|  | /* | 
|  | * Copyright (c) 2007-2011 Nicira, Inc. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of version 2 of the GNU General Public | 
|  | * License as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA | 
|  | * 02110-1301, USA | 
|  | */ | 
|  |  | 
|  | #include "flow.h" | 
|  | #include "datapath.h" | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/if_ether.h> | 
|  | #include <linux/if_vlan.h> | 
|  | #include <net/llc_pdu.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/jhash.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/llc.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/if_arp.h> | 
|  | #include <linux/ip.h> | 
|  | #include <linux/ipv6.h> | 
|  | #include <linux/tcp.h> | 
|  | #include <linux/udp.h> | 
|  | #include <linux/icmp.h> | 
|  | #include <linux/icmpv6.h> | 
|  | #include <linux/rculist.h> | 
|  | #include <net/ip.h> | 
|  | #include <net/ipv6.h> | 
|  | #include <net/ndisc.h> | 
|  |  | 
|  | static struct kmem_cache *flow_cache; | 
|  |  | 
|  | static int check_header(struct sk_buff *skb, int len) | 
|  | { | 
|  | if (unlikely(skb->len < len)) | 
|  | return -EINVAL; | 
|  | if (unlikely(!pskb_may_pull(skb, len))) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool arphdr_ok(struct sk_buff *skb) | 
|  | { | 
|  | return pskb_may_pull(skb, skb_network_offset(skb) + | 
|  | sizeof(struct arp_eth_header)); | 
|  | } | 
|  |  | 
|  | static int check_iphdr(struct sk_buff *skb) | 
|  | { | 
|  | unsigned int nh_ofs = skb_network_offset(skb); | 
|  | unsigned int ip_len; | 
|  | int err; | 
|  |  | 
|  | err = check_header(skb, nh_ofs + sizeof(struct iphdr)); | 
|  | if (unlikely(err)) | 
|  | return err; | 
|  |  | 
|  | ip_len = ip_hdrlen(skb); | 
|  | if (unlikely(ip_len < sizeof(struct iphdr) || | 
|  | skb->len < nh_ofs + ip_len)) | 
|  | return -EINVAL; | 
|  |  | 
|  | skb_set_transport_header(skb, nh_ofs + ip_len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool tcphdr_ok(struct sk_buff *skb) | 
|  | { | 
|  | int th_ofs = skb_transport_offset(skb); | 
|  | int tcp_len; | 
|  |  | 
|  | if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) | 
|  | return false; | 
|  |  | 
|  | tcp_len = tcp_hdrlen(skb); | 
|  | if (unlikely(tcp_len < sizeof(struct tcphdr) || | 
|  | skb->len < th_ofs + tcp_len)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool udphdr_ok(struct sk_buff *skb) | 
|  | { | 
|  | return pskb_may_pull(skb, skb_transport_offset(skb) + | 
|  | sizeof(struct udphdr)); | 
|  | } | 
|  |  | 
|  | static bool icmphdr_ok(struct sk_buff *skb) | 
|  | { | 
|  | return pskb_may_pull(skb, skb_transport_offset(skb) + | 
|  | sizeof(struct icmphdr)); | 
|  | } | 
|  |  | 
|  | u64 ovs_flow_used_time(unsigned long flow_jiffies) | 
|  | { | 
|  | struct timespec cur_ts; | 
|  | u64 cur_ms, idle_ms; | 
|  |  | 
|  | ktime_get_ts(&cur_ts); | 
|  | idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); | 
|  | cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + | 
|  | cur_ts.tv_nsec / NSEC_PER_MSEC; | 
|  |  | 
|  | return cur_ms - idle_ms; | 
|  | } | 
|  |  | 
|  | #define SW_FLOW_KEY_OFFSET(field)		\ | 
|  | (offsetof(struct sw_flow_key, field) +	\ | 
|  | FIELD_SIZEOF(struct sw_flow_key, field)) | 
|  |  | 
|  | static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key, | 
|  | int *key_lenp) | 
|  | { | 
|  | unsigned int nh_ofs = skb_network_offset(skb); | 
|  | unsigned int nh_len; | 
|  | int payload_ofs; | 
|  | struct ipv6hdr *nh; | 
|  | uint8_t nexthdr; | 
|  | __be16 frag_off; | 
|  | int err; | 
|  |  | 
|  | *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label); | 
|  |  | 
|  | err = check_header(skb, nh_ofs + sizeof(*nh)); | 
|  | if (unlikely(err)) | 
|  | return err; | 
|  |  | 
|  | nh = ipv6_hdr(skb); | 
|  | nexthdr = nh->nexthdr; | 
|  | payload_ofs = (u8 *)(nh + 1) - skb->data; | 
|  |  | 
|  | key->ip.proto = NEXTHDR_NONE; | 
|  | key->ip.tos = ipv6_get_dsfield(nh); | 
|  | key->ip.ttl = nh->hop_limit; | 
|  | key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); | 
|  | key->ipv6.addr.src = nh->saddr; | 
|  | key->ipv6.addr.dst = nh->daddr; | 
|  |  | 
|  | payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); | 
|  | if (unlikely(payload_ofs < 0)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (frag_off) { | 
|  | if (frag_off & htons(~0x7)) | 
|  | key->ip.frag = OVS_FRAG_TYPE_LATER; | 
|  | else | 
|  | key->ip.frag = OVS_FRAG_TYPE_FIRST; | 
|  | } | 
|  |  | 
|  | nh_len = payload_ofs - nh_ofs; | 
|  | skb_set_transport_header(skb, nh_ofs + nh_len); | 
|  | key->ip.proto = nexthdr; | 
|  | return nh_len; | 
|  | } | 
|  |  | 
|  | static bool icmp6hdr_ok(struct sk_buff *skb) | 
|  | { | 
|  | return pskb_may_pull(skb, skb_transport_offset(skb) + | 
|  | sizeof(struct icmp6hdr)); | 
|  | } | 
|  |  | 
|  | #define TCP_FLAGS_OFFSET 13 | 
|  | #define TCP_FLAG_MASK 0x3f | 
|  |  | 
|  | void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb) | 
|  | { | 
|  | u8 tcp_flags = 0; | 
|  |  | 
|  | if ((flow->key.eth.type == htons(ETH_P_IP) || | 
|  | flow->key.eth.type == htons(ETH_P_IPV6)) && | 
|  | flow->key.ip.proto == IPPROTO_TCP && | 
|  | likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) { | 
|  | u8 *tcp = (u8 *)tcp_hdr(skb); | 
|  | tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK; | 
|  | } | 
|  |  | 
|  | spin_lock(&flow->lock); | 
