|  | /* | 
|  | * Freescale Integrated Flash Controller NAND driver | 
|  | * | 
|  | * Copyright 2011-2012 Freescale Semiconductor, Inc | 
|  | * | 
|  | * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/nand.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  | #include <linux/mtd/nand_ecc.h> | 
|  | #include <asm/fsl_ifc.h> | 
|  |  | 
|  | #define FSL_IFC_V1_1_0	0x01010000 | 
|  | #define ERR_BYTE		0xFF /* Value returned for read | 
|  | bytes when read failed	*/ | 
|  | #define IFC_TIMEOUT_MSECS	500  /* Maximum number of mSecs to wait | 
|  | for IFC NAND Machine	*/ | 
|  |  | 
|  | struct fsl_ifc_ctrl; | 
|  |  | 
|  | /* mtd information per set */ | 
|  | struct fsl_ifc_mtd { | 
|  | struct mtd_info mtd; | 
|  | struct nand_chip chip; | 
|  | struct fsl_ifc_ctrl *ctrl; | 
|  |  | 
|  | struct device *dev; | 
|  | int bank;		/* Chip select bank number		*/ | 
|  | unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */ | 
|  | u8 __iomem *vbase;      /* Chip select base virtual address	*/ | 
|  | }; | 
|  |  | 
|  | /* overview of the fsl ifc controller */ | 
|  | struct fsl_ifc_nand_ctrl { | 
|  | struct nand_hw_control controller; | 
|  | struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT]; | 
|  |  | 
|  | u8 __iomem *addr;	/* Address of assigned IFC buffer	*/ | 
|  | unsigned int page;	/* Last page written to / read from	*/ | 
|  | unsigned int read_bytes;/* Number of bytes read during command	*/ | 
|  | unsigned int column;	/* Saved column from SEQIN		*/ | 
|  | unsigned int index;	/* Pointer to next byte to 'read'	*/ | 
|  | unsigned int oob;	/* Non zero if operating on OOB data	*/ | 
|  | unsigned int eccread;	/* Non zero for a full-page ECC read	*/ | 
|  | unsigned int counter;	/* counter for the initializations	*/ | 
|  | unsigned int max_bitflips;  /* Saved during READ0 cmd		*/ | 
|  | }; | 
|  |  | 
|  | static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl; | 
|  |  | 
|  | /* 512-byte page with 4-bit ECC, 8-bit */ | 
|  | static struct nand_ecclayout oob_512_8bit_ecc4 = { | 
|  | .eccbytes = 8, | 
|  | .eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, | 
|  | .oobfree = { {0, 5}, {6, 2} }, | 
|  | }; | 
|  |  | 
|  | /* 512-byte page with 4-bit ECC, 16-bit */ | 
|  | static struct nand_ecclayout oob_512_16bit_ecc4 = { | 
|  | .eccbytes = 8, | 
|  | .eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, | 
|  | .oobfree = { {2, 6}, }, | 
|  | }; | 
|  |  | 
|  | /* 2048-byte page size with 4-bit ECC */ | 
|  | static struct nand_ecclayout oob_2048_ecc4 = { | 
|  | .eccbytes = 32, | 
|  | .eccpos = { | 
|  | 8, 9, 10, 11, 12, 13, 14, 15, | 
|  | 16, 17, 18, 19, 20, 21, 22, 23, | 
|  | 24, 25, 26, 27, 28, 29, 30, 31, | 
|  | 32, 33, 34, 35, 36, 37, 38, 39, | 
|  | }, | 
|  | .oobfree = { {2, 6}, {40, 24} }, | 
|  | }; | 
|  |  | 
|  | /* 4096-byte page size with 4-bit ECC */ | 
|  | static struct nand_ecclayout oob_4096_ecc4 = { | 
|  | .eccbytes = 64, | 
|  | .eccpos = { | 
|  | 8, 9, 10, 11, 12, 13, 14, 15, | 
|  | 16, 17, 18, 19, 20, 21, 22, 23, | 
|  | 24, 25, 26, 27, 28, 29, 30, 31, | 
|  | 32, 33, 34, 35, 36, 37, 38, 39, | 
|  | 40, 41, 42, 43, 44, 45, 46, 47, | 
|  | 48, 49, 50, 51, 52, 53, 54, 55, | 
|  | 56, 57, 58, 59, 60, 61, 62, 63, | 
|  | 64, 65, 66, 67, 68, 69, 70, 71, | 
|  | }, | 
|  | .oobfree = { {2, 6}, {72, 56} }, | 
|  | }; | 
|  |  | 
|  | /* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */ | 
|  | static struct nand_ecclayout oob_4096_ecc8 = { | 
|  | .eccbytes = 128, | 
|  | .eccpos = { | 
|  | 8, 9, 10, 11, 12, 13, 14, 15, | 
|  | 16, 17, 18, 19, 20, 21, 22, 23, | 
|  | 24, 25, 26, 27, 28, 29, 30, 31, | 
|  | 32, 33, 34, 35, 36, 37, 38, 39, | 
|  | 40, 41, 42, 43, 44, 45, 46, 47, | 
|  | 48, 49, 50, 51, 52, 53, 54, 55, | 
|  | 56, 57, 58, 59, 60, 61, 62, 63, | 
|  | 64, 65, 66, 67, 68, 69, 70, 71, | 
|  | 72, 73, 74, 75, 76, 77, 78, 79, | 
|  | 80, 81, 82, 83, 84, 85, 86, 87, | 
|  | 88, 89, 90, 91, 92, 93, 94, 95, | 
|  | 96, 97, 98, 99, 100, 101, 102, 103, | 
|  | 104, 105, 106, 107, 108, 109, 110, 111, | 
|  | 112, 113, 114, 115, 116, 117, 118, 119, | 
|  | 120, 121, 122, 123, 124, 125, 126, 127, | 
|  | 128, 129, 130, 131, 132, 133, 134, 135, | 
|  | }, | 
|  | .oobfree = { {2, 6}, {136, 82} }, | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Generic flash bbt descriptors | 
|  | */ | 
|  | static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; | 
|  | static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; | 
|  |  | 
|  | static struct nand_bbt_descr bbt_main_descr = { | 
