blob: 2b16e95b9bb8566d99a51ca175a904300449ce01 [file] [log] [blame]
/*
* Host communication command constants for ChromeOS EC
*
* Copyright (C) 2012 Google, Inc
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* The ChromeOS EC multi function device is used to mux all the requests
* to the EC device for its multiple features: keyboard controller,
* battery charging and regulator control, firmware update.
*
* NOTE: This file is copied verbatim from the ChromeOS EC Open Source
* project in an attempt to make future updates easy to make.
*/
#ifndef __CROS_EC_COMMANDS_H
#define __CROS_EC_COMMANDS_H
/*
* Current version of this protocol
*
* TODO(crosbug.com/p/11223): This is effectively useless; protocol is
* determined in other ways. Remove this once the kernel code no longer
* depends on it.
*/
#define EC_PROTO_VERSION 0x00000002
/* Command version mask */
#define EC_VER_MASK(version) (1UL << (version))
/* I/O addresses for ACPI commands */
#define EC_LPC_ADDR_ACPI_DATA 0x62
#define EC_LPC_ADDR_ACPI_CMD 0x66
/* I/O addresses for host command */
#define EC_LPC_ADDR_HOST_DATA 0x200
#define EC_LPC_ADDR_HOST_CMD 0x204
/* I/O addresses for host command args and params */
/* Protocol version 2 */
#define EC_LPC_ADDR_HOST_ARGS 0x800 /* And 0x801, 0x802, 0x803 */
#define EC_LPC_ADDR_HOST_PARAM 0x804 /* For version 2 params; size is
* EC_PROTO2_MAX_PARAM_SIZE */
/* Protocol version 3 */
#define EC_LPC_ADDR_HOST_PACKET 0x800 /* Offset of version 3 packet */
#define EC_LPC_HOST_PACKET_SIZE 0x100 /* Max size of version 3 packet */
/* The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
* and they tell the kernel that so we have to think of it as two parts. */
#define EC_HOST_CMD_REGION0 0x800
#define EC_HOST_CMD_REGION1 0x880
#define EC_HOST_CMD_REGION_SIZE 0x80
/* EC command register bit functions */
#define EC_LPC_CMDR_DATA (1 << 0) /* Data ready for host to read */
#define EC_LPC_CMDR_PENDING (1 << 1) /* Write pending to EC */
#define EC_LPC_CMDR_BUSY (1 << 2) /* EC is busy processing a command */
#define EC_LPC_CMDR_CMD (1 << 3) /* Last host write was a command */
#define EC_LPC_CMDR_ACPI_BRST (1 << 4) /* Burst mode (not used) */
#define EC_LPC_CMDR_SCI (1 << 5) /* SCI event is pending */
#define EC_LPC_CMDR_SMI (1 << 6) /* SMI event is pending */
#define EC_LPC_ADDR_MEMMAP 0x900
#define EC_MEMMAP_SIZE 255 /* ACPI IO buffer max is 255 bytes */
#define EC_MEMMAP_TEXT_MAX 8 /* Size of a string in the memory map */
/* The offset address of each type of data in mapped memory. */
#define EC_MEMMAP_TEMP_SENSOR 0x00 /* Temp sensors 0x00 - 0x0f */
#define EC_MEMMAP_FAN 0x10 /* Fan speeds 0x10 - 0x17 */
#define EC_MEMMAP_TEMP_SENSOR_B 0x18 /* More temp sensors 0x18 - 0x1f */
#define EC_MEMMAP_ID 0x20 /* 0x20 == 'E', 0x21 == 'C' */
#define EC_MEMMAP_ID_VERSION 0x22 /* Version of data in 0x20 - 0x2f */
#define EC_MEMMAP_THERMAL_VERSION 0x23 /* Version of data in 0x00 - 0x1f */
#define EC_MEMMAP_BATTERY_VERSION 0x24 /* Version of data in 0x40 - 0x7f */
#define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
#define EC_MEMMAP_EVENTS_VERSION 0x26 /* Version of data in 0x34 - 0x3f */
#define EC_MEMMAP_HOST_CMD_FLAGS 0x27 /* Host cmd interface flags (8 bits) */
/* Unused 0x28 - 0x2f */
#define EC_MEMMAP_SWITCHES 0x30 /* 8 bits */
/* Unused 0x31 - 0x33 */
#define EC_MEMMAP_HOST_EVENTS 0x34 /* 32 bits */
/* Reserve 0x38 - 0x3f for additional host event-related stuff */
/* Battery values are all 32 bits */
#define EC_MEMMAP_BATT_VOLT 0x40 /* Battery Present Voltage */
#define EC_MEMMAP_BATT_RATE 0x44 /* Battery Present Rate */
#define EC_MEMMAP_BATT_CAP 0x48 /* Battery Remaining Capacity */
#define EC_MEMMAP_BATT_FLAG 0x4c /* Battery State, defined below */
#define EC_MEMMAP_BATT_DCAP 0x50 /* Battery Design Capacity */
#define EC_MEMMAP_BATT_DVLT 0x54 /* Battery Design Voltage */
#define EC_MEMMAP_BATT_LFCC 0x58 /* Battery Last Full Charge Capacity */
#define EC_MEMMAP_BATT_CCNT 0x5c /* Battery Cycle Count */
/* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
#define EC_MEMMAP_BATT_MFGR 0x60 /* Battery Manufacturer String */
#define EC_MEMMAP_BATT_MODEL 0x68 /* Battery Model Number String */
#define EC_MEMMAP_BATT_SERIAL 0x70 /* Battery Serial Number String */
#define EC_MEMMAP_BATT_TYPE 0x78 /* Battery Type String */
#define EC_MEMMAP_ALS 0x80 /* ALS readings in lux (2 X 16 bits) */
/* Unused 0x84 - 0x8f */
#define EC_MEMMAP_ACC_STATUS 0x90 /* Accelerometer status (8 bits )*/
/* Unused 0x91 */
#define EC_MEMMAP_ACC_DATA 0x92 /* Accelerometer data 0x92 - 0x9f */
#define EC_MEMMAP_GYRO_DATA 0xa0 /* Gyroscope data 0xa0 - 0xa5 */
/* Unused 0xa6 - 0xfe (remember, 0xff is NOT part of the memmap region) */
/* Define the format of the accelerometer mapped memory status byte. */
#define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK 0x0f
#define EC_MEMMAP_ACC_STATUS_BUSY_BIT (1 << 4)
#define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT (1 << 7)
/* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
#define EC_TEMP_SENSOR_ENTRIES 16
/*
* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
*
* Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
*/
#define EC_TEMP_SENSOR_B_ENTRIES 8
/* Special values for mapped temperature sensors */
#define EC_TEMP_SENSOR_NOT_PRESENT 0xff
#define EC_TEMP_SENSOR_ERROR 0xfe
#define EC_TEMP_SENSOR_NOT_POWERED 0xfd
#define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
/*
* The offset of temperature value stored in mapped memory. This allows
* reporting a temperature range of 200K to 454K = -73C to 181C.
*/
#define EC_TEMP_SENSOR_OFFSET 200
/*
* Number of ALS readings at EC_MEMMAP_ALS
*/
#define EC_ALS_ENTRIES 2
/*
* The default value a temperature sensor will return when it is present but
* has not been read this boot. This is a reasonable number to avoid
* triggering alarms on the host.
*/
#define EC_TEMP_SENSOR_DEFAULT (296 - EC_TEMP_SENSOR_OFFSET)
#define EC_FAN_SPEED_ENTRIES 4 /* Number of fans at EC_MEMMAP_FAN */
#define EC_FAN_SPEED_NOT_PRESENT 0xffff /* Entry not present */
#define EC_FAN_SPEED_STALLED 0xfffe /* Fan stalled */
/* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
#define EC_BATT_FLAG_AC_PRESENT 0x01
#define EC_BATT_FLAG_BATT_PRESENT 0x02
#define EC_BATT_FLAG_DISCHARGING 0x04
#define EC_BATT_FLAG_CHARGING 0x08
#define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
/* Switch flags at EC_MEMMAP_SWITCHES */
#define EC_SWITCH_LID_OPEN 0x01
#define EC_SWITCH_POWER_BUTTON_PRESSED 0x02
#define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
/* Was recovery requested via keyboard; now unused. */
#define EC_SWITCH_IGNORE1 0x08
/* Recovery requested via dedicated signal (from servo board) */
#define EC_SWITCH_DEDICATED_RECOVERY 0x10
/* Was fake developer mode switch; now unused. Remove in next refactor. */
#define EC_SWITCH_IGNORE0 0x20
/* Host command interface flags */
/* Host command interface supports LPC args (LPC interface only) */
#define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED 0x01
/* Host command interface supports version 3 protocol */
#define EC_HOST_CMD_FLAG_VERSION_3 0x02
/* Wireless switch flags */
#define EC_WIRELESS_SWITCH_ALL ~0x00 /* All flags */
#define EC_WIRELESS_SWITCH_WLAN 0x01 /* WLAN radio */
#define EC_WIRELESS_SWITCH_BLUETOOTH 0x02 /* Bluetooth radio */
#define EC_WIRELESS_SWITCH_WWAN 0x04 /* WWAN power */
#define EC_WIRELESS_SWITCH_WLAN_POWER 0x08 /* WLAN power */
/*
* This header file is used in coreboot both in C and ACPI code. The ACPI code
* is pre-processed to handle constants but the ASL compiler is unable to
* handle actual C code so keep it separate.
*/
#ifndef __ACPI__
/*
* Define __packed if someone hasn't beat us to it. Linux kernel style
* checking prefers __packed over __attribute__((packed)).
*/
#ifndef __packed
#define __packed __attribute__((packed))
#endif
/* LPC command status byte masks */
/* EC has written a byte in the data register and host hasn't read it yet */
#define EC_LPC_STATUS_TO_HOST 0x01
/* Host has written a command/data byte and the EC hasn't read it yet */
#define EC_LPC_STATUS_FROM_HOST 0x02
/* EC is processing a command */
#define EC_LPC_STATUS_PROCESSING 0x04
/* Last write to EC was a command, not data */
#define EC_LPC_STATUS_LAST_CMD 0x08
/* EC is in burst mode. Unsupported by Chrome EC, so this bit is never set */
#define EC_LPC_STATUS_BURST_MODE 0x10
/* SCI event is pending (requesting SCI query) */
#define EC_LPC_STATUS_SCI_PENDING 0x20
/* SMI event is pending (requesting SMI query) */
#define EC_LPC_STATUS_SMI_PENDING 0x40
/* (reserved) */
#define EC_LPC_STATUS_RESERVED 0x80
/*
* EC is busy. This covers both the EC processing a command, and the host has
* written a new command but the EC hasn't picked it up yet.
*/
#define EC_LPC_STATUS_BUSY_MASK \
(EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
/* Host command response codes */
enum ec_status {
EC_RES_SUCCESS = 0,
EC_RES_INVALID_COMMAND = 1,
EC_RES_ERROR = 2,
EC_RES_INVALID_PARAM = 3,
EC_RES_ACCESS_DENIED = 4,
EC_RES_INVALID_RESPONSE = 5,
EC_RES_INVALID_VERSION = 6,
EC_RES_INVALID_CHECKSUM = 7,
EC_RES_IN_PROGRESS = 8, /* Accepted, command in progress */
EC_RES_UNAVAILABLE = 9, /* No response available */
EC_RES_TIMEOUT = 10, /* We got a timeout */
EC_RES_OVERFLOW = 11, /* Table / data overflow */
EC_RES_INVALID_HEADER = 12, /* Header contains invalid data */
EC_RES_REQUEST_TRUNCATED = 13, /* Didn't get the entire request */
EC_RES_RESPONSE_TOO_BIG = 14 /* Response was too big to handle */
};
/*
* Host event codes. Note these are 1-based, not 0-based, because ACPI query
* EC command uses code 0 to mean "no event pending". We explicitly specify
* each value in the enum listing so they won't change if we delete/insert an
* item or rearrange the list (it needs to be stable across platforms, not
* just within a single compiled instance).