|  | flow->used = jiffies; | 
|  | flow->packet_count++; | 
|  | flow->byte_count += skb->len; | 
|  | flow->tcp_flags |= tcp_flags; | 
|  | spin_unlock(&flow->lock); | 
|  | } | 
|  |  | 
|  | struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions) | 
|  | { | 
|  | int actions_len = nla_len(actions); | 
|  | struct sw_flow_actions *sfa; | 
|  |  | 
|  | if (actions_len > MAX_ACTIONS_BUFSIZE) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL); | 
|  | if (!sfa) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | sfa->actions_len = actions_len; | 
|  | memcpy(sfa->actions, nla_data(actions), actions_len); | 
|  | return sfa; | 
|  | } | 
|  |  | 
|  | struct sw_flow *ovs_flow_alloc(void) | 
|  | { | 
|  | struct sw_flow *flow; | 
|  |  | 
|  | flow = kmem_cache_alloc(flow_cache, GFP_KERNEL); | 
|  | if (!flow) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | spin_lock_init(&flow->lock); | 
|  | flow->sf_acts = NULL; | 
|  |  | 
|  | return flow; | 
|  | } | 
|  |  | 
|  | static struct hlist_head *find_bucket(struct flow_table *table, u32 hash) | 
|  | { | 
|  | hash = jhash_1word(hash, table->hash_seed); | 
|  | return flex_array_get(table->buckets, | 
|  | (hash & (table->n_buckets - 1))); | 
|  | } | 
|  |  | 
|  | static struct flex_array *alloc_buckets(unsigned int n_buckets) | 
|  | { | 
|  | struct flex_array *buckets; | 
|  | int i, err; | 
|  |  | 
|  | buckets = flex_array_alloc(sizeof(struct hlist_head *), | 
|  | n_buckets, GFP_KERNEL); | 
|  | if (!buckets) | 
|  | return NULL; | 
|  |  | 
|  | err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL); | 
|  | if (err) { | 
|  | flex_array_free(buckets); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < n_buckets; i++) | 
|  | INIT_HLIST_HEAD((struct hlist_head *) | 
|  | flex_array_get(buckets, i)); | 
|  |  | 
|  | return buckets; | 
|  | } | 
|  |  | 
|  | static void free_buckets(struct flex_array *buckets) | 
|  | { | 
|  | flex_array_free(buckets); | 
|  | } | 
|  |  | 
|  | struct flow_table *ovs_flow_tbl_alloc(int new_size) | 
|  | { | 
|  | struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL); | 
|  |  | 
|  | if (!table) | 
|  | return NULL; | 
|  |  | 
|  | table->buckets = alloc_buckets(new_size); | 
|  |  | 
|  | if (!table->buckets) { | 
|  | kfree(table); | 
|  | return NULL; | 
|  | } | 
|  | table->n_buckets = new_size; | 
|  | table->count = 0; | 
|  | table->node_ver = 0; | 
|  | table->keep_flows = false; | 
|  | get_random_bytes(&table->hash_seed, sizeof(u32)); | 
|  |  | 
|  | return table; | 
|  | } | 
|  |  | 
|  | void ovs_flow_tbl_destroy(struct flow_table *table) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!table) | 
|  | return; | 
|  |  | 
|  | if (table->keep_flows) | 
|  | goto skip_flows; | 
|  |  | 
|  | for (i = 0; i < table->n_buckets; i++) { | 
|  | struct sw_flow *flow; | 
|  | struct hlist_head *head = flex_array_get(table->buckets, i); | 
|  | struct hlist_node *node, *n; | 
|  | int ver = table->node_ver; | 
|  |  | 
|  | hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) { | 
|  | hlist_del_rcu(&flow->hash_node[ver]); | 
|  | ovs_flow_free(flow); | 
|  | } | 
|  | } | 
|  |  | 
|  | skip_flows: | 
|  | free_buckets(table->buckets); | 
|  | kfree(table); | 
|  | } | 
|  |  | 
|  | static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu) | 
|  | { | 
|  | struct flow_table *table = container_of(rcu, struct flow_table, rcu); | 
|  |  | 
|  | ovs_flow_tbl_destroy(table); | 
|  | } | 
|  |  | 
|  | void ovs_flow_tbl_deferred_destroy(struct flow_table *table) | 
|  | { | 
|  | if (!table) | 
|  | return; | 
|  |  | 
|  | call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb); | 
|  | } | 
|  |  | 
|  | struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last) | 
|  | { | 
|  | struct sw_flow *flow; | 
|  | struct hlist_head *head; | 
|  | struct hlist_node *n; | 
|  | int ver; | 
|  | int i; | 
|  |  | 
|  | ver = table->node_ver; | 
|  | while (*bucket < table->n_buckets) { | 
|  | i = 0; | 
|  | head = flex_array_get(table->buckets, *bucket); | 
|  | hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) { | 
|  | if (i < *last) { | 
|  | i++; | 
|  | continue; | 
|  | } | 
|  | *last = i + 1; | 
|  | return flow; | 
|  | } | 
|  | (*bucket)++; | 
|  | *last = 0; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new) | 
|  | { | 
|  | int old_ver; | 
|  | int i; | 
|  |  | 
|  | old_ver = old->node_ver; | 
|  | new->node_ver = !old_ver; | 
|  |  | 
|  | /* Insert in new table. */ | 
|  | for (i = 0; i < old->n_buckets; i++) { | 
|  | struct sw_flow *flow; | 
|  | struct hlist_head *head; | 
|  | struct hlist_node *n; | 
|  |  | 
|  | head = flex_array_get(old->buckets, i); | 
|  |  | 
|  | hlist_for_each_entry(flow, n, head, hash_node[old_ver]) | 
|  | ovs_flow_tbl_insert(new, flow); | 
|  | } | 
|  | old->keep_flows = true; | 
|  | } | 
|  |  | 
|  | static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets) | 
|  | { | 
|  | struct flow_table *new_table; | 
|  |  | 
|  | new_table = ovs_flow_tbl_alloc(n_buckets); | 
|  | if (!new_table) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | flow_table_copy_flows(table, new_table); | 
|  |  | 
|  | return new_table; | 
|  | } | 
|  |  | 
|  | struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table) | 
|  | { | 
|  | return __flow_tbl_rehash(table, table->n_buckets); | 
