|  | /* | 
|  | *  libata-sff.c - helper library for PCI IDE BMDMA | 
|  | * | 
|  | *  Maintained by:  Tejun Heo <tj@kernel.org> | 
|  | *    		    Please ALWAYS copy linux-ide@vger.kernel.org | 
|  | *		    on emails. | 
|  | * | 
|  | *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved. | 
|  | *  Copyright 2003-2006 Jeff Garzik | 
|  | * | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or modify | 
|  | *  it under the terms of the GNU General Public License as published by | 
|  | *  the Free Software Foundation; either version 2, or (at your option) | 
|  | *  any later version. | 
|  | * | 
|  | *  This program is distributed in the hope that it will be useful, | 
|  | *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *  GNU General Public License for more details. | 
|  | * | 
|  | *  You should have received a copy of the GNU General Public License | 
|  | *  along with this program; see the file COPYING.  If not, write to | 
|  | *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | * | 
|  | * | 
|  | *  libata documentation is available via 'make {ps|pdf}docs', | 
|  | *  as Documentation/DocBook/libata.* | 
|  | * | 
|  | *  Hardware documentation available from http://www.t13.org/ and | 
|  | *  http://www.sata-io.org/ | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/libata.h> | 
|  | #include <linux/highmem.h> | 
|  |  | 
|  | #include "libata.h" | 
|  |  | 
|  | static struct workqueue_struct *ata_sff_wq; | 
|  |  | 
|  | const struct ata_port_operations ata_sff_port_ops = { | 
|  | .inherits		= &ata_base_port_ops, | 
|  |  | 
|  | .qc_prep		= ata_noop_qc_prep, | 
|  | .qc_issue		= ata_sff_qc_issue, | 
|  | .qc_fill_rtf		= ata_sff_qc_fill_rtf, | 
|  |  | 
|  | .freeze			= ata_sff_freeze, | 
|  | .thaw			= ata_sff_thaw, | 
|  | .prereset		= ata_sff_prereset, | 
|  | .softreset		= ata_sff_softreset, | 
|  | .hardreset		= sata_sff_hardreset, | 
|  | .postreset		= ata_sff_postreset, | 
|  | .error_handler		= ata_sff_error_handler, | 
|  |  | 
|  | .sff_dev_select		= ata_sff_dev_select, | 
|  | .sff_check_status	= ata_sff_check_status, | 
|  | .sff_tf_load		= ata_sff_tf_load, | 
|  | .sff_tf_read		= ata_sff_tf_read, | 
|  | .sff_exec_command	= ata_sff_exec_command, | 
|  | .sff_data_xfer		= ata_sff_data_xfer, | 
|  | .sff_drain_fifo		= ata_sff_drain_fifo, | 
|  |  | 
|  | .lost_interrupt		= ata_sff_lost_interrupt, | 
|  | }; | 
|  | EXPORT_SYMBOL_GPL(ata_sff_port_ops); | 
|  |  | 
|  | /** | 
|  | *	ata_sff_check_status - Read device status reg & clear interrupt | 
|  | *	@ap: port where the device is | 
|  | * | 
|  | *	Reads ATA taskfile status register for currently-selected device | 
|  | *	and return its value. This also clears pending interrupts | 
|  | *      from this device | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | u8 ata_sff_check_status(struct ata_port *ap) | 
|  | { | 
|  | return ioread8(ap->ioaddr.status_addr); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_check_status); | 
|  |  | 
|  | /** | 
|  | *	ata_sff_altstatus - Read device alternate status reg | 
|  | *	@ap: port where the device is | 
|  | * | 
|  | *	Reads ATA taskfile alternate status register for | 
|  | *	currently-selected device and return its value. | 
|  | * | 
|  | *	Note: may NOT be used as the check_altstatus() entry in | 
|  | *	ata_port_operations. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | static u8 ata_sff_altstatus(struct ata_port *ap) | 
|  | { | 
|  | if (ap->ops->sff_check_altstatus) | 
|  | return ap->ops->sff_check_altstatus(ap); | 
|  |  | 
|  | return ioread8(ap->ioaddr.altstatus_addr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_sff_irq_status - Check if the device is busy | 
|  | *	@ap: port where the device is | 
|  | * | 
|  | *	Determine if the port is currently busy. Uses altstatus | 
|  | *	if available in order to avoid clearing shared IRQ status | 
|  | *	when finding an IRQ source. Non ctl capable devices don't | 
|  | *	share interrupt lines fortunately for us. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | static u8 ata_sff_irq_status(struct ata_port *ap) | 
|  | { | 
|  | u8 status; | 
|  |  | 
|  | if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { | 
|  | status = ata_sff_altstatus(ap); | 
|  | /* Not us: We are busy */ | 
|  | if (status & ATA_BUSY) | 
|  | return status; | 
|  | } | 
|  | /* Clear INTRQ latch */ | 
|  | status = ap->ops->sff_check_status(ap); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_sff_sync - Flush writes | 
|  | *	@ap: Port to wait for. | 
|  | * | 
|  | *	CAUTION: | 
|  | *	If we have an mmio device with no ctl and no altstatus | 
|  | *	method this will fail. No such devices are known to exist. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  |  | 
|  | static void ata_sff_sync(struct ata_port *ap) | 
|  | { | 
|  | if (ap->ops->sff_check_altstatus) | 
|  | ap->ops->sff_check_altstatus(ap); | 
|  | else if (ap->ioaddr.altstatus_addr) | 
|  | ioread8(ap->ioaddr.altstatus_addr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_sff_pause		-	Flush writes and wait 400nS | 
|  | *	@ap: Port to pause for. | 
|  | * | 
|  | *	CAUTION: | 
|  | *	If we have an mmio device with no ctl and no altstatus | 
|  | *	method this will fail. No such devices are known to exist. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  |  | 
|  | void ata_sff_pause(struct ata_port *ap) | 
|  | { | 
|  | ata_sff_sync(ap); | 
|  | ndelay(400); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_pause); | 
|  |  | 
|  | /** | 
|  | *	ata_sff_dma_pause	-	Pause before commencing DMA | 
|  | *	@ap: Port to pause for. | 
|  | * | 
|  | *	Perform I/O fencing and ensure sufficient cycle delays occur | 
|  | *	for the HDMA1:0 transition | 
|  | */ | 
|  |  | 
|  | void ata_sff_dma_pause(struct ata_port *ap) | 
|  | { | 
|  | if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { | 
|  | /* An altstatus read will cause the needed delay without | 
|  | messing up the IRQ status */ | 
|  | ata_sff_altstatus(ap); | 
|  | return; | 
|  | } | 
|  | /* There are no DMA controllers without ctl. BUG here to ensure | 
|  | we never violate the HDMA1:0 transition timing and risk | 
|  | corruption. */ | 
|  | BUG(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_dma_pause); | 
|  |  | 
|  | /** | 
|  | *	ata_sff_busy_sleep - sleep until BSY clears, or timeout | 
|  | *	@ap: port containing status register to be polled | 
|  | *	@tmout_pat: impatience timeout in msecs | 
|  | *	@tmout: overall timeout in msecs | 
|  | * | 
|  | *	Sleep until ATA Status register bit BSY clears, | 
|  | *	or a timeout occurs. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Kernel thread context (may sleep). | 
|  | * | 
|  | *	RETURNS: | 
|  | *	0 on success, -errno otherwise. | 
|  | */ | 
|  | int ata_sff_busy_sleep(struct ata_port *ap, | 
|  | unsigned long tmout_pat, unsigned long tmout) | 
|  | { | 
|  | unsigned long timer_start, timeout; | 
|  | u8 status; | 
|  |  | 
|  | status = ata_sff_busy_wait(ap, ATA_BUSY, 300); | 
|  | timer_start = jiffies; | 
|  | timeout = ata_deadline(timer_start, tmout_pat); | 
|  | while (status != 0xff && (status & ATA_BUSY) && | 
|  | time_before(jiffies, timeout)) { | 
|  | ata_msleep(ap, 50); | 
|  | status = ata_sff_busy_wait(ap, ATA_BUSY, 3); | 
|  | } | 
|  |  | 
|  | if (status != 0xff && (status & ATA_BUSY)) | 
|  | ata_port_warn(ap, | 
|  | "port is slow to respond, please be patient (Status 0x%x)\n", | 
|  | status); | 
|  |  | 
|  | timeout = ata_deadline(timer_start, tmout); | 
|  | while (status != 0xff && (status & ATA_BUSY) && | 
|  | time_before(jiffies, timeout)) { | 
|  | ata_msleep(ap, 50); | 
|  | status = ap->ops->sff_check_status(ap); | 
|  | } | 
|  |  | 
|  | if (status == 0xff) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (status & ATA_BUSY) { | 
|  | ata_port_err(ap, | 
|  | "port failed to respond (%lu secs, Status 0x%x)\n", | 
|  | DIV_ROUND_UP(tmout, 1000), status); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); | 
|  |  | 
|  | static int ata_sff_check_ready(struct ata_link *link) | 
|  | { | 
|  | u8 status = link->ap->ops->sff_check_status(link->ap); | 
|  |  | 
|  | return ata_check_ready(status); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_sff_wait_ready - sleep until BSY clears, or timeout | 
|  | *	@link: SFF link to wait ready status for | 
|  | *	@deadline: deadline jiffies for the operation | 
|  | * | 
|  | *	Sleep until ATA Status register bit BSY clears, or timeout | 
|  | *	occurs. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Kernel thread context (may sleep). | 
|  | * | 
|  | *	RETURNS: | 
|  | *	0 on success, -errno otherwise. | 
|  | */ | 
|  | int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) | 
|  | { | 
|  | return ata_wait_ready(link, deadline, ata_sff_check_ready); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_wait_ready); | 
|  |  | 
|  | /** | 
|  | *	ata_sff_set_devctl - Write device control reg | 
|  | *	@ap: port where the device is | 
|  | *	@ctl: value to write | 
|  | * | 
|  | *	Writes ATA taskfile device control register. | 
|  | * | 
|  | *	Note: may NOT be used as the sff_set_devctl() entry in | 
|  | *	ata_port_operations. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl) | 
|  | { | 
|  | if (ap->ops->sff_set_devctl) | 
|  | ap->ops->sff_set_devctl(ap, ctl); | 
|  | else | 
|  | iowrite8(ctl, ap->ioaddr.ctl_addr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_sff_dev_select - Select device 0/1 on ATA bus | 
|  | *	@ap: ATA channel to manipulate | 
|  | *	@device: ATA device (numbered from zero) to select | 
|  | * | 
|  | *	Use the method defined in the ATA specification to | 
|  | *	make either device 0, or device 1, active on the | 
|  | *	ATA channel.  Works with both PIO and MMIO. | 
|  | * | 
|  | *	May be used as the dev_select() entry in ata_port_operations. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	caller. | 
|  | */ | 
|  | void ata_sff_dev_select(struct ata_port *ap, unsigned int device) | 
|  | { | 
|  | u8 tmp; | 
|  |  | 
|  | if (device == 0) | 
|  | tmp = ATA_DEVICE_OBS; | 
|  | else | 
|  | tmp = ATA_DEVICE_OBS | ATA_DEV1; | 
|  |  | 
|  | iowrite8(tmp, ap->ioaddr.device_addr); | 
|  | ata_sff_pause(ap);	/* needed; also flushes, for mmio */ | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_dev_select); | 
|  |  | 
|  | /** | 
|  | *	ata_dev_select - Select device 0/1 on ATA bus | 
|  | *	@ap: ATA channel to manipulate | 
|  | *	@device: ATA device (numbered from zero) to select | 
|  | *	@wait: non-zero to wait for Status register BSY bit to clear | 
|  | *	@can_sleep: non-zero if context allows sleeping | 
|  | * | 
|  | *	Use the method defined in the ATA specification to | 
|  | *	make either device 0, or device 1, active on the | 
|  | *	ATA channel. | 
|  | * | 
|  | *	This is a high-level version of ata_sff_dev_select(), which | 
|  | *	additionally provides the services of inserting the proper | 
|  | *	pauses and status polling, where needed. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	caller. | 
|  | */ | 
|  | static void ata_dev_select(struct ata_port *ap, unsigned int device, | 
|  | unsigned int wait, unsigned int can_sleep) | 
|  | { | 
|  | if (ata_msg_probe(ap)) | 
|  | ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n", | 
|  | device, wait); | 
|  |  | 
|  | if (wait) | 
|  | ata_wait_idle(ap); | 
|  |  | 
|  | ap->ops->sff_dev_select(ap, device); | 
|  |  | 
|  | if (wait) { | 
|  | if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) | 
|  | ata_msleep(ap, 150); | 
|  | ata_wait_idle(ap); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_sff_irq_on - Enable interrupts on a port. | 
|  | *	@ap: Port on which interrupts are enabled. | 
|  | * | 
|  | *	Enable interrupts on a legacy IDE device using MMIO or PIO, | 
|  | *	wait for idle, clear any pending interrupts. | 
|  | * | 
|  | *	Note: may NOT be used as the sff_irq_on() entry in | 
|  | *	ata_port_operations. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | void ata_sff_irq_on(struct ata_port *ap) | 
|  | { | 
|  | struct ata_ioports *ioaddr = &ap->ioaddr; | 
|  |  | 
|  | if (ap->ops->sff_irq_on) { | 
|  | ap->ops->sff_irq_on(ap); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ap->ctl &= ~ATA_NIEN; | 
|  | ap->last_ctl = ap->ctl; | 
|  |  | 
|  | if (ap->ops->sff_set_devctl || ioaddr->ctl_addr) | 
|  | ata_sff_set_devctl(ap, ap->ctl); | 
|  | ata_wait_idle(ap); | 
|  |  | 
|  | if (ap->ops->sff_irq_clear) | 
|  | ap->ops->sff_irq_clear(ap); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_irq_on); | 
|  |  | 
|  | /** | 
|  | *	ata_sff_tf_load - send taskfile registers to host controller | 
|  | *	@ap: Port to which output is sent | 
|  | *	@tf: ATA taskfile register set | 
|  | * | 
|  | *	Outputs ATA taskfile to standard ATA host controller. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) | 
|  | { | 
|  | struct ata_ioports *ioaddr = &ap->ioaddr; | 
|  | unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; | 