|  | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | | 
|  | NAND_BBT_2BIT | NAND_BBT_VERSION, | 
|  | .offs =	2, /* 0 on 8-bit small page */ | 
|  | .len = 4, | 
|  | .veroffs = 6, | 
|  | .maxblocks = 4, | 
|  | .pattern = bbt_pattern, | 
|  | }; | 
|  |  | 
|  | static struct nand_bbt_descr bbt_mirror_descr = { | 
|  | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | | 
|  | NAND_BBT_2BIT | NAND_BBT_VERSION, | 
|  | .offs =	2, /* 0 on 8-bit small page */ | 
|  | .len = 4, | 
|  | .veroffs = 6, | 
|  | .maxblocks = 4, | 
|  | .pattern = mirror_pattern, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Set up the IFC hardware block and page address fields, and the ifc nand | 
|  | * structure addr field to point to the correct IFC buffer in memory | 
|  | */ | 
|  | static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct fsl_ifc_mtd *priv = chip->priv; | 
|  | struct fsl_ifc_ctrl *ctrl = priv->ctrl; | 
|  | struct fsl_ifc_regs __iomem *ifc = ctrl->regs; | 
|  | int buf_num; | 
|  |  | 
|  | ifc_nand_ctrl->page = page_addr; | 
|  | /* Program ROW0/COL0 */ | 
|  | out_be32(&ifc->ifc_nand.row0, page_addr); | 
|  | out_be32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column); | 
|  |  | 
|  | buf_num = page_addr & priv->bufnum_mask; | 
|  |  | 
|  | ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2); | 
|  | ifc_nand_ctrl->index = column; | 
|  |  | 
|  | /* for OOB data point to the second half of the buffer */ | 
|  | if (oob) | 
|  | ifc_nand_ctrl->index += mtd->writesize; | 
|  | } | 
|  |  | 
|  | static int is_blank(struct mtd_info *mtd, unsigned int bufnum) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct fsl_ifc_mtd *priv = chip->priv; | 
|  | u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2); | 
|  | u32 __iomem *mainarea = (u32 __iomem *)addr; | 
|  | u8 __iomem *oob = addr + mtd->writesize; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < mtd->writesize / 4; i++) { | 
|  | if (__raw_readl(&mainarea[i]) != 0xffffffff) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < chip->ecc.layout->eccbytes; i++) { | 
|  | int pos = chip->ecc.layout->eccpos[i]; | 
|  |  | 
|  | if (__raw_readb(&oob[pos]) != 0xff) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* returns nonzero if entire page is blank */ | 
|  | static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, | 
|  | u32 *eccstat, unsigned int bufnum) | 
|  | { | 
|  | u32 reg = eccstat[bufnum / 4]; | 
|  | int errors; | 
|  |  | 
|  | errors = (reg >> ((3 - bufnum % 4) * 8)) & 15; | 
|  |  | 
|  | return errors; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * execute IFC NAND command and wait for it to complete | 
|  | */ | 
|  | static void fsl_ifc_run_command(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct fsl_ifc_mtd *priv = chip->priv; | 
|  | struct fsl_ifc_ctrl *ctrl = priv->ctrl; | 
|  | struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; | 
|  | struct fsl_ifc_regs __iomem *ifc = ctrl->regs; | 
|  | u32 eccstat[4]; | 
|  | int i; | 
|  |  | 
|  | /* set the chip select for NAND Transaction */ | 
|  | out_be32(&ifc->ifc_nand.nand_csel, priv->bank << IFC_NAND_CSEL_SHIFT); | 
|  |  | 
|  | dev_vdbg(priv->dev, | 
|  | "%s: fir0=%08x fcr0=%08x\n", | 
|  | __func__, | 
|  | in_be32(&ifc->ifc_nand.nand_fir0), | 
|  | in_be32(&ifc->ifc_nand.nand_fcr0)); | 
|  |  | 
|  | ctrl->nand_stat = 0; | 
|  |  | 
|  | /* start read/write seq */ | 
|  | out_be32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT); | 
|  |  | 
|  | /* wait for command complete flag or timeout */ | 
|  | wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, | 
|  | IFC_TIMEOUT_MSECS * HZ/1000); | 
|  |  | 
|  | /* ctrl->nand_stat will be updated from IRQ context */ | 
|  | if (!ctrl->nand_stat) | 
|  | dev_err(priv->dev, "Controller is not responding\n"); | 
|  | if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER) | 
|  | dev_err(priv->dev, "NAND Flash Timeout Error\n"); | 
|  | if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER) | 
|  | dev_err(priv->dev, "NAND Flash Write Protect Error\n"); | 
|  |  | 
|  | nctrl->max_bitflips = 0; | 
|  |  | 
|  | if (nctrl->eccread) { | 
|  | int errors; | 
|  | int bufnum = nctrl->page & priv->bufnum_mask; | 
|  | int sector = bufnum * chip->ecc.steps; | 
|  | int sector_end = sector + chip->ecc.steps - 1; | 
|  |  | 
|  | for (i = sector / 4; i <= sector_end / 4; i++) | 
|  | eccstat[i] = in_be32(&ifc->ifc_nand.nand_eccstat[i]); | 
|  |  | 
|  | for (i = sector; i <= sector_end; i++) { | 