|  | } | 
|  |  | 
|  | struct flow_table *ovs_flow_tbl_expand(struct flow_table *table) | 
|  | { | 
|  | return __flow_tbl_rehash(table, table->n_buckets * 2); | 
|  | } | 
|  |  | 
|  | void ovs_flow_free(struct sw_flow *flow) | 
|  | { | 
|  | if (unlikely(!flow)) | 
|  | return; | 
|  |  | 
|  | kfree((struct sf_flow_acts __force *)flow->sf_acts); | 
|  | kmem_cache_free(flow_cache, flow); | 
|  | } | 
|  |  | 
|  | /* RCU callback used by ovs_flow_deferred_free. */ | 
|  | static void rcu_free_flow_callback(struct rcu_head *rcu) | 
|  | { | 
|  | struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu); | 
|  |  | 
|  | ovs_flow_free(flow); | 
|  | } | 
|  |  | 
|  | /* Schedules 'flow' to be freed after the next RCU grace period. | 
|  | * The caller must hold rcu_read_lock for this to be sensible. */ | 
|  | void ovs_flow_deferred_free(struct sw_flow *flow) | 
|  | { | 
|  | call_rcu(&flow->rcu, rcu_free_flow_callback); | 
|  | } | 
|  |  | 
|  | /* Schedules 'sf_acts' to be freed after the next RCU grace period. | 
|  | * The caller must hold rcu_read_lock for this to be sensible. */ | 
|  | void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts) | 
|  | { | 
|  | kfree_rcu(sf_acts, rcu); | 
|  | } | 
|  |  | 
|  | static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) | 
|  | { | 
|  | struct qtag_prefix { | 
|  | __be16 eth_type; /* ETH_P_8021Q */ | 
|  | __be16 tci; | 
|  | }; | 
|  | struct qtag_prefix *qp; | 
|  |  | 
|  | if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) + | 
|  | sizeof(__be16)))) | 
|  | return -ENOMEM; | 
|  |  | 
|  | qp = (struct qtag_prefix *) skb->data; | 
|  | key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT); | 
|  | __skb_pull(skb, sizeof(struct qtag_prefix)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static __be16 parse_ethertype(struct sk_buff *skb) | 
|  | { | 
|  | struct llc_snap_hdr { | 
|  | u8  dsap;  /* Always 0xAA */ | 
|  | u8  ssap;  /* Always 0xAA */ | 
|  | u8  ctrl; | 
|  | u8  oui[3]; | 
|  | __be16 ethertype; | 
|  | }; | 
|  | struct llc_snap_hdr *llc; | 
|  | __be16 proto; | 
|  |  | 
|  | proto = *(__be16 *) skb->data; | 
|  | __skb_pull(skb, sizeof(__be16)); | 
|  |  | 
|  | if (ntohs(proto) >= 1536) | 
|  | return proto; | 
|  |  | 
|  | if (skb->len < sizeof(struct llc_snap_hdr)) | 
|  | return htons(ETH_P_802_2); | 
|  |  | 
|  | if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) | 
|  | return htons(0); | 
|  |  | 
|  | llc = (struct llc_snap_hdr *) skb->data; | 
|  | if (llc->dsap != LLC_SAP_SNAP || | 
|  | llc->ssap != LLC_SAP_SNAP || | 
|  | (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) | 
|  | return htons(ETH_P_802_2); | 
|  |  | 
|  | __skb_pull(skb, sizeof(struct llc_snap_hdr)); | 
|  | return llc->ethertype; | 
|  | } | 
|  |  | 
|  | static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, | 
|  | int *key_lenp, int nh_len) | 
|  | { | 
|  | struct icmp6hdr *icmp = icmp6_hdr(skb); | 
|  | int error = 0; | 
|  | int key_len; | 
|  |  | 
|  | /* The ICMPv6 type and code fields use the 16-bit transport port | 
|  | * fields, so we need to store them in 16-bit network byte order. | 
|  | */ | 
|  | key->ipv6.tp.src = htons(icmp->icmp6_type); | 
|  | key->ipv6.tp.dst = htons(icmp->icmp6_code); | 
|  | key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | 
|  |  | 
|  | if (icmp->icmp6_code == 0 && | 
|  | (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || | 
|  | icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { | 
|  | int icmp_len = skb->len - skb_transport_offset(skb); | 
|  | struct nd_msg *nd; | 
|  | int offset; | 
|  |  | 
|  | key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); | 
|  |  | 
|  | /* In order to process neighbor discovery options, we need the | 
|  | * entire packet. | 
|  | */ | 
|  | if (unlikely(icmp_len < sizeof(*nd))) | 
|  | goto out; | 
|  | if (unlikely(skb_linearize(skb))) { | 
|  | error = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | nd = (struct nd_msg *)skb_transport_header(skb); | 
|  | key->ipv6.nd.target = nd->target; | 
|  | key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); | 
|  |  | 
|  | icmp_len -= sizeof(*nd); | 
|  | offset = 0; | 
|  | while (icmp_len >= 8) { | 
|  | struct nd_opt_hdr *nd_opt = | 
|  | (struct nd_opt_hdr *)(nd->opt + offset); | 
|  | int opt_len = nd_opt->nd_opt_len * 8; | 
|  |  | 
|  | if (unlikely(!opt_len || opt_len > icmp_len)) | 
|  | goto invalid; | 
|  |  | 
|  | /* Store the link layer address if the appropriate | 
|  | * option is provided.  It is considered an error if | 
|  | * the same link layer option is specified twice. | 
|  | */ | 
|  | if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR | 
|  | && opt_len == 8) { | 
|  | if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) | 
|  | goto invalid; | 
|  | memcpy(key->ipv6.nd.sll, | 
|  | &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); | 
|  | } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR | 
|  | && opt_len == 8) { | 
|  | if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) | 
|  | goto invalid; | 
|  | memcpy(key->ipv6.nd.tll, | 
|  | &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); | 
|  | } | 
|  |  | 
|  | icmp_len -= opt_len; | 
|  | offset += opt_len; | 
|  | } | 
|  | } | 
|  |  | 
|  | goto out; | 
|  |  | 
|  | invalid: | 