|  |  | 
|  | if (tf->ctl != ap->last_ctl) { | 
|  | if (ioaddr->ctl_addr) | 
|  | iowrite8(tf->ctl, ioaddr->ctl_addr); | 
|  | ap->last_ctl = tf->ctl; | 
|  | ata_wait_idle(ap); | 
|  | } | 
|  |  | 
|  | if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { | 
|  | WARN_ON_ONCE(!ioaddr->ctl_addr); | 
|  | iowrite8(tf->hob_feature, ioaddr->feature_addr); | 
|  | iowrite8(tf->hob_nsect, ioaddr->nsect_addr); | 
|  | iowrite8(tf->hob_lbal, ioaddr->lbal_addr); | 
|  | iowrite8(tf->hob_lbam, ioaddr->lbam_addr); | 
|  | iowrite8(tf->hob_lbah, ioaddr->lbah_addr); | 
|  | VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", | 
|  | tf->hob_feature, | 
|  | tf->hob_nsect, | 
|  | tf->hob_lbal, | 
|  | tf->hob_lbam, | 
|  | tf->hob_lbah); | 
|  | } | 
|  |  | 
|  | if (is_addr) { | 
|  | iowrite8(tf->feature, ioaddr->feature_addr); | 
|  | iowrite8(tf->nsect, ioaddr->nsect_addr); | 
|  | iowrite8(tf->lbal, ioaddr->lbal_addr); | 
|  | iowrite8(tf->lbam, ioaddr->lbam_addr); | 
|  | iowrite8(tf->lbah, ioaddr->lbah_addr); | 
|  | VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", | 
|  | tf->feature, | 
|  | tf->nsect, | 
|  | tf->lbal, | 
|  | tf->lbam, | 
|  | tf->lbah); | 
|  | } | 
|  |  | 
|  | if (tf->flags & ATA_TFLAG_DEVICE) { | 
|  | iowrite8(tf->device, ioaddr->device_addr); | 
|  | VPRINTK("device 0x%X\n", tf->device); | 
|  | } | 
|  |  | 
|  | ata_wait_idle(ap); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_tf_load); | 
|  |  | 
|  | /** | 
|  | *	ata_sff_tf_read - input device's ATA taskfile shadow registers | 
|  | *	@ap: Port from which input is read | 
|  | *	@tf: ATA taskfile register set for storing input | 
|  | * | 
|  | *	Reads ATA taskfile registers for currently-selected device | 
|  | *	into @tf. Assumes the device has a fully SFF compliant task file | 
|  | *	layout and behaviour. If you device does not (eg has a different | 
|  | *	status method) then you will need to provide a replacement tf_read | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) | 
|  | { | 
|  | struct ata_ioports *ioaddr = &ap->ioaddr; | 
|  |  | 
|  | tf->command = ata_sff_check_status(ap); | 
|  | tf->feature = ioread8(ioaddr->error_addr); | 
|  | tf->nsect = ioread8(ioaddr->nsect_addr); | 
|  | tf->lbal = ioread8(ioaddr->lbal_addr); | 
|  | tf->lbam = ioread8(ioaddr->lbam_addr); | 
|  | tf->lbah = ioread8(ioaddr->lbah_addr); | 
|  | tf->device = ioread8(ioaddr->device_addr); | 
|  |  | 
|  | if (tf->flags & ATA_TFLAG_LBA48) { | 
|  | if (likely(ioaddr->ctl_addr)) { | 
|  | iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); | 
|  | tf->hob_feature = ioread8(ioaddr->error_addr); | 
|  | tf->hob_nsect = ioread8(ioaddr->nsect_addr); | 
|  | tf->hob_lbal = ioread8(ioaddr->lbal_addr); | 
|  | tf->hob_lbam = ioread8(ioaddr->lbam_addr); | 
|  | tf->hob_lbah = ioread8(ioaddr->lbah_addr); | 
|  | iowrite8(tf->ctl, ioaddr->ctl_addr); | 
|  | ap->last_ctl = tf->ctl; | 
|  | } else | 
|  | WARN_ON_ONCE(1); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_tf_read); | 
|  |  | 
|  | /** | 
|  | *	ata_sff_exec_command - issue ATA command to host controller | 
|  | *	@ap: port to which command is being issued | 
|  | *	@tf: ATA taskfile register set | 
|  | * | 
|  | *	Issues ATA command, with proper synchronization with interrupt | 
|  | *	handler / other threads. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | */ | 
|  | void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) | 
|  | { | 
|  | DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); | 
|  |  | 
|  | iowrite8(tf->command, ap->ioaddr.command_addr); | 
|  | ata_sff_pause(ap); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_exec_command); | 
|  |  | 
|  | /** | 
|  | *	ata_tf_to_host - issue ATA taskfile to host controller | 
|  | *	@ap: port to which command is being issued | 
|  | *	@tf: ATA taskfile register set | 
|  | * | 
|  | *	Issues ATA taskfile register set to ATA host controller, | 
|  | *	with proper synchronization with interrupt handler and | 
|  | *	other threads. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | */ | 
|  | static inline void ata_tf_to_host(struct ata_port *ap, | 
|  | const struct ata_taskfile *tf) | 
|  | { | 
|  | ap->ops->sff_tf_load(ap, tf); | 
|  | ap->ops->sff_exec_command(ap, tf); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_sff_data_xfer - Transfer data by PIO | 
|  | *	@dev: device to target | 
|  | *	@buf: data buffer | 
|  | *	@buflen: buffer length | 
|  | *	@rw: read/write | 
|  | * | 
|  | *	Transfer data from/to the device data register by PIO. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | * | 
|  | *	RETURNS: | 
|  | *	Bytes consumed. | 
|  | */ | 
|  | unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf, | 
|  | unsigned int buflen, int rw) | 
|  | { | 
|  | struct ata_port *ap = dev->link->ap; | 
|  | void __iomem *data_addr = ap->ioaddr.data_addr; | 
|  | unsigned int words = buflen >> 1; | 
|  |  | 
|  | /* Transfer multiple of 2 bytes */ | 
|  | if (rw == READ) | 
|  | ioread16_rep(data_addr, buf, words); | 
|  | else | 
|  | iowrite16_rep(data_addr, buf, words); | 
|  |  | 
|  | /* Transfer trailing byte, if any. */ | 
|  | if (unlikely(buflen & 0x01)) { | 
|  | unsigned char pad[2] = { }; | 
|  |  | 
|  | /* Point buf to the tail of buffer */ | 
|  | buf += buflen - 1; | 
|  |  | 
|  | /* | 
|  | * Use io*16_rep() accessors here as well to avoid pointlessly | 
|  | * swapping bytes to and from on the big endian machines... | 
|  | */ | 
|  | if (rw == READ) { | 
|  | ioread16_rep(data_addr, pad, 1); | 
|  | *buf = pad[0]; | 
|  | } else { | 
|  | pad[0] = *buf; | 
|  | iowrite16_rep(data_addr, pad, 1); | 
|  | } | 
|  | words++; | 
|  | } | 
|  |  | 
|  | return words << 1; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_data_xfer); | 
|  |  | 
|  | /** | 
|  | *	ata_sff_data_xfer32 - Transfer data by PIO | 
|  | *	@dev: device to target | 
|  | *	@buf: data buffer | 
|  | *	@buflen: buffer length | 
|  | *	@rw: read/write | 
|  | * | 
|  | *	Transfer data from/to the device data register by PIO using 32bit | 
|  | *	I/O operations. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | * | 
|  | *	RETURNS: | 
|  | *	Bytes consumed. | 
|  | */ | 
|  |  | 
|  | unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf, | 
|  | unsigned int buflen, int rw) | 
|  | { | 
|  | struct ata_port *ap = dev->link->ap; | 
|  | void __iomem *data_addr = ap->ioaddr.data_addr; | 
|  | unsigned int words = buflen >> 2; | 
|  | int slop = buflen & 3; | 
|  |  | 
|  | if (!(ap->pflags & ATA_PFLAG_PIO32)) | 
|  | return ata_sff_data_xfer(dev, buf, buflen, rw); | 
|  |  | 
|  | /* Transfer multiple of 4 bytes */ | 
|  | if (rw == READ) | 
|  | ioread32_rep(data_addr, buf, words); | 
|  | else | 
|  | iowrite32_rep(data_addr, buf, words); | 
|  |  | 
|  | /* Transfer trailing bytes, if any */ | 
|  | if (unlikely(slop)) { | 
|  | unsigned char pad[4] = { }; | 
|  |  | 
|  | /* Point buf to the tail of buffer */ | 
|  | buf += buflen - slop; | 
|  |  | 
|  | /* | 
|  | * Use io*_rep() accessors here as well to avoid pointlessly | 
|  | * swapping bytes to and from on the big endian machines... | 
|  | */ | 
|  | if (rw == READ) { | 
|  | if (slop < 3) | 
|  | ioread16_rep(data_addr, pad, 1); | 
|  | else | 
|  | ioread32_rep(data_addr, pad, 1); | 
|  | memcpy(buf, pad, slop); | 
|  | } else { | 
|  | memcpy(pad, buf, slop); | 
|  | if (slop < 3) | 
|  | iowrite16_rep(data_addr, pad, 1); | 
|  | else | 
|  | iowrite32_rep(data_addr, pad, 1); | 
|  | } | 
|  | } | 
|  | return (buflen + 1) & ~1; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); | 
|  |  | 
|  | /** | 
|  | *	ata_sff_data_xfer_noirq - Transfer data by PIO | 
|  | *	@dev: device to target | 
|  | *	@buf: data buffer | 
|  | *	@buflen: buffer length | 
|  | *	@rw: read/write | 
|  | * | 
|  | *	Transfer data from/to the device data register by PIO. Do the | 
|  | *	transfer with interrupts disabled. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | * | 
|  | *	RETURNS: | 
|  | *	Bytes consumed. | 
|  | */ | 
|  | unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf, | 
|  | unsigned int buflen, int rw) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned int consumed; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | consumed = ata_sff_data_xfer32(dev, buf, buflen, rw); | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | return consumed; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); | 
|  |  | 
|  | /** | 
|  | *	ata_pio_sector - Transfer a sector of data. | 
|  | *	@qc: Command on going | 
|  | * | 
|  | *	Transfer qc->sect_size bytes of data from/to the ATA device. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | static void ata_pio_sector(struct ata_queued_cmd *qc) | 
|  | { | 
|  | int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); | 
|  | struct ata_port *ap = qc->ap; | 
|  | struct page *page; | 
|  | unsigned int offset; | 
|  | unsigned char *buf; | 
|  |  | 
|  | if (qc->curbytes == qc->nbytes - qc->sect_size) | 
|  | ap->hsm_task_state = HSM_ST_LAST; | 
|  |  | 
|  | page = sg_page(qc->cursg); | 
|  | offset = qc->cursg->offset + qc->cursg_ofs; | 
|  |  | 
|  | /* get the current page and offset */ | 
|  | page = nth_page(page, (offset >> PAGE_SHIFT)); | 
|  | offset %= PAGE_SIZE; | 
|  |  | 
|  | DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); | 
|  |  | 
|  | if (PageHighMem(page)) { | 
|  | unsigned long flags; | 
|  |  | 
|  | /* FIXME: use a bounce buffer */ | 
|  | local_irq_save(flags); | 
|  | buf = kmap_atomic(page); | 
|  |  | 
|  | /* do the actual data transfer */ | 
|  | ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, | 
|  | do_write); | 
|  |  | 
|  | kunmap_atomic(buf); | 
|  | local_irq_restore(flags); | 
|  | } else { | 
|  | buf = page_address(page); | 
|  | ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, | 
|  | do_write); | 
|  | } | 
|  |  | 
|  | if (!do_write && !PageSlab(page)) | 
|  | flush_dcache_page(page); | 
|  |  | 
|  | qc->curbytes += qc->sect_size; | 
|  | qc->cursg_ofs += qc->sect_size; | 
|  |  | 
|  | if (qc->cursg_ofs == qc->cursg->length) { | 
|  | qc->cursg = sg_next(qc->cursg); | 
|  | qc->cursg_ofs = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_pio_sectors - Transfer one or many sectors. | 
|  | *	@qc: Command on going | 
|  | * | 
|  | *	Transfer one or many sectors of data from/to the | 
|  | *	ATA device for the DRQ request. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | static void ata_pio_sectors(struct ata_queued_cmd *qc) | 
|  | { | 
|  | if (is_multi_taskfile(&qc->tf)) { | 
|  | /* READ/WRITE MULTIPLE */ | 
|  | unsigned int nsect; | 
|  |  | 
|  | WARN_ON_ONCE(qc->dev->multi_count == 0); | 
|  |  | 
|  | nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, | 
|  | qc->dev->multi_count); | 
|  | while (nsect--) | 
|  | ata_pio_sector(qc); | 
|  | } else | 
|  | ata_pio_sector(qc); | 
|  |  | 
|  | ata_sff_sync(qc->ap); /* flush */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	atapi_send_cdb - Write CDB bytes to hardware | 
|  | *	@ap: Port to which ATAPI device is attached. | 
|  | *	@qc: Taskfile currently active | 
|  | * | 
|  | *	When device has indicated its readiness to accept | 
|  | *	a CDB, this function is called.  Send the CDB. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	caller. | 
|  | */ | 
|  | static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) | 
|  | { | 
|  | /* send SCSI cdb */ | 
|  | DPRINTK("send cdb\n"); | 
|  | WARN_ON_ONCE(qc->dev->cdb_len < 12); | 
|  |  | 
|  | ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); | 
|  | ata_sff_sync(ap); | 
|  | /* FIXME: If the CDB is for DMA do we need to do the transition delay | 
|  | or is bmdma_start guaranteed to do it ? */ | 
|  | switch (qc->tf.protocol) { | 
|  | case ATAPI_PROT_PIO: | 
|  | ap->hsm_task_state = HSM_ST; | 
|  | break; | 
|  | case ATAPI_PROT_NODATA: | 
|  | ap->hsm_task_state = HSM_ST_LAST; | 
|  | break; | 
|  | #ifdef CONFIG_ATA_BMDMA | 
|  | case ATAPI_PROT_DMA: | 
|  | ap->hsm_task_state = HSM_ST_LAST; | 
|  | /* initiate bmdma */ | 
|  | ap->ops->bmdma_start(qc); | 
|  | break; | 
|  | #endif /* CONFIG_ATA_BMDMA */ | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__atapi_pio_bytes - Transfer data from/to the ATAPI device. | 
|  | *	@qc: Command on going | 
|  | *	@bytes: number of bytes | 
|  | * | 
|  | *	Transfer Transfer data from/to the ATAPI device. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | * | 
|  | */ | 
|  | static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) | 
|  | { | 
|  | int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; | 
|  | struct ata_port *ap = qc->ap; | 
|  | struct ata_device *dev = qc->dev; | 
|  | struct ata_eh_info *ehi = &dev->link->eh_info; | 
|  | struct scatterlist *sg; | 
|  | struct page *page; | 
|  | unsigned char *buf; | 
|  | unsigned int offset, count, consumed; | 
|  |  | 
|  | next_sg: | 
|  | sg = qc->cursg; | 