*/
enum host_event_code {
EC_HOST_EVENT_LID_CLOSED = 1,
EC_HOST_EVENT_LID_OPEN = 2,
EC_HOST_EVENT_POWER_BUTTON = 3,
EC_HOST_EVENT_AC_CONNECTED = 4,
EC_HOST_EVENT_AC_DISCONNECTED = 5,
EC_HOST_EVENT_BATTERY_LOW = 6,
EC_HOST_EVENT_BATTERY_CRITICAL = 7,
EC_HOST_EVENT_BATTERY = 8,
EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
EC_HOST_EVENT_THERMAL_OVERLOAD = 10,
EC_HOST_EVENT_THERMAL = 11,
EC_HOST_EVENT_USB_CHARGER = 12,
EC_HOST_EVENT_KEY_PRESSED = 13,
/*
* EC has finished initializing the host interface. The host can check
* for this event following sending a EC_CMD_REBOOT_EC command to
* determine when the EC is ready to accept subsequent commands.
*/
EC_HOST_EVENT_INTERFACE_READY = 14,
/* Keyboard recovery combo has been pressed */
EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
/* Shutdown due to thermal overload */
EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
/* Shutdown due to battery level too low */
EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
/* Suggest that the AP throttle itself */
EC_HOST_EVENT_THROTTLE_START = 18,
/* Suggest that the AP resume normal speed */
EC_HOST_EVENT_THROTTLE_STOP = 19,
/* Hang detect logic detected a hang and host event timeout expired */
EC_HOST_EVENT_HANG_DETECT = 20,
/* Hang detect logic detected a hang and warm rebooted the AP */
EC_HOST_EVENT_HANG_REBOOT = 21,
/* PD MCU triggering host event */
EC_HOST_EVENT_PD_MCU = 22,
/* EC desires to change state of host-controlled USB mux */
EC_HOST_EVENT_USB_MUX = 28,
/*
* The high bit of the event mask is not used as a host event code. If
* it reads back as set, then the entire event mask should be
* considered invalid by the host. This can happen when reading the
* raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
* not initialized on the EC, or improperly configured on the host.
*/
EC_HOST_EVENT_INVALID = 32
};
/* Host event mask */
#define EC_HOST_EVENT_MASK(event_code) (1UL << ((event_code) - 1))
/* Arguments at EC_LPC_ADDR_HOST_ARGS */
struct ec_lpc_host_args {
uint8_t flags;
uint8_t command_version;
uint8_t data_size;
/*
* Checksum; sum of command + flags + command_version + data_size +
* all params/response data bytes.
*/
uint8_t checksum;
} __packed;
/* Flags for ec_lpc_host_args.flags */
/*
* Args are from host. Data area at EC_LPC_ADDR_HOST_PARAM contains command
* params.
*
* If EC gets a command and this flag is not set, this is an old-style command.
* Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
* unknown length. EC must respond with an old-style response (that is,
* withouth setting EC_HOST_ARGS_FLAG_TO_HOST).
*/
#define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
/*
* Args are from EC. Data area at EC_LPC_ADDR_HOST_PARAM contains response.
*
* If EC responds to a command and this flag is not set, this is an old-style
* response. Command version is 0 and response data from EC is at
* EC_LPC_ADDR_OLD_PARAM with unknown length.
*/
#define EC_HOST_ARGS_FLAG_TO_HOST 0x02
/*****************************************************************************/
/*
* Byte codes returned by EC over SPI interface.
*
* These can be used by the AP to debug the EC interface, and to determine
* when the EC is not in a state where it will ever get around to responding
* to the AP.
*
* Example of sequence of bytes read from EC for a current good transfer:
* 1. - - AP asserts chip select (CS#)
* 2. EC_SPI_OLD_READY - AP sends first byte(s) of request
* 3. - - EC starts handling CS# interrupt
* 4. EC_SPI_RECEIVING - AP sends remaining byte(s) of request
* 5. EC_SPI_PROCESSING - EC starts processing request; AP is clocking in
* bytes looking for EC_SPI_FRAME_START
* 6. - - EC finishes processing and sets up response
* 7. EC_SPI_FRAME_START - AP reads frame byte
* 8. (response packet) - AP reads response packet
* 9. EC_SPI_PAST_END - Any additional bytes read by AP
* 10 - - AP deasserts chip select
* 11 - - EC processes CS# interrupt and sets up DMA for
* next request
*
* If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
* the following byte values:
* EC_SPI_OLD_READY
* EC_SPI_RX_READY
* EC_SPI_RECEIVING
* EC_SPI_PROCESSING
*
* Then the EC found an error in the request, or was not ready for the request
* and lost data. The AP should give up waiting for EC_SPI_FRAME_START,
* because the EC is unable to tell when the AP is done sending its request.
*/
/*
* Framing byte which precedes a response packet from the EC. After sending a
* request, the AP will clock in bytes until it sees the framing byte, then
* clock in the response packet.
*/
#define EC_SPI_FRAME_START 0xec
/*
* Padding bytes which are clocked out after the end of a response packet.
*/
#define EC_SPI_PAST_END 0xed
/*
* EC is ready to receive, and has ignored the byte sent by the AP. EC expects
* that the AP will send a valid packet header (starting with
* EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
*/
#define EC_SPI_RX_READY 0xf8
/*
* EC has started receiving the request from the AP, but hasn't started
* processing it yet.
*/
#define EC_SPI_RECEIVING 0xf9
/* EC has received the entire request from the AP and is processing it. */
#define EC_SPI_PROCESSING 0xfa
/*
* EC received bad data from the AP, such as a packet header with an invalid
* length. EC will ignore all data until chip select deasserts.
*/
#define EC_SPI_RX_BAD_DATA 0xfb
/*
* EC received data from the AP before it was ready. That is, the AP asserted
* chip select and started clocking data before the EC was ready to receive it.
* EC will ignore all data until chip select deasserts.
*/
#define EC_SPI_NOT_READY 0xfc
/*
* EC was ready to receive a request from the AP. EC has treated the byte sent
* by the AP as part of a request packet, or (for old-style ECs) is processing
* a fully received packet but is not ready to respond yet.
*/
#define EC_SPI_OLD_READY 0xfd
/*****************************************************************************/
/*
* Protocol version 2 for I2C and SPI send a request this way:
*
* 0 EC_CMD_VERSION0 + (command version)
* 1 Command number
* 2 Length of params = N
* 3..N+2 Params, if any
* N+3 8-bit checksum of bytes 0..N+2
*
* The corresponding response is:
*
* 0 Result code (EC_RES_*)
* 1 Length of params = M
* 2..M+1 Params, if any
* M+2 8-bit checksum of bytes 0..M+1
*/
#define EC_PROTO2_REQUEST_HEADER_BYTES 3
#define EC_PROTO2_REQUEST_TRAILER_BYTES 1
#define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES + \
EC_PROTO2_REQUEST_TRAILER_BYTES)
#define EC_PROTO2_RESPONSE_HEADER_BYTES 2
#define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
#define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES + \
EC_PROTO2_RESPONSE_TRAILER_BYTES)
/* Parameter length was limited by the LPC interface */
#define EC_PROTO2_MAX_PARAM_SIZE 0xfc
/* Maximum request and response packet sizes for protocol version 2 */
#define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD + \
EC_PROTO2_MAX_PARAM_SIZE)
#define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD + \
EC_PROTO2_MAX_PARAM_SIZE)
/*****************************************************************************/
/*
* Value written to legacy command port / prefix byte to indicate protocol
* 3+ structs are being used. Usage is bus-dependent.
*/
#define EC_COMMAND_PROTOCOL_3 0xda
#define EC_HOST_REQUEST_VERSION 3
/* Version 3 request from host */
struct ec_host_request {
/* Struct version (=3)
*
* EC will return EC_RES_INVALID_HEADER if it receives a header with a
* version it doesn't know how to parse.
*/
uint8_t struct_version;
/*
* Checksum of request and data; sum of all bytes including checksum
* should total to 0.
*/
uint8_t checksum;
/* Command code */
uint16_t command;
/* Command version */
uint8_t command_version;
/* Unused byte in current protocol version; set to 0 */
uint8_t reserved;
/* Length of data which follows this header */
uint16_t data_len;
} __packed;
#define EC_HOST_RESPONSE_VERSION 3
/* Version 3 response from EC */
struct ec_host_response {
/* Struct version (=3) */
uint8_t struct_version;
/*
* Checksum of response and data; sum of all bytes including checksum
* should total to 0.
*/
uint8_t checksum;
/* Result code (EC_RES_*) */
uint16_t result;
/* Length of data which follows this header */
uint16_t data_len;
/* Unused bytes in current protocol version; set to 0 */
uint16_t reserved;
} __packed;
/*****************************************************************************/
/*
* Notes on commands:
*
* Each command is an 16-bit command value. Commands which take params or
* return response data specify structs for that data. If no struct is
* specified, the command does not input or output data, respectively.
* Parameter/response length is implicit in the structs. Some underlying
* communication protocols (I2C, SPI) may add length or checksum headers, but
* those are implementation-dependent and not defined here.
*/
/*****************************************************************************/
/* General / test commands */
/*
* Get protocol version, used to deal with non-backward compatible protocol
* changes.
*/
#define EC_CMD_PROTO_VERSION 0x00
struct ec_response_proto_version {
uint32_t version;
} __packed;
/*
* Hello. This is a simple command to test the EC is responsive to
* commands.
*/
#define EC_CMD_HELLO 0x01
struct ec_params_hello {
uint32_t in_data; /* Pass anything here */
} __packed;
struct ec_response_hello {
uint32_t out_data; /* Output will be in_data + 0x01020304 */
} __packed;
/* Get version number */
#define EC_CMD_GET_VERSION 0x02
enum ec_current_image {
EC_IMAGE_UNKNOWN = 0,
EC_IMAGE_RO,
EC_IMAGE_RW
};
struct ec_response_get_version {
/* Null-terminated version strings for RO, RW */
char version_string_ro[32];
char version_string_rw[32];
char reserved[32]; /* Was previously RW-B string */
uint32_t current_image; /* One of ec_current_image */
} __packed;
/* Read test */
#define EC_CMD_READ_TEST 0x03
struct ec_params_read_test {
uint32_t offset; /* Starting value for read buffer */
uint32_t size; /* Size to read in bytes */
} __packed;
struct ec_response_read_test {
uint32_t data[32];
} __packed;
/*
* Get build information
*
* Response is null-terminated string.
*/
#define EC_CMD_GET_BUILD_INFO 0x04
/* Get chip info */
#define EC_CMD_GET_CHIP_INFO 0x05
struct ec_response_get_chip_info {
/* Null-terminated strings */
char vendor[32];
char name[32];
char revision[32]; /* Mask version */
} __packed;
/* Get board HW version */
#define EC_CMD_GET_BOARD_VERSION 0x06
struct ec_response_board_version {
uint16_t board_version; /* A monotonously incrementing number. */
} __packed;
/*
* Read memory-mapped data.
