < 0) { | 
|  | /* | 
|  | * We don't allow kprobes on mtmsr(d)/rfi(d), etc. | 
|  | * So, we should never get here... but, its still | 
|  | * good to catch them, just in case... | 
|  | */ | 
|  | printk("Can't step on instruction %x\n", insn); | 
|  | BUG(); | 
|  | } else if (ret == 0) | 
|  | /* This instruction can't be boosted */ | 
|  | p->ainsn.boostable = -1; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | NOKPROBE_SYMBOL(try_to_emulate); | 
|  |  | 
|  | int kprobe_handler(struct pt_regs *regs) | 
|  | { | 
|  | struct kprobe *p; | 
|  | int ret = 0; | 
|  | unsigned int *addr = (unsigned int *)regs->nip; | 
|  | struct kprobe_ctlblk *kcb; | 
|  |  | 
|  | if (user_mode(regs)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We don't want to be preempted for the entire | 
|  | * duration of kprobe processing | 
|  | */ | 
|  | preempt_disable(); | 
|  | kcb = get_kprobe_ctlblk(); | 
|  |  | 
|  | /* Check we're not actually recursing */ | 
|  | if (kprobe_running()) { | 
|  | p = get_kprobe(addr); | 
|  | if (p) { | 
|  | kprobe_opcode_t insn = *p->ainsn.insn; | 
|  | if (kcb->kprobe_status == KPROBE_HIT_SS && | 
|  | is_trap(insn)) { | 
|  | /* Turn off 'trace' bits */ | 
|  | regs->msr &= ~MSR_SINGLESTEP; | 
|  | regs->msr |= kcb->kprobe_saved_msr; | 
|  | goto no_kprobe; | 
|  | } | 
|  | /* We have reentered the kprobe_handler(), since | 
|  | * another probe was hit while within the handler. | 
|  | * We here save the original kprobes variables and | 
|  | * just single step on the instruction of the new probe | 
|  | * without calling any user handlers. | 
|  | */ | 
|  | save_previous_kprobe(kcb); | 
|  | set_current_kprobe(p, regs, kcb); | 
|  | kprobes_inc_nmissed_count(p); | 
|  | kcb->kprobe_status = KPROBE_REENTER; | 
|  | if (p->ainsn.boostable >= 0) { | 
|  | ret = try_to_emulate(p, regs); | 
|  |  | 
|  | if (ret > 0) { | 
|  | restore_previous_kprobe(kcb); | 
|  | preempt_enable_no_resched(); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | prepare_singlestep(p, regs); | 
|  | return 1; | 
|  | } else { | 
|  | if (*addr != BREAKPOINT_INSTRUCTION) { | 
|  | /* If trap variant, then it belongs not to us */ | 
|  | kprobe_opcode_t cur_insn = *addr; | 
|  | if (is_trap(cur_insn)) | 
|  | goto no_kprobe; | 
|  | /* The breakpoint instruction was removed by | 
|  | * another cpu right after we hit, no further | 
|  | * handling of this interrupt is appropriate | 
|  | */ | 
|  | ret = 1; | 
|  | goto no_kprobe; | 
|  | } | 
|  | p = __this_cpu_read(current_kprobe); | 
|  | if (p->break_handler && p->break_handler(p, regs)) { | 
|  | if (!skip_singlestep(p, regs, kcb)) | 
|  | goto ss_probe; | 
|  | ret = 1; | 
|  | } | 
|  | } | 
|  | goto no_kprobe; | 
|  | } | 
|  |  | 
|  | p = get_kprobe(addr); | 
|  | if (!p) { | 
|  | if (*addr != BREAKPOINT_INSTRUCTION) { | 
|  | /* | 
|  | * PowerPC has multiple variants of the "trap" | 
|  | * instruction. If the current instruction is a | 
|  | * trap variant, it could belong to someone else | 
|  | */ | 
|  | kprobe_opcode_t cur_insn = *addr; | 
|  | if (is_trap(cur_insn)) | 
|  | goto no_kprobe; | 
|  | /* | 
|  | * The breakpoint instruction was removed right | 
|  | * after we hit it.  Another cpu has removed | 
|  | * either a probepoint or a debugger breakpoint | 
|  | * at this address.  In either case, no further | 
|  | * handling of this interrupt is appropriate. | 
|  | */ | 
|  | ret = 1; | 
|  | } | 
|  | /* Not one of ours: let kernel handle it */ | 
|  | goto no_kprobe; | 
|  | } | 
|  |  | 
|  | kcb->kprobe_status = KPROBE_HIT_ACTIVE; | 