|  | memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); | 
|  | memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); | 
|  | memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); | 
|  |  | 
|  | out: | 
|  | *key_lenp = key_len; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ovs_flow_extract - extracts a flow key from an Ethernet frame. | 
|  | * @skb: sk_buff that contains the frame, with skb->data pointing to the | 
|  | * Ethernet header | 
|  | * @in_port: port number on which @skb was received. | 
|  | * @key: output flow key | 
|  | * @key_lenp: length of output flow key | 
|  | * | 
|  | * The caller must ensure that skb->len >= ETH_HLEN. | 
|  | * | 
|  | * Returns 0 if successful, otherwise a negative errno value. | 
|  | * | 
|  | * Initializes @skb header pointers as follows: | 
|  | * | 
|  | *    - skb->mac_header: the Ethernet header. | 
|  | * | 
|  | *    - skb->network_header: just past the Ethernet header, or just past the | 
|  | *      VLAN header, to the first byte of the Ethernet payload. | 
|  | * | 
|  | *    - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6 | 
|  | *      on output, then just past the IP header, if one is present and | 
|  | *      of a correct length, otherwise the same as skb->network_header. | 
|  | *      For other key->dl_type values it is left untouched. | 
|  | */ | 
|  | int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key, | 
|  | int *key_lenp) | 
|  | { | 
|  | int error = 0; | 
|  | int key_len = SW_FLOW_KEY_OFFSET(eth); | 
|  | struct ethhdr *eth; | 
|  |  | 
|  | memset(key, 0, sizeof(*key)); | 
|  |  | 
|  | key->phy.priority = skb->priority; | 
|  | key->phy.in_port = in_port; | 
|  |  | 
|  | skb_reset_mac_header(skb); | 
|  |  | 
|  | /* Link layer.  We are guaranteed to have at least the 14 byte Ethernet | 
|  | * header in the linear data area. | 
|  | */ | 
|  | eth = eth_hdr(skb); | 
|  | memcpy(key->eth.src, eth->h_source, ETH_ALEN); | 
|  | memcpy(key->eth.dst, eth->h_dest, ETH_ALEN); | 
|  |  | 
|  | __skb_pull(skb, 2 * ETH_ALEN); | 
|  |  | 
|  | if (vlan_tx_tag_present(skb)) | 
|  | key->eth.tci = htons(skb->vlan_tci); | 
|  | else if (eth->h_proto == htons(ETH_P_8021Q)) | 
|  | if (unlikely(parse_vlan(skb, key))) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key->eth.type = parse_ethertype(skb); | 
|  | if (unlikely(key->eth.type == htons(0))) | 
|  | return -ENOMEM; | 
|  |  | 
|  | skb_reset_network_header(skb); | 
|  | __skb_push(skb, skb->data - skb_mac_header(skb)); | 
|  |  | 
|  | /* Network layer. */ | 
|  | if (key->eth.type == htons(ETH_P_IP)) { | 
|  | struct iphdr *nh; | 
|  | __be16 offset; | 
|  |  | 
|  | key_len = SW_FLOW_KEY_OFFSET(ipv4.addr); | 
|  |  | 
|  | error = check_iphdr(skb); | 
|  | if (unlikely(error)) { | 
|  | if (error == -EINVAL) { | 
|  | skb->transport_header = skb->network_header; | 
|  | error = 0; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | nh = ip_hdr(skb); | 
|  | key->ipv4.addr.src = nh->saddr; | 
|  | key->ipv4.addr.dst = nh->daddr; | 
|  |  | 
|  | key->ip.proto = nh->protocol; | 
|  | key->ip.tos = nh->tos; | 
|  | key->ip.ttl = nh->ttl; | 
|  |  | 
|  | offset = nh->frag_off & htons(IP_OFFSET); | 
|  | if (offset) { | 
|  | key->ip.frag = OVS_FRAG_TYPE_LATER; | 
|  | goto out; | 
|  | } | 
|  | if (nh->frag_off & htons(IP_MF) || | 
|  | skb_shinfo(skb)->gso_type & SKB_GSO_UDP) | 
|  | key->ip.frag = OVS_FRAG_TYPE_FIRST; | 
|  |  | 
|  | /* Transport layer. */ | 
|  | if (key->ip.proto == IPPROTO_TCP) { | 
|  | key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); | 
|  | if (tcphdr_ok(skb)) { | 
|  | struct tcphdr *tcp = tcp_hdr(skb); | 
|  | key->ipv4.tp.src = tcp->source; | 
|  | key->ipv4.tp.dst = tcp->dest; | 
|  | } | 
|  | } else if (key->ip.proto == IPPROTO_UDP) { | 
|  | key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); | 
|  | if (udphdr_ok(skb)) { | 
|  | struct udphdr *udp = udp_hdr(skb); | 
|  | key->ipv4.tp.src = udp->source; | 
|  | key->ipv4.tp.dst = udp->dest; | 
|  | } | 
|  | } else if (key->ip.proto == IPPROTO_ICMP) { | 
|  | key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); | 
|  | if (icmphdr_ok(skb)) { | 
|  | struct icmphdr *icmp = icmp_hdr(skb); | 
|  | /* The ICMP type and code fields use the 16-bit | 
|  | * transport port fields, so we need to store | 
|  | * them in 16-bit network byte order. */ | 
|  | key->ipv4.tp.src = htons(icmp->type); | 
|  | key->ipv4.tp.dst = htons(icmp->code); | 
|  | } | 
|  | } | 
|  |  | 
|  | } else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) { | 
|  | struct arp_eth_header *arp; | 
|  |  | 
|  | arp = (struct arp_eth_header *)skb_network_header(skb); | 
|  |  | 
|  | if (arp->ar_hrd == htons(ARPHRD_ETHER) | 
|  | && arp->ar_pro == htons(ETH_P_IP) | 
|  | && arp->ar_hln == ETH_ALEN | 
|  | && arp->ar_pln == 4) { | 
|  |  | 
|  | /* We only match on the lower 8 bits of the opcode. */ | 
|  | if (ntohs(arp->ar_op) <= 0xff) | 
|  | key->ip.proto = ntohs(arp->ar_op); | 
|  |  | 
|  | if (key->ip.proto == ARPOP_REQUEST | 
|  | || key->ip.proto == ARPOP_REPLY) { | 
|  | memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); | 
|  | memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); | 
|  | memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN); | 
|  | memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN); | 
|  | key_len = SW_FLOW_KEY_OFFSET(ipv4.arp); | 