|  | errors = check_read_ecc(mtd, ctrl, eccstat, i); | 
|  |  | 
|  | if (errors == 15) { | 
|  | /* | 
|  | * Uncorrectable error. | 
|  | * OK only if the whole page is blank. | 
|  | * | 
|  | * We disable ECCER reporting due to... | 
|  | * erratum IFC-A002770 -- so report it now if we | 
|  | * see an uncorrectable error in ECCSTAT. | 
|  | */ | 
|  | if (!is_blank(mtd, bufnum)) | 
|  | ctrl->nand_stat |= | 
|  | IFC_NAND_EVTER_STAT_ECCER; | 
|  | break; | 
|  | } | 
|  |  | 
|  | mtd->ecc_stats.corrected += errors; | 
|  | nctrl->max_bitflips = max_t(unsigned int, | 
|  | nctrl->max_bitflips, | 
|  | errors); | 
|  | } | 
|  |  | 
|  | nctrl->eccread = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void fsl_ifc_do_read(struct nand_chip *chip, | 
|  | int oob, | 
|  | struct mtd_info *mtd) | 
|  | { | 
|  | struct fsl_ifc_mtd *priv = chip->priv; | 
|  | struct fsl_ifc_ctrl *ctrl = priv->ctrl; | 
|  | struct fsl_ifc_regs __iomem *ifc = ctrl->regs; | 
|  |  | 
|  | /* Program FIR/IFC_NAND_FCR0 for Small/Large page */ | 
|  | if (mtd->writesize > 512) { | 
|  | out_be32(&ifc->ifc_nand.nand_fir0, | 
|  | (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | | 
|  | (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | | 
|  | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | | 
|  | (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | | 
|  | (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT)); | 
|  | out_be32(&ifc->ifc_nand.nand_fir1, 0x0); | 
|  |  | 
|  | out_be32(&ifc->ifc_nand.nand_fcr0, | 
|  | (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | | 
|  | (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT)); | 
|  | } else { | 
|  | out_be32(&ifc->ifc_nand.nand_fir0, | 
|  | (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | | 
|  | (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | | 
|  | (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) | | 
|  | (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT)); | 
|  | out_be32(&ifc->ifc_nand.nand_fir1, 0x0); | 
|  |  | 
|  | if (oob) | 
|  | out_be32(&ifc->ifc_nand.nand_fcr0, | 
|  | NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT); | 
|  | else | 
|  | out_be32(&ifc->ifc_nand.nand_fcr0, | 
|  | NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* cmdfunc send commands to the IFC NAND Machine */ | 
|  | static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, | 
|  | int column, int page_addr) { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct fsl_ifc_mtd *priv = chip->priv; | 
|  | struct fsl_ifc_ctrl *ctrl = priv->ctrl; | 
|  | struct fsl_ifc_regs __iomem *ifc = ctrl->regs; | 
|  |  | 
|  | /* clear the read buffer */ | 
|  | ifc_nand_ctrl->read_bytes = 0; | 
|  | if (command != NAND_CMD_PAGEPROG) | 
|  | ifc_nand_ctrl->index = 0; | 
|  |  | 
|  | switch (command) { | 
|  | /* READ0 read the entire buffer to use hardware ECC. */ | 
|  | case NAND_CMD_READ0: | 
|  | out_be32(&ifc->ifc_nand.nand_fbcr, 0); | 
|  | set_addr(mtd, 0, page_addr, 0); | 
|  |  | 
|  | ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; | 
|  | ifc_nand_ctrl->index += column; | 
|  |  | 
|  | if (chip->ecc.mode == NAND_ECC_HW) | 
|  | ifc_nand_ctrl->eccread = 1; | 
|  |  | 
|  | fsl_ifc_do_read(chip, 0, mtd); | 
|  | fsl_ifc_run_command(mtd); | 
|  | return; | 
|  |  | 
|  | /* READOOB reads only the OOB because no ECC is performed. */ | 
|  | case NAND_CMD_READOOB: | 
|  | out_be32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column); | 
|  | set_addr(mtd, column, page_addr, 1); | 
|  |  | 
|  | ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; | 
|  |  | 
|  | fsl_ifc_do_read(chip, 1, mtd); | 
|  | fsl_ifc_run_command(mtd); | 
|  |  | 
|  | return; | 
|  |  | 
|  | case NAND_CMD_READID: | 
|  | case NAND_CMD_PARAM: { | 
|  | int timing = IFC_FIR_OP_RB; | 
|  | if (command == NAND_CMD_PARAM) | 
|  | timing = IFC_FIR_OP_RBCD; | 
|  |  | 
|  | out_be32(&ifc->ifc_nand.nand_fir0, | 
|  | (IFC_FIR_OP_CMD0 << IFC_NAND_FIR0_OP0_SHIFT) | | 
|  | (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) | | 
|  | (timing << IFC_NAND_FIR0_OP2_SHIFT)); | 
|  | out_be32(&ifc->ifc_nand.nand_fcr0, | 
|  | command << IFC_NAND_FCR0_CMD0_SHIFT); | 
|  | out_be32(&ifc->ifc_nand.row3, column); | 
|  |  | 
|  | /* | 
|  | * although currently it's 8 bytes for READID, we always read | 
|  | * the maximum 256 bytes(for PARAM) | 
|  | */ | 
|  | out_be32(&ifc->ifc_nand.nand_fbcr, 256); | 
|  | ifc_nand_ctrl->read_bytes = 256; | 
|  |  | 
