| /* |
| Interval Trees |
| (C) 2012 Michel Lespinasse <walken@google.com> |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| |
| include/linux/interval_tree_generic.h |
| */ |
| |
| #include <linux/rbtree_augmented.h> |
| |
| /* |
| * Template for implementing interval trees |
| * |
| * ITSTRUCT: struct type of the interval tree nodes |
| * ITRB: name of struct rb_node field within ITSTRUCT |
| * ITTYPE: type of the interval endpoints |
| * ITSUBTREE: name of ITTYPE field within ITSTRUCT holding last-in-subtree |
| * ITSTART(n): start endpoint of ITSTRUCT node n |
| * ITLAST(n): last endpoint of ITSTRUCT node n |
| * ITSTATIC: 'static' or empty |
| * ITPREFIX: prefix to use for the inline tree definitions |
| * |
| * Note - before using this, please consider if generic version |
| * (interval_tree.h) would work for you... |
| */ |
| |
| #define INTERVAL_TREE_DEFINE(ITSTRUCT, ITRB, ITTYPE, ITSUBTREE, \ |
| ITSTART, ITLAST, ITSTATIC, ITPREFIX) \ |
| \ |
| /* Callbacks for augmented rbtree insert and remove */ \ |
| \ |
| static inline ITTYPE ITPREFIX ## _compute_subtree_last(ITSTRUCT *node) \ |
| { \ |
| ITTYPE max = ITLAST(node), subtree_last; \ |
| if (node->ITRB.rb_left) { \ |
| subtree_last = rb_entry(node->ITRB.rb_left, \ |
| ITSTRUCT, ITRB)->ITSUBTREE; \ |
| if (max < subtree_last) \ |
| max = subtree_last; \ |
| } \ |
| if (node->ITRB.rb_right) { \ |
| subtree_last = rb_entry(node->ITRB.rb_right, \ |
| ITSTRUCT, ITRB)->ITSUBTREE; \ |
| if (max < subtree_last) \ |
| max = subtree_last; \ |
| } \ |
| return max; \ |
| } \ |
| \ |
| RB_DECLARE_CALLBACKS(static, ITPREFIX ## _augment, ITSTRUCT, ITRB, \ |
| ITTYPE, ITSUBTREE, ITPREFIX ## _compute_subtree_last) \ |
| \ |
| /* Insert / remove interval nodes from the tree */ \ |
| \ |
| ITSTATIC void ITPREFIX ## _insert(ITSTRUCT *node, \ |
| struct rb_root_cached *root) \ |
| { \ |
| struct rb_node **link = &root->rb_root.rb_node, *rb_parent = NULL; \ |
| ITTYPE start = ITSTART(node), last = ITLAST(node); \ |
| ITSTRUCT *parent; \ |
| bool leftmost = true; \ |
| \ |
| while (*link) { \ |
| rb_parent = *link; \ |
| parent = rb_entry(rb_parent, ITSTRUCT, ITRB); \ |
| if (parent->ITSUBTREE < last) \ |
| parent->ITSUBTREE = last; \ |
| if (start < ITSTART(parent)) \ |
| link = &parent->ITRB.rb_left; \ |
| else { \ |
| link = &parent->ITRB.rb_right; \ |
| leftmost = false; \ |
| } \ |
| } \ |
| \ |
| node->ITSUBTREE = last; \ |
| rb_link_node(&node->ITRB, rb_parent, link); \ |
| rb_insert_augmented_cached(&node->ITRB, root, \ |
| leftmost, &ITPREFIX ## _augment); \ |
| } \ |
| \ |
| ITSTATIC void ITPREFIX ## _remove(ITSTRUCT *node, \ |
| struct rb_root_cached *root) \ |
| { \ |
| rb_erase_augmented_cached(&node->ITRB, root, &ITPREFIX ## _augment); \ |
| } \ |
| \ |
| /* \ |
| * Iterate over intervals intersecting [start;last] \ |
| * \ |
| * Note that a node's interval intersects [start;last] iff: \ |
| * Cond1: ITSTART(node) <= last \ |
| * and \ |
| * Cond2: start <= ITLAST(node) \ |
| */ \ |
| \ |
| static ITSTRUCT * \ |
| ITPREFIX ## _subtree_search(ITSTRUCT *node, ITTYPE start, ITTYPE last) \ |
| { \ |
| while (true) { \ |