|  | } | 
|  | } | 
|  | } else if (key->eth.type == htons(ETH_P_IPV6)) { | 
|  | int nh_len;             /* IPv6 Header + Extensions */ | 
|  |  | 
|  | nh_len = parse_ipv6hdr(skb, key, &key_len); | 
|  | if (unlikely(nh_len < 0)) { | 
|  | if (nh_len == -EINVAL) | 
|  | skb->transport_header = skb->network_header; | 
|  | else | 
|  | error = nh_len; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (key->ip.frag == OVS_FRAG_TYPE_LATER) | 
|  | goto out; | 
|  | if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) | 
|  | key->ip.frag = OVS_FRAG_TYPE_FIRST; | 
|  |  | 
|  | /* Transport layer. */ | 
|  | if (key->ip.proto == NEXTHDR_TCP) { | 
|  | key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | 
|  | if (tcphdr_ok(skb)) { | 
|  | struct tcphdr *tcp = tcp_hdr(skb); | 
|  | key->ipv6.tp.src = tcp->source; | 
|  | key->ipv6.tp.dst = tcp->dest; | 
|  | } | 
|  | } else if (key->ip.proto == NEXTHDR_UDP) { | 
|  | key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | 
|  | if (udphdr_ok(skb)) { | 
|  | struct udphdr *udp = udp_hdr(skb); | 
|  | key->ipv6.tp.src = udp->source; | 
|  | key->ipv6.tp.dst = udp->dest; | 
|  | } | 
|  | } else if (key->ip.proto == NEXTHDR_ICMP) { | 
|  | key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | 
|  | if (icmp6hdr_ok(skb)) { | 
|  | error = parse_icmpv6(skb, key, &key_len, nh_len); | 
|  | if (error < 0) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | *key_lenp = key_len; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len) | 
|  | { | 
|  | return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0); | 
|  | } | 
|  |  | 
|  | struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table, | 
|  | struct sw_flow_key *key, int key_len) | 
|  | { | 
|  | struct sw_flow *flow; | 
|  | struct hlist_node *n; | 
|  | struct hlist_head *head; | 
|  | u32 hash; | 
|  |  | 
|  | hash = ovs_flow_hash(key, key_len); | 
|  |  | 
|  | head = find_bucket(table, hash); | 
|  | hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) { | 
|  |  | 
|  | if (flow->hash == hash && | 
|  | !memcmp(&flow->key, key, key_len)) { | 
|  | return flow; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow) | 
|  | { | 
|  | struct hlist_head *head; | 
|  |  | 
|  | head = find_bucket(table, flow->hash); | 
|  | hlist_add_head_rcu(&flow->hash_node[table->node_ver], head); | 
|  | table->count++; | 
|  | } | 
|  |  | 
|  | void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow) | 
|  | { | 
|  | hlist_del_rcu(&flow->hash_node[table->node_ver]); | 
|  | table->count--; | 
|  | BUG_ON(table->count < 0); | 
|  | } | 
|  |  | 
|  | /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */ | 
|  | const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { | 
|  | [OVS_KEY_ATTR_ENCAP] = -1, | 
|  | [OVS_KEY_ATTR_PRIORITY] = sizeof(u32), | 
|  | [OVS_KEY_ATTR_IN_PORT] = sizeof(u32), | 
|  | [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet), | 
|  | [OVS_KEY_ATTR_VLAN] = sizeof(__be16), | 
|  | [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16), | 
|  | [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4), | 
|  | [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6), | 
|  | [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp), | 
|  | [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp), | 
|  | [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp), | 
|  | [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6), | 
|  | [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp), | 
|  | [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd), | 
|  | }; | 
|  |  | 
|  | static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len, | 
|  | const struct nlattr *a[], u32 *attrs) | 
|  | { | 
|  | const struct ovs_key_icmp *icmp_key; | 
|  | const struct ovs_key_tcp *tcp_key; | 
|  | const struct ovs_key_udp *udp_key; | 
|  |  | 
|  | switch (swkey->ip.proto) { | 
|  | case IPPROTO_TCP: | 
|  | if (!(*attrs & (1 << OVS_KEY_ATTR_TCP))) | 
|  | return -EINVAL; | 
|  | *attrs &= ~(1 << OVS_KEY_ATTR_TCP); | 
|  |  | 
|  | *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); | 
|  | tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); | 
|  | swkey->ipv4.tp.src = tcp_key->tcp_src; | 
|  | swkey->ipv4.tp.dst = tcp_key->tcp_dst; | 
|  | break; | 
|  |  | 
|  | case IPPROTO_UDP: | 
|  | if (!(*attrs & (1 << OVS_KEY_ATTR_UDP))) | 
|  | return -EINVAL; | 
|  | *attrs &= ~(1 << OVS_KEY_ATTR_UDP); | 
|  |  | 
|  | *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); | 
|  | udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); | 
|  | swkey->ipv4.tp.src = udp_key->udp_src; | 
|  | swkey->ipv4.tp.dst = udp_key->udp_dst; | 
|  | break; | 
|  |  | 
|  | case IPPROTO_ICMP: | 
|  | if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP))) | 
|  | return -EINVAL; | 
|  | *attrs &= ~(1 << OVS_KEY_ATTR_ICMP); | 
|  |  | 
|  | *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); | 
|  | icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); | 
|  | swkey->ipv4.tp.src = htons(icmp_key->icmp_type); | 
|  | swkey->ipv4.tp.dst = htons(icmp_key->icmp_code); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len, | 
|  | const struct nlattr *a[], u32 *attrs) | 
|  | { | 
|  | const struct ovs_key_icmpv6 *icmpv6_key; | 
|  | const struct ovs_key_tcp *tcp_key; | 
|  | const struct ovs_key_udp *udp_key; | 