|  | set_addr(mtd, 0, 0, 0); | 
|  | fsl_ifc_run_command(mtd); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* ERASE1 stores the block and page address */ | 
|  | case NAND_CMD_ERASE1: | 
|  | set_addr(mtd, 0, page_addr, 0); | 
|  | return; | 
|  |  | 
|  | /* ERASE2 uses the block and page address from ERASE1 */ | 
|  | case NAND_CMD_ERASE2: | 
|  | out_be32(&ifc->ifc_nand.nand_fir0, | 
|  | (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | | 
|  | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) | | 
|  | (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT)); | 
|  |  | 
|  | out_be32(&ifc->ifc_nand.nand_fcr0, | 
|  | (NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) | | 
|  | (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT)); | 
|  |  | 
|  | out_be32(&ifc->ifc_nand.nand_fbcr, 0); | 
|  | ifc_nand_ctrl->read_bytes = 0; | 
|  | fsl_ifc_run_command(mtd); | 
|  | return; | 
|  |  | 
|  | /* SEQIN sets up the addr buffer and all registers except the length */ | 
|  | case NAND_CMD_SEQIN: { | 
|  | u32 nand_fcr0; | 
|  | ifc_nand_ctrl->column = column; | 
|  | ifc_nand_ctrl->oob = 0; | 
|  |  | 
|  | if (mtd->writesize > 512) { | 
|  | nand_fcr0 = | 
|  | (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) | | 
|  | (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT); | 
|  |  | 
|  | out_be32(&ifc->ifc_nand.nand_fir0, | 
|  | (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | | 
|  | (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | | 
|  | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | | 
|  | (IFC_FIR_OP_WBCD  << IFC_NAND_FIR0_OP3_SHIFT) | | 
|  | (IFC_FIR_OP_CW1 << IFC_NAND_FIR0_OP4_SHIFT)); | 
|  | } else { | 
|  | nand_fcr0 = ((NAND_CMD_PAGEPROG << | 
|  | IFC_NAND_FCR0_CMD1_SHIFT) | | 
|  | (NAND_CMD_SEQIN << | 
|  | IFC_NAND_FCR0_CMD2_SHIFT)); | 
|  |  | 
|  | out_be32(&ifc->ifc_nand.nand_fir0, | 
|  | (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | | 
|  | (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) | | 
|  | (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) | | 
|  | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) | | 
|  | (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT)); | 
|  | out_be32(&ifc->ifc_nand.nand_fir1, | 
|  | (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT)); | 
|  |  | 
|  | if (column >= mtd->writesize) | 
|  | nand_fcr0 |= | 
|  | NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT; | 
|  | else | 
|  | nand_fcr0 |= | 
|  | NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT; | 
|  | } | 
|  |  | 
|  | if (column >= mtd->writesize) { | 
|  | /* OOB area --> READOOB */ | 
|  | column -= mtd->writesize; | 
|  | ifc_nand_ctrl->oob = 1; | 
|  | } | 
|  | out_be32(&ifc->ifc_nand.nand_fcr0, nand_fcr0); | 
|  | set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ | 
|  | case NAND_CMD_PAGEPROG: { | 
|  | if (ifc_nand_ctrl->oob) { | 
|  | out_be32(&ifc->ifc_nand.nand_fbcr, | 
|  | ifc_nand_ctrl->index - ifc_nand_ctrl->column); | 
|  | } else { | 
|  | out_be32(&ifc->ifc_nand.nand_fbcr, 0); | 
|  | } | 
|  |  | 
|  | fsl_ifc_run_command(mtd); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case NAND_CMD_STATUS: | 
|  | out_be32(&ifc->ifc_nand.nand_fir0, | 
|  | (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | | 
|  | (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT)); | 
|  | out_be32(&ifc->ifc_nand.nand_fcr0, | 
|  | NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT); | 
|  | out_be32(&ifc->ifc_nand.nand_fbcr, 1); | 
|  | set_addr(mtd, 0, 0, 0); | 
|  | ifc_nand_ctrl->read_bytes = 1; | 
|  |  | 
|  | fsl_ifc_run_command(mtd); | 
|  |  | 
|  | /* | 
|  | * The chip always seems to report that it is | 
|  | * write-protected, even when it is not. | 
|  | */ | 
|  | setbits8(ifc_nand_ctrl->addr, NAND_STATUS_WP); | 
|  | return; | 
|  |  | 
|  | case NAND_CMD_RESET: | 
|  | out_be32(&ifc->ifc_nand.nand_fir0, | 
|  | IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT); | 
|  | out_be32(&ifc->ifc_nand.nand_fcr0, | 
|  | NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT); | 
|  | fsl_ifc_run_command(mtd); | 
|  | return; | 
|  |  | 
|  | default: | 
|  | dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n", | 
|  | __func__, command); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip) | 
|  | { | 
|  | /* The hardware does not seem to support multiple | 
|  | * chips per bank. | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write buf to the IFC NAND Controller Data Buffer | 
|  | */ | 