|  | set_current_kprobe(p, regs, kcb); | 
|  | if (p->pre_handler && p->pre_handler(p, regs)) | 
|  | /* handler has already set things up, so skip ss setup */ | 
|  | return 1; | 
|  |  | 
|  | ss_probe: | 
|  | if (p->ainsn.boostable >= 0) { | 
|  | ret = try_to_emulate(p, regs); | 
|  |  | 
|  | if (ret > 0) { | 
|  | if (p->post_handler) | 
|  | p->post_handler(p, regs, 0); | 
|  |  | 
|  | kcb->kprobe_status = KPROBE_HIT_SSDONE; | 
|  | reset_current_kprobe(); | 
|  | preempt_enable_no_resched(); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | prepare_singlestep(p, regs); | 
|  | kcb->kprobe_status = KPROBE_HIT_SS; | 
|  | return 1; | 
|  |  | 
|  | no_kprobe: | 
|  | preempt_enable_no_resched(); | 
|  | return ret; | 
|  | } | 
|  | NOKPROBE_SYMBOL(kprobe_handler); | 
|  |  | 
|  | /* | 
|  | * Function return probe trampoline: | 
|  | * 	- init_kprobes() establishes a probepoint here | 
|  | * 	- When the probed function returns, this probe | 
|  | * 		causes the handlers to fire | 
|  | */ | 
|  | asm(".global kretprobe_trampoline\n" | 
|  | ".type kretprobe_trampoline, @function\n" | 
|  | "kretprobe_trampoline:\n" | 
|  | "nop\n" | 
|  | "blr\n" | 
|  | ".size kretprobe_trampoline, .-kretprobe_trampoline\n"); | 
|  |  | 
|  | /* | 
|  | * Called when the probe at kretprobe trampoline is hit | 
|  | */ | 
|  | static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | struct kretprobe_instance *ri = NULL; | 
|  | struct hlist_head *head, empty_rp; | 
|  | struct hlist_node *tmp; | 
|  | unsigned long flags, orig_ret_address = 0; | 
|  | unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; | 
|  |  | 
|  | INIT_HLIST_HEAD(&empty_rp); | 
|  | kretprobe_hash_lock(current, &head, &flags); | 
|  |  | 
|  | /* | 
|  | * It is possible to have multiple instances associated with a given | 
|  | * task either because an multiple functions in the call path | 
|  | * have a return probe installed on them, and/or more than one return | 
|  | * return probe was registered for a target function. | 
|  | * | 
|  | * We can handle this because: | 
|  | *     - instances are always inserted at the head of the list | 
|  | *     - when multiple return probes are registered for the same | 
|  | *       function, the first instance's ret_addr will point to the | 
|  | *       real return address, and all the rest will point to | 
|  | *       kretprobe_trampoline | 
|  | */ | 
|  | hlist_for_each_entry_safe(ri, tmp, head, hlist) { | 
|  | if (ri->task != current) | 
|  | /* another task is sharing our hash bucket */ | 
|  | continue; | 
|  |  | 
|  | if (ri->rp && ri->rp->handler) | 
|  | ri->rp->handler(ri, regs); | 
|  |  | 
|  | orig_ret_address = (unsigned long)ri->ret_addr; | 
|  | recycle_rp_inst(ri, &empty_rp); | 
|  |  | 
|  | if (orig_ret_address != trampoline_address) | 
|  | /* | 
|  | * This is the real return address. Any other | 
|  | * instances associated with this task are for | 
|  | * other calls deeper on the call stack | 
|  | */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | kretprobe_assert(ri, orig_ret_address, trampoline_address); | 
|  |  | 
|  | /* | 
|  | * We get here through one of two paths: | 
|  | * 1. by taking a trap -> kprobe_handler() -> here | 
|  | * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here | 
|  | * | 
|  | * When going back through (1), we need regs->nip to be setup properly | 
|  | * as it is used to determine the return address from the trap. | 
|  | * For (2), since nip is not honoured with optprobes, we instead setup | 