*
* This is an alternate interface to memory-mapped data for bus protocols
* which don't support direct-mapped memory - I2C, SPI, etc.
*
* Response is params.size bytes of data.
*/
#define EC_CMD_READ_MEMMAP 0x07
struct ec_params_read_memmap {
uint8_t offset; /* Offset in memmap (EC_MEMMAP_*) */
uint8_t size; /* Size to read in bytes */
} __packed;
/* Read versions supported for a command */
#define EC_CMD_GET_CMD_VERSIONS 0x08
struct ec_params_get_cmd_versions {
uint8_t cmd; /* Command to check */
} __packed;
struct ec_params_get_cmd_versions_v1 {
uint16_t cmd; /* Command to check */
} __packed;
struct ec_response_get_cmd_versions {
/*
* Mask of supported versions; use EC_VER_MASK() to compare with a
* desired version.
*/
uint32_t version_mask;
} __packed;
/*
* Check EC communcations status (busy). This is needed on i2c/spi but not
* on lpc since it has its own out-of-band busy indicator.
*
* lpc must read the status from the command register. Attempting this on
* lpc will overwrite the args/parameter space and corrupt its data.
*/
#define EC_CMD_GET_COMMS_STATUS 0x09
/* Avoid using ec_status which is for return values */
enum ec_comms_status {
EC_COMMS_STATUS_PROCESSING = 1 << 0, /* Processing cmd */
};
struct ec_response_get_comms_status {
uint32_t flags; /* Mask of enum ec_comms_status */
} __packed;
/* Fake a variety of responses, purely for testing purposes. */
#define EC_CMD_TEST_PROTOCOL 0x0a
/* Tell the EC what to send back to us. */
struct ec_params_test_protocol {
uint32_t ec_result;
uint32_t ret_len;
uint8_t buf[32];
} __packed;
/* Here it comes... */
struct ec_response_test_protocol {
uint8_t buf[32];
} __packed;
/* Get prococol information */
#define EC_CMD_GET_PROTOCOL_INFO 0x0b
/* Flags for ec_response_get_protocol_info.flags */
/* EC_RES_IN_PROGRESS may be returned if a command is slow */
#define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED (1 << 0)
struct ec_response_get_protocol_info {
/* Fields which exist if at least protocol version 3 supported */
/* Bitmask of protocol versions supported (1 << n means version n)*/
uint32_t protocol_versions;
/* Maximum request packet size, in bytes */
uint16_t max_request_packet_size;
/* Maximum response packet size, in bytes */
uint16_t max_response_packet_size;
/* Flags; see EC_PROTOCOL_INFO_* */
uint32_t flags;
} __packed;
/*****************************************************************************/
/* Get/Set miscellaneous values */
/* The upper byte of .flags tells what to do (nothing means "get") */
#define EC_GSV_SET 0x80000000
/* The lower three bytes of .flags identifies the parameter, if that has
meaning for an individual command. */
#define EC_GSV_PARAM_MASK 0x00ffffff
struct ec_params_get_set_value {
uint32_t flags;
uint32_t value;
} __packed;
struct ec_response_get_set_value {
uint32_t flags;
uint32_t value;
} __packed;
/* More than one command can use these structs to get/set paramters. */
#define EC_CMD_GSV_PAUSE_IN_S5 0x0c
/*****************************************************************************/
/* List the features supported by the firmware */
#define EC_CMD_GET_FEATURES 0x0d
/* Supported features */
enum ec_feature_code {
/*
* This image contains a limited set of features. Another image
* in RW partition may support more features.
*/
EC_FEATURE_LIMITED = 0,
/*
* Commands for probing/reading/writing/erasing the flash in the
* EC are present.
*/
EC_FEATURE_FLASH = 1,
/*
* Can control the fan speed directly.
*/
EC_FEATURE_PWM_FAN = 2,
/*
* Can control the intensity of the keyboard backlight.
*/
EC_FEATURE_PWM_KEYB = 3,
/*
* Support Google lightbar, introduced on Pixel.
*/
EC_FEATURE_LIGHTBAR = 4,
/* Control of LEDs */
EC_FEATURE_LED = 5,
/* Exposes an interface to control gyro and sensors.
* The host goes through the EC to access these sensors.
* In addition, the EC may provide composite sensors, like lid angle.
*/
EC_FEATURE_MOTION_SENSE = 6,
/* The keyboard is controlled by the EC */
EC_FEATURE_KEYB = 7,
/* The AP can use part of the EC flash as persistent storage. */
EC_FEATURE_PSTORE = 8,
/* The EC monitors BIOS port 80h, and can return POST codes. */
EC_FEATURE_PORT80 = 9,
/*
* Thermal management: include TMP specific commands.
* Higher level than direct fan control.
*/
EC_FEATURE_THERMAL = 10,
/* Can switch the screen backlight on/off */
EC_FEATURE_BKLIGHT_SWITCH = 11,
/* Can switch the wifi module on/off */
EC_FEATURE_WIFI_SWITCH = 12,
/* Monitor host events, through for example SMI or SCI */
EC_FEATURE_HOST_EVENTS = 13,
/* The EC exposes GPIO commands to control/monitor connected devices. */
EC_FEATURE_GPIO = 14,
/* The EC can send i2c messages to downstream devices. */
EC_FEATURE_I2C = 15,
/* Command to control charger are included */
EC_FEATURE_CHARGER = 16,
/* Simple battery support. */
EC_FEATURE_BATTERY = 17,
/*
* Support Smart battery protocol
* (Common Smart Battery System Interface Specification)
*/
EC_FEATURE_SMART_BATTERY = 18,
/* EC can dectect when the host hangs. */
EC_FEATURE_HANG_DETECT = 19,
/* Report power information, for pit only */
EC_FEATURE_PMU = 20,
/* Another Cros EC device is present downstream of this one */
EC_FEATURE_SUB_MCU = 21,
/* Support USB Power delivery (PD) commands */
EC_FEATURE_USB_PD = 22,
/* Control USB multiplexer, for audio through USB port for instance. */
EC_FEATURE_USB_MUX = 23,
/* Motion Sensor code has an internal software FIFO */
EC_FEATURE_MOTION_SENSE_FIFO = 24,
};
#define EC_FEATURE_MASK_0(event_code) (1UL << (event_code % 32))
#define EC_FEATURE_MASK_1(event_code) (1UL << (event_code - 32))
struct ec_response_get_features {
uint32_t flags[2];
} __packed;
/*****************************************************************************/
/* Flash commands */
/* Get flash info */
#define EC_CMD_FLASH_INFO 0x10
/* Version 0 returns these fields */
struct ec_response_flash_info {
/* Usable flash size, in bytes */
uint32_t flash_size;
/*
* Write block size. Write offset and size must be a multiple
* of this.
*/
uint32_t write_block_size;
/*
* Erase block size. Erase offset and size must be a multiple
* of this.
*/
uint32_t erase_block_size;
/*
* Protection block size. Protection offset and size must be a
* multiple of this.
*/
uint32_t protect_block_size;
} __packed;
/* Flags for version 1+ flash info command */
/* EC flash erases bits to 0 instead of 1 */
#define EC_FLASH_INFO_ERASE_TO_0 (1 << 0)
/*
* Version 1 returns the same initial fields as version 0, with additional
* fields following.
*
* gcc anonymous structs don't seem to get along with the __packed directive;
* if they did we'd define the version 0 struct as a sub-struct of this one.
*/
struct ec_response_flash_info_1 {
/* Version 0 fields; see above for description */
uint32_t flash_size;
uint32_t write_block_size;
uint32_t erase_block_size;
uint32_t protect_block_size;
/* Version 1 adds these fields: */
/*
* Ideal write size in bytes. Writes will be fastest if size is
* exactly this and offset is a multiple of this. For example, an EC
* may have a write buffer which can do half-page operations if data is
* aligned, and a slower word-at-a-time write mode.
*/
uint32_t write_ideal_size;
/* Flags; see EC_FLASH_INFO_* */
uint32_t flags;
} __packed;
/*
* Read flash
*
* Response is params.size bytes of data.
*/
#define EC_CMD_FLASH_READ 0x11
struct ec_params_flash_read {
uint32_t offset; /* Byte offset to read */
uint32_t size; /* Size to read in bytes */
} __packed;
/* Write flash */
#define EC_CMD_FLASH_WRITE 0x12
#define EC_VER_FLASH_WRITE 1
/* Version 0 of the flash command supported only 64 bytes of data */
#define EC_FLASH_WRITE_VER0_SIZE 64
struct ec_params_flash_write {
uint32_t offset; /* Byte offset to write */
uint32_t size; /* Size to write in bytes */
/* Followed by data to write */
} __packed;
/* Erase flash */
#define EC_CMD_FLASH_ERASE 0x13
struct ec_params_flash_erase {
uint32_t offset; /* Byte offset to erase */
uint32_t size; /* Size to erase in bytes */
} __packed;
/*
* Get/set flash protection.
*
* If mask!=0, sets/clear the requested bits of flags. Depending on the
* firmware write protect GPIO, not all flags will take effect immediately;
* some flags require a subsequent hard reset to take effect. Check the
* returned flags bits to see what actually happened.
*
* If mask=0, simply returns the current flags state.
*/
#define EC_CMD_FLASH_PROTECT 0x15
#define EC_VER_FLASH_PROTECT 1 /* Command version 1 */
/* Flags for flash protection */
/* RO flash code protected when the EC boots */
#define EC_FLASH_PROTECT_RO_AT_BOOT (1 << 0)
/*
* RO flash code protected now. If this bit is set, at-boot status cannot
* be changed.
*/
#define EC_FLASH_PROTECT_RO_NOW (1 << 1)
/* Entire flash code protected now, until reboot. */
#define EC_FLASH_PROTECT_ALL_NOW (1 << 2)
/* Flash write protect GPIO is asserted now */
#define EC_FLASH_PROTECT_GPIO_ASSERTED (1 << 3)
/* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
#define EC_FLASH_PROTECT_ERROR_STUCK (1 << 4)
/*
* Error - flash protection is in inconsistent state. At least one bank of
* flash which should be protected is not protected. Usually fixed by
* re-requesting the desired flags, or by a hard reset if that fails.
*/
#define EC_FLASH_PROTECT_ERROR_INCONSISTENT (1 << 5)
/* Entile flash code protected when the EC boots */
#define EC_FLASH_PROTECT_ALL_AT_BOOT (1 << 6)
struct ec_params_flash_protect {
uint32_t mask; /* Bits in flags to apply */
uint32_t flags; /* New flags to apply */
} __packed;
struct ec_response_flash_protect {
/* Current value of flash protect flags */
uint32_t flags;
/*
* Flags which are valid on this platform. This allows the caller
* to distinguish between flags which aren't set vs. flags which can't
* be set on this platform.
*/
uint32_t valid_flags;
/* Flags which can be changed given the current protection state */
uint32_t writable_flags;
} __packed;
/*
* Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
* write protect. These commands may be reused with version > 0.