|  | static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct fsl_ifc_mtd *priv = chip->priv; | 
|  | unsigned int bufsize = mtd->writesize + mtd->oobsize; | 
|  |  | 
|  | if (len <= 0) { | 
|  | dev_err(priv->dev, "%s: len %d bytes", __func__, len); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) { | 
|  | dev_err(priv->dev, | 
|  | "%s: beyond end of buffer (%d requested, %u available)\n", | 
|  | __func__, len, bufsize - ifc_nand_ctrl->index); | 
|  | len = bufsize - ifc_nand_ctrl->index; | 
|  | } | 
|  |  | 
|  | memcpy_toio(&ifc_nand_ctrl->addr[ifc_nand_ctrl->index], buf, len); | 
|  | ifc_nand_ctrl->index += len; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read a byte from either the IFC hardware buffer | 
|  | * read function for 8-bit buswidth | 
|  | */ | 
|  | static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct fsl_ifc_mtd *priv = chip->priv; | 
|  |  | 
|  | /* | 
|  | * If there are still bytes in the IFC buffer, then use the | 
|  | * next byte. | 
|  | */ | 
|  | if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) | 
|  | return in_8(&ifc_nand_ctrl->addr[ifc_nand_ctrl->index++]); | 
|  |  | 
|  | dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); | 
|  | return ERR_BYTE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read two bytes from the IFC hardware buffer | 
|  | * read function for 16-bit buswith | 
|  | */ | 
|  | static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct fsl_ifc_mtd *priv = chip->priv; | 
|  | uint16_t data; | 
|  |  | 
|  | /* | 
|  | * If there are still bytes in the IFC buffer, then use the | 
|  | * next byte. | 
|  | */ | 
|  | if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { | 
|  | data = in_be16((uint16_t __iomem *)&ifc_nand_ctrl-> | 
|  | addr[ifc_nand_ctrl->index]); | 
|  | ifc_nand_ctrl->index += 2; | 
|  | return (uint8_t) data; | 
|  | } | 
|  |  | 
|  | dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); | 
|  | return ERR_BYTE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read from the IFC Controller Data Buffer | 
|  | */ | 
|  | static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct fsl_ifc_mtd *priv = chip->priv; | 
|  | int avail; | 
|  |  | 
|  | if (len < 0) { | 
|  | dev_err(priv->dev, "%s: len %d bytes", __func__, len); | 
|  | return; | 
|  | } | 
|  |  | 
|  | avail = min((unsigned int)len, | 
|  | ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index); | 
|  | memcpy_fromio(buf, &ifc_nand_ctrl->addr[ifc_nand_ctrl->index], avail); | 
|  | ifc_nand_ctrl->index += avail; | 
|  |  | 
|  | if (len > avail) | 
|  | dev_err(priv->dev, | 
|  | "%s: beyond end of buffer (%d requested, %d available)\n", | 
|  | __func__, len, avail); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is called after Program and Erase Operations to | 
|  | * check for success or failure. | 
|  | */ | 
|  | static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip) | 
|  | { | 
|  | struct fsl_ifc_mtd *priv = chip->priv; | 
|  | struct fsl_ifc_ctrl *ctrl = priv->ctrl; | 
|  | struct fsl_ifc_regs __iomem *ifc = ctrl->regs; | 
|  | u32 nand_fsr; | 
|  |  | 
|  | /* Use READ_STATUS command, but wait for the device to be ready */ | 
|  | out_be32(&ifc->ifc_nand.nand_fir0, | 
|  | (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | | 
|  | (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT)); | 
|  | out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS << | 
|  | IFC_NAND_FCR0_CMD0_SHIFT); | 
|  | out_be32(&ifc->ifc_nand.nand_fbcr, 1); | 
|  | set_addr(mtd, 0, 0, 0); | 
|  | ifc_nand_ctrl->read_bytes = 1; | 
|  |  | 
|  | fsl_ifc_run_command(mtd); | 
|  |  | 
|  | nand_fsr = in_be32(&ifc->ifc_nand.nand_fsr); | 
|  |  | 
|  | /* | 
|  | * The chip always seems to report that it is | 
|  | * write-protected, even when it is not. | 
|  | */ | 
|  | return nand_fsr | NAND_STATUS_WP; | 
|  | } | 
|  |  | 
|  | static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | uint8_t *buf, int oob_required, int page) | 
|  | { | 
|  | struct fsl_ifc_mtd *priv = chip->priv; | 
|  | struct fsl_ifc_ctrl *ctrl = priv->ctrl; | 
|  | struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; | 
|  |  | 
|  | fsl_ifc_read_buf(mtd, buf, mtd->writesize); | 
|  | if (oob_required) | 
|  | fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
|  |  | 
|  | if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) | 
|  | dev_err(priv->dev, "NAND Flash ECC Uncorrectable Error\n"); | 
|  |  | 
|  | if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) | 