|  | * the link register properly so that the subsequent 'blr' in | 
|  | * kretprobe_trampoline jumps back to the right instruction. | 
|  | * | 
|  | * For nip, we should set the address to the previous instruction since | 
|  | * we end up emulating it in kprobe_handler(), which increments the nip | 
|  | * again. | 
|  | */ | 
|  | regs->nip = orig_ret_address - 4; | 
|  | regs->link = orig_ret_address; | 
|  |  | 
|  | kretprobe_hash_unlock(current, &flags); | 
|  |  | 
|  | hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { | 
|  | hlist_del(&ri->hlist); | 
|  | kfree(ri); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | NOKPROBE_SYMBOL(trampoline_probe_handler); | 
|  |  | 
|  | /* | 
|  | * Called after single-stepping.  p->addr is the address of the | 
|  | * instruction whose first byte has been replaced by the "breakpoint" | 
|  | * instruction.  To avoid the SMP problems that can occur when we | 
|  | * temporarily put back the original opcode to single-step, we | 
|  | * single-stepped a copy of the instruction.  The address of this | 
|  | * copy is p->ainsn.insn. | 
|  | */ | 
|  | int kprobe_post_handler(struct pt_regs *regs) | 
|  | { | 
|  | struct kprobe *cur = kprobe_running(); | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  |  | 
|  | if (!cur || user_mode(regs)) | 
|  | return 0; | 
|  |  | 
|  | /* make sure we got here for instruction we have a kprobe on */ | 
|  | if (((unsigned long)cur->ainsn.insn + 4) != regs->nip) | 
|  | return 0; | 
|  |  | 
|  | if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { | 
|  | kcb->kprobe_status = KPROBE_HIT_SSDONE; | 
|  | cur->post_handler(cur, regs, 0); | 
|  | } | 
|  |  | 
|  | /* Adjust nip to after the single-stepped instruction */ | 
|  | regs->nip = (unsigned long)cur->addr + 4; | 
|  | regs->msr |= kcb->kprobe_saved_msr; | 
|  |  | 
|  | /*Restore back the original saved kprobes variables and continue. */ | 
|  | if (kcb->kprobe_status == KPROBE_REENTER) { | 
|  | restore_previous_kprobe(kcb); | 
|  | goto out; | 
|  | } | 
|  | reset_current_kprobe(); | 
|  | out: | 
|  | preempt_enable_no_resched(); | 
|  |  | 
|  | /* | 
|  | * if somebody else is singlestepping across a probe point, msr | 
|  | * will have DE/SE set, in which case, continue the remaining processing | 
|  | * of do_debug, as if this is not a probe hit. | 
|  | */ | 
|  | if (regs->msr & MSR_SINGLESTEP) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | NOKPROBE_SYMBOL(kprobe_post_handler); | 
|  |  | 
|  | int kprobe_fault_handler(struct pt_regs *regs, int trapnr) | 
|  | { | 
|  | struct kprobe *cur = kprobe_running(); | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  | const struct exception_table_entry *entry; | 
|  |  | 
|  | switch(kcb->kprobe_status) { | 
|  | case KPROBE_HIT_SS: | 
|  | case KPROBE_REENTER: | 
|  | /* | 
|  | * We are here because the instruction being single | 
|  | * stepped caused a page fault. We reset the current | 
|  | * kprobe and the nip points back to the probe address | 
|  | * and allow the page fault handler to continue as a | 
|  | * normal page fault. | 
|  | */ | 
|  | regs->nip = (unsigned long)cur->addr; | 
|  | regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */ | 
|  | regs->msr |= kcb->kprobe_saved_msr; | 
|  | if (kcb->kprobe_status == KPROBE_REENTER) | 
|  | restore_previous_kprobe(kcb); | 
|  | else | 
|  | reset_current_kprobe(); | 
|  | preempt_enable_no_resched(); | 
|  | break; | 
|  | case KPROBE_HIT_ACTIVE: | 
|  | case KPROBE_HIT_SSDONE: | 
|  | /* | 