|  |  | 
|  | switch (swkey->ip.proto) { | 
|  | case IPPROTO_TCP: | 
|  | if (!(*attrs & (1 << OVS_KEY_ATTR_TCP))) | 
|  | return -EINVAL; | 
|  | *attrs &= ~(1 << OVS_KEY_ATTR_TCP); | 
|  |  | 
|  | *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | 
|  | tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); | 
|  | swkey->ipv6.tp.src = tcp_key->tcp_src; | 
|  | swkey->ipv6.tp.dst = tcp_key->tcp_dst; | 
|  | break; | 
|  |  | 
|  | case IPPROTO_UDP: | 
|  | if (!(*attrs & (1 << OVS_KEY_ATTR_UDP))) | 
|  | return -EINVAL; | 
|  | *attrs &= ~(1 << OVS_KEY_ATTR_UDP); | 
|  |  | 
|  | *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | 
|  | udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); | 
|  | swkey->ipv6.tp.src = udp_key->udp_src; | 
|  | swkey->ipv6.tp.dst = udp_key->udp_dst; | 
|  | break; | 
|  |  | 
|  | case IPPROTO_ICMPV6: | 
|  | if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6))) | 
|  | return -EINVAL; | 
|  | *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); | 
|  |  | 
|  | *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | 
|  | icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); | 
|  | swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type); | 
|  | swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code); | 
|  |  | 
|  | if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) || | 
|  | swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { | 
|  | const struct ovs_key_nd *nd_key; | 
|  |  | 
|  | if (!(*attrs & (1 << OVS_KEY_ATTR_ND))) | 
|  | return -EINVAL; | 
|  | *attrs &= ~(1 << OVS_KEY_ATTR_ND); | 
|  |  | 
|  | *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); | 
|  | nd_key = nla_data(a[OVS_KEY_ATTR_ND]); | 
|  | memcpy(&swkey->ipv6.nd.target, nd_key->nd_target, | 
|  | sizeof(swkey->ipv6.nd.target)); | 
|  | memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN); | 
|  | memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int parse_flow_nlattrs(const struct nlattr *attr, | 
|  | const struct nlattr *a[], u32 *attrsp) | 
|  | { | 
|  | const struct nlattr *nla; | 
|  | u32 attrs; | 
|  | int rem; | 
|  |  | 
|  | attrs = 0; | 
|  | nla_for_each_nested(nla, attr, rem) { | 
|  | u16 type = nla_type(nla); | 
|  | int expected_len; | 
|  |  | 
|  | if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type)) | 
|  | return -EINVAL; | 
|  |  | 
|  | expected_len = ovs_key_lens[type]; | 
|  | if (nla_len(nla) != expected_len && expected_len != -1) | 
|  | return -EINVAL; | 
|  |  | 
|  | attrs |= 1 << type; | 
|  | a[type] = nla; | 
|  | } | 
|  | if (rem) | 
|  | return -EINVAL; | 
|  |  | 
|  | *attrsp = attrs; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key. | 
|  | * @swkey: receives the extracted flow key. | 
|  | * @key_lenp: number of bytes used in @swkey. | 
|  | * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute | 
|  | * sequence. | 
|  | */ | 
|  | int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp, | 
|  | const struct nlattr *attr) | 
|  | { | 
|  | const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; | 
|  | const struct ovs_key_ethernet *eth_key; | 
|  | int key_len; | 
|  | u32 attrs; | 
|  | int err; | 
|  |  | 
|  | memset(swkey, 0, sizeof(struct sw_flow_key)); | 
|  | key_len = SW_FLOW_KEY_OFFSET(eth); | 
|  |  | 
|  | err = parse_flow_nlattrs(attr, a, &attrs); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* Metadata attributes. */ | 
|  | if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { | 
|  | swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]); | 
|  | attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); | 
|  | } | 
|  | if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { | 
|  | u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); | 
|  | if (in_port >= DP_MAX_PORTS) | 
|  | return -EINVAL; | 
|  | swkey->phy.in_port = in_port; | 
|  | attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); | 
|  | } else { | 
|  | swkey->phy.in_port = DP_MAX_PORTS; | 
|  | } | 
|  |  | 
|  | /* Data attributes. */ | 
|  | if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET))) | 
|  | return -EINVAL; | 
|  | attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); | 
|  |  | 
|  | eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); | 
|  | memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN); | 
|  | memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN); | 
|  |  | 
|  | if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) && | 
|  | nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) { | 
|  | const struct nlattr *encap; | 
|  | __be16 tci; | 
|  |  | 
|  | if (attrs != ((1 << OVS_KEY_ATTR_VLAN) | | 
|  | (1 << OVS_KEY_ATTR_ETHERTYPE) | | 
|  | (1 << OVS_KEY_ATTR_ENCAP))) | 
|  | return -EINVAL; | 
|  |  | 
|  | encap = a[OVS_KEY_ATTR_ENCAP]; | 
|  | tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); | 
|  | if (tci & htons(VLAN_TAG_PRESENT)) { | 
|  | swkey->eth.tci = tci; | 
|  |  | 
|  | err = parse_flow_nlattrs(encap, a, &attrs); | 
|  | if (err) | 
|  | return err; | 
|  | } else if (!tci) { | 
|  | /* Corner case for truncated 802.1Q header. */ | 
|  | if (nla_len(encap)) | 
|  | return -EINVAL; | 
|  |  | 
|  | swkey->eth.type = htons(ETH_P_8021Q); | 
|  | *key_lenp = key_len; | 
|  | return 0; | 
|  | } else { | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { | 