|  | mtd->ecc_stats.failed++; | 
|  |  | 
|  | return nctrl->max_bitflips; | 
|  | } | 
|  |  | 
|  | /* ECC will be calculated automatically, and errors will be detected in | 
|  | * waitfunc. | 
|  | */ | 
|  | static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | const uint8_t *buf, int oob_required) | 
|  | { | 
|  | fsl_ifc_write_buf(mtd, buf, mtd->writesize); | 
|  | fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fsl_ifc_chip_init_tail(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct fsl_ifc_mtd *priv = chip->priv; | 
|  |  | 
|  | dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__, | 
|  | chip->numchips); | 
|  | dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__, | 
|  | chip->chipsize); | 
|  | dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__, | 
|  | chip->pagemask); | 
|  | dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__, | 
|  | chip->chip_delay); | 
|  | dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__, | 
|  | chip->badblockpos); | 
|  | dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__, | 
|  | chip->chip_shift); | 
|  | dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__, | 
|  | chip->page_shift); | 
|  | dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__, | 
|  | chip->phys_erase_shift); | 
|  | dev_dbg(priv->dev, "%s: nand->ecclayout = %p\n", __func__, | 
|  | chip->ecclayout); | 
|  | dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__, | 
|  | chip->ecc.mode); | 
|  | dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__, | 
|  | chip->ecc.steps); | 
|  | dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__, | 
|  | chip->ecc.bytes); | 
|  | dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__, | 
|  | chip->ecc.total); | 
|  | dev_dbg(priv->dev, "%s: nand->ecc.layout = %p\n", __func__, | 
|  | chip->ecc.layout); | 
|  | dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags); | 
|  | dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size); | 
|  | dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__, | 
|  | mtd->erasesize); | 
|  | dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__, | 
|  | mtd->writesize); | 
|  | dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__, | 
|  | mtd->oobsize); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv) | 
|  | { | 
|  | struct fsl_ifc_ctrl *ctrl = priv->ctrl; | 
|  | struct fsl_ifc_regs __iomem *ifc = ctrl->regs; | 
|  | uint32_t csor = 0, csor_8k = 0, csor_ext = 0; | 
|  | uint32_t cs = priv->bank; | 
|  |  | 
|  | /* Save CSOR and CSOR_ext */ | 
|  | csor = in_be32(&ifc->csor_cs[cs].csor); | 
|  | csor_ext = in_be32(&ifc->csor_cs[cs].csor_ext); | 
|  |  | 
|  | /* chage PageSize 8K and SpareSize 1K*/ | 
|  | csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000; | 
|  | out_be32(&ifc->csor_cs[cs].csor, csor_8k); | 
|  | out_be32(&ifc->csor_cs[cs].csor_ext, 0x0000400); | 
|  |  | 
|  | /* READID */ | 
|  | out_be32(&ifc->ifc_nand.nand_fir0, | 
|  | (IFC_FIR_OP_CMD0 << IFC_NAND_FIR0_OP0_SHIFT) | | 
|  | (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) | | 
|  | (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT)); | 
|  | out_be32(&ifc->ifc_nand.nand_fcr0, | 
|  | NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT); | 
|  | out_be32(&ifc->ifc_nand.row3, 0x0); | 
|  |  | 
|  | out_be32(&ifc->ifc_nand.nand_fbcr, 0x0); | 
|  |  | 
|  | /* Program ROW0/COL0 */ | 
|  | out_be32(&ifc->ifc_nand.row0, 0x0); | 
|  | out_be32(&ifc->ifc_nand.col0, 0x0); | 
|  |  | 
|  | /* set the chip select for NAND Transaction */ | 
|  | out_be32(&ifc->ifc_nand.nand_csel, cs << IFC_NAND_CSEL_SHIFT); | 
|  |  | 
|  | /* start read seq */ | 
|  | out_be32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT); | 
|  |  | 
|  | /* wait for command complete flag or timeout */ | 
|  | wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, | 
|  | IFC_TIMEOUT_MSECS * HZ/1000); | 
|  |  | 
|  | if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) | 
|  | printk(KERN_ERR "fsl-ifc: Failed to Initialise SRAM\n"); | 
|  |  | 
|  | /* Restore CSOR and CSOR_ext */ | 
|  | out_be32(&ifc->csor_cs[cs].csor, csor); | 
|  | out_be32(&ifc->csor_cs[cs].csor_ext, csor_ext); | 
|  | } | 
|  |  | 
|  | static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) | 
|  | { | 
|  | struct fsl_ifc_ctrl *ctrl = priv->ctrl; | 
|  | struct fsl_ifc_regs __iomem *ifc = ctrl->regs; | 
|  | struct nand_chip *chip = &priv->chip; | 
|  | struct nand_ecclayout *layout; | 
|  | u32 csor, ver; | 
|  |  | 
