|  | /* Basic authentication token and access key management | 
|  | * | 
|  | * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved. | 
|  | * Written by David Howells (dhowells@redhat.com) | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version | 
|  | * 2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/poison.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/user_namespace.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | struct kmem_cache *key_jar; | 
|  | struct rb_root		key_serial_tree; /* tree of keys indexed by serial */ | 
|  | DEFINE_SPINLOCK(key_serial_lock); | 
|  |  | 
|  | struct rb_root	key_user_tree; /* tree of quota records indexed by UID */ | 
|  | DEFINE_SPINLOCK(key_user_lock); | 
|  |  | 
|  | unsigned int key_quota_root_maxkeys = 200;	/* root's key count quota */ | 
|  | unsigned int key_quota_root_maxbytes = 20000;	/* root's key space quota */ | 
|  | unsigned int key_quota_maxkeys = 200;		/* general key count quota */ | 
|  | unsigned int key_quota_maxbytes = 20000;	/* general key space quota */ | 
|  |  | 
|  | static LIST_HEAD(key_types_list); | 
|  | static DECLARE_RWSEM(key_types_sem); | 
|  |  | 
|  | /* We serialise key instantiation and link */ | 
|  | DEFINE_MUTEX(key_construction_mutex); | 
|  |  | 
|  | #ifdef KEY_DEBUGGING | 
|  | void __key_check(const struct key *key) | 
|  | { | 
|  | printk("__key_check: key %p {%08x} should be {%08x}\n", | 
|  | key, key->magic, KEY_DEBUG_MAGIC); | 
|  | BUG(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Get the key quota record for a user, allocating a new record if one doesn't | 
|  | * already exist. | 
|  | */ | 
|  | struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns) | 
|  | { | 
|  | struct key_user *candidate = NULL, *user; | 
|  | struct rb_node *parent = NULL; | 
|  | struct rb_node **p; | 
|  |  | 
|  | try_again: | 
|  | p = &key_user_tree.rb_node; | 
|  | spin_lock(&key_user_lock); | 
|  |  | 
|  | /* search the tree for a user record with a matching UID */ | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | user = rb_entry(parent, struct key_user, node); | 
|  |  | 
|  | if (uid < user->uid) | 
|  | p = &(*p)->rb_left; | 
|  | else if (uid > user->uid) | 
|  | p = &(*p)->rb_right; | 
|  | else if (user_ns < user->user_ns) | 
|  | p = &(*p)->rb_left; | 
|  | else if (user_ns > user->user_ns) | 
|  | p = &(*p)->rb_right; | 
|  | else | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | /* if we get here, we failed to find a match in the tree */ | 
|  | if (!candidate) { | 
|  | /* allocate a candidate user record if we don't already have | 
|  | * one */ | 
|  | spin_unlock(&key_user_lock); | 
|  |  | 
|  | user = NULL; | 
|  | candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL); | 
|  | if (unlikely(!candidate)) | 
|  | goto out; | 
|  |  | 
|  | /* the allocation may have scheduled, so we need to repeat the | 
|  | * search lest someone else added the record whilst we were | 
|  | * asleep */ | 
|  | goto try_again; | 
|  | } | 
|  |  | 
|  | /* if we get here, then the user record still hadn't appeared on the | 
|  | * second pass - so we use the candidate record */ | 
|  | atomic_set(&candidate->usage, 1); | 
|  | atomic_set(&candidate->nkeys, 0); | 
|  | atomic_set(&candidate->nikeys, 0); | 
|  | candidate->uid = uid; | 
|  | candidate->user_ns = get_user_ns(user_ns); | 
|  | candidate->qnkeys = 0; | 
|  | candidate->qnbytes = 0; | 
|  | spin_lock_init(&candidate->lock); | 
|  | mutex_init(&candidate->cons_lock); | 
|  |  | 
|  | rb_link_node(&candidate->node, parent, p); | 
|  | rb_insert_color(&candidate->node, &key_user_tree); | 
|  | spin_unlock(&key_user_lock); | 
|  | user = candidate; | 
|  | goto out; | 
|  |  | 
|  | /* okay - we found a user record for this UID */ | 
|  | found: | 
|  | atomic_inc(&user->usage); | 
|  | spin_unlock(&key_user_lock); | 
|  | kfree(candidate); | 
|  | out: | 
|  | return user; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dispose of a user structure | 
|  | */ | 
|  | void key_user_put(struct key_user *user) | 
|  | { | 