|  | swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); | 
|  | if (ntohs(swkey->eth.type) < 1536) | 
|  | return -EINVAL; | 
|  | attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); | 
|  | } else { | 
|  | swkey->eth.type = htons(ETH_P_802_2); | 
|  | } | 
|  |  | 
|  | if (swkey->eth.type == htons(ETH_P_IP)) { | 
|  | const struct ovs_key_ipv4 *ipv4_key; | 
|  |  | 
|  | if (!(attrs & (1 << OVS_KEY_ATTR_IPV4))) | 
|  | return -EINVAL; | 
|  | attrs &= ~(1 << OVS_KEY_ATTR_IPV4); | 
|  |  | 
|  | key_len = SW_FLOW_KEY_OFFSET(ipv4.addr); | 
|  | ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); | 
|  | if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) | 
|  | return -EINVAL; | 
|  | swkey->ip.proto = ipv4_key->ipv4_proto; | 
|  | swkey->ip.tos = ipv4_key->ipv4_tos; | 
|  | swkey->ip.ttl = ipv4_key->ipv4_ttl; | 
|  | swkey->ip.frag = ipv4_key->ipv4_frag; | 
|  | swkey->ipv4.addr.src = ipv4_key->ipv4_src; | 
|  | swkey->ipv4.addr.dst = ipv4_key->ipv4_dst; | 
|  |  | 
|  | if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) { | 
|  | err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | } else if (swkey->eth.type == htons(ETH_P_IPV6)) { | 
|  | const struct ovs_key_ipv6 *ipv6_key; | 
|  |  | 
|  | if (!(attrs & (1 << OVS_KEY_ATTR_IPV6))) | 
|  | return -EINVAL; | 
|  | attrs &= ~(1 << OVS_KEY_ATTR_IPV6); | 
|  |  | 
|  | key_len = SW_FLOW_KEY_OFFSET(ipv6.label); | 
|  | ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); | 
|  | if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) | 
|  | return -EINVAL; | 
|  | swkey->ipv6.label = ipv6_key->ipv6_label; | 
|  | swkey->ip.proto = ipv6_key->ipv6_proto; | 
|  | swkey->ip.tos = ipv6_key->ipv6_tclass; | 
|  | swkey->ip.ttl = ipv6_key->ipv6_hlimit; | 
|  | swkey->ip.frag = ipv6_key->ipv6_frag; | 
|  | memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src, | 
|  | sizeof(swkey->ipv6.addr.src)); | 
|  | memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst, | 
|  | sizeof(swkey->ipv6.addr.dst)); | 
|  |  | 
|  | if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) { | 
|  | err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | } else if (swkey->eth.type == htons(ETH_P_ARP)) { | 
|  | const struct ovs_key_arp *arp_key; | 
|  |  | 
|  | if (!(attrs & (1 << OVS_KEY_ATTR_ARP))) | 
|  | return -EINVAL; | 
|  | attrs &= ~(1 << OVS_KEY_ATTR_ARP); | 
|  |  | 
|  | key_len = SW_FLOW_KEY_OFFSET(ipv4.arp); | 
|  | arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); | 
|  | swkey->ipv4.addr.src = arp_key->arp_sip; | 
|  | swkey->ipv4.addr.dst = arp_key->arp_tip; | 
|  | if (arp_key->arp_op & htons(0xff00)) | 
|  | return -EINVAL; | 
|  | swkey->ip.proto = ntohs(arp_key->arp_op); | 
|  | memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN); | 
|  | memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN); | 
|  | } | 
|  |  | 
|  | if (attrs) | 
|  | return -EINVAL; | 
|  | *key_lenp = key_len; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key. | 
|  | * @in_port: receives the extracted input port. | 
|  | * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute | 
|  | * sequence. | 
|  | * | 
|  | * This parses a series of Netlink attributes that form a flow key, which must | 
|  | * take the same form accepted by flow_from_nlattrs(), but only enough of it to | 
|  | * get the metadata, that is, the parts of the flow key that cannot be | 
|  | * extracted from the packet itself. | 
|  | */ | 
|  | int ovs_flow_metadata_from_nlattrs(u32 *priority, u16 *in_port, | 
|  | const struct nlattr *attr) | 
|  | { | 
|  | const struct nlattr *nla; | 
|  | int rem; | 
|  |  | 
|  | *in_port = DP_MAX_PORTS; | 
|  | *priority = 0; | 
|  |  | 
|  | nla_for_each_nested(nla, attr, rem) { | 
|  | int type = nla_type(nla); | 
|  |  | 
|  | if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) { | 
|  | if (nla_len(nla) != ovs_key_lens[type]) | 
|  | return -EINVAL; | 
|  |  | 
|  | switch (type) { | 
|  | case OVS_KEY_ATTR_PRIORITY: | 
|  | *priority = nla_get_u32(nla); | 
|  | break; | 
|  |  | 
|  | case OVS_KEY_ATTR_IN_PORT: | 
|  | if (nla_get_u32(nla) >= DP_MAX_PORTS) | 
|  | return -EINVAL; | 
|  | *in_port = nla_get_u32(nla); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (rem) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb) | 
|  | { | 
|  | struct ovs_key_ethernet *eth_key; | 
|  | struct nlattr *nla, *encap; | 
|  |  | 
|  | if (swkey->phy.priority && | 
|  | nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority)) | 
|  | goto nla_put_failure; | 
|  |  | 
|  | if (swkey->phy.in_port != DP_MAX_PORTS && | 
|  | nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port)) | 
|  | goto nla_put_failure; | 
|  |  | 
|  | nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); | 
|  | if (!nla) | 
|  | goto nla_put_failure; | 
|  | eth_key = nla_data(nla); | 
|  | memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN); | 
|  | memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN); | 
|  |  | 
|  | if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) { | 
|  | if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)) || | 
|  | nla_put_be16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci)) | 
|  | goto nla_put_failure; | 
|  | encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); | 
|  | if (!swkey->eth.tci) | 
|  | goto unencap; | 
|  | } else { | 