|  | /* Fill in fsl_ifc_mtd structure */ | 
|  | priv->mtd.priv = chip; | 
|  | priv->mtd.owner = THIS_MODULE; | 
|  |  | 
|  | /* fill in nand_chip structure */ | 
|  | /* set up function call table */ | 
|  | if ((in_be32(&ifc->cspr_cs[priv->bank].cspr)) & CSPR_PORT_SIZE_16) | 
|  | chip->read_byte = fsl_ifc_read_byte16; | 
|  | else | 
|  | chip->read_byte = fsl_ifc_read_byte; | 
|  |  | 
|  | chip->write_buf = fsl_ifc_write_buf; | 
|  | chip->read_buf = fsl_ifc_read_buf; | 
|  | chip->select_chip = fsl_ifc_select_chip; | 
|  | chip->cmdfunc = fsl_ifc_cmdfunc; | 
|  | chip->waitfunc = fsl_ifc_wait; | 
|  |  | 
|  | chip->bbt_td = &bbt_main_descr; | 
|  | chip->bbt_md = &bbt_mirror_descr; | 
|  |  | 
|  | out_be32(&ifc->ifc_nand.ncfgr, 0x0); | 
|  |  | 
|  | /* set up nand options */ | 
|  | chip->bbt_options = NAND_BBT_USE_FLASH; | 
|  |  | 
|  |  | 
|  | if (in_be32(&ifc->cspr_cs[priv->bank].cspr) & CSPR_PORT_SIZE_16) { | 
|  | chip->read_byte = fsl_ifc_read_byte16; | 
|  | chip->options |= NAND_BUSWIDTH_16; | 
|  | } else { | 
|  | chip->read_byte = fsl_ifc_read_byte; | 
|  | } | 
|  |  | 
|  | chip->controller = &ifc_nand_ctrl->controller; | 
|  | chip->priv = priv; | 
|  |  | 
|  | chip->ecc.read_page = fsl_ifc_read_page; | 
|  | chip->ecc.write_page = fsl_ifc_write_page; | 
|  |  | 
|  | csor = in_be32(&ifc->csor_cs[priv->bank].csor); | 
|  |  | 
|  | /* Hardware generates ECC per 512 Bytes */ | 
|  | chip->ecc.size = 512; | 
|  | chip->ecc.bytes = 8; | 
|  | chip->ecc.strength = 4; | 
|  |  | 
|  | switch (csor & CSOR_NAND_PGS_MASK) { | 
|  | case CSOR_NAND_PGS_512: | 
|  | if (chip->options & NAND_BUSWIDTH_16) { | 
|  | layout = &oob_512_16bit_ecc4; | 
|  | } else { | 
|  | layout = &oob_512_8bit_ecc4; | 
|  |  | 
|  | /* Avoid conflict with bad block marker */ | 
|  | bbt_main_descr.offs = 0; | 
|  | bbt_mirror_descr.offs = 0; | 
|  | } | 
|  |  | 
|  | priv->bufnum_mask = 15; | 
|  | break; | 
|  |  | 
|  | case CSOR_NAND_PGS_2K: | 
|  | layout = &oob_2048_ecc4; | 
|  | priv->bufnum_mask = 3; | 
|  | break; | 
|  |  | 
|  | case CSOR_NAND_PGS_4K: | 
|  | if ((csor & CSOR_NAND_ECC_MODE_MASK) == | 
|  | CSOR_NAND_ECC_MODE_4) { | 
|  | layout = &oob_4096_ecc4; | 
|  | } else { | 
|  | layout = &oob_4096_ecc8; | 
|  | chip->ecc.bytes = 16; | 
|  | } | 
|  |  | 
|  | priv->bufnum_mask = 1; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | dev_err(priv->dev, "bad csor %#x: bad page size\n", csor); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */ | 
|  | if (csor & CSOR_NAND_ECC_DEC_EN) { | 
|  | chip->ecc.mode = NAND_ECC_HW; | 
|  | chip->ecc.layout = layout; | 
|  | } else { | 
|  | chip->ecc.mode = NAND_ECC_SOFT; | 
|  | } | 
|  |  | 
|  | ver = in_be32(&ifc->ifc_rev); | 
|  | if (ver == FSL_IFC_V1_1_0) | 
|  | fsl_ifc_sram_init(priv); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv) | 
|  | { | 
|  | nand_release(&priv->mtd); | 
|  |  | 
|  | kfree(priv->mtd.name); | 
|  |  | 
|  | if (priv->vbase) | 
|  | iounmap(priv->vbase); | 
|  |  | 
|  | ifc_nand_ctrl->chips[priv->bank] = NULL; | 
|  | dev_set_drvdata(priv->dev, NULL); | 
|  | kfree(priv); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int match_bank(struct fsl_ifc_regs __iomem *ifc, int bank, | 
|  | phys_addr_t addr) | 
|  | { | 
|  | u32 cspr = in_be32(&ifc->cspr_cs[bank].cspr); | 
|  |  | 
|  | if (!(cspr & CSPR_V)) | 
|  | return 0; | 
|  | if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND) | 
|  | return 0; | 
|  |  | 
|  | return (cspr & CSPR_BA) == convert_ifc_address(addr); | 
|  | } | 
|  |  | 
|  | static DEFINE_MUTEX(fsl_ifc_nand_mutex); | 
|  |  | 
|  | static int __devinit fsl_ifc_nand_probe(struct platform_device *dev) | 
|  | { | 
|  | struct fsl_ifc_regs __iomem *ifc; | 
|  | struct fsl_ifc_mtd *priv; | 
|  | struct resource res; | 
|  | static const char *part_probe_types[] | 
|  | = { "cmdlinepart", "RedBoot", "ofpart", NULL }; | 
|  | int ret; | 
|  | int bank; | 
|  | struct device_node *node = dev->dev.of_node; | 
|  | struct mtd_part_parser_data ppdata; | 
|  |  | 
|  | ppdata.of_node = dev->dev.of_node; | 
|  | if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->regs) | 
|  | return -ENODEV; | 
|  | ifc = fsl_ifc_ctrl_dev->regs; | 
|  |  | 
|  | /* get, allocate and map the memory resource */ | 
|  | ret = of_address_to_resource(node, 0, &res); | 
|  | if (ret) { | 
|  | dev_err(&dev->dev, "%s: failed to get resource\n", __func__); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* find which chip select it is connected to */ | 