|  | if (atomic_dec_and_lock(&user->usage, &key_user_lock)) { | 
|  | rb_erase(&user->node, &key_user_tree); | 
|  | spin_unlock(&key_user_lock); | 
|  | put_user_ns(user->user_ns); | 
|  |  | 
|  | kfree(user); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a serial number for a key.  These are assigned randomly to avoid | 
|  | * security issues through covert channel problems. | 
|  | */ | 
|  | static inline void key_alloc_serial(struct key *key) | 
|  | { | 
|  | struct rb_node *parent, **p; | 
|  | struct key *xkey; | 
|  |  | 
|  | /* propose a random serial number and look for a hole for it in the | 
|  | * serial number tree */ | 
|  | do { | 
|  | get_random_bytes(&key->serial, sizeof(key->serial)); | 
|  |  | 
|  | key->serial >>= 1; /* negative numbers are not permitted */ | 
|  | } while (key->serial < 3); | 
|  |  | 
|  | spin_lock(&key_serial_lock); | 
|  |  | 
|  | attempt_insertion: | 
|  | parent = NULL; | 
|  | p = &key_serial_tree.rb_node; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | xkey = rb_entry(parent, struct key, serial_node); | 
|  |  | 
|  | if (key->serial < xkey->serial) | 
|  | p = &(*p)->rb_left; | 
|  | else if (key->serial > xkey->serial) | 
|  | p = &(*p)->rb_right; | 
|  | else | 
|  | goto serial_exists; | 
|  | } | 
|  |  | 
|  | /* we've found a suitable hole - arrange for this key to occupy it */ | 
|  | rb_link_node(&key->serial_node, parent, p); | 
|  | rb_insert_color(&key->serial_node, &key_serial_tree); | 
|  |  | 
|  | spin_unlock(&key_serial_lock); | 
|  | return; | 
|  |  | 
|  | /* we found a key with the proposed serial number - walk the tree from | 
|  | * that point looking for the next unused serial number */ | 
|  | serial_exists: | 
|  | for (;;) { | 
|  | key->serial++; | 
|  | if (key->serial < 3) { | 
|  | key->serial = 3; | 
|  | goto attempt_insertion; | 
|  | } | 
|  |  | 
|  | parent = rb_next(parent); | 
|  | if (!parent) | 
|  | goto attempt_insertion; | 
|  |  | 
|  | xkey = rb_entry(parent, struct key, serial_node); | 
|  | if (key->serial < xkey->serial) | 
|  | goto attempt_insertion; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * key_alloc - Allocate a key of the specified type. | 
|  | * @type: The type of key to allocate. | 
|  | * @desc: The key description to allow the key to be searched out. | 
|  | * @uid: The owner of the new key. | 
|  | * @gid: The group ID for the new key's group permissions. | 
|  | * @cred: The credentials specifying UID namespace. | 
|  | * @perm: The permissions mask of the new key. | 
|  | * @flags: Flags specifying quota properties. | 
|  | * | 
|  | * Allocate a key of the specified type with the attributes given.  The key is | 
|  | * returned in an uninstantiated state and the caller needs to instantiate the | 
|  | * key before returning. | 
|  | * | 
|  | * The user's key count quota is updated to reflect the creation of the key and | 
|  | * the user's key data quota has the default for the key type reserved.  The | 
|  | * instantiation function should amend this as necessary.  If insufficient | 
|  | * quota is available, -EDQUOT will be returned. | 
|  | * | 
|  | * The LSM security modules can prevent a key being created, in which case | 
|  | * -EACCES will be returned. | 
|  | * | 
|  | * Returns a pointer to the new key if successful and an error code otherwise. | 
|  | * | 
|  | * Note that the caller needs to ensure the key type isn't uninstantiated. | 
|  | * Internally this can be done by locking key_types_sem.  Externally, this can | 
|  | * be done by either never unregistering the key type, or making sure | 
|  | * key_alloc() calls don't race with module unloading. | 
|  | */ | 
|  | struct key *key_alloc(struct key_type *type, const char *desc, | 
|  | uid_t uid, gid_t gid, const struct cred *cred, | 
|  | key_perm_t perm, unsigned long flags) | 
|  | { | 
|  | struct key_user *user = NULL; | 
|  | struct key *key; | 
|  | size_t desclen, quotalen; | 
|  | int ret; | 
|  |  | 
|  | key = ERR_PTR(-EINVAL); | 
|  | if (!desc || !*desc) | 
|  | goto error; | 
|  |  | 
|  | if (type->vet_description) { | 