|  | encap = NULL; | 
|  | } | 
|  |  | 
|  | if (swkey->eth.type == htons(ETH_P_802_2)) | 
|  | goto unencap; | 
|  |  | 
|  | if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type)) | 
|  | goto nla_put_failure; | 
|  |  | 
|  | if (swkey->eth.type == htons(ETH_P_IP)) { | 
|  | struct ovs_key_ipv4 *ipv4_key; | 
|  |  | 
|  | nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); | 
|  | if (!nla) | 
|  | goto nla_put_failure; | 
|  | ipv4_key = nla_data(nla); | 
|  | ipv4_key->ipv4_src = swkey->ipv4.addr.src; | 
|  | ipv4_key->ipv4_dst = swkey->ipv4.addr.dst; | 
|  | ipv4_key->ipv4_proto = swkey->ip.proto; | 
|  | ipv4_key->ipv4_tos = swkey->ip.tos; | 
|  | ipv4_key->ipv4_ttl = swkey->ip.ttl; | 
|  | ipv4_key->ipv4_frag = swkey->ip.frag; | 
|  | } else if (swkey->eth.type == htons(ETH_P_IPV6)) { | 
|  | struct ovs_key_ipv6 *ipv6_key; | 
|  |  | 
|  | nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); | 
|  | if (!nla) | 
|  | goto nla_put_failure; | 
|  | ipv6_key = nla_data(nla); | 
|  | memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src, | 
|  | sizeof(ipv6_key->ipv6_src)); | 
|  | memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst, | 
|  | sizeof(ipv6_key->ipv6_dst)); | 
|  | ipv6_key->ipv6_label = swkey->ipv6.label; | 
|  | ipv6_key->ipv6_proto = swkey->ip.proto; | 
|  | ipv6_key->ipv6_tclass = swkey->ip.tos; | 
|  | ipv6_key->ipv6_hlimit = swkey->ip.ttl; | 
|  | ipv6_key->ipv6_frag = swkey->ip.frag; | 
|  | } else if (swkey->eth.type == htons(ETH_P_ARP)) { | 
|  | struct ovs_key_arp *arp_key; | 
|  |  | 
|  | nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); | 
|  | if (!nla) | 
|  | goto nla_put_failure; | 
|  | arp_key = nla_data(nla); | 
|  | memset(arp_key, 0, sizeof(struct ovs_key_arp)); | 
|  | arp_key->arp_sip = swkey->ipv4.addr.src; | 
|  | arp_key->arp_tip = swkey->ipv4.addr.dst; | 
|  | arp_key->arp_op = htons(swkey->ip.proto); | 
|  | memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN); | 
|  | memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN); | 
|  | } | 
|  |  | 
|  | if ((swkey->eth.type == htons(ETH_P_IP) || | 
|  | swkey->eth.type == htons(ETH_P_IPV6)) && | 
|  | swkey->ip.frag != OVS_FRAG_TYPE_LATER) { | 
|  |  | 
|  | if (swkey->ip.proto == IPPROTO_TCP) { | 
|  | struct ovs_key_tcp *tcp_key; | 
|  |  | 
|  | nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); | 
|  | if (!nla) | 
|  | goto nla_put_failure; | 
|  | tcp_key = nla_data(nla); | 
|  | if (swkey->eth.type == htons(ETH_P_IP)) { | 
|  | tcp_key->tcp_src = swkey->ipv4.tp.src; | 
|  | tcp_key->tcp_dst = swkey->ipv4.tp.dst; | 
|  | } else if (swkey->eth.type == htons(ETH_P_IPV6)) { | 
|  | tcp_key->tcp_src = swkey->ipv6.tp.src; | 
|  | tcp_key->tcp_dst = swkey->ipv6.tp.dst; | 
|  | } | 
|  | } else if (swkey->ip.proto == IPPROTO_UDP) { | 
|  | struct ovs_key_udp *udp_key; | 
|  |  | 
|  | nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); | 
|  | if (!nla) | 
|  | goto nla_put_failure; | 
|  | udp_key = nla_data(nla); | 
|  | if (swkey->eth.type == htons(ETH_P_IP)) { | 
|  | udp_key->udp_src = swkey->ipv4.tp.src; | 
|  | udp_key->udp_dst = swkey->ipv4.tp.dst; | 
|  | } else if (swkey->eth.type == htons(ETH_P_IPV6)) { | 
|  | udp_key->udp_src = swkey->ipv6.tp.src; | 
|  | udp_key->udp_dst = swkey->ipv6.tp.dst; | 
|  | } | 
|  | } else if (swkey->eth.type == htons(ETH_P_IP) && | 
|  | swkey->ip.proto == IPPROTO_ICMP) { | 
|  | struct ovs_key_icmp *icmp_key; | 
|  |  | 
|  | nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); | 
|  | if (!nla) | 
|  | goto nla_put_failure; | 
|  | icmp_key = nla_data(nla); | 
|  | icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src); | 
|  | icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst); | 
|  | } else if (swkey->eth.type == htons(ETH_P_IPV6) && | 
|  | swkey->ip.proto == IPPROTO_ICMPV6) { | 
|  | struct ovs_key_icmpv6 *icmpv6_key; | 
|  |  | 
|  | nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, | 
|  | sizeof(*icmpv6_key)); | 
|  | if (!nla) | 
|  | goto nla_put_failure; | 
|  | icmpv6_key = nla_data(nla); | 
|  | icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src); | 
|  | icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst); | 
|  |  | 
|  | if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || | 
|  | icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { | 
|  | struct ovs_key_nd *nd_key; | 
|  |  | 
|  | nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); | 
|  | if (!nla) | 
|  | goto nla_put_failure; | 
|  | nd_key = nla_data(nla); | 
|  | memcpy(nd_key->nd_target, &swkey->ipv6.nd.target, | 
|  | sizeof(nd_key->nd_target)); | 
|  | memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN); | 
|  | memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unencap: | 
|  | if (encap) | 
|  | nla_nest_end(skb, encap); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | nla_put_failure: | 
|  | return -EMSGSIZE; | 
|  | } | 
|  |  | 
|  | /* Initializes the flow module. | 
|  | * Returns zero if successful or a negative error code. */ | 
|  | int ovs_flow_init(void) | 
|  | { | 
|  | flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0, | 
|  | 0, NULL); | 
|  | if (flow_cache == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Uninitializes the flow module. */ | 
|  | void ovs_flow_exit(void) | 
|  | { | 
|  | kmem_cache_destroy(flow_cache); | 
|  | } |