|  | * We increment the nmissed count for accounting, | 
|  | * we can also use npre/npostfault count for accounting | 
|  | * these specific fault cases. | 
|  | */ | 
|  | kprobes_inc_nmissed_count(cur); | 
|  |  | 
|  | /* | 
|  | * We come here because instructions in the pre/post | 
|  | * handler caused the page_fault, this could happen | 
|  | * if handler tries to access user space by | 
|  | * copy_from_user(), get_user() etc. Let the | 
|  | * user-specified handler try to fix it first. | 
|  | */ | 
|  | if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * In case the user-specified fault handler returned | 
|  | * zero, try to fix up. | 
|  | */ | 
|  | if ((entry = search_exception_tables(regs->nip)) != NULL) { | 
|  | regs->nip = extable_fixup(entry); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fixup_exception() could not handle it, | 
|  | * Let do_page_fault() fix it. | 
|  | */ | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | NOKPROBE_SYMBOL(kprobe_fault_handler); | 
|  |  | 
|  | unsigned long arch_deref_entry_point(void *entry) | 
|  | { | 
|  | #ifdef PPC64_ELF_ABI_v1 | 
|  | if (!kernel_text_address((unsigned long)entry)) | 
|  | return ppc_global_function_entry(entry); | 
|  | else | 
|  | #endif | 
|  | return (unsigned long)entry; | 
|  | } | 
|  | NOKPROBE_SYMBOL(arch_deref_entry_point); | 
|  |  | 
|  | int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | struct jprobe *jp = container_of(p, struct jprobe, kp); | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  |  | 
|  | memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); | 
|  |  | 
|  | /* setup return addr to the jprobe handler routine */ | 
|  | regs->nip = arch_deref_entry_point(jp->entry); | 
|  | #ifdef PPC64_ELF_ABI_v2 | 
|  | regs->gpr[12] = (unsigned long)jp->entry; | 
|  | #elif defined(PPC64_ELF_ABI_v1) | 
|  | regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * jprobes use jprobe_return() which skips the normal return | 
|  | * path of the function, and this messes up the accounting of the | 
|  | * function graph tracer. | 
|  | * | 
|  | * Pause function graph tracing while performing the jprobe function. | 
|  | */ | 
|  | pause_graph_tracing(); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | NOKPROBE_SYMBOL(setjmp_pre_handler); | 
|  |  | 
|  | void __used jprobe_return(void) | 
|  | { | 
|  | asm volatile("trap" ::: "memory"); | 
|  | } | 
|  | NOKPROBE_SYMBOL(jprobe_return); | 
|  |  | 
|  | static void __used jprobe_return_end(void) | 
|  | { | 
|  | } | 
|  | NOKPROBE_SYMBOL(jprobe_return_end); | 
|  |  | 
|  | int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  |  | 
|  | /* | 
|  | * FIXME - we should ideally be validating that we got here 'cos | 
|  | * of the "trap" in jprobe_return() above, before restoring the | 
|  | * saved regs... | 
|  | */ | 
|  | memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); | 
|  | /* It's OK to start function graph tracing again */ | 
|  | unpause_graph_tracing(); | 
|  | preempt_enable_no_resched(); | 
|  | return 1; | 
|  | } | 
|  | NOKPROBE_SYMBOL(longjmp_break_handler); | 
|  |  | 
|  | static struct kprobe trampoline_p = { | 
|  | .addr = (kprobe_opcode_t *) &kretprobe_trampoline, | 
|  | .pre_handler = trampoline_probe_handler | 
|  | }; | 
|  |  | 
|  | int __init arch_init_kprobes(void) | 
|  | { | 
|  | return register_kprobe(&trampoline_p); | 
|  | } | 
|  |  | 
|  | int arch_trampoline_kprobe(struct kprobe *p) | 
|  | { | 
|  | if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | NOKPROBE_SYMBOL(arch_trampoline_kprobe); |