|  | ret = type->vet_description(desc); | 
|  | if (ret < 0) { | 
|  | key = ERR_PTR(ret); | 
|  | goto error; | 
|  | } | 
|  | } | 
|  |  | 
|  | desclen = strlen(desc) + 1; | 
|  | quotalen = desclen + type->def_datalen; | 
|  |  | 
|  | /* get hold of the key tracking for this user */ | 
|  | user = key_user_lookup(uid, cred->user->user_ns); | 
|  | if (!user) | 
|  | goto no_memory_1; | 
|  |  | 
|  | /* check that the user's quota permits allocation of another key and | 
|  | * its description */ | 
|  | if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { | 
|  | unsigned maxkeys = (uid == 0) ? | 
|  | key_quota_root_maxkeys : key_quota_maxkeys; | 
|  | unsigned maxbytes = (uid == 0) ? | 
|  | key_quota_root_maxbytes : key_quota_maxbytes; | 
|  |  | 
|  | spin_lock(&user->lock); | 
|  | if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) { | 
|  | if (user->qnkeys + 1 >= maxkeys || | 
|  | user->qnbytes + quotalen >= maxbytes || | 
|  | user->qnbytes + quotalen < user->qnbytes) | 
|  | goto no_quota; | 
|  | } | 
|  |  | 
|  | user->qnkeys++; | 
|  | user->qnbytes += quotalen; | 
|  | spin_unlock(&user->lock); | 
|  | } | 
|  |  | 
|  | /* allocate and initialise the key and its description */ | 
|  | key = kmem_cache_alloc(key_jar, GFP_KERNEL); | 
|  | if (!key) | 
|  | goto no_memory_2; | 
|  |  | 
|  | if (desc) { | 
|  | key->description = kmemdup(desc, desclen, GFP_KERNEL); | 
|  | if (!key->description) | 
|  | goto no_memory_3; | 
|  | } | 
|  |  | 
|  | atomic_set(&key->usage, 1); | 
|  | init_rwsem(&key->sem); | 
|  | lockdep_set_class(&key->sem, &type->lock_class); | 
|  | key->type = type; | 
|  | key->user = user; | 
|  | key->quotalen = quotalen; | 
|  | key->datalen = type->def_datalen; | 
|  | key->uid = uid; | 
|  | key->gid = gid; | 
|  | key->perm = perm; | 
|  | key->flags = 0; | 
|  | key->expiry = 0; | 
|  | key->payload.data = NULL; | 
|  | key->security = NULL; | 
|  |  | 
|  | if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) | 
|  | key->flags |= 1 << KEY_FLAG_IN_QUOTA; | 
|  |  | 
|  | memset(&key->type_data, 0, sizeof(key->type_data)); | 
|  |  | 
|  | #ifdef KEY_DEBUGGING | 
|  | key->magic = KEY_DEBUG_MAGIC; | 
|  | #endif | 
|  |  | 
|  | /* let the security module know about the key */ | 
|  | ret = security_key_alloc(key, cred, flags); | 
|  | if (ret < 0) | 
|  | goto security_error; | 
|  |  | 
|  | /* publish the key by giving it a serial number */ | 
|  | atomic_inc(&user->nkeys); | 
|  | key_alloc_serial(key); | 
|  |  | 
|  | error: | 
|  | return key; | 
|  |  | 
|  | security_error: | 
|  | kfree(key->description); | 
|  | kmem_cache_free(key_jar, key); | 
|  | if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { | 
|  | spin_lock(&user->lock); | 
|  | user->qnkeys--; | 
|  | user->qnbytes -= quotalen; | 
|  | spin_unlock(&user->lock); | 
|  | } | 
|  | key_user_put(user); | 
|  | key = ERR_PTR(ret); | 
|  | goto error; | 
|  |  | 
|  | no_memory_3: | 
|  | kmem_cache_free(key_jar, key); | 
|  | no_memory_2: | 
|  | if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { | 
|  | spin_lock(&user->lock); | 
|  | user->qnkeys--; | 
|  | user->qnbytes -= quotalen; | 
|  | spin_unlock(&user->lock); | 
|  | } | 
|  | key_user_put(user); | 
|  | no_memory_1: | 
|  | key = ERR_PTR(-ENOMEM); | 
|  | goto error; | 
|  |  | 
|  | no_quota: | 
|  | spin_unlock(&user->lock); | 
|  | key_user_put(user); | 
|  | key = ERR_PTR(-EDQUOT); | 
|  | goto error; | 
|  | } | 
|  | EXPORT_SYMBOL(key_alloc); | 
|  |  | 
|  | /** | 
|  | * key_payload_reserve - Adjust data quota reservation for the key's payload | 
|  | * @key: The key to make the reservation for. | 
|  | * @datalen: The amount of data payload the caller now wants. | 
|  | * | 
|  | * Adjust the amount of the owning user's key data quota that a key reserves. | 
|  | * If the amount is increased, then -EDQUOT may be returned if there isn't | 
|  | * enough free quota available. | 
|  | * | 
|  | * If successful, 0 is returned. | 
|  | */ | 
|  | int key_payload_reserve(struct key *key, size_t datalen) | 
|  | { | 