*/
/* Get the region offset/size */
#define EC_CMD_FLASH_REGION_INFO 0x16
#define EC_VER_FLASH_REGION_INFO 1
enum ec_flash_region {
/* Region which holds read-only EC image */
EC_FLASH_REGION_RO = 0,
/* Region which holds rewritable EC image */
EC_FLASH_REGION_RW,
/*
* Region which should be write-protected in the factory (a superset of
* EC_FLASH_REGION_RO)
*/
EC_FLASH_REGION_WP_RO,
/* Number of regions */
EC_FLASH_REGION_COUNT,
};
struct ec_params_flash_region_info {
uint32_t region; /* enum ec_flash_region */
} __packed;
struct ec_response_flash_region_info {
uint32_t offset;
uint32_t size;
} __packed;
/* Read/write VbNvContext */
#define EC_CMD_VBNV_CONTEXT 0x17
#define EC_VER_VBNV_CONTEXT 1
#define EC_VBNV_BLOCK_SIZE 16
enum ec_vbnvcontext_op {
EC_VBNV_CONTEXT_OP_READ,
EC_VBNV_CONTEXT_OP_WRITE,
};
struct ec_params_vbnvcontext {
uint32_t op;
uint8_t block[EC_VBNV_BLOCK_SIZE];
} __packed;
struct ec_response_vbnvcontext {
uint8_t block[EC_VBNV_BLOCK_SIZE];
} __packed;
/*****************************************************************************/
/* PWM commands */
/* Get fan target RPM */
#define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x20
struct ec_response_pwm_get_fan_rpm {
uint32_t rpm;
} __packed;
/* Set target fan RPM */
#define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x21
struct ec_params_pwm_set_fan_target_rpm {
uint32_t rpm;
} __packed;
/* Get keyboard backlight */
#define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x22
struct ec_response_pwm_get_keyboard_backlight {
uint8_t percent;
uint8_t enabled;
} __packed;
/* Set keyboard backlight */
#define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x23
struct ec_params_pwm_set_keyboard_backlight {
uint8_t percent;
} __packed;
/* Set target fan PWM duty cycle */
#define EC_CMD_PWM_SET_FAN_DUTY 0x24
struct ec_params_pwm_set_fan_duty {
uint32_t percent;
} __packed;
#define EC_CMD_PWM_SET_DUTY 0x25
/* 16 bit duty cycle, 0xffff = 100% */
#define EC_PWM_MAX_DUTY 0xffff
enum ec_pwm_type {
/* All types, indexed by board-specific enum pwm_channel */
EC_PWM_TYPE_GENERIC = 0,
/* Keyboard backlight */
EC_PWM_TYPE_KB_LIGHT,
/* Display backlight */
EC_PWM_TYPE_DISPLAY_LIGHT,
EC_PWM_TYPE_COUNT,
};
struct ec_params_pwm_set_duty {
uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
uint8_t pwm_type; /* ec_pwm_type */
uint8_t index; /* Type-specific index, or 0 if unique */
} __packed;
#define EC_CMD_PWM_GET_DUTY 0x26
struct ec_params_pwm_get_duty {
uint8_t pwm_type; /* ec_pwm_type */
uint8_t index; /* Type-specific index, or 0 if unique */
} __packed;
struct ec_response_pwm_get_duty {
uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
} __packed;
/*****************************************************************************/
/*
* Lightbar commands. This looks worse than it is. Since we only use one HOST
* command to say "talk to the lightbar", we put the "and tell it to do X" part
* into a subcommand. We'll make separate structs for subcommands with
* different input args, so that we know how much to expect.
*/
#define EC_CMD_LIGHTBAR_CMD 0x28
struct rgb_s {
uint8_t r, g, b;
};
#define LB_BATTERY_LEVELS 4
/* List of tweakable parameters. NOTE: It's __packed so it can be sent in a
* host command, but the alignment is the same regardless. Keep it that way.
*/
struct lightbar_params_v0 {
/* Timing */
int32_t google_ramp_up;
int32_t google_ramp_down;
int32_t s3s0_ramp_up;
int32_t s0_tick_delay[2]; /* AC=0/1 */
int32_t s0a_tick_delay[2]; /* AC=0/1 */
int32_t s0s3_ramp_down;
int32_t s3_sleep_for;
int32_t s3_ramp_up;
int32_t s3_ramp_down;
/* Oscillation */
uint8_t new_s0;
uint8_t osc_min[2]; /* AC=0/1 */
uint8_t osc_max[2]; /* AC=0/1 */
uint8_t w_ofs[2]; /* AC=0/1 */
/* Brightness limits based on the backlight and AC. */
uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
uint8_t bright_bl_on_min[2]; /* AC=0/1 */
uint8_t bright_bl_on_max[2]; /* AC=0/1 */
/* Battery level thresholds */
uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
/* Map [AC][battery_level] to color index */
uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
/* Color palette */
struct rgb_s color[8]; /* 0-3 are Google colors */
} __packed;
struct lightbar_params_v1 {
/* Timing */
int32_t google_ramp_up;
int32_t google_ramp_down;
int32_t s3s0_ramp_up;
int32_t s0_tick_delay[2]; /* AC=0/1 */
int32_t s0a_tick_delay[2]; /* AC=0/1 */
int32_t s0s3_ramp_down;
int32_t s3_sleep_for;
int32_t s3_ramp_up;
int32_t s3_ramp_down;
int32_t tap_tick_delay;
int32_t tap_display_time;
/* Tap-for-battery params */
uint8_t tap_pct_red;
uint8_t tap_pct_green;
uint8_t tap_seg_min_on;
uint8_t tap_seg_max_on;
uint8_t tap_seg_osc;
uint8_t tap_idx[3];
/* Oscillation */
uint8_t osc_min[2]; /* AC=0/1 */
uint8_t osc_max[2]; /* AC=0/1 */
uint8_t w_ofs[2]; /* AC=0/1 */
/* Brightness limits based on the backlight and AC. */
uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
uint8_t bright_bl_on_min[2]; /* AC=0/1 */
uint8_t bright_bl_on_max[2]; /* AC=0/1 */
/* Battery level thresholds */
uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
/* Map [AC][battery_level] to color index */
uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
/* Color palette */
struct rgb_s color[8]; /* 0-3 are Google colors */
} __packed;
/* Lightbar program */
#define EC_LB_PROG_LEN 192
struct lightbar_program {
uint8_t size;
uint8_t data[EC_LB_PROG_LEN];
};
struct ec_params_lightbar {
uint8_t cmd; /* Command (see enum lightbar_command) */
union {
struct {
/* no args */
} dump, off, on, init, get_seq, get_params_v0, get_params_v1,
version, get_brightness, get_demo, suspend, resume;
struct {
uint8_t num;
} set_brightness, seq, demo;
struct {
uint8_t ctrl, reg, value;
} reg;
struct {
uint8_t led, red, green, blue;
} set_rgb;
struct {
uint8_t led;
} get_rgb;
struct {
uint8_t enable;
} manual_suspend_ctrl;
struct lightbar_params_v0 set_params_v0;
struct lightbar_params_v1 set_params_v1;
struct lightbar_program set_program;
};
} __packed;
struct ec_response_lightbar {
union {
struct {
struct {
uint8_t reg;
uint8_t ic0;
uint8_t ic1;
} vals[23];
} dump;
struct {
uint8_t num;
} get_seq, get_brightness, get_demo;
struct lightbar_params_v0 get_params_v0;
struct lightbar_params_v1 get_params_v1;
struct {
uint32_t num;
uint32_t flags;
} version;
struct {
uint8_t red, green, blue;
} get_rgb;
struct {
/* no return params */
} off, on, init, set_brightness, seq, reg, set_rgb,
demo, set_params_v0, set_params_v1,
set_program, manual_suspend_ctrl, suspend, resume;
};
} __packed;
/* Lightbar commands */
enum lightbar_command {
LIGHTBAR_CMD_DUMP = 0,
LIGHTBAR_CMD_OFF = 1,
LIGHTBAR_CMD_ON = 2,
LIGHTBAR_CMD_INIT = 3,
LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
LIGHTBAR_CMD_SEQ = 5,
LIGHTBAR_CMD_REG = 6,
LIGHTBAR_CMD_SET_RGB = 7,
LIGHTBAR_CMD_GET_SEQ = 8,
LIGHTBAR_CMD_DEMO = 9,
LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
LIGHTBAR_CMD_VERSION = 12,
LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
LIGHTBAR_CMD_GET_RGB = 14,
LIGHTBAR_CMD_GET_DEMO = 15,
LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
LIGHTBAR_CMD_SET_PROGRAM = 18,
LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19,
LIGHTBAR_CMD_SUSPEND = 20,
LIGHTBAR_CMD_RESUME = 21,
LIGHTBAR_NUM_CMDS
};
/*****************************************************************************/
/* LED control commands */
#define EC_CMD_LED_CONTROL 0x29
enum ec_led_id {
/* LED to indicate battery state of charge */
EC_LED_ID_BATTERY_LED = 0,
/*
* LED to indicate system power state (on or in suspend).
* May be on power button or on C-panel.
*/
EC_LED_ID_POWER_LED,
/* LED on power adapter or its plug */
EC_LED_ID_ADAPTER_LED,
EC_LED_ID_COUNT
};
/* LED control flags */
#define EC_LED_FLAGS_QUERY (1 << 0) /* Query LED capability only */
#define EC_LED_FLAGS_AUTO (1 << 1) /* Switch LED back to automatic control */
enum ec_led_colors {
EC_LED_COLOR_RED = 0,
EC_LED_COLOR_GREEN,
EC_LED_COLOR_BLUE,
EC_LED_COLOR_YELLOW,
EC_LED_COLOR_WHITE,
EC_LED_COLOR_COUNT
};
struct ec_params_led_control {
uint8_t led_id; /* Which LED to control */
uint8_t flags; /* Control flags */
uint8_t brightness[EC_LED_COLOR_COUNT];
} __packed;
struct ec_response_led_control {
/*
* Available brightness value range.
*
* Range 0 means color channel not present.
* Range 1 means on/off control.
* Other values means the LED is control by PWM.
*/
uint8_t brightness_range[EC_LED_COLOR_COUNT];
} __packed;
/*****************************************************************************/
/* Verified boot commands */
/*
* Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
* reused for other purposes with version > 0.
*/
/* Verified boot hash command */
#define EC_CMD_VBOOT_HASH 0x2A
struct ec_params_vboot_hash {
uint8_t cmd; /* enum ec_vboot_hash_cmd */
uint8_t hash_type; /* enum ec_vboot_hash_type */
uint8_t nonce_size; /* Nonce size; may be 0 */
uint8_t reserved0; /* Reserved; set 0 */
uint32_t offset; /* Offset in flash to hash */
uint32_t size; /* Number of bytes to hash */
uint8_t nonce_data[64]; /* Nonce data; ignored if nonce_size=0 */
} __packed;
struct ec_response_vboot_hash {
uint8_t status; /* enum ec_vboot_hash_status */
uint8_t hash_type; /* enum ec_vboot_hash_type */
uint8_t digest_size; /* Size of hash digest in bytes */
uint8_t reserved0; /* Ignore; will be 0 */
uint32_t offset; /* Offset in flash which was hashed */
uint32_t size; /* Number of bytes hashed */
uint8_t hash_digest[64]; /* Hash digest data */
} __packed;
enum ec_vboot_hash_cmd {
EC_VBOOT_HASH_GET = 0, /* Get current hash status */
EC_VBOOT_HASH_ABORT = 1, /* Abort calculating current hash */
EC_VBOOT_HASH_START = 2, /* Start computing a new hash */
EC_VBOOT_HASH_RECALC = 3, /* Synchronously compute a new hash */
};
enum ec_vboot_hash_type {
EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
};
enum ec_vboot_hash_status {
EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
};
/*
* Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
* If one of these is specified, the EC will automatically update offset and
* size to the correct values for the specified image (RO or RW).
*/
#define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe
#define EC_VBOOT_HASH_OFFSET_RW 0xfffffffd
/*****************************************************************************/
/*
* Motion sense commands. We'll make separate structs for sub-commands with
* different input args, so that we know how much to expect.