|  | if (unlikely(!sg)) { | 
|  | ata_ehi_push_desc(ehi, "unexpected or too much trailing data " | 
|  | "buf=%u cur=%u bytes=%u", | 
|  | qc->nbytes, qc->curbytes, bytes); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | page = sg_page(sg); | 
|  | offset = sg->offset + qc->cursg_ofs; | 
|  |  | 
|  | /* get the current page and offset */ | 
|  | page = nth_page(page, (offset >> PAGE_SHIFT)); | 
|  | offset %= PAGE_SIZE; | 
|  |  | 
|  | /* don't overrun current sg */ | 
|  | count = min(sg->length - qc->cursg_ofs, bytes); | 
|  |  | 
|  | /* don't cross page boundaries */ | 
|  | count = min(count, (unsigned int)PAGE_SIZE - offset); | 
|  |  | 
|  | DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); | 
|  |  | 
|  | if (PageHighMem(page)) { | 
|  | unsigned long flags; | 
|  |  | 
|  | /* FIXME: use bounce buffer */ | 
|  | local_irq_save(flags); | 
|  | buf = kmap_atomic(page); | 
|  |  | 
|  | /* do the actual data transfer */ | 
|  | consumed = ap->ops->sff_data_xfer(dev,  buf + offset, | 
|  | count, rw); | 
|  |  | 
|  | kunmap_atomic(buf); | 
|  | local_irq_restore(flags); | 
|  | } else { | 
|  | buf = page_address(page); | 
|  | consumed = ap->ops->sff_data_xfer(dev,  buf + offset, | 
|  | count, rw); | 
|  | } | 
|  |  | 
|  | bytes -= min(bytes, consumed); | 
|  | qc->curbytes += count; | 
|  | qc->cursg_ofs += count; | 
|  |  | 
|  | if (qc->cursg_ofs == sg->length) { | 
|  | qc->cursg = sg_next(qc->cursg); | 
|  | qc->cursg_ofs = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed); | 
|  | * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN | 
|  | * check correctly as it doesn't know if it is the last request being | 
|  | * made. Somebody should implement a proper sanity check. | 
|  | */ | 
|  | if (bytes) | 
|  | goto next_sg; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	atapi_pio_bytes - Transfer data from/to the ATAPI device. | 
|  | *	@qc: Command on going | 
|  | * | 
|  | *	Transfer Transfer data from/to the ATAPI device. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | static void atapi_pio_bytes(struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct ata_port *ap = qc->ap; | 
|  | struct ata_device *dev = qc->dev; | 
|  | struct ata_eh_info *ehi = &dev->link->eh_info; | 
|  | unsigned int ireason, bc_lo, bc_hi, bytes; | 
|  | int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; | 
|  |  | 
|  | /* Abuse qc->result_tf for temp storage of intermediate TF | 
|  | * here to save some kernel stack usage. | 
|  | * For normal completion, qc->result_tf is not relevant. For | 
|  | * error, qc->result_tf is later overwritten by ata_qc_complete(). | 
|  | * So, the correctness of qc->result_tf is not affected. | 
|  | */ | 
|  | ap->ops->sff_tf_read(ap, &qc->result_tf); | 
|  | ireason = qc->result_tf.nsect; | 
|  | bc_lo = qc->result_tf.lbam; | 
|  | bc_hi = qc->result_tf.lbah; | 
|  | bytes = (bc_hi << 8) | bc_lo; | 
|  |  | 
|  | /* shall be cleared to zero, indicating xfer of data */ | 
|  | if (unlikely(ireason & ATAPI_COD)) | 
|  | goto atapi_check; | 
|  |  | 
|  | /* make sure transfer direction matches expected */ | 
|  | i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0; | 
|  | if (unlikely(do_write != i_write)) | 
|  | goto atapi_check; | 
|  |  | 
|  | if (unlikely(!bytes)) | 
|  | goto atapi_check; | 
|  |  | 
|  | VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); | 
|  |  | 
|  | if (unlikely(__atapi_pio_bytes(qc, bytes))) | 
|  | goto err_out; | 
|  | ata_sff_sync(ap); /* flush */ | 
|  |  | 
|  | return; | 
|  |  | 
|  | atapi_check: | 
|  | ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", | 
|  | ireason, bytes); | 
|  | err_out: | 
|  | qc->err_mask |= AC_ERR_HSM; | 
|  | ap->hsm_task_state = HSM_ST_ERR; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. | 
|  | *	@ap: the target ata_port | 
|  | *	@qc: qc on going | 
|  | * | 
|  | *	RETURNS: | 
|  | *	1 if ok in workqueue, 0 otherwise. | 
|  | */ | 
|  | static inline int ata_hsm_ok_in_wq(struct ata_port *ap, | 
|  | struct ata_queued_cmd *qc) | 
|  | { | 
|  | if (qc->tf.flags & ATA_TFLAG_POLLING) | 
|  | return 1; | 
|  |  | 
|  | if (ap->hsm_task_state == HSM_ST_FIRST) { | 
|  | if (qc->tf.protocol == ATA_PROT_PIO && | 
|  | (qc->tf.flags & ATA_TFLAG_WRITE)) | 
|  | return 1; | 
|  |  | 
|  | if (ata_is_atapi(qc->tf.protocol) && | 
|  | !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_hsm_qc_complete - finish a qc running on standard HSM | 
|  | *	@qc: Command to complete | 
|  | *	@in_wq: 1 if called from workqueue, 0 otherwise | 
|  | * | 
|  | *	Finish @qc which is running on standard HSM. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	If @in_wq is zero, spin_lock_irqsave(host lock). | 
|  | *	Otherwise, none on entry and grabs host lock. | 
|  | */ | 
|  | static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) | 
|  | { | 
|  | struct ata_port *ap = qc->ap; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (ap->ops->error_handler) { | 
|  | if (in_wq) { | 
|  | spin_lock_irqsave(ap->lock, flags); | 
|  |  | 
|  | /* EH might have kicked in while host lock is | 
|  | * released. | 
|  | */ | 
|  | qc = ata_qc_from_tag(ap, qc->tag); | 
|  | if (qc) { | 
|  | if (likely(!(qc->err_mask & AC_ERR_HSM))) { | 
|  | ata_sff_irq_on(ap); | 
|  | ata_qc_complete(qc); | 
|  | } else | 
|  | ata_port_freeze(ap); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(ap->lock, flags); | 
|  | } else { | 
|  | if (likely(!(qc->err_mask & AC_ERR_HSM))) | 
|  | ata_qc_complete(qc); | 
|  | else | 
|  | ata_port_freeze(ap); | 
|  | } | 
|  | } else { | 
|  | if (in_wq) { | 
|  | spin_lock_irqsave(ap->lock, flags); | 
|  | ata_sff_irq_on(ap); | 
|  | ata_qc_complete(qc); | 
|  | spin_unlock_irqrestore(ap->lock, flags); | 
|  | } else | 
|  | ata_qc_complete(qc); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_sff_hsm_move - move the HSM to the next state. | 
|  | *	@ap: the target ata_port | 
|  | *	@qc: qc on going | 
|  | *	@status: current device status | 
|  | *	@in_wq: 1 if called from workqueue, 0 otherwise | 
|  | * | 
|  | *	RETURNS: | 
|  | *	1 when poll next status needed, 0 otherwise. | 
|  | */ | 
|  | int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, | 
|  | u8 status, int in_wq) | 
|  | { | 
|  | struct ata_link *link = qc->dev->link; | 
|  | struct ata_eh_info *ehi = &link->eh_info; | 
|  | unsigned long flags = 0; | 
|  | int poll_next; | 
|  |  | 
|  | WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); | 
|  |  | 
|  | /* Make sure ata_sff_qc_issue() does not throw things | 
|  | * like DMA polling into the workqueue. Notice that | 
|  | * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). | 
|  | */ | 
|  | WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); | 
|  |  | 
|  | fsm_start: | 
|  | DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", | 
|  | ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); | 
|  |  | 
|  | switch (ap->hsm_task_state) { | 
|  | case HSM_ST_FIRST: | 
|  | /* Send first data block or PACKET CDB */ | 
|  |  | 
|  | /* If polling, we will stay in the work queue after | 
|  | * sending the data. Otherwise, interrupt handler | 
|  | * takes over after sending the data. | 
|  | */ | 
|  | poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); | 
|  |  | 
|  | /* check device status */ | 
|  | if (unlikely((status & ATA_DRQ) == 0)) { | 
|  | /* handle BSY=0, DRQ=0 as error */ | 
|  | if (likely(status & (ATA_ERR | ATA_DF))) | 
|  | /* device stops HSM for abort/error */ | 
|  | qc->err_mask |= AC_ERR_DEV; | 
|  | else { | 
|  | /* HSM violation. Let EH handle this */ | 
|  | ata_ehi_push_desc(ehi, | 
|  | "ST_FIRST: !(DRQ|ERR|DF)"); | 
|  | qc->err_mask |= AC_ERR_HSM; | 
|  | } | 
|  |  | 
|  | ap->hsm_task_state = HSM_ST_ERR; | 
|  | goto fsm_start; | 
|  | } | 
|  |  | 
|  | /* Device should not ask for data transfer (DRQ=1) | 
|  | * when it finds something wrong. | 
|  | * We ignore DRQ here and stop the HSM by | 
|  | * changing hsm_task_state to HSM_ST_ERR and | 
|  | * let the EH abort the command or reset the device. | 
|  | */ | 
|  | if (unlikely(status & (ATA_ERR | ATA_DF))) { | 
|  | /* Some ATAPI tape drives forget to clear the ERR bit | 
|  | * when doing the next command (mostly request sense). | 
|  | * We ignore ERR here to workaround and proceed sending | 
|  | * the CDB. | 
|  | */ | 
|  | if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { | 
|  | ata_ehi_push_desc(ehi, "ST_FIRST: " | 
|  | "DRQ=1 with device error, " | 
|  | "dev_stat 0x%X", status); | 
|  | qc->err_mask |= AC_ERR_HSM; | 
|  | ap->hsm_task_state = HSM_ST_ERR; | 
|  | goto fsm_start; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Send the CDB (atapi) or the first data block (ata pio out). | 
|  | * During the state transition, interrupt handler shouldn't | 
|  | * be invoked before the data transfer is complete and | 
|  | * hsm_task_state is changed. Hence, the following locking. | 
|  | */ | 
|  | if (in_wq) | 
|  | spin_lock_irqsave(ap->lock, flags); | 
|  |  | 
|  | if (qc->tf.protocol == ATA_PROT_PIO) { | 
|  | /* PIO data out protocol. | 
|  | * send first data block. | 
|  | */ | 
|  |  | 
|  | /* ata_pio_sectors() might change the state | 
|  | * to HSM_ST_LAST. so, the state is changed here | 
|  | * before ata_pio_sectors(). | 
|  | */ | 
|  | ap->hsm_task_state = HSM_ST; | 
|  | ata_pio_sectors(qc); | 
|  | } else | 
|  | /* send CDB */ | 
|  | atapi_send_cdb(ap, qc); | 
|  |  | 
|  | if (in_wq) | 
|  | spin_unlock_irqrestore(ap->lock, flags); | 
|  |  | 
|  | /* if polling, ata_sff_pio_task() handles the rest. | 
|  | * otherwise, interrupt handler takes over from here. | 
|  | */ | 
|  | break; | 
|  |  | 
|  | case HSM_ST: | 
|  | /* complete command or read/write the data register */ | 
|  | if (qc->tf.protocol == ATAPI_PROT_PIO) { | 
|  | /* ATAPI PIO protocol */ | 
|  | if ((status & ATA_DRQ) == 0) { | 
|  | /* No more data to transfer or device error. | 
|  | * Device error will be tagged in HSM_ST_LAST. | 
|  | */ | 
|  | ap->hsm_task_state = HSM_ST_LAST; | 
|  | goto fsm_start; | 
|  | } | 
|  |  | 
|  | /* Device should not ask for data transfer (DRQ=1) | 
|  | * when it finds something wrong. | 
|  | * We ignore DRQ here and stop the HSM by | 
|  | * changing hsm_task_state to HSM_ST_ERR and | 
|  | * let the EH abort the command or reset the device. | 
|  | */ | 
|  | if (unlikely(status & (ATA_ERR | ATA_DF))) { | 
|  | ata_ehi_push_desc(ehi, "ST-ATAPI: " | 
|  | "DRQ=1 with device error, " | 
|  | "dev_stat 0x%X", status); | 
|  | qc->err_mask |= AC_ERR_HSM; | 
|  | ap->hsm_task_state = HSM_ST_ERR; | 
|  | goto fsm_start; | 
|  | } | 
|  |  | 
|  | atapi_pio_bytes(qc); | 
|  |  | 
|  | if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) | 
|  | /* bad ireason reported by device */ | 
|  | goto fsm_start; | 
|  |  | 
|  | } else { | 
|  | /* ATA PIO protocol */ | 
|  | if (unlikely((status & ATA_DRQ) == 0)) { | 
|  | /* handle BSY=0, DRQ=0 as error */ | 
|  | if (likely(status & (ATA_ERR | ATA_DF))) { | 
|  | /* device stops HSM for abort/error */ | 
|  | qc->err_mask |= AC_ERR_DEV; | 
|  |  | 
|  | /* If diagnostic failed and this is | 
|  | * IDENTIFY, it's likely a phantom | 
|  | * device.  Mark hint. | 
|  | */ | 
|  | if (qc->dev->horkage & | 
|  | ATA_HORKAGE_DIAGNOSTIC) | 
|  | qc->err_mask |= | 
|  | AC_ERR_NODEV_HINT; | 
|  | } else { | 
|  | /* HSM violation. Let EH handle this. | 
|  | * Phantom devices also trigger this | 
|  | * condition.  Mark hint. | 
|  | */ | 
|  | ata_ehi_push_desc(ehi, "ST-ATA: " | 
|  | "DRQ=0 without device error, " | 
|  | "dev_stat 0x%X", status); | 
|  | qc->err_mask |= AC_ERR_HSM | | 
|  | AC_ERR_NODEV_HINT; | 
|  | } | 
|  |  | 
|  | ap->hsm_task_state = HSM_ST_ERR; | 
|  | goto fsm_start; | 
|  | } | 
|  |  | 
|  | /* For PIO reads, some devices may ask for | 
|  | * data transfer (DRQ=1) alone with ERR=1. | 
|  | * We respect DRQ here and transfer one | 
|  | * block of junk data before changing the | 
|  | * hsm_task_state to HSM_ST_ERR. | 
|  | * | 
|  | * For PIO writes, ERR=1 DRQ=1 doesn't make | 
|  | * sense since the data block has been | 
|  | * transferred to the device. | 
|  | */ | 
|  | if (unlikely(status & (ATA_ERR | ATA_DF))) { | 
|  | /* data might be corrputed */ | 
|  | qc->err_mask |= AC_ERR_DEV; | 
|  |  | 
|  | if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { | 
|  | ata_pio_sectors(qc); | 
|  | status = ata_wait_idle(ap); | 
|  | } | 
|  |  | 
|  | if (status & (ATA_BUSY | ATA_DRQ)) { | 
|  | ata_ehi_push_desc(ehi, "ST-ATA: " | 
|  | "BUSY|DRQ persists on ERR|DF, " | 
|  | "dev_stat 0x%X", status); | 
|  | qc->err_mask |= AC_ERR_HSM; | 
|  | } | 
|  |  | 
|  | /* There are oddball controllers with | 
|  | * status register stuck at 0x7f and | 
|  | * lbal/m/h at zero which makes it | 
|  | * pass all other presence detection | 
|  | * mechanisms we have.  Set NODEV_HINT | 
|  | * for it.  Kernel bz#7241. | 
|  | */ | 
|  | if (status == 0x7f) | 