|  | int delta = (int)datalen - key->datalen; | 
|  | int ret = 0; | 
|  |  | 
|  | key_check(key); | 
|  |  | 
|  | /* contemplate the quota adjustment */ | 
|  | if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { | 
|  | unsigned maxbytes = (key->user->uid == 0) ? | 
|  | key_quota_root_maxbytes : key_quota_maxbytes; | 
|  |  | 
|  | spin_lock(&key->user->lock); | 
|  |  | 
|  | if (delta > 0 && | 
|  | (key->user->qnbytes + delta >= maxbytes || | 
|  | key->user->qnbytes + delta < key->user->qnbytes)) { | 
|  | ret = -EDQUOT; | 
|  | } | 
|  | else { | 
|  | key->user->qnbytes += delta; | 
|  | key->quotalen += delta; | 
|  | } | 
|  | spin_unlock(&key->user->lock); | 
|  | } | 
|  |  | 
|  | /* change the recorded data length if that didn't generate an error */ | 
|  | if (ret == 0) | 
|  | key->datalen = datalen; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(key_payload_reserve); | 
|  |  | 
|  | /* | 
|  | * Instantiate a key and link it into the target keyring atomically.  Must be | 
|  | * called with the target keyring's semaphore writelocked.  The target key's | 
|  | * semaphore need not be locked as instantiation is serialised by | 
|  | * key_construction_mutex. | 
|  | */ | 
|  | static int __key_instantiate_and_link(struct key *key, | 
|  | const void *data, | 
|  | size_t datalen, | 
|  | struct key *keyring, | 
|  | struct key *authkey, | 
|  | unsigned long *_prealloc) | 
|  | { | 
|  | int ret, awaken; | 
|  |  | 
|  | key_check(key); | 
|  | key_check(keyring); | 
|  |  | 
|  | awaken = 0; | 
|  | ret = -EBUSY; | 
|  |  | 
|  | mutex_lock(&key_construction_mutex); | 
|  |  | 
|  | /* can't instantiate twice */ | 
|  | if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { | 
|  | /* instantiate the key */ | 
|  | ret = key->type->instantiate(key, data, datalen); | 
|  |  | 
|  | if (ret == 0) { | 
|  | /* mark the key as being instantiated */ | 
|  | atomic_inc(&key->user->nikeys); | 
|  | set_bit(KEY_FLAG_INSTANTIATED, &key->flags); | 
|  |  | 
|  | if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) | 
|  | awaken = 1; | 
|  |  | 
|  | /* and link it into the destination keyring */ | 
|  | if (keyring) | 
|  | __key_link(keyring, key, _prealloc); | 
|  |  | 
|  | /* disable the authorisation key */ | 
|  | if (authkey) | 
|  | key_revoke(authkey); | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&key_construction_mutex); | 
|  |  | 
|  | /* wake up anyone waiting for a key to be constructed */ | 
|  | if (awaken) | 
|  | wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * key_instantiate_and_link - Instantiate a key and link it into the keyring. | 
|  | * @key: The key to instantiate. | 
|  | * @data: The data to use to instantiate the keyring. | 
|  | * @datalen: The length of @data. | 
|  | * @keyring: Keyring to create a link in on success (or NULL). | 
|  | * @authkey: The authorisation token permitting instantiation. | 
|  | * | 
|  | * Instantiate a key that's in the uninstantiated state using the provided data | 
|  | * and, if successful, link it in to the destination keyring if one is | 
|  | * supplied. | 
|  | * | 
|  | * If successful, 0 is returned, the authorisation token is revoked and anyone | 
|  | * waiting for the key is woken up.  If the key was already instantiated, | 
|  | * -EBUSY will be returned. | 
|  | */ | 
|  | int key_instantiate_and_link(struct key *key, | 
|  | const void *data, | 
|  | size_t datalen, | 
|  | struct key *keyring, | 
|  | struct key *authkey) | 
|  | { | 
|  | unsigned long prealloc; | 
|  | int ret; | 
|  |  | 
|  | if (keyring) { | 
|  | ret = __key_link_begin(keyring, key->type, key->description, | 
|  | &prealloc); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey, | 
|  | &prealloc); | 
|  |  | 
|  | if (keyring) | 
|  | __key_link_end(keyring, key->type, prealloc); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(key_instantiate_and_link); | 
|  |  | 
|  | /** | 
|  | * key_reject_and_link - Negatively instantiate a key and link it into the keyring. | 
|  | * @key: The key to instantiate. | 
|  | * @timeout: The timeout on the negative key. | 