*/
#define EC_CMD_MOTION_SENSE_CMD 0x2B
/* Motion sense commands */
enum motionsense_command {
/*
* Dump command returns all motion sensor data including motion sense
* module flags and individual sensor flags.
*/
MOTIONSENSE_CMD_DUMP = 0,
/*
* Info command returns data describing the details of a given sensor,
* including enum motionsensor_type, enum motionsensor_location, and
* enum motionsensor_chip.
*/
MOTIONSENSE_CMD_INFO = 1,
/*
* EC Rate command is a setter/getter command for the EC sampling rate
* of all motion sensors in milliseconds.
*/
MOTIONSENSE_CMD_EC_RATE = 2,
/*
* Sensor ODR command is a setter/getter command for the output data
* rate of a specific motion sensor in millihertz.
*/
MOTIONSENSE_CMD_SENSOR_ODR = 3,
/*
* Sensor range command is a setter/getter command for the range of
* a specified motion sensor in +/-G's or +/- deg/s.
*/
MOTIONSENSE_CMD_SENSOR_RANGE = 4,
/*
* Setter/getter command for the keyboard wake angle. When the lid
* angle is greater than this value, keyboard wake is disabled in S3,
* and when the lid angle goes less than this value, keyboard wake is
* enabled. Note, the lid angle measurement is an approximate,
* un-calibrated value, hence the wake angle isn't exact.
*/
MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
/*
* Returns a single sensor data.
*/
MOTIONSENSE_CMD_DATA = 6,
/*
* Perform low level calibration.. On sensors that support it, ask to
* do offset calibration.
*/
MOTIONSENSE_CMD_PERFORM_CALIB = 10,
/*
* Sensor Offset command is a setter/getter command for the offset used
* for calibration. The offsets can be calculated by the host, or via
* PERFORM_CALIB command.
*/
MOTIONSENSE_CMD_SENSOR_OFFSET = 11,
/* Number of motionsense sub-commands. */
MOTIONSENSE_NUM_CMDS
};
enum motionsensor_id {
EC_MOTION_SENSOR_ACCEL_BASE = 0,
EC_MOTION_SENSOR_ACCEL_LID = 1,
EC_MOTION_SENSOR_GYRO = 2,
/*
* Note, if more sensors are added and this count changes, the padding
* in ec_response_motion_sense dump command must be modified.
*/
EC_MOTION_SENSOR_COUNT = 3
};
/* List of motion sensor types. */
enum motionsensor_type {
MOTIONSENSE_TYPE_ACCEL = 0,
MOTIONSENSE_TYPE_GYRO = 1,
MOTIONSENSE_TYPE_MAG = 2,
MOTIONSENSE_TYPE_PROX = 3,
MOTIONSENSE_TYPE_LIGHT = 4,
MOTIONSENSE_TYPE_ACTIVITY = 5,
MOTIONSENSE_TYPE_BARO = 6,
MOTIONSENSE_TYPE_MAX,
};
/* List of motion sensor locations. */
enum motionsensor_location {
MOTIONSENSE_LOC_BASE = 0,
MOTIONSENSE_LOC_LID = 1,
MOTIONSENSE_LOC_MAX,
};
/* List of motion sensor chips. */
enum motionsensor_chip {
MOTIONSENSE_CHIP_KXCJ9 = 0,
};
/* Module flag masks used for the dump sub-command. */
#define MOTIONSENSE_MODULE_FLAG_ACTIVE (1<<0)
/* Sensor flag masks used for the dump sub-command. */
#define MOTIONSENSE_SENSOR_FLAG_PRESENT (1<<0)
/*
* Send this value for the data element to only perform a read. If you
* send any other value, the EC will interpret it as data to set and will
* return the actual value set.
*/
#define EC_MOTION_SENSE_NO_VALUE -1
#define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000
/* Set Calibration information */
#define MOTION_SENSE_SET_OFFSET 1
struct ec_response_motion_sensor_data {
/* Flags for each sensor. */
uint8_t flags;
/* Sensor number the data comes from */
uint8_t sensor_num;
/* Each sensor is up to 3-axis. */
union {
int16_t data[3];
struct {
uint16_t rsvd;
uint32_t timestamp;
} __packed;
struct {
uint8_t activity; /* motionsensor_activity */
uint8_t state;
int16_t add_info[2];
};
};
} __packed;
struct ec_params_motion_sense {
uint8_t cmd;
union {
/* Used for MOTIONSENSE_CMD_DUMP. */
struct {
/* no args */
} dump;
/*
* Used for MOTIONSENSE_CMD_EC_RATE and
* MOTIONSENSE_CMD_KB_WAKE_ANGLE.
*/
struct {
/* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
int16_t data;
} ec_rate, kb_wake_angle;
/* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
struct {
uint8_t sensor_num;
/*
* bit 0: If set (MOTION_SENSE_SET_OFFSET), set
* the calibration information in the EC.
* If unset, just retrieve calibration information.
*/
uint16_t flags;
/*
* Temperature at calibration, in units of 0.01 C
* 0x8000: invalid / unknown.
* 0x0: 0C
* 0x7fff: +327.67C
*/
int16_t temp;
/*
* Offset for calibration.
* Unit:
* Accelerometer: 1/1024 g
* Gyro: 1/1024 deg/s
* Compass: 1/16 uT
*/
int16_t offset[3];
} __packed sensor_offset;
/* Used for MOTIONSENSE_CMD_INFO. */
struct {
uint8_t sensor_num;
} info;
/*
* Used for MOTIONSENSE_CMD_SENSOR_ODR and
* MOTIONSENSE_CMD_SENSOR_RANGE.
*/
struct {
/* Should be element of enum motionsensor_id. */
uint8_t sensor_num;
/* Rounding flag, true for round-up, false for down. */
uint8_t roundup;
uint16_t reserved;
/* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
int32_t data;
} sensor_odr, sensor_range;
};
} __packed;
struct ec_response_motion_sense {
union {
/* Used for MOTIONSENSE_CMD_DUMP. */
struct {
/* Flags representing the motion sensor module. */
uint8_t module_flags;
/* Number of sensors managed directly by the EC. */
uint8_t sensor_count;
/*
* Sensor data is truncated if response_max is too small
* for holding all the data.
*/
struct ec_response_motion_sensor_data sensor[0];
} dump;
/* Used for MOTIONSENSE_CMD_INFO. */
struct {
/* Should be element of enum motionsensor_type. */
uint8_t type;
/* Should be element of enum motionsensor_location. */
uint8_t location;
/* Should be element of enum motionsensor_chip. */
uint8_t chip;
} info;
/* Used for MOTIONSENSE_CMD_DATA */
struct ec_response_motion_sensor_data data;
/*
* Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
* MOTIONSENSE_CMD_SENSOR_RANGE, and
* MOTIONSENSE_CMD_KB_WAKE_ANGLE.
*/
struct {
/* Current value of the parameter queried. */
int32_t ret;
} ec_rate, sensor_odr, sensor_range, kb_wake_angle;
/* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
struct {
int16_t temp;
int16_t offset[3];
} sensor_offset, perform_calib;
};
} __packed;
/*****************************************************************************/
/* USB charging control commands */
/* Set USB port charging mode */
#define EC_CMD_USB_CHARGE_SET_MODE 0x30
struct ec_params_usb_charge_set_mode {
uint8_t usb_port_id;
uint8_t mode;
} __packed;
/*****************************************************************************/
/* Persistent storage for host */
/* Maximum bytes that can be read/written in a single command */
#define EC_PSTORE_SIZE_MAX 64
/* Get persistent storage info */
#define EC_CMD_PSTORE_INFO 0x40
struct ec_response_pstore_info {
/* Persistent storage size, in bytes */
uint32_t pstore_size;
/* Access size; read/write offset and size must be a multiple of this */
uint32_t access_size;
} __packed;
/*
* Read persistent storage
*
* Response is params.size bytes of data.
*/
#define EC_CMD_PSTORE_READ 0x41
struct ec_params_pstore_read {
uint32_t offset; /* Byte offset to read */
uint32_t size; /* Size to read in bytes */
} __packed;
/* Write persistent storage */
#define EC_CMD_PSTORE_WRITE 0x42
struct ec_params_pstore_write {
uint32_t offset; /* Byte offset to write */
uint32_t size; /* Size to write in bytes */
uint8_t data[EC_PSTORE_SIZE_MAX];
} __packed;
/*****************************************************************************/
/* Real-time clock */
/* RTC params and response structures */
struct ec_params_rtc {
uint32_t time;
} __packed;
struct ec_response_rtc {
uint32_t time;
} __packed;
/* These use ec_response_rtc */
#define EC_CMD_RTC_GET_VALUE 0x44
#define EC_CMD_RTC_GET_ALARM 0x45
/* These all use ec_params_rtc */
#define EC_CMD_RTC_SET_VALUE 0x46
#define EC_CMD_RTC_SET_ALARM 0x47
/*****************************************************************************/
/* Port80 log access */
/* Maximum entries that can be read/written in a single command */
#define EC_PORT80_SIZE_MAX 32
/* Get last port80 code from previous boot */
#define EC_CMD_PORT80_LAST_BOOT 0x48
#define EC_CMD_PORT80_READ 0x48
enum ec_port80_subcmd {
EC_PORT80_GET_INFO = 0,
EC_PORT80_READ_BUFFER,
};
struct ec_params_port80_read {
uint16_t subcmd;
union {
struct {
uint32_t offset;
uint32_t num_entries;
} read_buffer;
};
} __packed;
struct ec_response_port80_read {
union {
struct {
uint32_t writes;
uint32_t history_size;
uint32_t last_boot;
} get_info;
struct {
uint16_t codes[EC_PORT80_SIZE_MAX];
} data;
};
} __packed;
struct ec_response_port80_last_boot {
uint16_t code;
} __packed;
/*****************************************************************************/
/* Thermal engine commands. Note that there are two implementations. We'll
* reuse the command number, but the data and behavior is incompatible.
* Version 0 is what originally shipped on Link.
* Version 1 separates the CPU thermal limits from the fan control.
*/
#define EC_CMD_THERMAL_SET_THRESHOLD 0x50
#define EC_CMD_THERMAL_GET_THRESHOLD 0x51
/* The version 0 structs are opaque. You have to know what they are for
* the get/set commands to make any sense.
*/
/* Version 0 - set */
struct ec_params_thermal_set_threshold {
uint8_t sensor_type;
uint8_t threshold_id;
uint16_t value;
} __packed;
/* Version 0 - get */
struct ec_params_thermal_get_threshold {
uint8_t sensor_type;
uint8_t threshold_id;
} __packed;
struct ec_response_thermal_get_threshold {
uint16_t value;
} __packed;
/* The version 1 structs are visible. */
enum ec_temp_thresholds {
EC_TEMP_THRESH_WARN = 0,
EC_TEMP_THRESH_HIGH,
EC_TEMP_THRESH_HALT,
EC_TEMP_THRESH_COUNT
};
/* Thermal configuration for one temperature sensor. Temps are in degrees K.
* Zero values will be silently ignored by the thermal task.
*/
struct ec_thermal_config {
uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
uint32_t temp_fan_off; /* no active cooling needed */
uint32_t temp_fan_max; /* max active cooling needed */
} __packed;
/* Version 1 - get config for one sensor. */
struct ec_params_thermal_get_threshold_v1 {
uint32_t sensor_num;
} __packed;
/* This returns a struct ec_thermal_config */
/* Version 1 - set config for one sensor.