|  | qc->err_mask |= AC_ERR_NODEV_HINT; | 
|  |  | 
|  | /* ata_pio_sectors() might change the | 
|  | * state to HSM_ST_LAST. so, the state | 
|  | * is changed after ata_pio_sectors(). | 
|  | */ | 
|  | ap->hsm_task_state = HSM_ST_ERR; | 
|  | goto fsm_start; | 
|  | } | 
|  |  | 
|  | ata_pio_sectors(qc); | 
|  |  | 
|  | if (ap->hsm_task_state == HSM_ST_LAST && | 
|  | (!(qc->tf.flags & ATA_TFLAG_WRITE))) { | 
|  | /* all data read */ | 
|  | status = ata_wait_idle(ap); | 
|  | goto fsm_start; | 
|  | } | 
|  | } | 
|  |  | 
|  | poll_next = 1; | 
|  | break; | 
|  |  | 
|  | case HSM_ST_LAST: | 
|  | if (unlikely(!ata_ok(status))) { | 
|  | qc->err_mask |= __ac_err_mask(status); | 
|  | ap->hsm_task_state = HSM_ST_ERR; | 
|  | goto fsm_start; | 
|  | } | 
|  |  | 
|  | /* no more data to transfer */ | 
|  | DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", | 
|  | ap->print_id, qc->dev->devno, status); | 
|  |  | 
|  | WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); | 
|  |  | 
|  | ap->hsm_task_state = HSM_ST_IDLE; | 
|  |  | 
|  | /* complete taskfile transaction */ | 
|  | ata_hsm_qc_complete(qc, in_wq); | 
|  |  | 
|  | poll_next = 0; | 
|  | break; | 
|  |  | 
|  | case HSM_ST_ERR: | 
|  | ap->hsm_task_state = HSM_ST_IDLE; | 
|  |  | 
|  | /* complete taskfile transaction */ | 
|  | ata_hsm_qc_complete(qc, in_wq); | 
|  |  | 
|  | poll_next = 0; | 
|  | break; | 
|  | default: | 
|  | poll_next = 0; | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | return poll_next; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_hsm_move); | 
|  |  | 
|  | void ata_sff_queue_work(struct work_struct *work) | 
|  | { | 
|  | queue_work(ata_sff_wq, work); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_queue_work); | 
|  |  | 
|  | void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay) | 
|  | { | 
|  | queue_delayed_work(ata_sff_wq, dwork, delay); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work); | 
|  |  | 
|  | void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) | 
|  | { | 
|  | struct ata_port *ap = link->ap; | 
|  |  | 
|  | WARN_ON((ap->sff_pio_task_link != NULL) && | 
|  | (ap->sff_pio_task_link != link)); | 
|  | ap->sff_pio_task_link = link; | 
|  |  | 
|  | /* may fail if ata_sff_flush_pio_task() in progress */ | 
|  | ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); | 
|  |  | 
|  | void ata_sff_flush_pio_task(struct ata_port *ap) | 
|  | { | 
|  | DPRINTK("ENTER\n"); | 
|  |  | 
|  | cancel_delayed_work_sync(&ap->sff_pio_task); | 
|  |  | 
|  | /* | 
|  | * We wanna reset the HSM state to IDLE.  If we do so without | 
|  | * grabbing the port lock, critical sections protected by it which | 
|  | * expect the HSM state to stay stable may get surprised.  For | 
|  | * example, we may set IDLE in between the time | 
|  | * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls | 
|  | * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG(). | 
|  | */ | 
|  | spin_lock_irq(ap->lock); | 
|  | ap->hsm_task_state = HSM_ST_IDLE; | 
|  | spin_unlock_irq(ap->lock); | 
|  |  | 
|  | ap->sff_pio_task_link = NULL; | 
|  |  | 
|  | if (ata_msg_ctl(ap)) | 
|  | ata_port_dbg(ap, "%s: EXIT\n", __func__); | 
|  | } | 
|  |  | 
|  | static void ata_sff_pio_task(struct work_struct *work) | 
|  | { | 
|  | struct ata_port *ap = | 
|  | container_of(work, struct ata_port, sff_pio_task.work); | 
|  | struct ata_link *link = ap->sff_pio_task_link; | 
|  | struct ata_queued_cmd *qc; | 
|  | u8 status; | 
|  | int poll_next; | 
|  |  | 
|  | BUG_ON(ap->sff_pio_task_link == NULL); | 
|  | /* qc can be NULL if timeout occurred */ | 
|  | qc = ata_qc_from_tag(ap, link->active_tag); | 
|  | if (!qc) { | 
|  | ap->sff_pio_task_link = NULL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | fsm_start: | 
|  | WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); | 
|  |  | 
|  | /* | 
|  | * This is purely heuristic.  This is a fast path. | 
|  | * Sometimes when we enter, BSY will be cleared in | 
|  | * a chk-status or two.  If not, the drive is probably seeking | 
|  | * or something.  Snooze for a couple msecs, then | 
|  | * chk-status again.  If still busy, queue delayed work. | 
|  | */ | 
|  | status = ata_sff_busy_wait(ap, ATA_BUSY, 5); | 
|  | if (status & ATA_BUSY) { | 
|  | ata_msleep(ap, 2); | 
|  | status = ata_sff_busy_wait(ap, ATA_BUSY, 10); | 
|  | if (status & ATA_BUSY) { | 
|  | ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hsm_move() may trigger another command to be processed. | 
|  | * clean the link beforehand. | 
|  | */ | 
|  | ap->sff_pio_task_link = NULL; | 
|  | /* move the HSM */ | 
|  | poll_next = ata_sff_hsm_move(ap, qc, status, 1); | 
|  |  | 
|  | /* another command or interrupt handler | 
|  | * may be running at this point. | 
|  | */ | 
|  | if (poll_next) | 
|  | goto fsm_start; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_sff_qc_issue - issue taskfile to a SFF controller | 
|  | *	@qc: command to issue to device | 
|  | * | 
|  | *	This function issues a PIO or NODATA command to a SFF | 
|  | *	controller. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | * | 
|  | *	RETURNS: | 
|  | *	Zero on success, AC_ERR_* mask on failure | 
|  | */ | 
|  | unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct ata_port *ap = qc->ap; | 
|  | struct ata_link *link = qc->dev->link; | 
|  |  | 
|  | /* Use polling pio if the LLD doesn't handle | 
|  | * interrupt driven pio and atapi CDB interrupt. | 
|  | */ | 
|  | if (ap->flags & ATA_FLAG_PIO_POLLING) | 
|  | qc->tf.flags |= ATA_TFLAG_POLLING; | 
|  |  | 
|  | /* select the device */ | 
|  | ata_dev_select(ap, qc->dev->devno, 1, 0); | 
|  |  | 
|  | /* start the command */ | 
|  | switch (qc->tf.protocol) { | 
|  | case ATA_PROT_NODATA: | 
|  | if (qc->tf.flags & ATA_TFLAG_POLLING) | 
|  | ata_qc_set_polling(qc); | 
|  |  | 
|  | ata_tf_to_host(ap, &qc->tf); | 
|  | ap->hsm_task_state = HSM_ST_LAST; | 
|  |  | 
|  | if (qc->tf.flags & ATA_TFLAG_POLLING) | 
|  | ata_sff_queue_pio_task(link, 0); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case ATA_PROT_PIO: | 
|  | if (qc->tf.flags & ATA_TFLAG_POLLING) | 
|  | ata_qc_set_polling(qc); | 
|  |  | 
|  | ata_tf_to_host(ap, &qc->tf); | 
|  |  | 
|  | if (qc->tf.flags & ATA_TFLAG_WRITE) { | 
|  | /* PIO data out protocol */ | 
|  | ap->hsm_task_state = HSM_ST_FIRST; | 
|  | ata_sff_queue_pio_task(link, 0); | 
|  |  | 
|  | /* always send first data block using the | 
|  | * ata_sff_pio_task() codepath. | 
|  | */ | 
|  | } else { | 
|  | /* PIO data in protocol */ | 
|  | ap->hsm_task_state = HSM_ST; | 
|  |  | 
|  | if (qc->tf.flags & ATA_TFLAG_POLLING) | 
|  | ata_sff_queue_pio_task(link, 0); | 
|  |  | 
|  | /* if polling, ata_sff_pio_task() handles the | 
|  | * rest.  otherwise, interrupt handler takes | 
|  | * over from here. | 
|  | */ | 
|  | } | 
|  |  | 
|  | break; | 
|  |  | 
|  | case ATAPI_PROT_PIO: | 
|  | case ATAPI_PROT_NODATA: | 
|  | if (qc->tf.flags & ATA_TFLAG_POLLING) | 
|  | ata_qc_set_polling(qc); | 
|  |  | 
|  | ata_tf_to_host(ap, &qc->tf); | 
|  |  | 
|  | ap->hsm_task_state = HSM_ST_FIRST; | 
|  |  | 
|  | /* send cdb by polling if no cdb interrupt */ | 
|  | if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || | 
|  | (qc->tf.flags & ATA_TFLAG_POLLING)) | 
|  | ata_sff_queue_pio_task(link, 0); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | WARN_ON_ONCE(1); | 
|  | return AC_ERR_SYSTEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_qc_issue); | 
|  |  | 
|  | /** | 
|  | *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read | 
|  | *	@qc: qc to fill result TF for | 
|  | * | 
|  | *	@qc is finished and result TF needs to be filled.  Fill it | 
|  | *	using ->sff_tf_read. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | * | 
|  | *	RETURNS: | 
|  | *	true indicating that result TF is successfully filled. | 
|  | */ | 
|  | bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) | 
|  | { | 
|  | qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); | 
|  |  | 
|  | static unsigned int ata_sff_idle_irq(struct ata_port *ap) | 
|  | { | 
|  | ap->stats.idle_irq++; | 
|  |  | 
|  | #ifdef ATA_IRQ_TRAP | 
|  | if ((ap->stats.idle_irq % 1000) == 0) { | 
|  | ap->ops->sff_check_status(ap); | 
|  | if (ap->ops->sff_irq_clear) | 
|  | ap->ops->sff_irq_clear(ap); | 
|  | ata_port_warn(ap, "irq trap\n"); | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  | return 0;	/* irq not handled */ | 
|  | } | 
|  |  | 
|  | static unsigned int __ata_sff_port_intr(struct ata_port *ap, | 
|  | struct ata_queued_cmd *qc, | 
|  | bool hsmv_on_idle) | 
|  | { | 
|  | u8 status; | 
|  |  | 
|  | VPRINTK("ata%u: protocol %d task_state %d\n", | 
|  | ap->print_id, qc->tf.protocol, ap->hsm_task_state); | 
|  |  | 
|  | /* Check whether we are expecting interrupt in this state */ | 
|  | switch (ap->hsm_task_state) { | 
|  | case HSM_ST_FIRST: | 
|  | /* Some pre-ATAPI-4 devices assert INTRQ | 
|  | * at this state when ready to receive CDB. | 
|  | */ | 
|  |  | 
|  | /* Check the ATA_DFLAG_CDB_INTR flag is enough here. | 
|  | * The flag was turned on only for atapi devices.  No | 
|  | * need to check ata_is_atapi(qc->tf.protocol) again. | 
|  | */ | 
|  | if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) | 
|  | return ata_sff_idle_irq(ap); | 
|  | break; | 
|  | case HSM_ST_IDLE: | 
|  | return ata_sff_idle_irq(ap); | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* check main status, clearing INTRQ if needed */ | 
|  | status = ata_sff_irq_status(ap); | 
|  | if (status & ATA_BUSY) { | 
|  | if (hsmv_on_idle) { | 
|  | /* BMDMA engine is already stopped, we're screwed */ | 
|  | qc->err_mask |= AC_ERR_HSM; | 
|  | ap->hsm_task_state = HSM_ST_ERR; | 
|  | } else | 
|  | return ata_sff_idle_irq(ap); | 
|  | } | 
|  |  | 
|  | /* clear irq events */ | 
|  | if (ap->ops->sff_irq_clear) | 
|  | ap->ops->sff_irq_clear(ap); | 
|  |  | 
|  | ata_sff_hsm_move(ap, qc, status, 0); | 
|  |  | 
|  | return 1;	/* irq handled */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_sff_port_intr - Handle SFF port interrupt | 
|  | *	@ap: Port on which interrupt arrived (possibly...) | 
|  | *	@qc: Taskfile currently active in engine | 
|  | * | 
|  | *	Handle port interrupt for given queued command. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | * | 
|  | *	RETURNS: | 
|  | *	One if interrupt was handled, zero if not (shared irq). | 
|  | */ | 
|  | unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) | 
|  | { | 
|  | return __ata_sff_port_intr(ap, qc, false); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_port_intr); | 
|  |  | 
|  | static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, | 
|  | unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) | 
|  | { | 
|  | struct ata_host *host = dev_instance; | 
|  | bool retried = false; | 
|  | unsigned int i; | 
|  | unsigned int handled, idle, polling; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ | 
|  | spin_lock_irqsave(&host->lock, flags); | 
|  |  | 
|  | retry: | 
|  | handled = idle = polling = 0; | 
|  | for (i = 0; i < host->n_ports; i++) { | 
|  | struct ata_port *ap = host->ports[i]; | 
|  | struct ata_queued_cmd *qc; | 
|  |  | 
|  | qc = ata_qc_from_tag(ap, ap->link.active_tag); | 
|  | if (qc) { | 
|  | if (!(qc->tf.flags & ATA_TFLAG_POLLING)) | 
|  | handled |= port_intr(ap, qc); | 
|  | else | 
|  | polling |= 1 << i; | 
|  | } else | 
|  | idle |= 1 << i; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If no port was expecting IRQ but the controller is actually | 
|  | * asserting IRQ line, nobody cared will ensue.  Check IRQ | 
|  | * pending status if available and clear spurious IRQ. | 
|  | */ | 
|  | if (!handled && !retried) { | 
|  | bool retry = false; | 
|  |  | 
|  | for (i = 0; i < host->n_ports; i++) { | 
|  | struct ata_port *ap = host->ports[i]; | 
|  |  | 
|  | if (polling & (1 << i)) | 
|  | continue; | 
|  |  | 
|  | if (!ap->ops->sff_irq_check || | 
|  | !ap->ops->sff_irq_check(ap)) | 
|  | continue; | 
|  |  | 
|  | if (idle & (1 << i)) { | 
|  | ap->ops->sff_check_status(ap); | 
|  | if (ap->ops->sff_irq_clear) | 
|  | ap->ops->sff_irq_clear(ap); | 
|  | } else { | 
|  | /* clear INTRQ and check if BUSY cleared */ | 
|  | if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) | 
|  | retry |= true; | 
|  | /* | 
|  | * With command in flight, we can't do | 
|  | * sff_irq_clear() w/o racing with completion. | 
|  | */ | 
|  | } | 
|  | } | 
|  |  | 
|  | if (retry) { | 
|  | retried = true; | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&host->lock, flags); | 
|  |  | 
|  | return IRQ_RETVAL(handled); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_sff_interrupt - Default SFF ATA host interrupt handler | 
|  | *	@irq: irq line (unused) | 
|  | *	@dev_instance: pointer to our ata_host information structure | 
|  | * | 
|  | *	Default interrupt handler for PCI IDE devices.  Calls | 