|  | * @error: The error to return when the key is hit. | 
|  | * @keyring: Keyring to create a link in on success (or NULL). | 
|  | * @authkey: The authorisation token permitting instantiation. | 
|  | * | 
|  | * Negatively instantiate a key that's in the uninstantiated state and, if | 
|  | * successful, set its timeout and stored error and link it in to the | 
|  | * destination keyring if one is supplied.  The key and any links to the key | 
|  | * will be automatically garbage collected after the timeout expires. | 
|  | * | 
|  | * Negative keys are used to rate limit repeated request_key() calls by causing | 
|  | * them to return the stored error code (typically ENOKEY) until the negative | 
|  | * key expires. | 
|  | * | 
|  | * If successful, 0 is returned, the authorisation token is revoked and anyone | 
|  | * waiting for the key is woken up.  If the key was already instantiated, | 
|  | * -EBUSY will be returned. | 
|  | */ | 
|  | int key_reject_and_link(struct key *key, | 
|  | unsigned timeout, | 
|  | unsigned error, | 
|  | struct key *keyring, | 
|  | struct key *authkey) | 
|  | { | 
|  | unsigned long prealloc; | 
|  | struct timespec now; | 
|  | int ret, awaken, link_ret = 0; | 
|  |  | 
|  | key_check(key); | 
|  | key_check(keyring); | 
|  |  | 
|  | awaken = 0; | 
|  | ret = -EBUSY; | 
|  |  | 
|  | if (keyring) | 
|  | link_ret = __key_link_begin(keyring, key->type, | 
|  | key->description, &prealloc); | 
|  |  | 
|  | mutex_lock(&key_construction_mutex); | 
|  |  | 
|  | /* can't instantiate twice */ | 
|  | if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { | 
|  | /* mark the key as being negatively instantiated */ | 
|  | atomic_inc(&key->user->nikeys); | 
|  | set_bit(KEY_FLAG_NEGATIVE, &key->flags); | 
|  | set_bit(KEY_FLAG_INSTANTIATED, &key->flags); | 
|  | key->type_data.reject_error = -error; | 
|  | now = current_kernel_time(); | 
|  | key->expiry = now.tv_sec + timeout; | 
|  | key_schedule_gc(key->expiry + key_gc_delay); | 
|  |  | 
|  | if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) | 
|  | awaken = 1; | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | /* and link it into the destination keyring */ | 
|  | if (keyring && link_ret == 0) | 
|  | __key_link(keyring, key, &prealloc); | 
|  |  | 
|  | /* disable the authorisation key */ | 
|  | if (authkey) | 
|  | key_revoke(authkey); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&key_construction_mutex); | 
|  |  | 
|  | if (keyring) | 
|  | __key_link_end(keyring, key->type, prealloc); | 
|  |  | 
|  | /* wake up anyone waiting for a key to be constructed */ | 
|  | if (awaken) | 
|  | wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); | 
|  |  | 
|  | return ret == 0 ? link_ret : ret; | 
|  | } | 
|  | EXPORT_SYMBOL(key_reject_and_link); | 
|  |  | 
|  | /** | 
|  | * key_put - Discard a reference to a key. | 
|  | * @key: The key to discard a reference from. | 
|  | * | 
|  | * Discard a reference to a key, and when all the references are gone, we | 
|  | * schedule the cleanup task to come and pull it out of the tree in process | 
|  | * context at some later time. | 
|  | */ | 
|  | void key_put(struct key *key) | 
|  | { | 
|  | if (key) { | 
|  | key_check(key); | 
|  |  | 
|  | if (atomic_dec_and_test(&key->usage)) | 
|  | queue_work(system_nrt_wq, &key_gc_work); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(key_put); | 
|  |  | 
|  | /* | 
|  | * Find a key by its serial number. | 
|  | */ | 
|  | struct key *key_lookup(key_serial_t id) | 
|  | { | 
|  | struct rb_node *n; | 
|  | struct key *key; | 
|  |  | 
|  | spin_lock(&key_serial_lock); | 
|  |  | 
|  | /* search the tree for the specified key */ | 
|  | n = key_serial_tree.rb_node; | 
|  | while (n) { | 
|  | key = rb_entry(n, struct key, serial_node); | 
|  |  | 
|  | if (id < key->serial) | 
|  | n = n->rb_left; | 
|  | else if (id > key->serial) | 
|  | n = n->rb_right; | 
|  | else | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | not_found: | 
|  | key = ERR_PTR(-ENOKEY); | 
|  | goto error; | 
|  |  | 
|  | found: | 