* Use read-modify-write for best results! */
struct ec_params_thermal_set_threshold_v1 {
uint32_t sensor_num;
struct ec_thermal_config cfg;
} __packed;
/* This returns no data */
/****************************************************************************/
/* Toggle automatic fan control */
#define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x52
/* Get TMP006 calibration data */
#define EC_CMD_TMP006_GET_CALIBRATION 0x53
struct ec_params_tmp006_get_calibration {
uint8_t index;
} __packed;
struct ec_response_tmp006_get_calibration {
float s0;
float b0;
float b1;
float b2;
} __packed;
/* Set TMP006 calibration data */
#define EC_CMD_TMP006_SET_CALIBRATION 0x54
struct ec_params_tmp006_set_calibration {
uint8_t index;
uint8_t reserved[3]; /* Reserved; set 0 */
float s0;
float b0;
float b1;
float b2;
} __packed;
/* Read raw TMP006 data */
#define EC_CMD_TMP006_GET_RAW 0x55
struct ec_params_tmp006_get_raw {
uint8_t index;
} __packed;
struct ec_response_tmp006_get_raw {
int32_t t; /* In 1/100 K */
int32_t v; /* In nV */
};
/*****************************************************************************/
/* MKBP - Matrix KeyBoard Protocol */
/*
* Read key state
*
* Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
* expected response size.
*
* NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT. If you wish
* to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type
* EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX.
*/
#define EC_CMD_MKBP_STATE 0x60
/*
* Provide information about various MKBP things. See enum ec_mkbp_info_type.
*/
#define EC_CMD_MKBP_INFO 0x61
struct ec_response_mkbp_info {
uint32_t rows;
uint32_t cols;
/* Formerly "switches", which was 0. */
uint8_t reserved;
} __packed;
struct ec_params_mkbp_info {
uint8_t info_type;
uint8_t event_type;
} __packed;
enum ec_mkbp_info_type {
/*
* Info about the keyboard matrix: number of rows and columns.
*
* Returns struct ec_response_mkbp_info.
*/
EC_MKBP_INFO_KBD = 0,
/*
* For buttons and switches, info about which specifically are
* supported. event_type must be set to one of the values in enum
* ec_mkbp_event.
*
* For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte
* bitmask indicating which buttons or switches are present. See the
* bit inidices below.
*/
EC_MKBP_INFO_SUPPORTED = 1,
/*
* Instantaneous state of buttons and switches.
*
* event_type must be set to one of the values in enum ec_mkbp_event.
*
* For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13]
* indicating the current state of the keyboard matrix.
*
* For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw
* event state.
*
* For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the
* state of supported buttons.
*
* For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the
* state of supported switches.
*/
EC_MKBP_INFO_CURRENT = 2,
};
/* Simulate key press */
#define EC_CMD_MKBP_SIMULATE_KEY 0x62
struct ec_params_mkbp_simulate_key {
uint8_t col;
uint8_t row;
uint8_t pressed;
} __packed;
/* Configure keyboard scanning */
#define EC_CMD_MKBP_SET_CONFIG 0x64
#define EC_CMD_MKBP_GET_CONFIG 0x65
/* flags */
enum mkbp_config_flags {
EC_MKBP_FLAGS_ENABLE = 1, /* Enable keyboard scanning */
};
enum mkbp_config_valid {
EC_MKBP_VALID_SCAN_PERIOD = 1 << 0,
EC_MKBP_VALID_POLL_TIMEOUT = 1 << 1,
EC_MKBP_VALID_MIN_POST_SCAN_DELAY = 1 << 3,
EC_MKBP_VALID_OUTPUT_SETTLE = 1 << 4,
EC_MKBP_VALID_DEBOUNCE_DOWN = 1 << 5,
EC_MKBP_VALID_DEBOUNCE_UP = 1 << 6,
EC_MKBP_VALID_FIFO_MAX_DEPTH = 1 << 7,
};
/* Configuration for our key scanning algorithm */
struct ec_mkbp_config {
uint32_t valid_mask; /* valid fields */
uint8_t flags; /* some flags (enum mkbp_config_flags) */
uint8_t valid_flags; /* which flags are valid */
uint16_t scan_period_us; /* period between start of scans */
/* revert to interrupt mode after no activity for this long */
uint32_t poll_timeout_us;
/*
* minimum post-scan relax time. Once we finish a scan we check
* the time until we are due to start the next one. If this time is
* shorter this field, we use this instead.
*/
uint16_t min_post_scan_delay_us;
/* delay between setting up output and waiting for it to settle */
uint16_t output_settle_us;
uint16_t debounce_down_us; /* time for debounce on key down */
uint16_t debounce_up_us; /* time for debounce on key up */
/* maximum depth to allow for fifo (0 = no keyscan output) */
uint8_t fifo_max_depth;
} __packed;
struct ec_params_mkbp_set_config {
struct ec_mkbp_config config;
} __packed;
struct ec_response_mkbp_get_config {
struct ec_mkbp_config config;
} __packed;
/* Run the key scan emulation */
#define EC_CMD_KEYSCAN_SEQ_CTRL 0x66
enum ec_keyscan_seq_cmd {
EC_KEYSCAN_SEQ_STATUS = 0, /* Get status information */
EC_KEYSCAN_SEQ_CLEAR = 1, /* Clear sequence */
EC_KEYSCAN_SEQ_ADD = 2, /* Add item to sequence */
EC_KEYSCAN_SEQ_START = 3, /* Start running sequence */
EC_KEYSCAN_SEQ_COLLECT = 4, /* Collect sequence summary data */
};
enum ec_collect_flags {
/*
* Indicates this scan was processed by the EC. Due to timing, some
* scans may be skipped.
*/
EC_KEYSCAN_SEQ_FLAG_DONE = 1 << 0,
};
struct ec_collect_item {
uint8_t flags; /* some flags (enum ec_collect_flags) */
};
struct ec_params_keyscan_seq_ctrl {
uint8_t cmd; /* Command to send (enum ec_keyscan_seq_cmd) */
union {
struct {
uint8_t active; /* still active */
uint8_t num_items; /* number of items */
/* Current item being presented */
uint8_t cur_item;
} status;
struct {
/*
* Absolute time for this scan, measured from the
* start of the sequence.
*/
uint32_t time_us;
uint8_t scan[0]; /* keyscan data */
} add;
struct {
uint8_t start_item; /* First item to return */
uint8_t num_items; /* Number of items to return */
} collect;
};
} __packed;
struct ec_result_keyscan_seq_ctrl {
union {
struct {
uint8_t num_items; /* Number of items */
/* Data for each item */
struct ec_collect_item item[0];
} collect;
};
} __packed;
/*
* Command for retrieving the next pending MKBP event from the EC device
*
* The device replies with UNAVAILABLE if there aren't any pending events.
*/
#define EC_CMD_GET_NEXT_EVENT 0x67
enum ec_mkbp_event {
/* Keyboard matrix changed. The event data is the new matrix state. */
EC_MKBP_EVENT_KEY_MATRIX = 0,
/* New host event. The event data is 4 bytes of host event flags. */
EC_MKBP_EVENT_HOST_EVENT = 1,
/* New Sensor FIFO data. The event data is fifo_info structure. */
EC_MKBP_EVENT_SENSOR_FIFO = 2,
/* The state of the non-matrixed buttons have changed. */
EC_MKBP_EVENT_BUTTON = 3,
/* The state of the switches have changed. */
EC_MKBP_EVENT_SWITCH = 4,
/* EC sent a sysrq command */
EC_MKBP_EVENT_SYSRQ = 6,
/* Number of MKBP events */
EC_MKBP_EVENT_COUNT,
};
union ec_response_get_next_data {
uint8_t key_matrix[13];
/* Unaligned */
uint32_t host_event;
uint32_t buttons;
uint32_t switches;
uint32_t sysrq;
} __packed;
struct ec_response_get_next_event {
uint8_t event_type;
/* Followed by event data if any */
union ec_response_get_next_data data;
} __packed;
/* Bit indices for buttons and switches.*/
/* Buttons */
#define EC_MKBP_POWER_BUTTON 0
#define EC_MKBP_VOL_UP 1
#define EC_MKBP_VOL_DOWN 2
/* Switches */
#define EC_MKBP_LID_OPEN 0
#define EC_MKBP_TABLET_MODE 1
/*****************************************************************************/
/* Temperature sensor commands */
/* Read temperature sensor info */
#define EC_CMD_TEMP_SENSOR_GET_INFO 0x70
struct ec_params_temp_sensor_get_info {
uint8_t id;
} __packed;
struct ec_response_temp_sensor_get_info {
char sensor_name[32];
uint8_t sensor_type;
} __packed;
/*****************************************************************************/
/*
* Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
* commands accidentally sent to the wrong interface. See the ACPI section
* below.
*/
/*****************************************************************************/
/* Host event commands */
/*
* Host event mask params and response structures, shared by all of the host
* event commands below.
*/
struct ec_params_host_event_mask {
uint32_t mask;
} __packed;
struct ec_response_host_event_mask {
uint32_t mask;
} __packed;
/* These all use ec_response_host_event_mask */
#define EC_CMD_HOST_EVENT_GET_B 0x87
#define EC_CMD_HOST_EVENT_GET_SMI_MASK 0x88
#define EC_CMD_HOST_EVENT_GET_SCI_MASK 0x89
#define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x8d
/* These all use ec_params_host_event_mask */
#define EC_CMD_HOST_EVENT_SET_SMI_MASK 0x8a
#define EC_CMD_HOST_EVENT_SET_SCI_MASK 0x8b
#define EC_CMD_HOST_EVENT_CLEAR 0x8c
#define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x8e
#define EC_CMD_HOST_EVENT_CLEAR_B 0x8f
/*****************************************************************************/
/* Switch commands */
/* Enable/disable LCD backlight */
#define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x90
struct ec_params_switch_enable_backlight {
uint8_t enabled;
} __packed;
/* Enable/disable WLAN/Bluetooth */
#define EC_CMD_SWITCH_ENABLE_WIRELESS 0x91
#define EC_VER_SWITCH_ENABLE_WIRELESS 1
/* Version 0 params; no response */
struct ec_params_switch_enable_wireless_v0 {
uint8_t enabled;
} __packed;
/* Version 1 params */
struct ec_params_switch_enable_wireless_v1 {
/* Flags to enable now */
uint8_t now_flags;
/* Which flags to copy from now_flags */
uint8_t now_mask;
/*
* Flags to leave enabled in S3, if they're on at the S0->S3
* transition. (Other flags will be disabled by the S0->S3
* transition.)
*/
uint8_t suspend_flags;
/* Which flags to copy from suspend_flags */
uint8_t suspend_mask;
} __packed;
/* Version 1 response */
struct ec_response_switch_enable_wireless_v1 {
/* Flags to enable now */
uint8_t now_flags;
/* Flags to leave enabled in S3 */
uint8_t suspend_flags;
} __packed;
/*****************************************************************************/
/* GPIO commands. Only available on EC if write protect has been disabled. */
/* Set GPIO output value */
#define EC_CMD_GPIO_SET 0x92
struct ec_params_gpio_set {
char name[32];
uint8_t val;
} __packed;
/* Get GPIO value */
#define EC_CMD_GPIO_GET 0x93
/* Version 0 of input params and response */
struct ec_params_gpio_get {
char name[32];
} __packed;
struct ec_response_gpio_get {
uint8_t val;
} __packed;
/* Version 1 of input params and response */
struct ec_params_gpio_get_v1 {
uint8_t subcmd;
union {
struct {
char name[32];
} get_value_by_name;
struct {
uint8_t index;
} get_info;
};
} __packed;
struct ec_response_gpio_get_v1 {
union {
struct {
uint8_t val;
} get_value_by_name, get_count;
struct {
uint8_t val;
char name[32];
uint32_t flags;
} get_info;
};
} __packed;
enum gpio_get_subcmd {
EC_GPIO_GET_BY_NAME = 0,
EC_GPIO_GET_COUNT = 1,
EC_GPIO_GET_INFO = 2,
};
/*****************************************************************************/
/* I2C commands. Only available when flash write protect is unlocked. */
/*
* TODO(crosbug.com/p/23570): These commands are deprecated, and will be
* removed soon. Use EC_CMD_I2C_XFER instead.