|  | *	ata_sff_port_intr() for each port that is not disabled. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Obtains host lock during operation. | 
|  | * | 
|  | *	RETURNS: | 
|  | *	IRQ_NONE or IRQ_HANDLED. | 
|  | */ | 
|  | irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) | 
|  | { | 
|  | return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_interrupt); | 
|  |  | 
|  | /** | 
|  | *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt | 
|  | *	@ap: port that appears to have timed out | 
|  | * | 
|  | *	Called from the libata error handlers when the core code suspects | 
|  | *	an interrupt has been lost. If it has complete anything we can and | 
|  | *	then return. Interface must support altstatus for this faster | 
|  | *	recovery to occur. | 
|  | * | 
|  | *	Locking: | 
|  | *	Caller holds host lock | 
|  | */ | 
|  |  | 
|  | void ata_sff_lost_interrupt(struct ata_port *ap) | 
|  | { | 
|  | u8 status; | 
|  | struct ata_queued_cmd *qc; | 
|  |  | 
|  | /* Only one outstanding command per SFF channel */ | 
|  | qc = ata_qc_from_tag(ap, ap->link.active_tag); | 
|  | /* We cannot lose an interrupt on a non-existent or polled command */ | 
|  | if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) | 
|  | return; | 
|  | /* See if the controller thinks it is still busy - if so the command | 
|  | isn't a lost IRQ but is still in progress */ | 
|  | status = ata_sff_altstatus(ap); | 
|  | if (status & ATA_BUSY) | 
|  | return; | 
|  |  | 
|  | /* There was a command running, we are no longer busy and we have | 
|  | no interrupt. */ | 
|  | ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", | 
|  | status); | 
|  | /* Run the host interrupt logic as if the interrupt had not been | 
|  | lost */ | 
|  | ata_sff_port_intr(ap, qc); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); | 
|  |  | 
|  | /** | 
|  | *	ata_sff_freeze - Freeze SFF controller port | 
|  | *	@ap: port to freeze | 
|  | * | 
|  | *	Freeze SFF controller port. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | void ata_sff_freeze(struct ata_port *ap) | 
|  | { | 
|  | ap->ctl |= ATA_NIEN; | 
|  | ap->last_ctl = ap->ctl; | 
|  |  | 
|  | if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) | 
|  | ata_sff_set_devctl(ap, ap->ctl); | 
|  |  | 
|  | /* Under certain circumstances, some controllers raise IRQ on | 
|  | * ATA_NIEN manipulation.  Also, many controllers fail to mask | 
|  | * previously pending IRQ on ATA_NIEN assertion.  Clear it. | 
|  | */ | 
|  | ap->ops->sff_check_status(ap); | 
|  |  | 
|  | if (ap->ops->sff_irq_clear) | 
|  | ap->ops->sff_irq_clear(ap); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_freeze); | 
|  |  | 
|  | /** | 
|  | *	ata_sff_thaw - Thaw SFF controller port | 
|  | *	@ap: port to thaw | 
|  | * | 
|  | *	Thaw SFF controller port. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | void ata_sff_thaw(struct ata_port *ap) | 
|  | { | 
|  | /* clear & re-enable interrupts */ | 
|  | ap->ops->sff_check_status(ap); | 
|  | if (ap->ops->sff_irq_clear) | 
|  | ap->ops->sff_irq_clear(ap); | 
|  | ata_sff_irq_on(ap); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_thaw); | 
|  |  | 
|  | /** | 
|  | *	ata_sff_prereset - prepare SFF link for reset | 
|  | *	@link: SFF link to be reset | 
|  | *	@deadline: deadline jiffies for the operation | 
|  | * | 
|  | *	SFF link @link is about to be reset.  Initialize it.  It first | 
|  | *	calls ata_std_prereset() and wait for !BSY if the port is | 
|  | *	being softreset. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Kernel thread context (may sleep) | 
|  | * | 
|  | *	RETURNS: | 
|  | *	0 on success, -errno otherwise. | 
|  | */ | 
|  | int ata_sff_prereset(struct ata_link *link, unsigned long deadline) | 
|  | { | 
|  | struct ata_eh_context *ehc = &link->eh_context; | 
|  | int rc; | 
|  |  | 
|  | rc = ata_std_prereset(link, deadline); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* if we're about to do hardreset, nothing more to do */ | 
|  | if (ehc->i.action & ATA_EH_HARDRESET) | 
|  | return 0; | 
|  |  | 
|  | /* wait for !BSY if we don't know that no device is attached */ | 
|  | if (!ata_link_offline(link)) { | 
|  | rc = ata_sff_wait_ready(link, deadline); | 
|  | if (rc && rc != -ENODEV) { | 
|  | ata_link_warn(link, | 
|  | "device not ready (errno=%d), forcing hardreset\n", | 
|  | rc); | 
|  | ehc->i.action |= ATA_EH_HARDRESET; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_prereset); | 
|  |  | 
|  | /** | 
|  | *	ata_devchk - PATA device presence detection | 
|  | *	@ap: ATA channel to examine | 
|  | *	@device: Device to examine (starting at zero) | 
|  | * | 
|  | *	This technique was originally described in | 
|  | *	Hale Landis's ATADRVR (www.ata-atapi.com), and | 
|  | *	later found its way into the ATA/ATAPI spec. | 
|  | * | 
|  | *	Write a pattern to the ATA shadow registers, | 
|  | *	and if a device is present, it will respond by | 
|  | *	correctly storing and echoing back the | 
|  | *	ATA shadow register contents. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	caller. | 
|  | */ | 
|  | static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) | 
|  | { | 
|  | struct ata_ioports *ioaddr = &ap->ioaddr; | 
|  | u8 nsect, lbal; | 
|  |  | 
|  | ap->ops->sff_dev_select(ap, device); | 
|  |  | 
|  | iowrite8(0x55, ioaddr->nsect_addr); | 
|  | iowrite8(0xaa, ioaddr->lbal_addr); | 
|  |  | 
|  | iowrite8(0xaa, ioaddr->nsect_addr); | 
|  | iowrite8(0x55, ioaddr->lbal_addr); | 
|  |  | 
|  | iowrite8(0x55, ioaddr->nsect_addr); | 
|  | iowrite8(0xaa, ioaddr->lbal_addr); | 
|  |  | 
|  | nsect = ioread8(ioaddr->nsect_addr); | 
|  | lbal = ioread8(ioaddr->lbal_addr); | 
|  |  | 
|  | if ((nsect == 0x55) && (lbal == 0xaa)) | 
|  | return 1;	/* we found a device */ | 
|  |  | 
|  | return 0;		/* nothing found */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_sff_dev_classify - Parse returned ATA device signature | 
|  | *	@dev: ATA device to classify (starting at zero) | 
|  | *	@present: device seems present | 
|  | *	@r_err: Value of error register on completion | 
|  | * | 
|  | *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, | 
|  | *	an ATA/ATAPI-defined set of values is placed in the ATA | 
|  | *	shadow registers, indicating the results of device detection | 
|  | *	and diagnostics. | 
|  | * | 
|  | *	Select the ATA device, and read the values from the ATA shadow | 
|  | *	registers.  Then parse according to the Error register value, | 
|  | *	and the spec-defined values examined by ata_dev_classify(). | 
|  | * | 
|  | *	LOCKING: | 
|  | *	caller. | 
|  | * | 
|  | *	RETURNS: | 
|  | *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. | 
|  | */ | 
|  | unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, | 
|  | u8 *r_err) | 
|  | { | 
|  | struct ata_port *ap = dev->link->ap; | 
|  | struct ata_taskfile tf; | 
|  | unsigned int class; | 
|  | u8 err; | 
|  |  | 
|  | ap->ops->sff_dev_select(ap, dev->devno); | 
|  |  | 
|  | memset(&tf, 0, sizeof(tf)); | 
|  |  | 
|  | ap->ops->sff_tf_read(ap, &tf); | 
|  | err = tf.feature; | 
|  | if (r_err) | 
|  | *r_err = err; | 
|  |  | 
|  | /* see if device passed diags: continue and warn later */ | 
|  | if (err == 0) | 
|  | /* diagnostic fail : do nothing _YET_ */ | 
|  | dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; | 
|  | else if (err == 1) | 
|  | /* do nothing */ ; | 
|  | else if ((dev->devno == 0) && (err == 0x81)) | 
|  | /* do nothing */ ; | 
|  | else | 
|  | return ATA_DEV_NONE; | 
|  |  | 
|  | /* determine if device is ATA or ATAPI */ | 
|  | class = ata_dev_classify(&tf); | 
|  |  | 
|  | if (class == ATA_DEV_UNKNOWN) { | 
|  | /* If the device failed diagnostic, it's likely to | 
|  | * have reported incorrect device signature too. | 
|  | * Assume ATA device if the device seems present but | 
|  | * device signature is invalid with diagnostic | 
|  | * failure. | 
|  | */ | 
|  | if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) | 
|  | class = ATA_DEV_ATA; | 
|  | else | 
|  | class = ATA_DEV_NONE; | 
|  | } else if ((class == ATA_DEV_ATA) && | 
|  | (ap->ops->sff_check_status(ap) == 0)) | 
|  | class = ATA_DEV_NONE; | 
|  |  | 
|  | return class; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_dev_classify); | 
|  |  | 
|  | /** | 
|  | *	ata_sff_wait_after_reset - wait for devices to become ready after reset | 
|  | *	@link: SFF link which is just reset | 
|  | *	@devmask: mask of present devices | 
|  | *	@deadline: deadline jiffies for the operation | 
|  | * | 
|  | *	Wait devices attached to SFF @link to become ready after | 
|  | *	reset.  It contains preceding 150ms wait to avoid accessing TF | 
|  | *	status register too early. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Kernel thread context (may sleep). | 
|  | * | 
|  | *	RETURNS: | 
|  | *	0 on success, -ENODEV if some or all of devices in @devmask | 
|  | *	don't seem to exist.  -errno on other errors. | 
|  | */ | 
|  | int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, | 
|  | unsigned long deadline) | 
|  | { | 
|  | struct ata_port *ap = link->ap; | 
|  | struct ata_ioports *ioaddr = &ap->ioaddr; | 
|  | unsigned int dev0 = devmask & (1 << 0); | 
|  | unsigned int dev1 = devmask & (1 << 1); | 
|  | int rc, ret = 0; | 
|  |  | 
|  | ata_msleep(ap, ATA_WAIT_AFTER_RESET); | 
|  |  | 
|  | /* always check readiness of the master device */ | 
|  | rc = ata_sff_wait_ready(link, deadline); | 
|  | /* -ENODEV means the odd clown forgot the D7 pulldown resistor | 
|  | * and TF status is 0xff, bail out on it too. | 
|  | */ | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* if device 1 was found in ata_devchk, wait for register | 
|  | * access briefly, then wait for BSY to clear. | 
|  | */ | 
|  | if (dev1) { | 
|  | int i; | 
|  |  | 
|  | ap->ops->sff_dev_select(ap, 1); | 
|  |  | 
|  | /* Wait for register access.  Some ATAPI devices fail | 
|  | * to set nsect/lbal after reset, so don't waste too | 
|  | * much time on it.  We're gonna wait for !BSY anyway. | 
|  | */ | 
|  | for (i = 0; i < 2; i++) { | 
|  | u8 nsect, lbal; | 
|  |  | 
|  | nsect = ioread8(ioaddr->nsect_addr); | 
|  | lbal = ioread8(ioaddr->lbal_addr); | 
|  | if ((nsect == 1) && (lbal == 1)) | 
|  | break; | 
|  | ata_msleep(ap, 50);	/* give drive a breather */ | 
|  | } | 
|  |  | 
|  | rc = ata_sff_wait_ready(link, deadline); | 
|  | if (rc) { | 
|  | if (rc != -ENODEV) | 
|  | return rc; | 
|  | ret = rc; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* is all this really necessary? */ | 
|  | ap->ops->sff_dev_select(ap, 0); | 
|  | if (dev1) | 
|  | ap->ops->sff_dev_select(ap, 1); | 
|  | if (dev0) | 
|  | ap->ops->sff_dev_select(ap, 0); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); | 
|  |  | 
|  | static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, | 
|  | unsigned long deadline) | 
|  | { | 
|  | struct ata_ioports *ioaddr = &ap->ioaddr; | 
|  |  | 
|  | DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); | 
|  |  | 
|  | if (ap->ioaddr.ctl_addr) { | 
|  | /* software reset.  causes dev0 to be selected */ | 
|  | iowrite8(ap->ctl, ioaddr->ctl_addr); | 
|  | udelay(20);	/* FIXME: flush */ | 
|  | iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); | 
|  | udelay(20);	/* FIXME: flush */ | 
|  | iowrite8(ap->ctl, ioaddr->ctl_addr); | 
|  | ap->last_ctl = ap->ctl; | 
|  | } | 
|  |  | 
|  | /* wait the port to become ready */ | 
|  | return ata_sff_wait_after_reset(&ap->link, devmask, deadline); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_sff_softreset - reset host port via ATA SRST | 
|  | *	@link: ATA link to reset | 
|  | *	@classes: resulting classes of attached devices | 
|  | *	@deadline: deadline jiffies for the operation | 
|  | * | 
|  | *	Reset host port using ATA SRST. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Kernel thread context (may sleep) | 
|  | * | 
|  | *	RETURNS: | 
|  | *	0 on success, -errno otherwise. | 
|  | */ | 
|  | int ata_sff_softreset(struct ata_link *link, unsigned int *classes, | 
|  | unsigned long deadline) | 
|  | { | 
|  | struct ata_port *ap = link->ap; | 
|  | unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; | 
|  | unsigned int devmask = 0; | 
|  | int rc; | 
|  | u8 err; | 
|  |  | 
|  | DPRINTK("ENTER\n"); | 
|  |  | 
|  | /* determine if device 0/1 are present */ | 
|  | if (ata_devchk(ap, 0)) | 
|  | devmask |= (1 << 0); | 
|  | if (slave_possible && ata_devchk(ap, 1)) | 
|  | devmask |= (1 << 1); | 
|  |  | 
|  | /* select device 0 again */ | 
|  | ap->ops->sff_dev_select(ap, 0); | 
|  |  | 
|  | /* issue bus reset */ | 
|  | DPRINTK("about to softreset, devmask=%x\n", devmask); | 
|  | rc = ata_bus_softreset(ap, devmask, deadline); | 
|  | /* if link is occupied, -ENODEV too is an error */ | 
|  | if (rc && (rc != -ENODEV || sata_scr_valid(link))) { | 
|  | ata_link_err(link, "SRST failed (errno=%d)\n", rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* determine by signature whether we have ATA or ATAPI devices */ | 