|  | /* pretend it doesn't exist if it is awaiting deletion */ | 
|  | if (atomic_read(&key->usage) == 0) | 
|  | goto not_found; | 
|  |  | 
|  | /* this races with key_put(), but that doesn't matter since key_put() | 
|  | * doesn't actually change the key | 
|  | */ | 
|  | atomic_inc(&key->usage); | 
|  |  | 
|  | error: | 
|  | spin_unlock(&key_serial_lock); | 
|  | return key; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find and lock the specified key type against removal. | 
|  | * | 
|  | * We return with the sem read-locked if successful.  If the type wasn't | 
|  | * available -ENOKEY is returned instead. | 
|  | */ | 
|  | struct key_type *key_type_lookup(const char *type) | 
|  | { | 
|  | struct key_type *ktype; | 
|  |  | 
|  | down_read(&key_types_sem); | 
|  |  | 
|  | /* look up the key type to see if it's one of the registered kernel | 
|  | * types */ | 
|  | list_for_each_entry(ktype, &key_types_list, link) { | 
|  | if (strcmp(ktype->name, type) == 0) | 
|  | goto found_kernel_type; | 
|  | } | 
|  |  | 
|  | up_read(&key_types_sem); | 
|  | ktype = ERR_PTR(-ENOKEY); | 
|  |  | 
|  | found_kernel_type: | 
|  | return ktype; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlock a key type locked by key_type_lookup(). | 
|  | */ | 
|  | void key_type_put(struct key_type *ktype) | 
|  | { | 
|  | up_read(&key_types_sem); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attempt to update an existing key. | 
|  | * | 
|  | * The key is given to us with an incremented refcount that we need to discard | 
|  | * if we get an error. | 
|  | */ | 
|  | static inline key_ref_t __key_update(key_ref_t key_ref, | 
|  | const void *payload, size_t plen) | 
|  | { | 
|  | struct key *key = key_ref_to_ptr(key_ref); | 
|  | int ret; | 
|  |  | 
|  | /* need write permission on the key to update it */ | 
|  | ret = key_permission(key_ref, KEY_WRITE); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  |  | 
|  | ret = -EEXIST; | 
|  | if (!key->type->update) | 
|  | goto error; | 
|  |  | 
|  | down_write(&key->sem); | 
|  |  | 
|  | ret = key->type->update(key, payload, plen); | 
|  | if (ret == 0) | 
|  | /* updating a negative key instantiates it */ | 
|  | clear_bit(KEY_FLAG_NEGATIVE, &key->flags); | 
|  |  | 
|  | up_write(&key->sem); | 
|  |  | 
|  | if (ret < 0) | 
|  | goto error; | 
|  | out: | 
|  | return key_ref; | 
|  |  | 
|  | error: | 
|  | key_put(key); | 
|  | key_ref = ERR_PTR(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * key_create_or_update - Update or create and instantiate a key. | 
|  | * @keyring_ref: A pointer to the destination keyring with possession flag. | 
|  | * @type: The type of key. | 
|  | * @description: The searchable description for the key. | 
|  | * @payload: The data to use to instantiate or update the key. | 
|  | * @plen: The length of @payload. | 
|  | * @perm: The permissions mask for a new key. | 
|  | * @flags: The quota flags for a new key. | 
|  | * | 
|  | * Search the destination keyring for a key of the same description and if one | 
|  | * is found, update it, otherwise create and instantiate a new one and create a | 
|  | * link to it from that keyring. | 
|  | * | 
|  | * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be | 
|  | * concocted. | 
|  | * | 
|  | * Returns a pointer to the new key if successful, -ENODEV if the key type | 
|  | * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the | 
|  | * caller isn't permitted to modify the keyring or the LSM did not permit | 
|  | * creation of the key. | 
|  | * | 
|  | * On success, the possession flag from the keyring ref will be tacked on to | 
|  | * the key ref before it is returned. | 
|  | */ | 
|  | key_ref_t key_create_or_update(key_ref_t keyring_ref, | 
|  | const char *type, | 
|  | const char *description, | 
|  | const void *payload, | 
|  | size_t plen, | 
|  | key_perm_t perm, | 
|  | unsigned long flags) | 
|  | { | 
|  | unsigned long prealloc; | 
|  | const struct cred *cred = current_cred(); | 
|  | struct key_type *ktype; | 
|  | struct key *keyring, *key = NULL; | 