*/
/* Read I2C bus */
#define EC_CMD_I2C_READ 0x94
struct ec_params_i2c_read {
uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
uint8_t read_size; /* Either 8 or 16. */
uint8_t port;
uint8_t offset;
} __packed;
struct ec_response_i2c_read {
uint16_t data;
} __packed;
/* Write I2C bus */
#define EC_CMD_I2C_WRITE 0x95
struct ec_params_i2c_write {
uint16_t data;
uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
uint8_t write_size; /* Either 8 or 16. */
uint8_t port;
uint8_t offset;
} __packed;
/*****************************************************************************/
/* Charge state commands. Only available when flash write protect unlocked. */
/* Force charge state machine to stop charging the battery or force it to
* discharge the battery.
*/
#define EC_CMD_CHARGE_CONTROL 0x96
#define EC_VER_CHARGE_CONTROL 1
enum ec_charge_control_mode {
CHARGE_CONTROL_NORMAL = 0,
CHARGE_CONTROL_IDLE,
CHARGE_CONTROL_DISCHARGE,
};
struct ec_params_charge_control {
uint32_t mode; /* enum charge_control_mode */
} __packed;
/*****************************************************************************/
/* Console commands. Only available when flash write protect is unlocked. */
/* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
#define EC_CMD_CONSOLE_SNAPSHOT 0x97
/*
* Read data from the saved snapshot. If the subcmd parameter is
* CONSOLE_READ_NEXT, this will return data starting from the beginning of
* the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the
* end of the previous snapshot.
*
* The params are only looked at in version >= 1 of this command. Prior
* versions will just default to CONSOLE_READ_NEXT behavior.
*
* Response is null-terminated string. Empty string, if there is no more
* remaining output.
*/
#define EC_CMD_CONSOLE_READ 0x98
enum ec_console_read_subcmd {
CONSOLE_READ_NEXT = 0,
CONSOLE_READ_RECENT
};
struct ec_params_console_read_v1 {
uint8_t subcmd; /* enum ec_console_read_subcmd */
} __packed;
/*****************************************************************************/
/*
* Cut off battery power immediately or after the host has shut down.
*
* return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
* EC_RES_SUCCESS if the command was successful.
* EC_RES_ERROR if the cut off command failed.
*/
#define EC_CMD_BATTERY_CUT_OFF 0x99
#define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN (1 << 0)
struct ec_params_battery_cutoff {
uint8_t flags;
} __packed;
/*****************************************************************************/
/* USB port mux control. */
/*
* Switch USB mux or return to automatic switching.
*/
#define EC_CMD_USB_MUX 0x9a
struct ec_params_usb_mux {
uint8_t mux;
} __packed;
/*****************************************************************************/
/* LDOs / FETs control. */
enum ec_ldo_state {
EC_LDO_STATE_OFF = 0, /* the LDO / FET is shut down */
EC_LDO_STATE_ON = 1, /* the LDO / FET is ON / providing power */
};
/*
* Switch on/off a LDO.
*/
#define EC_CMD_LDO_SET 0x9b
struct ec_params_ldo_set {
uint8_t index;
uint8_t state;
} __packed;
/*
* Get LDO state.
*/
#define EC_CMD_LDO_GET 0x9c
struct ec_params_ldo_get {
uint8_t index;
} __packed;
struct ec_response_ldo_get {
uint8_t state;
} __packed;
/*****************************************************************************/
/* Power info. */
/*
* Get power info.
*/
#define EC_CMD_POWER_INFO 0x9d
struct ec_response_power_info {
uint32_t usb_dev_type;
uint16_t voltage_ac;
uint16_t voltage_system;
uint16_t current_system;
uint16_t usb_current_limit;
} __packed;
/*****************************************************************************/
/* I2C passthru command */
#define EC_CMD_I2C_PASSTHRU 0x9e
/* Read data; if not present, message is a write */
#define EC_I2C_FLAG_READ (1 << 15)
/* Mask for address */
#define EC_I2C_ADDR_MASK 0x3ff
#define EC_I2C_STATUS_NAK (1 << 0) /* Transfer was not acknowledged */
#define EC_I2C_STATUS_TIMEOUT (1 << 1) /* Timeout during transfer */
/* Any error */
#define EC_I2C_STATUS_ERROR (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
struct ec_params_i2c_passthru_msg {
uint16_t addr_flags; /* I2C slave address (7 or 10 bits) and flags */
uint16_t len; /* Number of bytes to read or write */
} __packed;
struct ec_params_i2c_passthru {
uint8_t port; /* I2C port number */
uint8_t num_msgs; /* Number of messages */
struct ec_params_i2c_passthru_msg msg[];
/* Data to write for all messages is concatenated here */
} __packed;
struct ec_response_i2c_passthru {
uint8_t i2c_status; /* Status flags (EC_I2C_STATUS_...) */
uint8_t num_msgs; /* Number of messages processed */
uint8_t data[]; /* Data read by messages concatenated here */
} __packed;
/*****************************************************************************/
/* Power button hang detect */
#define EC_CMD_HANG_DETECT 0x9f
/* Reasons to start hang detection timer */
/* Power button pressed */
#define EC_HANG_START_ON_POWER_PRESS (1 << 0)
/* Lid closed */
#define EC_HANG_START_ON_LID_CLOSE (1 << 1)
/* Lid opened */
#define EC_HANG_START_ON_LID_OPEN (1 << 2)
/* Start of AP S3->S0 transition (booting or resuming from suspend) */
#define EC_HANG_START_ON_RESUME (1 << 3)
/* Reasons to cancel hang detection */
/* Power button released */
#define EC_HANG_STOP_ON_POWER_RELEASE (1 << 8)
/* Any host command from AP received */
#define EC_HANG_STOP_ON_HOST_COMMAND (1 << 9)
/* Stop on end of AP S0->S3 transition (suspending or shutting down) */
#define EC_HANG_STOP_ON_SUSPEND (1 << 10)
/*
* If this flag is set, all the other fields are ignored, and the hang detect
* timer is started. This provides the AP a way to start the hang timer
* without reconfiguring any of the other hang detect settings. Note that
* you must previously have configured the timeouts.
*/
#define EC_HANG_START_NOW (1 << 30)
/*
* If this flag is set, all the other fields are ignored (including
* EC_HANG_START_NOW). This provides the AP a way to stop the hang timer
* without reconfiguring any of the other hang detect settings.
*/
#define EC_HANG_STOP_NOW (1 << 31)
struct ec_params_hang_detect {
/* Flags; see EC_HANG_* */
uint32_t flags;
/* Timeout in msec before generating host event, if enabled */
uint16_t host_event_timeout_msec;
/* Timeout in msec before generating warm reboot, if enabled */
uint16_t warm_reboot_timeout_msec;
} __packed;
/*****************************************************************************/
/* Commands for battery charging */
/*
* This is the single catch-all host command to exchange data regarding the
* charge state machine (v2 and up).
*/
#define EC_CMD_CHARGE_STATE 0xa0
/* Subcommands for this host command */
enum charge_state_command {
CHARGE_STATE_CMD_GET_STATE,
CHARGE_STATE_CMD_GET_PARAM,
CHARGE_STATE_CMD_SET_PARAM,
CHARGE_STATE_NUM_CMDS
};
/*
* Known param numbers are defined here. Ranges are reserved for board-specific
* params, which are handled by the particular implementations.
*/
enum charge_state_params {
CS_PARAM_CHG_VOLTAGE, /* charger voltage limit */
CS_PARAM_CHG_CURRENT, /* charger current limit */
CS_PARAM_CHG_INPUT_CURRENT, /* charger input current limit */
CS_PARAM_CHG_STATUS, /* charger-specific status */
CS_PARAM_CHG_OPTION, /* charger-specific options */
/* How many so far? */
CS_NUM_BASE_PARAMS,
/* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
/* Other custom param ranges go here... */
};
struct ec_params_charge_state {
uint8_t cmd; /* enum charge_state_command */
union {
struct {
/* no args */
} get_state;
struct {
uint32_t param; /* enum charge_state_param */
} get_param;
struct {
uint32_t param; /* param to set */
uint32_t value; /* value to set */
} set_param;
};
} __packed;
struct ec_response_charge_state {
union {
struct {
int ac;
int chg_voltage;
int chg_current;
int chg_input_current;
int batt_state_of_charge;
} get_state;
struct {
uint32_t value;
} get_param;
struct {
/* no return values */
} set_param;
};
} __packed;
/*
* Set maximum battery charging current.
*/
#define EC_CMD_CHARGE_CURRENT_LIMIT 0xa1
struct ec_params_current_limit {
uint32_t limit; /* in mA */
} __packed;
/*
* Set maximum external power current.
*/
#define EC_CMD_EXT_POWER_CURRENT_LIMIT 0xa2
struct ec_params_ext_power_current_limit {
uint32_t limit; /* in mA */
} __packed;
/* Inform the EC when entering a sleep state */
#define EC_CMD_HOST_SLEEP_EVENT 0xa9
enum host_sleep_event {
HOST_SLEEP_EVENT_S3_SUSPEND = 1,
HOST_SLEEP_EVENT_S3_RESUME = 2,
HOST_SLEEP_EVENT_S0IX_SUSPEND = 3,
HOST_SLEEP_EVENT_S0IX_RESUME = 4
};
struct ec_params_host_sleep_event {
uint8_t sleep_event;
} __packed;
/*****************************************************************************/
/* Smart battery pass-through */
/* Get / Set 16-bit smart battery registers */
#define EC_CMD_SB_READ_WORD 0xb0
#define EC_CMD_SB_WRITE_WORD 0xb1
/* Get / Set string smart battery parameters
* formatted as SMBUS "block".
*/
#define EC_CMD_SB_READ_BLOCK 0xb2
#define EC_CMD_SB_WRITE_BLOCK 0xb3
struct ec_params_sb_rd {
uint8_t reg;
} __packed;
struct ec_response_sb_rd_word {
uint16_t value;
} __packed;
struct ec_params_sb_wr_word {
uint8_t reg;
uint16_t value;
} __packed;
struct ec_response_sb_rd_block {
uint8_t data[32];
} __packed;
struct ec_params_sb_wr_block {
uint8_t reg;
uint16_t data[32];
} __packed;
/*****************************************************************************/
/* Battery vendor parameters
*
* Get or set vendor-specific parameters in the battery. Implementations may
* differ between boards or batteries. On a set operation, the response
* contains the actual value set, which may be rounded or clipped from the
* requested value.
*/
#define EC_CMD_BATTERY_VENDOR_PARAM 0xb4
enum ec_battery_vendor_param_mode {
BATTERY_VENDOR_PARAM_MODE_GET = 0,
BATTERY_VENDOR_PARAM_MODE_SET,
};
struct ec_params_battery_vendor_param {
uint32_t param;
uint32_t value;
uint8_t mode;
} __packed;
struct ec_response_battery_vendor_param {
uint32_t value;
} __packed;
/*****************************************************************************/
/* System commands */
/*
* TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
* necessarily reboot the EC. Rename to "image" or something similar?