|  | classes[0] = ata_sff_dev_classify(&link->device[0], | 
|  | devmask & (1 << 0), &err); | 
|  | if (slave_possible && err != 0x81) | 
|  | classes[1] = ata_sff_dev_classify(&link->device[1], | 
|  | devmask & (1 << 1), &err); | 
|  |  | 
|  | DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_softreset); | 
|  |  | 
|  | /** | 
|  | *	sata_sff_hardreset - reset host port via SATA phy reset | 
|  | *	@link: link to reset | 
|  | *	@class: resulting class of attached device | 
|  | *	@deadline: deadline jiffies for the operation | 
|  | * | 
|  | *	SATA phy-reset host port using DET bits of SControl register, | 
|  | *	wait for !BSY and classify the attached device. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Kernel thread context (may sleep) | 
|  | * | 
|  | *	RETURNS: | 
|  | *	0 on success, -errno otherwise. | 
|  | */ | 
|  | int sata_sff_hardreset(struct ata_link *link, unsigned int *class, | 
|  | unsigned long deadline) | 
|  | { | 
|  | struct ata_eh_context *ehc = &link->eh_context; | 
|  | const unsigned long *timing = sata_ehc_deb_timing(ehc); | 
|  | bool online; | 
|  | int rc; | 
|  |  | 
|  | rc = sata_link_hardreset(link, timing, deadline, &online, | 
|  | ata_sff_check_ready); | 
|  | if (online) | 
|  | *class = ata_sff_dev_classify(link->device, 1, NULL); | 
|  |  | 
|  | DPRINTK("EXIT, class=%u\n", *class); | 
|  | return rc; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sata_sff_hardreset); | 
|  |  | 
|  | /** | 
|  | *	ata_sff_postreset - SFF postreset callback | 
|  | *	@link: the target SFF ata_link | 
|  | *	@classes: classes of attached devices | 
|  | * | 
|  | *	This function is invoked after a successful reset.  It first | 
|  | *	calls ata_std_postreset() and performs SFF specific postreset | 
|  | *	processing. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Kernel thread context (may sleep) | 
|  | */ | 
|  | void ata_sff_postreset(struct ata_link *link, unsigned int *classes) | 
|  | { | 
|  | struct ata_port *ap = link->ap; | 
|  |  | 
|  | ata_std_postreset(link, classes); | 
|  |  | 
|  | /* is double-select really necessary? */ | 
|  | if (classes[0] != ATA_DEV_NONE) | 
|  | ap->ops->sff_dev_select(ap, 1); | 
|  | if (classes[1] != ATA_DEV_NONE) | 
|  | ap->ops->sff_dev_select(ap, 0); | 
|  |  | 
|  | /* bail out if no device is present */ | 
|  | if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { | 
|  | DPRINTK("EXIT, no device\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* set up device control */ | 
|  | if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) { | 
|  | ata_sff_set_devctl(ap, ap->ctl); | 
|  | ap->last_ctl = ap->ctl; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_postreset); | 
|  |  | 
|  | /** | 
|  | *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers | 
|  | *	@qc: command | 
|  | * | 
|  | *	Drain the FIFO and device of any stuck data following a command | 
|  | *	failing to complete. In some cases this is necessary before a | 
|  | *	reset will recover the device. | 
|  | * | 
|  | */ | 
|  |  | 
|  | void ata_sff_drain_fifo(struct ata_queued_cmd *qc) | 
|  | { | 
|  | int count; | 
|  | struct ata_port *ap; | 
|  |  | 
|  | /* We only need to flush incoming data when a command was running */ | 
|  | if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) | 
|  | return; | 
|  |  | 
|  | ap = qc->ap; | 
|  | /* Drain up to 64K of data before we give up this recovery method */ | 
|  | for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) | 
|  | && count < 65536; count += 2) | 
|  | ioread16(ap->ioaddr.data_addr); | 
|  |  | 
|  | /* Can become DEBUG later */ | 
|  | if (count) | 
|  | ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); | 
|  |  | 
|  | /** | 
|  | *	ata_sff_error_handler - Stock error handler for SFF controller | 
|  | *	@ap: port to handle error for | 
|  | * | 
|  | *	Stock error handler for SFF controller.  It can handle both | 
|  | *	PATA and SATA controllers.  Many controllers should be able to | 
|  | *	use this EH as-is or with some added handling before and | 
|  | *	after. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Kernel thread context (may sleep) | 
|  | */ | 
|  | void ata_sff_error_handler(struct ata_port *ap) | 
|  | { | 
|  | ata_reset_fn_t softreset = ap->ops->softreset; | 
|  | ata_reset_fn_t hardreset = ap->ops->hardreset; | 
|  | struct ata_queued_cmd *qc; | 
|  | unsigned long flags; | 
|  |  | 
|  | qc = __ata_qc_from_tag(ap, ap->link.active_tag); | 
|  | if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) | 
|  | qc = NULL; | 
|  |  | 
|  | spin_lock_irqsave(ap->lock, flags); | 
|  |  | 
|  | /* | 
|  | * We *MUST* do FIFO draining before we issue a reset as | 
|  | * several devices helpfully clear their internal state and | 
|  | * will lock solid if we touch the data port post reset. Pass | 
|  | * qc in case anyone wants to do different PIO/DMA recovery or | 
|  | * has per command fixups | 
|  | */ | 
|  | if (ap->ops->sff_drain_fifo) | 
|  | ap->ops->sff_drain_fifo(qc); | 
|  |  | 
|  | spin_unlock_irqrestore(ap->lock, flags); | 
|  |  | 
|  | /* ignore built-in hardresets if SCR access is not available */ | 
|  | if ((hardreset == sata_std_hardreset || | 
|  | hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) | 
|  | hardreset = NULL; | 
|  |  | 
|  | ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, | 
|  | ap->ops->postreset); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_error_handler); | 
|  |  | 
|  | /** | 
|  | *	ata_sff_std_ports - initialize ioaddr with standard port offsets. | 
|  | *	@ioaddr: IO address structure to be initialized | 
|  | * | 
|  | *	Utility function which initializes data_addr, error_addr, | 
|  | *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, | 
|  | *	device_addr, status_addr, and command_addr to standard offsets | 
|  | *	relative to cmd_addr. | 
|  | * | 
|  | *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. | 
|  | */ | 
|  | void ata_sff_std_ports(struct ata_ioports *ioaddr) | 
|  | { | 
|  | ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; | 
|  | ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; | 
|  | ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; | 
|  | ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; | 
|  | ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; | 
|  | ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; | 
|  | ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; | 
|  | ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; | 
|  | ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; | 
|  | ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_sff_std_ports); | 
|  |  | 
|  | #ifdef CONFIG_PCI | 
|  |  | 
|  | static int ata_resources_present(struct pci_dev *pdev, int port) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Check the PCI resources for this channel are enabled */ | 
|  | port = port * 2; | 
|  | for (i = 0; i < 2; i++) { | 
|  | if (pci_resource_start(pdev, port + i) == 0 || | 
|  | pci_resource_len(pdev, port + i) == 0) | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host | 
|  | *	@host: target ATA host | 
|  | * | 
|  | *	Acquire native PCI ATA resources for @host and initialize the | 
|  | *	first two ports of @host accordingly.  Ports marked dummy are | 
|  | *	skipped and allocation failure makes the port dummy. | 
|  | * | 
|  | *	Note that native PCI resources are valid even for legacy hosts | 
|  | *	as we fix up pdev resources array early in boot, so this | 
|  | *	function can be used for both native and legacy SFF hosts. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from calling layer (may sleep). | 
|  | * | 
|  | *	RETURNS: | 
|  | *	0 if at least one port is initialized, -ENODEV if no port is | 
|  | *	available. | 
|  | */ | 
|  | int ata_pci_sff_init_host(struct ata_host *host) | 
|  | { | 
|  | struct device *gdev = host->dev; | 
|  | struct pci_dev *pdev = to_pci_dev(gdev); | 
|  | unsigned int mask = 0; | 
|  | int i, rc; | 
|  |  | 
|  | /* request, iomap BARs and init port addresses accordingly */ | 
|  | for (i = 0; i < 2; i++) { | 
|  | struct ata_port *ap = host->ports[i]; | 
|  | int base = i * 2; | 
|  | void __iomem * const *iomap; | 
|  |  | 
|  | if (ata_port_is_dummy(ap)) | 
|  | continue; | 
|  |  | 
|  | /* Discard disabled ports.  Some controllers show | 
|  | * their unused channels this way.  Disabled ports are | 
|  | * made dummy. | 
|  | */ | 
|  | if (!ata_resources_present(pdev, i)) { | 
|  | ap->ops = &ata_dummy_port_ops; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | rc = pcim_iomap_regions(pdev, 0x3 << base, | 
|  | dev_driver_string(gdev)); | 
|  | if (rc) { | 
|  | dev_warn(gdev, | 
|  | "failed to request/iomap BARs for port %d (errno=%d)\n", | 
|  | i, rc); | 
|  | if (rc == -EBUSY) | 
|  | pcim_pin_device(pdev); | 
|  | ap->ops = &ata_dummy_port_ops; | 
|  | continue; | 
|  | } | 
|  | host->iomap = iomap = pcim_iomap_table(pdev); | 
|  |  | 
|  | ap->ioaddr.cmd_addr = iomap[base]; | 
|  | ap->ioaddr.altstatus_addr = | 
|  | ap->ioaddr.ctl_addr = (void __iomem *) | 
|  | ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); | 
|  | ata_sff_std_ports(&ap->ioaddr); | 
|  |  | 
|  | ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", | 
|  | (unsigned long long)pci_resource_start(pdev, base), | 
|  | (unsigned long long)pci_resource_start(pdev, base + 1)); | 
|  |  | 
|  | mask |= 1 << i; | 
|  | } | 
|  |  | 
|  | if (!mask) { | 
|  | dev_err(gdev, "no available native port\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); | 
|  |  | 
|  | /** | 
|  | *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host | 
|  | *	@pdev: target PCI device | 
|  | *	@ppi: array of port_info, must be enough for two ports | 
|  | *	@r_host: out argument for the initialized ATA host | 
|  | * | 
|  | *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire | 
|  | *	all PCI resources and initialize it accordingly in one go. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from calling layer (may sleep). | 
|  | * | 
|  | *	RETURNS: | 
|  | *	0 on success, -errno otherwise. | 
|  | */ | 
|  | int ata_pci_sff_prepare_host(struct pci_dev *pdev, | 
|  | const struct ata_port_info * const *ppi, | 
|  | struct ata_host **r_host) | 
|  | { | 
|  | struct ata_host *host; | 
|  | int rc; | 
|  |  | 
|  | if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); | 
|  | if (!host) { | 
|  | dev_err(&pdev->dev, "failed to allocate ATA host\n"); | 
|  | rc = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | rc = ata_pci_sff_init_host(host); | 
|  | if (rc) | 
|  | goto err_out; | 
|  |  | 
|  | devres_remove_group(&pdev->dev, NULL); | 
|  | *r_host = host; | 
|  | return 0; | 
|  |  | 
|  | err_out: | 
|  | devres_release_group(&pdev->dev, NULL); | 
|  | return rc; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); | 
|  |  | 
|  | /** | 
|  | *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it | 
|  | *	@host: target SFF ATA host | 
|  | *	@irq_handler: irq_handler used when requesting IRQ(s) | 
|  | *	@sht: scsi_host_template to use when registering the host | 
|  | * | 
|  | *	This is the counterpart of ata_host_activate() for SFF ATA | 
|  | *	hosts.  This separate helper is necessary because SFF hosts | 
|  | *	use two separate interrupts in legacy mode. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from calling layer (may sleep). | 
|  | * | 
|  | *	RETURNS: | 
|  | *	0 on success, -errno otherwise. | 
|  | */ | 
|  | int ata_pci_sff_activate_host(struct ata_host *host, | 
|  | irq_handler_t irq_handler, | 
|  | struct scsi_host_template *sht) | 
|  | { | 
|  | struct device *dev = host->dev; | 
|  | struct pci_dev *pdev = to_pci_dev(dev); | 
|  | const char *drv_name = dev_driver_string(host->dev); | 
|  | int legacy_mode = 0, rc; | 
|  |  | 
|  | rc = ata_host_start(host); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { | 
|  | u8 tmp8, mask; | 
|  |  | 
|  | /* TODO: What if one channel is in native mode ... */ | 
|  | pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); | 
|  | mask = (1 << 2) | (1 << 0); | 
|  | if ((tmp8 & mask) != mask) | 
|  | legacy_mode = 1; | 
|  | } | 
|  |  | 
|  | if (!devres_open_group(dev, NULL, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!legacy_mode && pdev->irq) { | 
|  | int i; | 
|  |  | 
|  | rc = devm_request_irq(dev, pdev->irq, irq_handler, | 
|  | IRQF_SHARED, drv_name, host); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < 2; i++) { | 
|  | if (ata_port_is_dummy(host->ports[i])) | 
|  | continue; | 
|  | ata_port_desc(host->ports[i], "irq %d", pdev->irq); | 
|  | } | 
|  | } else if (legacy_mode) { | 
|  | if (!ata_port_is_dummy(host->ports[0])) { | 
|  | rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), | 
|  | irq_handler, IRQF_SHARED, | 
|  | drv_name, host); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | ata_port_desc(host->ports[0], "irq %d", | 
|  | ATA_PRIMARY_IRQ(pdev)); | 
|  | } | 