|  | key_ref_t key_ref; | 
|  | int ret; | 
|  |  | 
|  | /* look up the key type to see if it's one of the registered kernel | 
|  | * types */ | 
|  | ktype = key_type_lookup(type); | 
|  | if (IS_ERR(ktype)) { | 
|  | key_ref = ERR_PTR(-ENODEV); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | key_ref = ERR_PTR(-EINVAL); | 
|  | if (!ktype->match || !ktype->instantiate) | 
|  | goto error_2; | 
|  |  | 
|  | keyring = key_ref_to_ptr(keyring_ref); | 
|  |  | 
|  | key_check(keyring); | 
|  |  | 
|  | key_ref = ERR_PTR(-ENOTDIR); | 
|  | if (keyring->type != &key_type_keyring) | 
|  | goto error_2; | 
|  |  | 
|  | ret = __key_link_begin(keyring, ktype, description, &prealloc); | 
|  | if (ret < 0) | 
|  | goto error_2; | 
|  |  | 
|  | /* if we're going to allocate a new key, we're going to have | 
|  | * to modify the keyring */ | 
|  | ret = key_permission(keyring_ref, KEY_WRITE); | 
|  | if (ret < 0) { | 
|  | key_ref = ERR_PTR(ret); | 
|  | goto error_3; | 
|  | } | 
|  |  | 
|  | /* if it's possible to update this type of key, search for an existing | 
|  | * key of the same type and description in the destination keyring and | 
|  | * update that instead if possible | 
|  | */ | 
|  | if (ktype->update) { | 
|  | key_ref = __keyring_search_one(keyring_ref, ktype, description, | 
|  | 0); | 
|  | if (!IS_ERR(key_ref)) | 
|  | goto found_matching_key; | 
|  | } | 
|  |  | 
|  | /* if the client doesn't provide, decide on the permissions we want */ | 
|  | if (perm == KEY_PERM_UNDEF) { | 
|  | perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; | 
|  | perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR; | 
|  |  | 
|  | if (ktype->read) | 
|  | perm |= KEY_POS_READ | KEY_USR_READ; | 
|  |  | 
|  | if (ktype == &key_type_keyring || ktype->update) | 
|  | perm |= KEY_USR_WRITE; | 
|  | } | 
|  |  | 
|  | /* allocate a new key */ | 
|  | key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred, | 
|  | perm, flags); | 
|  | if (IS_ERR(key)) { | 
|  | key_ref = ERR_CAST(key); | 
|  | goto error_3; | 
|  | } | 
|  |  | 
|  | /* instantiate it and link it into the target keyring */ | 
|  | ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL, | 
|  | &prealloc); | 
|  | if (ret < 0) { | 
|  | key_put(key); | 
|  | key_ref = ERR_PTR(ret); | 
|  | goto error_3; | 
|  | } | 
|  |  | 
|  | key_ref = make_key_ref(key, is_key_possessed(keyring_ref)); | 
|  |  | 
|  | error_3: | 
|  | __key_link_end(keyring, ktype, prealloc); | 
|  | error_2: | 
|  | key_type_put(ktype); | 
|  | error: | 
|  | return key_ref; | 
|  |  | 
|  | found_matching_key: | 
|  | /* we found a matching key, so we're going to try to update it | 
|  | * - we can drop the locks first as we have the key pinned | 
|  | */ | 
|  | __key_link_end(keyring, ktype, prealloc); | 
|  | key_type_put(ktype); | 
|  |  | 
|  | key_ref = __key_update(key_ref, payload, plen); | 
|  | goto error; | 
|  | } | 
|  | EXPORT_SYMBOL(key_create_or_update); | 
|  |  | 
|  | /** | 
|  | * key_update - Update a key's contents. | 
|  | * @key_ref: The pointer (plus possession flag) to the key. | 
|  | * @payload: The data to be used to update the key. | 
|  | * @plen: The length of @payload. | 
|  | * | 
|  | * Attempt to update the contents of a key with the given payload data.  The | 
|  | * caller must be granted Write permission on the key.  Negative keys can be | 
|  | * instantiated by this method. | 
|  | * | 
|  | * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key | 
|  | * type does not support updating.  The key type may return other errors. | 
|  | */ | 
|  | int key_update(key_ref_t key_ref, const void *payload, size_t plen) | 
|  | { | 
|  | struct key *key = key_ref_to_ptr(key_ref); | 
|  | int ret; | 
|  |  | 
|  | key_check(key); | 
|  |  | 
|  | /* the key must be writable */ | 
|  | ret = key_permission(key_ref, KEY_WRITE); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  |  | 
|  | /* attempt to update it if supported */ | 
|  | ret = -EOPNOTSUPP; | 
|  | if (key->type->update) { | 
|  | down_write(&key->sem); | 
|  |  | 
|  | ret = key->type->update(key, payload, plen); | 