| /* \ |
| * Loop invariant: start <= node->ITSUBTREE \ |
| * (Cond2 is satisfied by one of the subtree nodes) \ |
| */ \ |
| if (node->ITRB.rb_left) { \ |
| ITSTRUCT *left = rb_entry(node->ITRB.rb_left, \ |
| ITSTRUCT, ITRB); \ |
| if (start <= left->ITSUBTREE) { \ |
| /* \ |
| * Some nodes in left subtree satisfy Cond2. \ |
| * Iterate to find the leftmost such node N. \ |
| * If it also satisfies Cond1, that's the \ |
| * match we are looking for. Otherwise, there \ |
| * is no matching interval as nodes to the \ |
| * right of N can't satisfy Cond1 either. \ |
| */ \ |
| node = left; \ |
| continue; \ |
| } \ |
| } \ |
| if (ITSTART(node) <= last) { /* Cond1 */ \ |
| if (start <= ITLAST(node)) /* Cond2 */ \ |
| return node; /* node is leftmost match */ \ |
| if (node->ITRB.rb_right) { \ |
| node = rb_entry(node->ITRB.rb_right, \ |
| ITSTRUCT, ITRB); \ |
| if (start <= node->ITSUBTREE) \ |
| continue; \ |
| } \ |
| } \ |
| return NULL; /* No match */ \ |
| } \ |
| } \ |
| \ |
| ITSTATIC ITSTRUCT * \ |
| ITPREFIX ## _iter_first(struct rb_root_cached *root, \ |
| ITTYPE start, ITTYPE last) \ |
| { \ |
| ITSTRUCT *node, *leftmost; \ |
| \ |
| if (!root->rb_root.rb_node) \ |
| return NULL; \ |
| \ |
| /* \ |
| * Fastpath range intersection/overlap between A: [a0, a1] and \ |
| * B: [b0, b1] is given by: \ |
| * \ |
| * a0 <= b1 && b0 <= a1 \ |
| * \ |
| * ... where A holds the lock range and B holds the smallest \ |
| * 'start' and largest 'last' in the tree. For the later, we \ |
| * rely on the root node, which by augmented interval tree \ |
| * property, holds the largest value in its last-in-subtree. \ |
| * This allows mitigating some of the tree walk overhead for \ |
| * for non-intersecting ranges, maintained and consulted in O(1). \ |
| */ \ |
| node = rb_entry(root->rb_root.rb_node, ITSTRUCT, ITRB); \ |
| if (node->ITSUBTREE < start) \ |
| return NULL; \ |
| \ |
| leftmost = rb_entry(root->rb_leftmost, ITSTRUCT, ITRB); \ |
| if (ITSTART(leftmost) > last) \ |
| return NULL; \ |
| \ |
| return ITPREFIX ## _subtree_search(node, start, last); \ |
| } \ |
| \ |
| ITSTATIC ITSTRUCT * \ |
| ITPREFIX ## _iter_next(ITSTRUCT *node, ITTYPE start, ITTYPE last) \ |
| { \ |
| struct rb_node *rb = node->ITRB.rb_right, *prev; \ |
| \ |
| while (true) { \ |
| /* \ |
| * Loop invariants: \ |
| * Cond1: ITSTART(node) <= last \ |
| * rb == node->ITRB.rb_right \ |
| * \ |
| * First, search right subtree if suitable \ |
| */ \ |
| if (rb) { \ |
| ITSTRUCT *right = rb_entry(rb, ITSTRUCT, ITRB); \ |
| if (start <= right->ITSUBTREE) \ |
| return ITPREFIX ## _subtree_search(right, \ |
| start, last); \ |
| } \ |
| \ |
| /* Move up the tree until we come from a node's left child */ \ |
| do { \ |
| rb = rb_parent(&node->ITRB); \ |
| if (!rb) \ |
| return NULL; \ |
| prev = &node->ITRB; \ |
| node = rb_entry(rb, ITSTRUCT, ITRB); \ |
| rb = node->ITRB.rb_right; \ |
| } while (prev == rb); \ |
| \ |
| /* Check if the node intersects [start;last] */ \ |
| if (last < ITSTART(node)) /* !Cond1 */ \ |
| return NULL; \ |
| else if (start <= ITLAST(node)) /* Cond2 */ \ |
| return node; \ |
| } \ |
| } |