|  |  | 
|  | if (!ata_port_is_dummy(host->ports[1])) { | 
|  | rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), | 
|  | irq_handler, IRQF_SHARED, | 
|  | drv_name, host); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | ata_port_desc(host->ports[1], "irq %d", | 
|  | ATA_SECONDARY_IRQ(pdev)); | 
|  | } | 
|  | } | 
|  |  | 
|  | rc = ata_host_register(host, sht); | 
|  | out: | 
|  | if (rc == 0) | 
|  | devres_remove_group(dev, NULL); | 
|  | else | 
|  | devres_release_group(dev, NULL); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); | 
|  |  | 
|  | static const struct ata_port_info *ata_sff_find_valid_pi( | 
|  | const struct ata_port_info * const *ppi) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* look up the first valid port_info */ | 
|  | for (i = 0; i < 2 && ppi[i]; i++) | 
|  | if (ppi[i]->port_ops != &ata_dummy_port_ops) | 
|  | return ppi[i]; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int ata_pci_init_one(struct pci_dev *pdev, | 
|  | const struct ata_port_info * const *ppi, | 
|  | struct scsi_host_template *sht, void *host_priv, | 
|  | int hflags, bool bmdma) | 
|  | { | 
|  | struct device *dev = &pdev->dev; | 
|  | const struct ata_port_info *pi; | 
|  | struct ata_host *host = NULL; | 
|  | int rc; | 
|  |  | 
|  | DPRINTK("ENTER\n"); | 
|  |  | 
|  | pi = ata_sff_find_valid_pi(ppi); | 
|  | if (!pi) { | 
|  | dev_err(&pdev->dev, "no valid port_info specified\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!devres_open_group(dev, NULL, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | rc = pcim_enable_device(pdev); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | #ifdef CONFIG_ATA_BMDMA | 
|  | if (bmdma) | 
|  | /* prepare and activate BMDMA host */ | 
|  | rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); | 
|  | else | 
|  | #endif | 
|  | /* prepare and activate SFF host */ | 
|  | rc = ata_pci_sff_prepare_host(pdev, ppi, &host); | 
|  | if (rc) | 
|  | goto out; | 
|  | host->private_data = host_priv; | 
|  | host->flags |= hflags; | 
|  |  | 
|  | #ifdef CONFIG_ATA_BMDMA | 
|  | if (bmdma) { | 
|  | pci_set_master(pdev); | 
|  | rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); | 
|  | } else | 
|  | #endif | 
|  | rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); | 
|  | out: | 
|  | if (rc == 0) | 
|  | devres_remove_group(&pdev->dev, NULL); | 
|  | else | 
|  | devres_release_group(&pdev->dev, NULL); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller | 
|  | *	@pdev: Controller to be initialized | 
|  | *	@ppi: array of port_info, must be enough for two ports | 
|  | *	@sht: scsi_host_template to use when registering the host | 
|  | *	@host_priv: host private_data | 
|  | *	@hflag: host flags | 
|  | * | 
|  | *	This is a helper function which can be called from a driver's | 
|  | *	xxx_init_one() probe function if the hardware uses traditional | 
|  | *	IDE taskfile registers and is PIO only. | 
|  | * | 
|  | *	ASSUMPTION: | 
|  | *	Nobody makes a single channel controller that appears solely as | 
|  | *	the secondary legacy port on PCI. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from PCI layer (may sleep). | 
|  | * | 
|  | *	RETURNS: | 
|  | *	Zero on success, negative on errno-based value on error. | 
|  | */ | 
|  | int ata_pci_sff_init_one(struct pci_dev *pdev, | 
|  | const struct ata_port_info * const *ppi, | 
|  | struct scsi_host_template *sht, void *host_priv, int hflag) | 
|  | { | 
|  | return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); | 
|  |  | 
|  | #endif /* CONFIG_PCI */ | 
|  |  | 
|  | /* | 
|  | *	BMDMA support | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_ATA_BMDMA | 
|  |  | 
|  | const struct ata_port_operations ata_bmdma_port_ops = { | 
|  | .inherits		= &ata_sff_port_ops, | 
|  |  | 
|  | .error_handler		= ata_bmdma_error_handler, | 
|  | .post_internal_cmd	= ata_bmdma_post_internal_cmd, | 
|  |  | 
|  | .qc_prep		= ata_bmdma_qc_prep, | 
|  | .qc_issue		= ata_bmdma_qc_issue, | 
|  |  | 
|  | .sff_irq_clear		= ata_bmdma_irq_clear, | 
|  | .bmdma_setup		= ata_bmdma_setup, | 
|  | .bmdma_start		= ata_bmdma_start, | 
|  | .bmdma_stop		= ata_bmdma_stop, | 
|  | .bmdma_status		= ata_bmdma_status, | 
|  |  | 
|  | .port_start		= ata_bmdma_port_start, | 
|  | }; | 
|  | EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); | 
|  |  | 
|  | const struct ata_port_operations ata_bmdma32_port_ops = { | 
|  | .inherits		= &ata_bmdma_port_ops, | 
|  |  | 
|  | .sff_data_xfer		= ata_sff_data_xfer32, | 
|  | .port_start		= ata_bmdma_port_start32, | 
|  | }; | 
|  | EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_fill_sg - Fill PCI IDE PRD table | 
|  | *	@qc: Metadata associated with taskfile to be transferred | 
|  | * | 
|  | *	Fill PCI IDE PRD (scatter-gather) table with segments | 
|  | *	associated with the current disk command. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | * | 
|  | */ | 
|  | static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct ata_port *ap = qc->ap; | 
|  | struct ata_bmdma_prd *prd = ap->bmdma_prd; | 
|  | struct scatterlist *sg; | 
|  | unsigned int si, pi; | 
|  |  | 
|  | pi = 0; | 
|  | for_each_sg(qc->sg, sg, qc->n_elem, si) { | 
|  | u32 addr, offset; | 
|  | u32 sg_len, len; | 
|  |  | 
|  | /* determine if physical DMA addr spans 64K boundary. | 
|  | * Note h/w doesn't support 64-bit, so we unconditionally | 
|  | * truncate dma_addr_t to u32. | 
|  | */ | 
|  | addr = (u32) sg_dma_address(sg); | 
|  | sg_len = sg_dma_len(sg); | 
|  |  | 
|  | while (sg_len) { | 
|  | offset = addr & 0xffff; | 
|  | len = sg_len; | 
|  | if ((offset + sg_len) > 0x10000) | 
|  | len = 0x10000 - offset; | 
|  |  | 
|  | prd[pi].addr = cpu_to_le32(addr); | 
|  | prd[pi].flags_len = cpu_to_le32(len & 0xffff); | 
|  | VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); | 
|  |  | 
|  | pi++; | 
|  | sg_len -= len; | 
|  | addr += len; | 
|  | } | 
|  | } | 
|  |  | 
|  | prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table | 
|  | *	@qc: Metadata associated with taskfile to be transferred | 
|  | * | 
|  | *	Fill PCI IDE PRD (scatter-gather) table with segments | 
|  | *	associated with the current disk command. Perform the fill | 
|  | *	so that we avoid writing any length 64K records for | 
|  | *	controllers that don't follow the spec. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | * | 
|  | */ | 
|  | static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct ata_port *ap = qc->ap; | 
|  | struct ata_bmdma_prd *prd = ap->bmdma_prd; | 
|  | struct scatterlist *sg; | 
|  | unsigned int si, pi; | 
|  |  | 
|  | pi = 0; | 
|  | for_each_sg(qc->sg, sg, qc->n_elem, si) { | 
|  | u32 addr, offset; | 
|  | u32 sg_len, len, blen; | 
|  |  | 
|  | /* determine if physical DMA addr spans 64K boundary. | 
|  | * Note h/w doesn't support 64-bit, so we unconditionally | 
|  | * truncate dma_addr_t to u32. | 
|  | */ | 
|  | addr = (u32) sg_dma_address(sg); | 
|  | sg_len = sg_dma_len(sg); | 
|  |  | 
|  | while (sg_len) { | 
|  | offset = addr & 0xffff; | 
|  | len = sg_len; | 
|  | if ((offset + sg_len) > 0x10000) | 
|  | len = 0x10000 - offset; | 
|  |  | 
|  | blen = len & 0xffff; | 
|  | prd[pi].addr = cpu_to_le32(addr); | 
|  | if (blen == 0) { | 
|  | /* Some PATA chipsets like the CS5530 can't | 
|  | cope with 0x0000 meaning 64K as the spec | 
|  | says */ | 
|  | prd[pi].flags_len = cpu_to_le32(0x8000); | 
|  | blen = 0x8000; | 
|  | prd[++pi].addr = cpu_to_le32(addr + 0x8000); | 
|  | } | 
|  | prd[pi].flags_len = cpu_to_le32(blen); | 
|  | VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); | 
|  |  | 
|  | pi++; | 
|  | sg_len -= len; | 
|  | addr += len; | 
|  | } | 
|  | } | 
|  |  | 
|  | prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_qc_prep - Prepare taskfile for submission | 
|  | *	@qc: Metadata associated with taskfile to be prepared | 
|  | * | 
|  | *	Prepare ATA taskfile for submission. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | */ | 
|  | void ata_bmdma_qc_prep(struct ata_queued_cmd *qc) | 
|  | { | 
|  | if (!(qc->flags & ATA_QCFLAG_DMAMAP)) | 
|  | return; | 
|  |  | 
|  | ata_bmdma_fill_sg(qc); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission | 
|  | *	@qc: Metadata associated with taskfile to be prepared | 
|  | * | 
|  | *	Prepare ATA taskfile for submission. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | */ | 
|  | void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) | 
|  | { | 
|  | if (!(qc->flags & ATA_QCFLAG_DMAMAP)) | 
|  | return; | 
|  |  | 
|  | ata_bmdma_fill_sg_dumb(qc); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller | 
|  | *	@qc: command to issue to device | 
|  | * | 
|  | *	This function issues a PIO, NODATA or DMA command to a | 
|  | *	SFF/BMDMA controller.  PIO and NODATA are handled by | 
|  | *	ata_sff_qc_issue(). | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | * | 
|  | *	RETURNS: | 
|  | *	Zero on success, AC_ERR_* mask on failure | 
|  | */ | 
|  | unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct ata_port *ap = qc->ap; | 
|  | struct ata_link *link = qc->dev->link; | 
|  |  | 
|  | /* defer PIO handling to sff_qc_issue */ | 
|  | if (!ata_is_dma(qc->tf.protocol)) | 
|  | return ata_sff_qc_issue(qc); | 
|  |  | 
|  | /* select the device */ | 
|  | ata_dev_select(ap, qc->dev->devno, 1, 0); | 
|  |  | 
|  | /* start the command */ | 
|  | switch (qc->tf.protocol) { | 
|  | case ATA_PROT_DMA: | 
|  | WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); | 
|  |  | 
|  | ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */ | 
|  | ap->ops->bmdma_setup(qc);	    /* set up bmdma */ | 
|  | ap->ops->bmdma_start(qc);	    /* initiate bmdma */ | 
|  | ap->hsm_task_state = HSM_ST_LAST; | 
|  | break; | 
|  |  | 
|  | case ATAPI_PROT_DMA: | 
|  | WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); | 
|  |  | 
|  | ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */ | 
|  | ap->ops->bmdma_setup(qc);	    /* set up bmdma */ | 
|  | ap->hsm_task_state = HSM_ST_FIRST; | 
|  |  | 
|  | /* send cdb by polling if no cdb interrupt */ | 
|  | if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) | 
|  | ata_sff_queue_pio_task(link, 0); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | WARN_ON(1); | 
|  | return AC_ERR_SYSTEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_port_intr - Handle BMDMA port interrupt | 
|  | *	@ap: Port on which interrupt arrived (possibly...) | 
|  | *	@qc: Taskfile currently active in engine | 
|  | * | 
|  | *	Handle port interrupt for given queued command. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | * | 
|  | *	RETURNS: | 
|  | *	One if interrupt was handled, zero if not (shared irq). | 
|  | */ | 
|  | unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct ata_eh_info *ehi = &ap->link.eh_info; | 
|  | u8 host_stat = 0; | 
|  | bool bmdma_stopped = false; | 
|  | unsigned int handled; | 
|  |  | 
|  | if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { | 
|  | /* check status of DMA engine */ | 
|  | host_stat = ap->ops->bmdma_status(ap); | 
|  | VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat); | 
|  |  | 
|  | /* if it's not our irq... */ | 
|  | if (!(host_stat & ATA_DMA_INTR)) | 
|  | return ata_sff_idle_irq(ap); | 
|  |  | 
|  | /* before we do anything else, clear DMA-Start bit */ | 
|  | ap->ops->bmdma_stop(qc); | 
|  | bmdma_stopped = true; | 
|  |  | 
|  | if (unlikely(host_stat & ATA_DMA_ERR)) { | 
|  | /* error when transferring data to/from memory */ | 
|  | qc->err_mask |= AC_ERR_HOST_BUS; | 
|  | ap->hsm_task_state = HSM_ST_ERR; | 
|  | } | 
|  | } | 
|  |  | 
|  | handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); | 
|  |  | 
|  | if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) | 
|  | ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); | 
|  |  | 
|  | return handled; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler | 
|  | *	@irq: irq line (unused) | 
|  | *	@dev_instance: pointer to our ata_host information structure | 
|  | * | 
|  | *	Default interrupt handler for PCI IDE devices.  Calls | 
|  | *	ata_bmdma_port_intr() for each port that is not disabled. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Obtains host lock during operation. | 
|  | * | 
|  | *	RETURNS: | 
|  | *	IRQ_NONE or IRQ_HANDLED. | 
|  | */ | 
|  | irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) | 
|  | { | 
|  | return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_error_handler - Stock error handler for BMDMA controller | 
|  | *	@ap: port to handle error for | 
|  | * | 
|  | *	Stock error handler for BMDMA controller.  It can handle both | 
|  | *	PATA and SATA controllers.  Most BMDMA controllers should be | 
|  | *	able to use this EH as-is or with some added handling before | 
|  | *	and after. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Kernel thread context (may sleep) | 
|  | */ | 
|  | void ata_bmdma_error_handler(struct ata_port *ap) | 