|  | for (bank = 0; bank < FSL_IFC_BANK_COUNT; bank++) { | 
|  | if (match_bank(ifc, bank, res.start)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (bank >= FSL_IFC_BANK_COUNT) { | 
|  | dev_err(&dev->dev, "%s: address did not match any chip selects\n", | 
|  | __func__); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL); | 
|  | if (!priv) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mutex_lock(&fsl_ifc_nand_mutex); | 
|  | if (!fsl_ifc_ctrl_dev->nand) { | 
|  | ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL); | 
|  | if (!ifc_nand_ctrl) { | 
|  | dev_err(&dev->dev, "failed to allocate memory\n"); | 
|  | mutex_unlock(&fsl_ifc_nand_mutex); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ifc_nand_ctrl->read_bytes = 0; | 
|  | ifc_nand_ctrl->index = 0; | 
|  | ifc_nand_ctrl->addr = NULL; | 
|  | fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl; | 
|  |  | 
|  | spin_lock_init(&ifc_nand_ctrl->controller.lock); | 
|  | init_waitqueue_head(&ifc_nand_ctrl->controller.wq); | 
|  | } else { | 
|  | ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand; | 
|  | } | 
|  | mutex_unlock(&fsl_ifc_nand_mutex); | 
|  |  | 
|  | ifc_nand_ctrl->chips[bank] = priv; | 
|  | priv->bank = bank; | 
|  | priv->ctrl = fsl_ifc_ctrl_dev; | 
|  | priv->dev = &dev->dev; | 
|  |  | 
|  | priv->vbase = ioremap(res.start, resource_size(&res)); | 
|  | if (!priv->vbase) { | 
|  | dev_err(priv->dev, "%s: failed to map chip region\n", __func__); | 
|  | ret = -ENOMEM; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | dev_set_drvdata(priv->dev, priv); | 
|  |  | 
|  | out_be32(&ifc->ifc_nand.nand_evter_en, | 
|  | IFC_NAND_EVTER_EN_OPC_EN | | 
|  | IFC_NAND_EVTER_EN_FTOER_EN | | 
|  | IFC_NAND_EVTER_EN_WPER_EN); | 
|  |  | 
|  | /* enable NAND Machine Interrupts */ | 
|  | out_be32(&ifc->ifc_nand.nand_evter_intr_en, | 
|  | IFC_NAND_EVTER_INTR_OPCIR_EN | | 
|  | IFC_NAND_EVTER_INTR_FTOERIR_EN | | 
|  | IFC_NAND_EVTER_INTR_WPERIR_EN); | 
|  |  | 
|  | priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start); | 
|  | if (!priv->mtd.name) { | 
|  | ret = -ENOMEM; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = fsl_ifc_chip_init(priv); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | ret = nand_scan_ident(&priv->mtd, 1, NULL); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | ret = fsl_ifc_chip_init_tail(&priv->mtd); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | ret = nand_scan_tail(&priv->mtd); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | /* First look for RedBoot table or partitions on the command | 
|  | * line, these take precedence over device tree information */ | 
|  | mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata, | 
|  | NULL, 0); | 
|  |  | 
|  | dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n", | 
|  | (unsigned long long)res.start, priv->bank); | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | fsl_ifc_chip_remove(priv); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int fsl_ifc_nand_remove(struct platform_device *dev) | 
|  | { | 
|  | struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev); | 
|  |  | 
|  | fsl_ifc_chip_remove(priv); | 
|  |  | 
|  | mutex_lock(&fsl_ifc_nand_mutex); | 
|  | ifc_nand_ctrl->counter--; | 
|  | if (!ifc_nand_ctrl->counter) { | 
|  | fsl_ifc_ctrl_dev->nand = NULL; | 
|  | kfree(ifc_nand_ctrl); | 
|  | } | 
|  | mutex_unlock(&fsl_ifc_nand_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct of_device_id fsl_ifc_nand_match[] = { | 
|  | { | 
|  | .compatible = "fsl,ifc-nand", | 
|  | }, | 
|  | {} | 
|  | }; | 
|  |  | 
|  | static struct platform_driver fsl_ifc_nand_driver = { | 
|  | .driver = { | 
|  | .name	= "fsl,ifc-nand", | 
|  | .owner = THIS_MODULE, | 
|  | .of_match_table = fsl_ifc_nand_match, | 
|  | }, | 
|  | .probe       = fsl_ifc_nand_probe, | 
|  | .remove      = fsl_ifc_nand_remove, | 
|  | }; | 
|  |  | 
|  | static int __init fsl_ifc_nand_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = platform_driver_register(&fsl_ifc_nand_driver); | 
|  | if (ret) | 
|  | printk(KERN_ERR "fsl-ifc: Failed to register platform" | 
|  | "driver\n"); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __exit fsl_ifc_nand_exit(void) | 
|  | { | 
|  | platform_driver_unregister(&fsl_ifc_nand_driver); | 
|  | } | 
|  |  | 
|  | module_init(fsl_ifc_nand_init); | 
|  | module_exit(fsl_ifc_nand_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Freescale"); | 
|  | MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver"); |