|  | if (ret == 0) | 
|  | /* updating a negative key instantiates it */ | 
|  | clear_bit(KEY_FLAG_NEGATIVE, &key->flags); | 
|  |  | 
|  | up_write(&key->sem); | 
|  | } | 
|  |  | 
|  | error: | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(key_update); | 
|  |  | 
|  | /** | 
|  | * key_revoke - Revoke a key. | 
|  | * @key: The key to be revoked. | 
|  | * | 
|  | * Mark a key as being revoked and ask the type to free up its resources.  The | 
|  | * revocation timeout is set and the key and all its links will be | 
|  | * automatically garbage collected after key_gc_delay amount of time if they | 
|  | * are not manually dealt with first. | 
|  | */ | 
|  | void key_revoke(struct key *key) | 
|  | { | 
|  | struct timespec now; | 
|  | time_t time; | 
|  |  | 
|  | key_check(key); | 
|  |  | 
|  | /* make sure no one's trying to change or use the key when we mark it | 
|  | * - we tell lockdep that we might nest because we might be revoking an | 
|  | *   authorisation key whilst holding the sem on a key we've just | 
|  | *   instantiated | 
|  | */ | 
|  | down_write_nested(&key->sem, 1); | 
|  | if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) && | 
|  | key->type->revoke) | 
|  | key->type->revoke(key); | 
|  |  | 
|  | /* set the death time to no more than the expiry time */ | 
|  | now = current_kernel_time(); | 
|  | time = now.tv_sec; | 
|  | if (key->revoked_at == 0 || key->revoked_at > time) { | 
|  | key->revoked_at = time; | 
|  | key_schedule_gc(key->revoked_at + key_gc_delay); | 
|  | } | 
|  |  | 
|  | up_write(&key->sem); | 
|  | } | 
|  | EXPORT_SYMBOL(key_revoke); | 
|  |  | 
|  | /** | 
|  | * register_key_type - Register a type of key. | 
|  | * @ktype: The new key type. | 
|  | * | 
|  | * Register a new key type. | 
|  | * | 
|  | * Returns 0 on success or -EEXIST if a type of this name already exists. | 
|  | */ | 
|  | int register_key_type(struct key_type *ktype) | 
|  | { | 
|  | struct key_type *p; | 
|  | int ret; | 
|  |  | 
|  | memset(&ktype->lock_class, 0, sizeof(ktype->lock_class)); | 
|  |  | 
|  | ret = -EEXIST; | 
|  | down_write(&key_types_sem); | 
|  |  | 
|  | /* disallow key types with the same name */ | 
|  | list_for_each_entry(p, &key_types_list, link) { | 
|  | if (strcmp(p->name, ktype->name) == 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* store the type */ | 
|  | list_add(&ktype->link, &key_types_list); | 
|  | ret = 0; | 
|  |  | 
|  | out: | 
|  | up_write(&key_types_sem); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(register_key_type); | 
|  |  | 
|  | /** | 
|  | * unregister_key_type - Unregister a type of key. | 
|  | * @ktype: The key type. | 
|  | * | 
|  | * Unregister a key type and mark all the extant keys of this type as dead. | 
|  | * Those keys of this type are then destroyed to get rid of their payloads and | 
|  | * they and their links will be garbage collected as soon as possible. | 
|  | */ | 
|  | void unregister_key_type(struct key_type *ktype) | 
|  | { | 
|  | down_write(&key_types_sem); | 
|  | list_del_init(&ktype->link); | 
|  | downgrade_write(&key_types_sem); | 
|  | key_gc_keytype(ktype); | 
|  | up_read(&key_types_sem); | 
|  | } | 
|  | EXPORT_SYMBOL(unregister_key_type); | 
|  |  | 
|  | /* | 
|  | * Initialise the key management state. | 
|  | */ | 
|  | void __init key_init(void) | 
|  | { | 
|  | /* allocate a slab in which we can store keys */ | 
|  | key_jar = kmem_cache_create("key_jar", sizeof(struct key), | 
|  | 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); | 
|  |  | 
|  | /* add the special key types */ | 
|  | list_add_tail(&key_type_keyring.link, &key_types_list); | 
|  | list_add_tail(&key_type_dead.link, &key_types_list); | 
|  | list_add_tail(&key_type_user.link, &key_types_list); | 
|  | list_add_tail(&key_type_logon.link, &key_types_list); | 
|  |  | 
|  | /* record the root user tracking */ | 
|  | rb_link_node(&root_key_user.node, | 
|  | NULL, | 
|  | &key_user_tree.rb_node); | 
|  |  | 
|  | rb_insert_color(&root_key_user.node, | 
|  | &key_user_tree); | 
|  | } |