|  | { | 
|  | struct ata_queued_cmd *qc; | 
|  | unsigned long flags; | 
|  | bool thaw = false; | 
|  |  | 
|  | qc = __ata_qc_from_tag(ap, ap->link.active_tag); | 
|  | if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) | 
|  | qc = NULL; | 
|  |  | 
|  | /* reset PIO HSM and stop DMA engine */ | 
|  | spin_lock_irqsave(ap->lock, flags); | 
|  |  | 
|  | if (qc && ata_is_dma(qc->tf.protocol)) { | 
|  | u8 host_stat; | 
|  |  | 
|  | host_stat = ap->ops->bmdma_status(ap); | 
|  |  | 
|  | /* BMDMA controllers indicate host bus error by | 
|  | * setting DMA_ERR bit and timing out.  As it wasn't | 
|  | * really a timeout event, adjust error mask and | 
|  | * cancel frozen state. | 
|  | */ | 
|  | if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { | 
|  | qc->err_mask = AC_ERR_HOST_BUS; | 
|  | thaw = true; | 
|  | } | 
|  |  | 
|  | ap->ops->bmdma_stop(qc); | 
|  |  | 
|  | /* if we're gonna thaw, make sure IRQ is clear */ | 
|  | if (thaw) { | 
|  | ap->ops->sff_check_status(ap); | 
|  | if (ap->ops->sff_irq_clear) | 
|  | ap->ops->sff_irq_clear(ap); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(ap->lock, flags); | 
|  |  | 
|  | if (thaw) | 
|  | ata_eh_thaw_port(ap); | 
|  |  | 
|  | ata_sff_error_handler(ap); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA | 
|  | *	@qc: internal command to clean up | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Kernel thread context (may sleep) | 
|  | */ | 
|  | void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct ata_port *ap = qc->ap; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (ata_is_dma(qc->tf.protocol)) { | 
|  | spin_lock_irqsave(ap->lock, flags); | 
|  | ap->ops->bmdma_stop(qc); | 
|  | spin_unlock_irqrestore(ap->lock, flags); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. | 
|  | *	@ap: Port associated with this ATA transaction. | 
|  | * | 
|  | *	Clear interrupt and error flags in DMA status register. | 
|  | * | 
|  | *	May be used as the irq_clear() entry in ata_port_operations. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | */ | 
|  | void ata_bmdma_irq_clear(struct ata_port *ap) | 
|  | { | 
|  | void __iomem *mmio = ap->ioaddr.bmdma_addr; | 
|  |  | 
|  | if (!mmio) | 
|  | return; | 
|  |  | 
|  | iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction | 
|  | *	@qc: Info associated with this ATA transaction. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | */ | 
|  | void ata_bmdma_setup(struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct ata_port *ap = qc->ap; | 
|  | unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); | 
|  | u8 dmactl; | 
|  |  | 
|  | /* load PRD table addr. */ | 
|  | mb();	/* make sure PRD table writes are visible to controller */ | 
|  | iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); | 
|  |  | 
|  | /* specify data direction, triple-check start bit is clear */ | 
|  | dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); | 
|  | dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); | 
|  | if (!rw) | 
|  | dmactl |= ATA_DMA_WR; | 
|  | iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); | 
|  |  | 
|  | /* issue r/w command */ | 
|  | ap->ops->sff_exec_command(ap, &qc->tf); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_bmdma_setup); | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_start - Start a PCI IDE BMDMA transaction | 
|  | *	@qc: Info associated with this ATA transaction. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | */ | 
|  | void ata_bmdma_start(struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct ata_port *ap = qc->ap; | 
|  | u8 dmactl; | 
|  |  | 
|  | /* start host DMA transaction */ | 
|  | dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); | 
|  | iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); | 
|  |  | 
|  | /* Strictly, one may wish to issue an ioread8() here, to | 
|  | * flush the mmio write.  However, control also passes | 
|  | * to the hardware at this point, and it will interrupt | 
|  | * us when we are to resume control.  So, in effect, | 
|  | * we don't care when the mmio write flushes. | 
|  | * Further, a read of the DMA status register _immediately_ | 
|  | * following the write may not be what certain flaky hardware | 
|  | * is expected, so I think it is best to not add a readb() | 
|  | * without first all the MMIO ATA cards/mobos. | 
|  | * Or maybe I'm just being paranoid. | 
|  | * | 
|  | * FIXME: The posting of this write means I/O starts are | 
|  | * unnecessarily delayed for MMIO | 
|  | */ | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_bmdma_start); | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer | 
|  | *	@qc: Command we are ending DMA for | 
|  | * | 
|  | *	Clears the ATA_DMA_START flag in the dma control register | 
|  | * | 
|  | *	May be used as the bmdma_stop() entry in ata_port_operations. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | */ | 
|  | void ata_bmdma_stop(struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct ata_port *ap = qc->ap; | 
|  | void __iomem *mmio = ap->ioaddr.bmdma_addr; | 
|  |  | 
|  | /* clear start/stop bit */ | 
|  | iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, | 
|  | mmio + ATA_DMA_CMD); | 
|  |  | 
|  | /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ | 
|  | ata_sff_dma_pause(ap); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_bmdma_stop); | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_status - Read PCI IDE BMDMA status | 
|  | *	@ap: Port associated with this ATA transaction. | 
|  | * | 
|  | *	Read and return BMDMA status register. | 
|  | * | 
|  | *	May be used as the bmdma_status() entry in ata_port_operations. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | */ | 
|  | u8 ata_bmdma_status(struct ata_port *ap) | 
|  | { | 
|  | return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_bmdma_status); | 
|  |  | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_port_start - Set port up for bmdma. | 
|  | *	@ap: Port to initialize | 
|  | * | 
|  | *	Called just after data structures for each port are | 
|  | *	initialized.  Allocates space for PRD table. | 
|  | * | 
|  | *	May be used as the port_start() entry in ata_port_operations. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | int ata_bmdma_port_start(struct ata_port *ap) | 
|  | { | 
|  | if (ap->mwdma_mask || ap->udma_mask) { | 
|  | ap->bmdma_prd = | 
|  | dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, | 
|  | &ap->bmdma_prd_dma, GFP_KERNEL); | 
|  | if (!ap->bmdma_prd) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_bmdma_port_start); | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_port_start32 - Set port up for dma. | 
|  | *	@ap: Port to initialize | 
|  | * | 
|  | *	Called just after data structures for each port are | 
|  | *	initialized.  Enables 32bit PIO and allocates space for PRD | 
|  | *	table. | 
|  | * | 
|  | *	May be used as the port_start() entry in ata_port_operations for | 
|  | *	devices that are capable of 32bit PIO. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | int ata_bmdma_port_start32(struct ata_port *ap) | 
|  | { | 
|  | ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; | 
|  | return ata_bmdma_port_start(ap); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); | 
|  |  | 
|  | #ifdef CONFIG_PCI | 
|  |  | 
|  | /** | 
|  | *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex | 
|  | *	@pdev: PCI device | 
|  | * | 
|  | *	Some PCI ATA devices report simplex mode but in fact can be told to | 
|  | *	enter non simplex mode. This implements the necessary logic to | 
|  | *	perform the task on such devices. Calling it on other devices will | 
|  | *	have -undefined- behaviour. | 
|  | */ | 
|  | int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) | 
|  | { | 
|  | unsigned long bmdma = pci_resource_start(pdev, 4); | 
|  | u8 simplex; | 
|  |  | 
|  | if (bmdma == 0) | 
|  | return -ENOENT; | 
|  |  | 
|  | simplex = inb(bmdma + 0x02); | 
|  | outb(simplex & 0x60, bmdma + 0x02); | 
|  | simplex = inb(bmdma + 0x02); | 
|  | if (simplex & 0x80) | 
|  | return -EOPNOTSUPP; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); | 
|  |  | 
|  | static void ata_bmdma_nodma(struct ata_host *host, const char *reason) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason); | 
|  |  | 
|  | for (i = 0; i < 2; i++) { | 
|  | host->ports[i]->mwdma_mask = 0; | 
|  | host->ports[i]->udma_mask = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host | 
|  | *	@host: target ATA host | 
|  | * | 
|  | *	Acquire PCI BMDMA resources and initialize @host accordingly. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from calling layer (may sleep). | 
|  | */ | 
|  | void ata_pci_bmdma_init(struct ata_host *host) | 
|  | { | 
|  | struct device *gdev = host->dev; | 
|  | struct pci_dev *pdev = to_pci_dev(gdev); | 
|  | int i, rc; | 
|  |  | 
|  | /* No BAR4 allocation: No DMA */ | 
|  | if (pci_resource_start(pdev, 4) == 0) { | 
|  | ata_bmdma_nodma(host, "BAR4 is zero"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some controllers require BMDMA region to be initialized | 
|  | * even if DMA is not in use to clear IRQ status via | 
|  | * ->sff_irq_clear method.  Try to initialize bmdma_addr | 
|  | * regardless of dma masks. | 
|  | */ | 
|  | rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); | 
|  | if (rc) | 
|  | ata_bmdma_nodma(host, "failed to set dma mask"); | 
|  | if (!rc) { | 
|  | rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); | 
|  | if (rc) | 
|  | ata_bmdma_nodma(host, | 
|  | "failed to set consistent dma mask"); | 
|  | } | 
|  |  | 
|  | /* request and iomap DMA region */ | 
|  | rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); | 
|  | if (rc) { | 
|  | ata_bmdma_nodma(host, "failed to request/iomap BAR4"); | 
|  | return; | 
|  | } | 
|  | host->iomap = pcim_iomap_table(pdev); | 
|  |  | 
|  | for (i = 0; i < 2; i++) { | 
|  | struct ata_port *ap = host->ports[i]; | 
|  | void __iomem *bmdma = host->iomap[4] + 8 * i; | 
|  |  | 
|  | if (ata_port_is_dummy(ap)) | 
|  | continue; | 
|  |  | 
|  | ap->ioaddr.bmdma_addr = bmdma; | 
|  | if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && | 
|  | (ioread8(bmdma + 2) & 0x80)) | 
|  | host->flags |= ATA_HOST_SIMPLEX; | 
|  |  | 
|  | ata_port_desc(ap, "bmdma 0x%llx", | 
|  | (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); | 
|  |  | 
|  | /** | 
|  | *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host | 
|  | *	@pdev: target PCI device | 
|  | *	@ppi: array of port_info, must be enough for two ports | 
|  | *	@r_host: out argument for the initialized ATA host | 
|  | * | 
|  | *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI | 
|  | *	resources and initialize it accordingly in one go. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from calling layer (may sleep). | 
|  | * | 
|  | *	RETURNS: | 
|  | *	0 on success, -errno otherwise. | 
|  | */ | 
|  | int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, | 
|  | const struct ata_port_info * const * ppi, | 
|  | struct ata_host **r_host) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | ata_pci_bmdma_init(*r_host); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); | 
|  |  | 
|  | /** | 
|  | *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller | 
|  | *	@pdev: Controller to be initialized | 
|  | *	@ppi: array of port_info, must be enough for two ports | 
|  | *	@sht: scsi_host_template to use when registering the host | 
|  | *	@host_priv: host private_data | 
|  | *	@hflags: host flags | 
|  | * | 
|  | *	This function is similar to ata_pci_sff_init_one() but also | 
|  | *	takes care of BMDMA initialization. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from PCI layer (may sleep). | 
|  | * | 
|  | *	RETURNS: | 
|  | *	Zero on success, negative on errno-based value on error. | 
|  | */ | 
|  | int ata_pci_bmdma_init_one(struct pci_dev *pdev, | 
|  | const struct ata_port_info * const * ppi, | 
|  | struct scsi_host_template *sht, void *host_priv, | 
|  | int hflags) | 
|  | { | 
|  | return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); | 
|  |  | 
|  | #endif /* CONFIG_PCI */ | 
|  | #endif /* CONFIG_ATA_BMDMA */ | 
|  |  | 
|  | /** | 
|  | *	ata_sff_port_init - Initialize SFF/BMDMA ATA port | 
|  | *	@ap: Port to initialize | 
|  | * | 
|  | *	Called on port allocation to initialize SFF/BMDMA specific | 
|  | *	fields. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	None. | 
|  | */ | 
|  | void ata_sff_port_init(struct ata_port *ap) | 
|  | { | 
|  | INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); | 
|  | ap->ctl = ATA_DEVCTL_OBS; | 
|  | ap->last_ctl = 0xFF; | 
|  | } | 
|  |  | 
|  | int __init ata_sff_init(void) | 
|  | { | 
|  | ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); | 
|  | if (!ata_sff_wq) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void ata_sff_exit(void) | 
|  | { | 
|  | destroy_workqueue(ata_sff_wq); | 
|  | } |