*/
#define EC_CMD_REBOOT_EC 0xd2
/* Command */
enum ec_reboot_cmd {
EC_REBOOT_CANCEL = 0, /* Cancel a pending reboot */
EC_REBOOT_JUMP_RO = 1, /* Jump to RO without rebooting */
EC_REBOOT_JUMP_RW = 2, /* Jump to RW without rebooting */
/* (command 3 was jump to RW-B) */
EC_REBOOT_COLD = 4, /* Cold-reboot */
EC_REBOOT_DISABLE_JUMP = 5, /* Disable jump until next reboot */
EC_REBOOT_HIBERNATE = 6 /* Hibernate EC */
};
/* Flags for ec_params_reboot_ec.reboot_flags */
#define EC_REBOOT_FLAG_RESERVED0 (1 << 0) /* Was recovery request */
#define EC_REBOOT_FLAG_ON_AP_SHUTDOWN (1 << 1) /* Reboot after AP shutdown */
struct ec_params_reboot_ec {
uint8_t cmd; /* enum ec_reboot_cmd */
uint8_t flags; /* See EC_REBOOT_FLAG_* */
} __packed;
/*
* Get information on last EC panic.
*
* Returns variable-length platform-dependent panic information. See panic.h
* for details.
*/
#define EC_CMD_GET_PANIC_INFO 0xd3
/*****************************************************************************/
/*
* ACPI commands
*
* These are valid ONLY on the ACPI command/data port.
*/
/*
* ACPI Read Embedded Controller
*
* This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
*
* Use the following sequence:
*
* - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
* - Wait for EC_LPC_CMDR_PENDING bit to clear
* - Write address to EC_LPC_ADDR_ACPI_DATA
* - Wait for EC_LPC_CMDR_DATA bit to set
* - Read value from EC_LPC_ADDR_ACPI_DATA
*/
#define EC_CMD_ACPI_READ 0x80
/*
* ACPI Write Embedded Controller
*
* This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
*
* Use the following sequence:
*
* - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
* - Wait for EC_LPC_CMDR_PENDING bit to clear
* - Write address to EC_LPC_ADDR_ACPI_DATA
* - Wait for EC_LPC_CMDR_PENDING bit to clear
* - Write value to EC_LPC_ADDR_ACPI_DATA
*/
#define EC_CMD_ACPI_WRITE 0x81
/*
* ACPI Query Embedded Controller
*
* This clears the lowest-order bit in the currently pending host events, and
* sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
* event 0x80000000 = 32), or 0 if no event was pending.
*/
#define EC_CMD_ACPI_QUERY_EVENT 0x84
/* Valid addresses in ACPI memory space, for read/write commands */
/* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
#define EC_ACPI_MEM_VERSION 0x00
/*
* Test location; writing value here updates test compliment byte to (0xff -
* value).
*/
#define EC_ACPI_MEM_TEST 0x01
/* Test compliment; writes here are ignored. */
#define EC_ACPI_MEM_TEST_COMPLIMENT 0x02
/* Keyboard backlight brightness percent (0 - 100) */
#define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
/* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
#define EC_ACPI_MEM_FAN_DUTY 0x04
/*
* DPTF temp thresholds. Any of the EC's temp sensors can have up to two
* independent thresholds attached to them. The current value of the ID
* register determines which sensor is affected by the THRESHOLD and COMMIT
* registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
* as the memory-mapped sensors. The COMMIT register applies those settings.
*
* The spec does not mandate any way to read back the threshold settings
* themselves, but when a threshold is crossed the AP needs a way to determine
* which sensor(s) are responsible. Each reading of the ID register clears and
* returns one sensor ID that has crossed one of its threshold (in either
* direction) since the last read. A value of 0xFF means "no new thresholds
* have tripped". Setting or enabling the thresholds for a sensor will clear
* the unread event count for that sensor.
*/
#define EC_ACPI_MEM_TEMP_ID 0x05
#define EC_ACPI_MEM_TEMP_THRESHOLD 0x06
#define EC_ACPI_MEM_TEMP_COMMIT 0x07
/*
* Here are the bits for the COMMIT register:
* bit 0 selects the threshold index for the chosen sensor (0/1)
* bit 1 enables/disables the selected threshold (0 = off, 1 = on)
* Each write to the commit register affects one threshold.
*/
#define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK (1 << 0)
#define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK (1 << 1)
/*
* Example:
*
* Set the thresholds for sensor 2 to 50 C and 60 C:
* write 2 to [0x05] -- select temp sensor 2
* write 0x7b to [0x06] -- C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
* write 0x2 to [0x07] -- enable threshold 0 with this value
* write 0x85 to [0x06] -- C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
* write 0x3 to [0x07] -- enable threshold 1 with this value
*
* Disable the 60 C threshold, leaving the 50 C threshold unchanged:
* write 2 to [0x05] -- select temp sensor 2
* write 0x1 to [0x07] -- disable threshold 1
*/
/* DPTF battery charging current limit */
#define EC_ACPI_MEM_CHARGING_LIMIT 0x08
/* Charging limit is specified in 64 mA steps */
#define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA 64
/* Value to disable DPTF battery charging limit */
#define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED 0xff
/* Current version of ACPI memory address space */
#define EC_ACPI_MEM_VERSION_CURRENT 1
/*****************************************************************************/
/*
* Special commands
*
* These do not follow the normal rules for commands. See each command for
* details.
*/
/*
* Reboot NOW
*
* This command will work even when the EC LPC interface is busy, because the
* reboot command is processed at interrupt level. Note that when the EC
* reboots, the host will reboot too, so there is no response to this command.
*
* Use EC_CMD_REBOOT_EC to reboot the EC more politely.
*/
#define EC_CMD_REBOOT 0xd1 /* Think "die" */
/*
* Resend last response (not supported on LPC).
*
* Returns EC_RES_UNAVAILABLE if there is no response available - for example,
* there was no previous command, or the previous command's response was too
* big to save.
*/
#define EC_CMD_RESEND_RESPONSE 0xdb
/*
* This header byte on a command indicate version 0. Any header byte less
* than this means that we are talking to an old EC which doesn't support
* versioning. In that case, we assume version 0.
*
* Header bytes greater than this indicate a later version. For example,
* EC_CMD_VERSION0 + 1 means we are using version 1.
*
* The old EC interface must not use commands 0xdc or higher.
*/
#define EC_CMD_VERSION0 0xdc
#endif /* !__ACPI__ */
/*****************************************************************************/
/*
* PD commands
*
* These commands are for PD MCU communication.
*/
/* EC to PD MCU exchange status command */
#define EC_CMD_PD_EXCHANGE_STATUS 0x100
/* Status of EC being sent to PD */
struct ec_params_pd_status {
int8_t batt_soc; /* battery state of charge */
} __packed;
/* Status of PD being sent back to EC */
struct ec_response_pd_status {
int8_t status; /* PD MCU status */
uint32_t curr_lim_ma; /* input current limit */
} __packed;
/* Set USB type-C port role and muxes */
#define EC_CMD_USB_PD_CONTROL 0x101
enum usb_pd_control_role {
USB_PD_CTRL_ROLE_NO_CHANGE = 0,
USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
USB_PD_CTRL_ROLE_FORCE_SINK = 3,
USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
};
enum usb_pd_control_mux {
USB_PD_CTRL_MUX_NO_CHANGE = 0,
USB_PD_CTRL_MUX_NONE = 1,
USB_PD_CTRL_MUX_USB = 2,
USB_PD_CTRL_MUX_DP = 3,
USB_PD_CTRL_MUX_DOCK = 4,
USB_PD_CTRL_MUX_AUTO = 5,
};
struct ec_params_usb_pd_control {
uint8_t port;
uint8_t role;
uint8_t mux;
} __packed;
#define PD_CTRL_RESP_ENABLED_COMMS (1 << 0) /* Communication enabled */
#define PD_CTRL_RESP_ENABLED_CONNECTED (1 << 1) /* Device connected */
#define PD_CTRL_RESP_ENABLED_PD_CAPABLE (1 << 2) /* Partner is PD capable */
struct ec_response_usb_pd_control_v1 {
uint8_t enabled;
uint8_t role;
uint8_t polarity;
char state[32];
} __packed;
#define EC_CMD_USB_PD_PORTS 0x102
struct ec_response_usb_pd_ports {
uint8_t num_ports;
} __packed;
#define EC_CMD_USB_PD_POWER_INFO 0x103
#define PD_POWER_CHARGING_PORT 0xff
struct ec_params_usb_pd_power_info {
uint8_t port;
} __packed;
enum usb_chg_type {
USB_CHG_TYPE_NONE,
USB_CHG_TYPE_PD,
USB_CHG_TYPE_C,
USB_CHG_TYPE_PROPRIETARY,
USB_CHG_TYPE_BC12_DCP,
USB_CHG_TYPE_BC12_CDP,
USB_CHG_TYPE_BC12_SDP,
USB_CHG_TYPE_OTHER,
USB_CHG_TYPE_VBUS,
USB_CHG_TYPE_UNKNOWN,
};
struct usb_chg_measures {
uint16_t voltage_max;
uint16_t voltage_now;
uint16_t current_max;
uint16_t current_lim;
} __packed;
struct ec_response_usb_pd_power_info {
uint8_t role;
uint8_t type;
uint8_t dualrole;
uint8_t reserved1;
struct usb_chg_measures meas;
uint32_t max_power;
} __packed;
/* Get info about USB-C SS muxes */
#define EC_CMD_USB_PD_MUX_INFO 0x11a
struct ec_params_usb_pd_mux_info {
uint8_t port; /* USB-C port number */
} __packed;
/* Flags representing mux state */
#define USB_PD_MUX_USB_ENABLED (1 << 0)
#define USB_PD_MUX_DP_ENABLED (1 << 1)
#define USB_PD_MUX_POLARITY_INVERTED (1 << 2)
#define USB_PD_MUX_HPD_IRQ (1 << 3)
struct ec_response_usb_pd_mux_info {
uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */
} __packed;
/*****************************************************************************/
/*
* Passthru commands
*
* Some platforms have sub-processors chained to each other. For example.
*
* AP <--> EC <--> PD MCU
*
* The top 2 bits of the command number are used to indicate which device the
* command is intended for. Device 0 is always the device receiving the
* command; other device mapping is board-specific.
*
* When a device receives a command to be passed to a sub-processor, it passes
* it on with the device number set back to 0. This allows the sub-processor
* to remain blissfully unaware of whether the command originated on the next
* device up the chain, or was passed through from the AP.
*
* In the above example, if the AP wants to send command 0x0002 to the PD MCU,
* AP sends command 0x4002 to the EC
* EC sends command 0x0002 to the PD MCU
* EC forwards PD MCU response back to the AP
*/
/* Offset and max command number for sub-device n */
#define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
#define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
/*****************************************************************************/
/*
* Deprecated constants. These constants have been renamed for clarity. The
* meaning and size has not changed. Programs that use the old names should
* switch to the new names soon, as the old names may not be carried forward
* forever.
*/
#define EC_HOST_PARAM_SIZE EC_PROTO2_MAX_PARAM_SIZE
#define EC_LPC_ADDR_OLD_PARAM EC_HOST_CMD_REGION1
#define EC_OLD_PARAM_SIZE EC_HOST_CMD_REGION_SIZE
#endif /* __CROS_EC_COMMANDS_H */